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Preface

This thesis is submitted as partly fulfillment of the requirements for the Doctor of Phi-
losophy at the Department of Control Engineering at the Institute of Electronic Systems,
Aalborg University, Denmark. The work has been carried out in the period August 1998 to
August 2002 under the supervision of Professor Jakob Stoustrup and Associate Professor
Tom S. Pedersen.

The subject of the thesis is identification and development of algorithmic methods
for improving the performance and functionality of low-cost active sensors. The thesis
is mainly a theoretical approach to this challenge as the aim has been to obtain generic
results rather than application specific results. However, some effort has been invested in
demonstrating that the results can indeed be applied to real world sensors.

The Ph.D. study is a part of the STVF-financed project OPTOCTRL at Department
of Control Engineering. This project is about nonlinear and robust control of electro-
mechanical systems with optical sensors, and was initiated in collaboration with Bang &
Olufsen, Denmark. The purpose was to identify control and signal processing algorithms
for increasing robustness in system with optical sensors.

This work is thus supported by the Danish Technical Science Foundation (STVF)
Grant no. 9701481.

Aalborg University, August 2002
Anders la Cour-Harbo
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Abstract

The primary purpose of this thesis is to identify methods for improving the performance
and providing additional and new functionality in active sensors. The principal idea for
achieving this is to introduce integrated circuits, in particular on-chip computers, as a
standard component. This enables the use of signal processing algorithms for providing
the desired performance and functionality.

Improved performance is at this point in time synonymous with increased robustness,
small size, and low cost. A reduction in size is a natural consequence of using integrated
circuits and in large quantities the cost is in general reasonable. Though it can be a
significant technical challenge to reduce size and cost of the hardware, the main concern
in this thesis is robustness and functionality by means of signal processing algorithms, and
the presence of a on-chip computer is simply a prerequisite for the methods suggested.

Introducing new functionality in sensors means providing the sensor with the ability
to respond to input in a previously unseen way. An example is an automatic door sensor
which can detect whether people are walking through or by the door, and only open the
door in the former case. As an example of an interesting and useful functionality this
thesis presents the first steps towards a sensor capable of determining the position of an
object in three dimensions.

The thesis is divided into three parts. The first part is dedicated to a presentation of
an algorithm for increasing the performance of active sensors, in particular for increasing
the robustness. The second part presents methods for introducing determination of spatial
position as a new functionality in a sensor. The third part is a presentation of a series of
mathematical subjects which are relevant for the methods discussed in the first part.

The aim of the thesis is to provide signal processing methods for real applications of
active sensors. This is achieved by reporting on a number of results of mainly mathemat-
ical nature, and subsequently showing how to employ those methods in real applications.
While the former obviously presupposes some knowledge of mathematics, the latter typ-
ically requires skills in electronic engineering.
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Introduction to Thesis 1
1.1 Focus and Purpose

The primary purpose of the present thesis is to identify methods for improving the per-
formance and providing additional and new functionality in active sensors. The principal
idea for achieving this is to introduce integrated circuits, in particular on-chip computers,
as a standard component. This step will greatly increase the potential of active sensors,
both in terms of improved performance and increased functionality. The reason is that
on-chip computers allow for complex processing and decision-making which is virtually
impossible to achieve with traditional analog circuitry.

Improved performance is at this point in time synonymous with increased robustness,
small size, and low cost (see the Sensor Foresight Report [73]). A reduction in size is
a natural consequence of using integrated circuits and in large quantities the cost is in
general reasonable. Thought it can be a significant technical challenge to reduce size and
cost of the hardware, the main concern in this thesis is robustness, and the presence of a
on-chip computer is simply a prerequisite for the methods suggested.

As the title of the thesis suggests the primary tool for increased robustness is signal
processing algorithms. The background of the author is mathematics, in particular func-
tional analysis and operator theory, and the suggested methods bear witness of this as
the mathematical aspect is predominant throughout the thesis. The author believes that
this approach to the challenge provides a more generic solution which applies to active
sensors in general rather than just any specific type on which the methods happen to be
tested or implemented.

While traditional methods such as modulation out of base band and resonance filters
sometimes make a good addition to the suggested algorithm no attempt has been made to
develop such methods further.

The first part of the thesis, which is on increasing the robustness, is focused on devel-
oping methods which can (eventually) be implemented in on-chip computers. Although
the actual implementation is not discussed in the thesis it is recognized that any suggested
method should be suitable for implementation in low-cost signal processing hardware.
This means that the signal processing algorithms must obey constraints on computational
load, programmable complexity, and numerical stability.

Introducing new functionality in sensors means providing the sensor with the ability
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Section 1.2: Content of Thesis

to respond to input in a previously unseen way. An example is an automatic door sensor
which can detect whether people are walking through or by the door, and only open the
door in the former case. In this thesis a sensor capable of determining the position of an
object in three dimensions is presented. As mentioned above the focus is on the theoretical
and mathematical aspects of this functionality.

1.1.1 Background

The Ph.D. study started in August 1998 as a response to an interest of Bang & Olufsen
to investigate the potential of combining wavelets and digital signal processing in active
sensors. B&O wanted a generic solution to the problem of detecting an object (a feature
in some of their products), because it is a surprisingly difficult task to design a robust,
versatile, and low-cost detection system. The original idea from B&O was to employ
digital signal processing, in particular to use wavelets for ‘doing the signal processing’.
Since the BeoSound Ouverture (CD player, see Section 3.4) was in mind as test appli-
cation a number of constraints existed from the very beginning. Especially, the response
time, cost, and computational power was limited. From early on the focus was therefore
on providing a generic and robust detection system which can easily be tailored to obey
given performance requirements.

1.1.2 Prerequisites

To fully appreciate the entire thesis the reader should have knowledge in a number sub-
jects within mathematics and electrical and electronic engineering. The thesis is based
on mathematical reasoning throughout, and especially Part II and III require the reader to
have a certain mathematical level. The engineering aspects are predominant in Part I.

It is useful to have knowledge in the following mathematical disciplines: Linear al-
gebra, Euclidean geometry, Fourier analysis, functional analysis, basic operator theory,
wavelet theory, and basic probability and statistics. The engineering skills that make the
reading easier are: digital and analog filters, filter design, basic electric circuits, Fourier
analysis (from an engineering point of view), and discrete-time signal processing in gen-
eral.

1.2 Content of Thesis

The thesis is divided into three parts. The first part is dedicated to presenting an algorithm
for increasing the performance of active sensors, in particular for increasing the robust-
ness. The second part presents methods for introducing a new functionality in a sensor.
This new functionality is determining spatial position of an object. The third part is a pre-
sentation of a series of mathematical subjects which are relevant for methods discussed in
the first part. In this section each part and each chapter is briefly introduced.
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Chapter 1: Introduction to Thesis

Chapter 2: Towards Intelligent Sensors is a short presentation of the author’s point of
view on the general state of the sensor industry and market in relation to research and
development of new and more intelligent sensor, in short the context in which the present
thesis should be regarded. The chapter also includes a description of what the author
believes to be contributions to the development of active sensors.

1.2.1 Overview of Part I: Channel Gain Measurement

Part I of this thesis is focused on improving the performance of active sensors rather than
adding new functionality (this is the subject of Part II). In particular, Part I is focused on
the ability of the sensor to function in many different environments. This is primarily a
question of robustness. The core of Part I is the channel gain measurement (CGM) algo-
rithm which is a suggestion for a generic method for obtaining the gain in an unknown
channel. A channel can be anything from electric wires to a path through water or air. Part
I is divided into four chapters; an introduction to active sensor technology, a thorough pre-
sentation of the suggested algorithm, a series of results when applied to real applications,
and a discussion of the current and future work.

Chapter 3: Introduction provides the background for the suggested CGM algorithm.
This is primarily a presentation of the the concept of active sensors which includes the
active sensor technology, applications areas, and sensor performance parameters.

Chapter 4: Methods for Measurement of Channel Gain is a quite elaborate description
of the suggested CGM algorithm. First, two particular embodiments of the algorithm is
presented. Then the algorithm in its entirety is presented. It consists of a number of
steps which are also discussed individually. The main concern throughout the algorithm
is robustness, and handling of noise thus becomes an important issue. A significant part
of Chapter 4 is about recognizing, estimating, and removing noise. Another important
issue is algorithmic and computational complexity, and emphasis is put on keeping the
complexity at a level suitable for low-cost signal processing hardware.

Chapter 5: Results is mainly a series of applications of the methods presented in Chap-
ter 4. The various steps in the CGM algorithm is applied to real world signals, and the
results are evaluated. Chapter 5 is focused on the ability of the algorithm to recognize,
estimate, and remove noise, i.e. to what extent robustness can actually be achieved.

1.2.2 Overview of Part II: Spatial Position

The second part of the thesis introduces a new functionality in low-cost sensors. The idea
is a sensor capable of determining position of object in three dimension using only channel
gain measurements. The methods presented in this part are dedicated to the problem of
mapping a series of CGMs made on a reflecting object into a three dimensional position
of the object. An algorithm for implementing such a mapping is mathematically far more
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Section 1.2: Content of Thesis

complicated than the algorithm presented in the first part, and thus the focus in this part
is on functionality, and not on robustness, response time, or the cost.

The first chapter discusses various methods for implementing such a mapping. One
of these methods is investigated in more detail in the following chapter. Independently of
the mapping method it is necessary to have a qualitative description of how the channel
gain varies as a function of the position of the object. This is investigated in the third
chapter of this part. Finally, the results chapter presents what has been achieved so far.

Chapter 6: Methods for Determining Spatial Location introduces the concept of spa-
tial position in the context of low-cost sensors, and present the result of applying a neural
network to the problem of mapping CGM information into position information.

Chapter 7: Geometric Solution based on Intersections of Spheroids is one of the
mathematically appealing methods for mapping CGMs to spatial position is a geomet-
rical modeling of the ‘emitter, receiver, reflecting object’ setup. With this approach a
completely analytical mapping can be constructed. The downside is that the complexity
of the model is surprisingly high. A number of assumption has been imposed to reduce
the complexity, but the price paid is reduced accuracy. However, some important results
have been obtained, nonetheless.

Chapter 8: Modeling Reflection Maps introduced a model to describe how the object
reflects the signal. The modeling of the setup in the previous chapter was based on a
simple reflection model. In this chapter the reflection map for a infrared emitter/receiver
pair is modeled as well as measured. This reveals some surprising effects which the
simplified model in Chapter 7 does not account for.

1.2.3 Overview of Part III: Wavelet and Rudin-Shapiro Transforms

The third part of the thesis is focused on purely mathematical subjects related to the
wavelet and Rudin-Shapiro transform. The subjects discussed here all originate in prob-
lems that have arisen in the work with active sensors.

First, the problem of a proper handling of the edges when wavelet transforming fi-
nite signals is treated in detail in the first two chapters. In active sensors the signals are
often quite short and thus the edge effect becomes an important factor. Note that the
wavelet transform itself is not presented or discussed as the reader is expected to have
some knowledge of the transform. Readers interested in learning about the transform are
referred to the vast amount of literature on the subject.

Second, the Rudin-Shapiro transform is presented. Since this transform is virtually
unknown compared to the wavelet transform it is introduced in some detail. This trans-
form has a series of properties which makes it very useful for providing robustness in
low-cost active sensors.

Chapter 9: The Problem of Finite Signals presents a number of standard solutions to the
problem of wavelet transforming finite signals. This subject is important in the context
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Chapter 1: Introduction to Thesis

of this thesis as the wavelet packet transform is suggested as a possible component of
the CGM algorithm. The constraints on the algorithm means that it is often necessary
to transform quite short signal, which in turn means that it is important to have a proper
handling of the edges.

Chapter 10: Moment Preserving Edge Filter introduces a more complicated solution to
the problem of finite signals. The solution focuses on preserving a particular polynomial-
related property that wavelets has on the real line, when the transform is restricted to an
interval. The moment preserving edge filters are well suited for some of the typical noise
that occurs in active sensors. A previously unreported, and yet significant, instability issue
of this construction is also discussed.

Chapter 11: The Rudin-Shapiro Transform is an introduction to the Rudin-Shapiro
polynomials, sequences, and transform, and to the concept of flat polynomials. A number
of useful properties of the RST is derived, and a fast implementation of the transform is
presented. This chapter includes a brief review of the history of flat polynomials.

Chapter 12: Linear Transform of the Rudin-Shapiro Matrix reports on a method for
determining the impact of applying block diagonal linear transforms to RS sequences
prior to RS transformation. This is relevant in cases where RS sequences are denoised
after transmission in noise environments.

Chapter 13: Discussion and Future Work wraps up the thesis by concluding and dis-
cussion the presented algorithms, methods, applications and theory. A list of future work
is also given. This chapter includes a discussion of the the necessity for signal processing
algorithms in low-cost active sensors in comparison to traditional solutions.

1.2.4 Overview of Appendices

Appendix A: Basic Properties of the Wavelet Transform lists a series of well-known
properties of the wavelet transform. This appendix is included solely to support the pre-
sentation of moment preserving filters in Chapter 10.

Appendix B: Extra Lemmas, Expressions, and Figures contains material which on the
one hand fits poorly in to context, but on the other hand is useful nonetheless.

Appendix C: Moment Preserving Edge Filter in Matlab prints four functions which
generate all the necessary components for performing filtering with moment preserving
filters. The Matlab code reproduces the derivations and calculations presented in Chap-
ter 10. These functions are printed in the thesis as the author has not been able to obtain
any kind of computer implementations (or indeed any pre-calculated filter coefficients)
and thus had to implement the edge filter construction from scratch.
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Section 1.3: Contributions

1.3 Contributions

The following list briefly presents what the author claim is the contributions of this thesis.

Systematic method for increasing the robustness of low-cost active sensors
The main contribution of the thesis is the algorithm for measuring channel gain. The
algorithm consists of a number of steps which are based on more or less well-known
theory. Except for the fast implementation of the Rudin-Shapiro transform all the meth-
ods throughout the algorithm has been reported previously. However, the composition
of these step into a single, flexible algorithm is believe to be new. That is, the concept
systematizing the algorithm by using transforms and inverse transforms for signal modu-
lation combined with tailor-made denoising is believe to be new in the context of low-cost
active sensors. All of Part I is dedicated to this algorithm.

The concept of a 3D sensor based on channel gain measurements
Since the CGMs of Part I is in some sense relative measures of distance, it is natural to
use them for determining the spatial position of an object. While a number of positioning
systems exists, there are none, to the best of the author’s knowledge, which are based
solely on measurements by means of low-cost diodes of reflected intensities and with
the sensors located in a two-dimensional plane. The thesis thus contributes to the list of
sensor functionality with a physically simple and low-cost method for determining spatial
position.

Geometric modeling of a simplified 3D sensor
One of the methods for mapping a set of CGMs to a spatial position is a model of the sen-
sor setup. In the thesis a model based on geometric observations is presented. Although
the assumptions are simplified a number of interesting results are reported. Among the
question addressed is the expected complexity of a sufficiently accurate model, and the
number and optimal position of sensors in the 2D plane.

Modeling of the reflection map for an ‘emitter, receiver, reflection object’-setup
Any modeling of a sensor setup for determining spatial position must rely on a reflection
map for the object. The thesis presents a measured reflection map for infrared diodes,
and a model for predicting the reflection map. The measured reflection map exhibits an
interesting and important non-symmetric characteristics which is replicated fairly well by
the model. Together with the above two items this contributes to the understanding of
how to construct a 3D sensor.

Implementation of moment preserving edge filters for the wavelet transform
A method for constructing and applying moment preserving edge filters was reported by
Cohen et al. [22]. This thesis contributes by reporting on a numerical stability issue in
the construction, and by providing MATLAB code for generating the filters for any given
orthogonal wavelet filter.
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Chapter 1: Introduction to Thesis

A fast implementation of the symmetric Rudin-Shapiro transform
The symmetric Rudin-Shapiro transform has previously been reported by Byrnes [13],
but no N log N implementation of the transform has been explicitly demonstrated before.
A unified presentation of the most important properties of the symmetric transform is
also given. The chapter on the RST also contains some new conjectures which has no
particular bearing on the thesis; they just emerged when the author was investigating the
RST.

Some Results on the Dyadic Structure of the Rudin-Shapiro Transform
The necessity to rectify the changes made to a RS sequence which has undergone poly-
nomial denoising have led to some results on the dyadic structure of the RST, including
a simple prediction of the impact of a block diagonal linear transform applied to a RS
sequence prior to RS transformation. The entire Chapter 12 is a contribution to the theory
of RS polynomials.
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yet making sure they met a proper scientific standard, for his own sometimes ingenious,
sometimes crazy ideas, and for support and commitment throughout my almost four years
of Ph.D. study. I could not have asked for a better supervisor.
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Towards Intelligent
Sensors 2
Throughout the past 50 years of development in the computer industry the ratio between
computational power and size has increased tremendously and continuously. During the
past few years the cost and size of a reasonably powerful computer (1-20 MIPS) has
reached a level which allows for implementation in sensor products that has a total pro-
duction cost as low as 5 EUR. Computational power in that order of magnitude provides
sufficient means for moderately complicated signal processing operations, and thus allows
sensors to have functionality which it is almost impossible to provide with traditional ana-
log sensor technology.

The sensor industry has far from exploited the full potential of this development. Al-
though virtually all sensor markets are growing faster than most other markets, and are
predicted to grow in the years to come, the sensor industry is rather conservative regarding
new technology. While the advances in computers have found their way to turn key sensor
solutions, where one of the competing factors is functionality, the individual (low-cost)
sensor units are still rather basic throughout the sensor industry [73]. This is probably due
to the fact that the main competing edge is cost and not functionality. Since the contri-
bution margin of low-cost sensors are very small the radical change of design needed to
introduce signal processing easily jeopardizes any advantage a sensor manufacturer might
have.

2.1 The Next Generation

The sensor technology is constantly being developed, and the concept of a next generation
sensor is in this respect somewhat fuzzy. Nevertheless, the author of this thesis believes
that it makes perfect sense to discuss ‘the next generation’ of sensors. Especially as a step
in the direction of more intelligent sensors. The introduction of on-chip computers is a
major and inevitable step (as argued below) in the evolution of sensors, and this develop-
ment will bring new functionality into existing sensors as well as it will bring completely
new sensor types. A next generation sensor is equipped with significant computational
power, but is not more expensive than the current generation. However, the next genera-
tion of sensors is not intelligent in the sense of rational decision making, but they employ
state of the art signal processing algorithms to achieve a significant step in areas such as
robustness and flexibility.
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Section 2.1: The Next Generation

2.1.1 Why Intelligent Sensors?

So why is it interesting to research methods that provides new functionality, or just im-
prove performance of existing functionality, in low-cost sensor units? Why would a sensor
manufacturer be interested in the next generation if the market prefers traditional technol-
ogy and functionality? Why take a significant technological risk if the competing edge is
negligible? The answer to these question is threefold.

Firstly, the technological risk in intelligent sensors is almost entirely on the algo-
rithms. This is because the hardware has received (and still are receiving) almost all the
attention in terms of research and development. While the sensor market is conserva-
tive in respect to new functionality and fundamental new sensing technologies, there is
constantly a demand for increased efficiency at lower costs. To meet these demands the
sensor industry responds by a continuous development of the sensor hardware compo-
nents. And the technological risk of employing digital solutions altogether is also quite
small; the DSP technology is mature and well-established, and the potential of on-chip
computers has been demonstrated in many other fields (like cellular phones).

Secondly, the sensor industry is indeed beginning to employ on-chip computers in
low-cost sensors, primarily in the form of microprocessors. Although this type of on-
chip computers usually offers a very limited computational power, and often just replaces
a number of discrete electrical components rather than adding functionality or even im-
proved performance, it is still a step in the direction of more intelligent sensors. In partic-
ular, it is introducing the concept of digital signal processing in sensors.

And thirdly, the demands of the sensor market for better and cheaper sensors are
continuously increasing, and it becomes still more difficult to achieve a competing edge
with traditional sensor technology.

While the competing edge of traditional sensors is cost, mainly, it is the author’s
belief that the next generation of sensors will compete on functionality. This is because
it is not likely that the production cost of a sensor in general will be reduced (much) by
employing digital technology. But this does not mean that the next generation of sensors
will be pouring into the market. The process will be slow, and the traditional sensors
will have a major part of the market for many years to come. However, this should not
discourage one from doing research in the next generation, as the three arguments above
demonstrate.

The need for intelligent sensors is also expressed in the Sensor Foresight Report from
Sensor Technology Center, Denmark [73]. This international survey among 174 compa-
nies concludes:

“Some general technological key features have been identified: Low price,
small size, robustness, dispensability, and the ability to self-calibrate. Future
sensors are expected to be integrated systems with multiple applications.”

To fulfill this ambition it is necessary to introduce algorithm which will bring sensors
much closer to being intelligent than they are today.
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Chapter 2: Towards Intelligent Sensors

2.2 Contribution of the Thesis

There are many issues to be addressed when developing more intelligent sensors, and it is
impossible to take the step from traditional sensors directly to highly intelligent sensors.
The process will be long and slow, and consists of a great number of small steps and a
fewer larger steps. Introducing digital technology is one of those steps.

The main purpose of the present thesis is to contribute to this process. Part I of the
thesis presents a method for improving the robustness of the fundamental principle in
active sensors. This is a contribution on a low level in the sensor architecture (see Sec-
tion 3.1.2 on the sensor layer model). Part II presents the idea of a sensor which by very
simple hardware is capable of determining the spatial position of a passive object. This
is a contribution on a high level in the sensor architecture. Part III addresses some of the
mathematical issues which is relevant in Part I. Although some of the theory presented in
Part III is a contribution of purely mathematical nature, it still applies to relevant problems
in the field of active sensors.

2.2.1 Robust Channel Gain Measurements (Part I)

This thesis contributes to the development of the signal and control layers in the sensor ar-
chitecture by suggesting means for providing the next generation of sensors with sufficient
intelligence to achieve a significant degree of robustness. This means making the sensor
behave reasonably and reliably in many different situations. The lack of robustness is the
Achilles’ heel in many existing sensors (for instance an extreme disturbance will typically
make a sensor behave unpredictably), and there is indeed a lot of room for improvement
of the robustness. Two important aspects of robustness is advanced signal processing and
decision making. The former is required to handle localized (in time, frequency, or some
other domain) noise occurrences and to provide information for the latter, which is about
making decisions based on the current state of the environment of the sensor. Both aspects
are handled much more elegantly by on-chip computers than analog electronics, and DSP
technology thus becomes an vital part of any method to increase the robustness.

But the signal processing hardware itself is obviously not enough; the intelligence is
provided by software implemented algorithms. While the software is merely the means
for a hardware appropriate description of the intelligence (the author do realize that an
efficient software implementation can be a challenge in itself, but that is not within the
scope of this thesis), the mathematics and the algorithms comprising the intelligence are
the real challenges. Consequently, the contribution from this thesis is not software, but a
description of how to design algorithms which implemented as software in a sensor will
provide a certain degree of intelligence.

This is not to say that the suggested algorithm does not take into account any other
properties than robustness. The importance of keeping the production costs low is ac-
knowledged by the fact that the suggested algorithm providing increased robustness is
easily implemented and behaves in a stable manner in low-cost signal processing hard-
ware.
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Section 2.2: Contribution of the Thesis

The algorithm has been tested in a number of prototype applications. A total of four
different setups have been used, and each step in the algorithm has been applied in at
least one of the setups. As a supplement to computer simulations the implementation
of the algorithm in actual real-time applications have proven useful in developing some
of the steps, and in realizing what measures are needed to ensure the robustness in real
applications.

2.2.2 Spatial Position (Part II)

The method presented in Part I of the thesis forms the basis for the 3D sensor presented
in Part II. This sensor is able to determine the position of an object in three dimensions
by combining the information from several emitter/receiver pairs. While obtaining the
information is relatively easy (once the method of Part I is available) it is rather difficult
to map this information into a position in 3D. A number of options is discussed, and
the geometrical approach is examined in detail. However, this examination is mainly of
theoretical nature as the geometrical approach has not been tested in a real setup.

An alternative to the 3D sensor is an ‘object sensor’, which means converting the ob-
tained channel gain information into object-type (with a priori known position) rather that
object-position (with a priori known object). Doing both would of course be very interest-
ing, but that is simply too ambitious at this point in time. In cooperation with LEGO and
the WAVES project a prototype of an object recognition sensor has been constructed. This
prototype demonstrates some of the challenges in combining several sensors and thereby
creating new functionality. The object recognition functionality is not discussed in this
thesis.

2.2.3 Mathematics for Signal Generation and Processing (Part III)

The two main issues of Part III is proper wavelet transformation of finite signals and the
Rudin-Shapiro transform. The wavelet transform is a well-established mathematical tool
for signal processing, and the focus is therefore on applying it to finite signals. This is
particular interesting in the context of active sensors, where the real-time requirements
often allows only relatively short signals to be obtained for transformation. There exists
a series of methods for applying the WT to finite signals. One of the more interesting
methods (in this context as well as many others) is discussed in detail, and a previously
unreported numerical stability problem of the methods is discussed.

The second contribution of Part III is the Rudin-Shapiro transform. While the math-
ematical idea behind this transform dates back to the middle of the 20th century, and the
transform itself is more than 10 years old, the efficient implementation of the transform
is believed to be new. This is also true for some of the properties of the RST reported in
Part III. The RST has turned out to be a very efficient tool for designing the signals to be
used in the algorithm of Part I, and has consequently been implemented in all but one of
the test setups.
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Introduction 3
This introduction presents a series of concepts, properties, and methods which are relevant
in the field of active sensors and in the context of this thesis. Although this introduction
is not a prerequisite for reading the following chapters (which to a large extent are of a
mathematical nature), it is necessary for a deeper understanding of the reasons for some
of the actions taken, choices made, and conclusions drawn in Chapter 4 and 5 on methods
and results.

The first section deals with active sensor technology primarily from a conceptual point
of view. The basics of an active sensor is presented, followed by the sensor level model.
Section 3.1 provides an understanding of the context in which the present thesis is written.

The remaining sections 3.2 through 3.5 introduces various aspects of active sensors.
First a series of sensor applications are presented in Section 3.2 to give an impression

of the usefulness and diversity of active sensors. Then in Section 3.3 the most common
traditional methods for active sensing are presented. This is followed by presentation
in Section 3.4 of the one application, the BeoSound Ouverture from Bang & Olufsen,
which initiated the authors Ph.D. study and thus this thesis. Finally, Section 3.5 lists
some important sensor performance parameters.

3.1 Active Sensor Technology

An active sensor is a sensor which performs sensing actively. It uses an emitter to influ-
ence the environment in order to cause a reaction which is measured by a receiver. In
comparison, a passive sensor employs the receiver only.

This section introduces this concept. That includes a description of the physical con-
struction, i.e. the most common and basic parts, in Section 3.1.1, and a conceptual de-
scription in Section 3.1.2 and 3.1.3. The conceptual description is advantageous in the
context of this thesis where the main improvements are made by means of algorithms
rather than hardware.

Finally, a very brief presentation of the most common sensing principles is given in
Section 3.1.4.
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Section 3.1: Active Sensor Technology

3.1.1 Basic Parts in an Active Sensor

An active sensor consists basically of seven parts: The emitter with related electronics,
the receiver with related electronics, the signal generator, the signal processor, and the
operations part. Often two or more of these parts are integrated in the same electrical
component, and often all the parts are housed in the same casing. The sensing process
starts with the signal generator and ends with the operations part. In the some active
sensors the loop is closed by a feedback from the operations part to the signal generator.
The seven parts are illustrated in Fig. 3.1. The seven parts each has a specific purpose,

Emitter Receiver

Transmission

Signal
generator

Signal
processor

Operations

Electronics I Electronics II

Figure 3.1: The basic components of an active sensor.

which are listed below.

Signal generator The process of generating a signal suitable for transmission consists of
two steps; this and the following. The purpose of this step is to produce a signal with
the desired mathematical properties such as localization in time and frequency. The
signal generator can be anything from a constant to the result of a advanced algorithm
in a DSP. Note that the outcome of this step is normally not very well suited to drive
the emitter (the current and/or voltage level differs from the specifications for the
diode).

Electronics I The purpose of the electronics between signal generator and emitter is to
convert the signal into an analog signal suitable for the emitter. This includes D/A
conversion, translation and scaling to fit the dynamic range of the emitter, and possi-
bly modulation. This step is often implemented by discrete electrical component on a
PCB. Sometimes the signal is binary (on/off) in which case the DAC can be omitted
(which is often the reason for choosing a binary signal).

Emitter The emitting component obviously conforms with the choice of signal type
(light, sound, etc.). The emitter might be capable of transmitting at many different
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Chapter 3: Introduction

frequencies and amplitudes (like an ordinary loudspeaker) or at very specific fre-
quencies and amplitudes (like a laser diode). The emitter is rarely integrated with the
electronics, since the process of emitting a signal is often fairly straightforward, and
not particular susceptible to disturbances such as cross talk.

Receiver The receiver must also conform with the type of transmitted signal, and must be
able to receive any transmission from the emitter. Occasionally, the receiver is chosen
to be sensitive only at a very limited range of frequencies of the carrier wave (like
a radio is sensitive in a narrow (although adjustable) frequency band) to eliminate
more noise. This is because the process of receiving a signal is often quite sensitive
to external disturbances, including cross talk. This is in turn due to the output from the
receiver components, which is often very weak and thus requires high amplification
prior to A/D conversion.

Electronics II This amplification is handled by the electronics between receiver and sig-
nal processor. The high sensitivity means that this part of the sensor must be carefully
designed. For that very reason, it is not uncommon to have receiver and amplifier in-
tegrated in one component. The A/D conversion is also considered a part of the
electronics, but it is rarely integrated with the amplifier. In some cases the ADC is a
separate component, in other cases it is an integrated part of the signal processor. In
most sensors employing on-chip computers the ADC is a necessary component.

Signal processor The purpose of the signal processor is to determine the state of the
received signal. In many cases this amounts to determining whether the emitted
signal is present in the received signal or not. The signal processor part can be a
simple threshold or comparator in analog electronics, and it can be a carefully devised
and extensive examination of the signal in a powerful DSP. In any case the signal
processor produces a result which is fed to the operations part.

Operations This final part has a number of functions for controlling the sensing process
and providing the output from the sensor unit. One of the functions is to make the
sensor respond to whatever happens to the signal during transmission. That means
providing the output from the sensor unit to the mechanism or device which the sensor
is connected to. Another function is to change the parameters of the various parts of
the sensor based on the current state of the received signal. The operations part ranges
from being not present at all to controlling every aspect of the sensor, including the
electronics.

3.1.2 Sensor Level Model

In the introduction to the concept of intelligent sensors in Chapter 2 the contribution of
the present thesis was said to be on two different levels. This was meant in a quite specific
manner. An active sensor can be regarded as consisting of eight levels. Each level has
a distinct task in the sensing process, and each level provides resources and information
for the levels above it. These levels are shown in the sensor level model in Fig. 3.2. It is
important to note that the first five levels in this model is closely related to (but not equal
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Figure 3.2: Sensor level model

to!) the basic parts of an active sensor described in the previous section, and ‘orthogonal’
to the sensor parameters described in Section 3.5. Note also that not all the levels in the
model are present in all active sensors.

The sensor level model is an abstraction of the sensing process which makes it easier
to understand the different types of contributions to the development of more advanced
sensors. The following list describes each level and its relation to the other levels. This is
followed by a discussion of how and what type of contributions are made on the individual
levels.

The idea for the SLM comes from the OSI (Open System Interconnection) reference
model in the field of computer networks [77, pp. 28].

Physical The emitter and receiver components of a sensor are the main parts of the phys-
ical level. That is, the components that performs the actual emission and reception
of signals in whatever form the current sensor employs. For an acoustic sensor this
level includes the loudspeaker and the microphone. For an optical sensor the level
includes the light source and the photosensitive receiver.

Data link The main purpose of the data link level is to provide a suitable interface be-
tween the processor level and the physical level. This interface has its own dedicated
level since the signal processing, the emitter, and the receiver often are of quite dif-
ferent nature, and the interface thus becomes an important part of a sensor. The data
link level includes the handling of blocks of samples often used in digitalized sensors.
This means the timing of emitting and receiving individual samples, and storing the
received samples for processing. This part of the data link level is often handled by
the signal processing hardware.
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Processor The hardware that constitutes the platform for the remaining levels are in-
cluded in the processor level. The content on this level ranges from an oscillator and
a comparator in very simple sensors to any type of signal processing hardware such
as microprocessor, DSP, FPGA, etc.

Signal All the signal processing dedicated to providing the signal with given mathemat-
ical properties and to extracting information about the transmission channel belongs
to the signal level. The description of the operations performed at this level is in the
form of algorithms and software dedicated to connect this level to the processor level.
The tasks performed at this level often require the main part of the resources provided
at the processor level.

Control The variable parameters in the signal processing is controlled at this level. The
purpose of the control level is to optimize the signal algorithm in given situations.
This level is often closely related to the signal level. The control level is responsible
for handling well-defined, short term, temporary changes.

Decision The performance at the control level is evaluated at the decision level to de-
termine if some kind of change of the mode of operation is needed, for instance in
response to significantly changed SNR or failure in some part of the sensor. The de-
cision level typically handles long term changes of the sensor operating conditions,
and thus responds relatively slowly compared to the control level.

Functionality The task of all the previous levels combined is obtaining information
about the environment of the sensor as accurately as possible. The functionality
level uses this information to determine the proper output of the sensor, and thus es-
sentially provides the functionality of the sensor. In simple sensors this level might
use the comparator at the processor level together with a threshold or saturation to
produce an on/off output signal. In more advanced sensors such as the 3D sensor of
Part II of the thesis the functionality level consists of a series of complicated math-
ematical algorithms, and takes up a significant part of the resources provided at the
processor level.

Interface The input and output of the sensor is handled at the interface level. Often
the output is an electrical signal to some external control mechanism. The input is
typically potentiometers, buttons, and the like, by which the user can change certain
parameters of the sensors functionality.

3.1.3 Contributions at Different Levels

In the sensor industry most of the effort for increasing the efficiency of sensors is in
the three lowermost levels, in particular the physical level. The major manufacturers of
emitter and receiver components, such as Siemens and Texas Instruments to mentioned
a few (there are very many others), constantly present new components with increased
efficiency, smaller size, quicker response and so on. The number of new components is so
large that many manufacturers have quarterly magazines for presenting these. A merging
of the physical and data link levels is sometimes seen as integrated circuits that combines
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the receiver and the electronics, and occasionally also the emitter.
As mentioned previously the signal processing technology has undergone an exten-

sive development in the past years. The process is still going on, and we can expect to
see increased performance in many years to come. This development is by no means
spearheaded by the sensor industry, but the industry will certainly benefit from the devel-
opment, nonetheless.

The four levels from signal to functionality has received far less attention then the first
three. This is in no small part because it is possible to construct a sensor with very limited
content on these levels (and indeed many sensors are constructed that way), whereas the
concept of a sensor without the three first levels does not make sense (sic!). The content
at the higher levels is more descriptive of nature, and often presented in the form of algo-
rithms. While most sensor manufacturers acquire many of the electrical components from
sub-contractors, it is not customary for sensor manufacturers to acquire ‘mathematical’
components from external parties. Consequently, the development of these components
happens to a large extent in close environments rather than across an entire industry.

This thesis provides suggestions and ideas for algorithms in the signal and function-
ality levels. The challenge of increasing the robustness undertaken in this Part I also
includes some means for handling the tasks at the control and decision levels. The 3D
sensor presented in Part II is contribution to the functionality level only.

3.1.4 Sensor Principles

The exists a wide choice of sensors in the market. The applications areas for sensors are
numerous and the diversity of sensors within each area is big. Nonetheless, the majority
of sensors can be classified into a few well-defined categories of basic sensing principles.
Such a classification is given in Table 3.1. Note that this table shows a rather coarse
classification and that the list of applications serves only as a guideline as to what the
sensors are typically used for. The table also for comparison contains the most common
passive sensing principles.

Table 3.1: Sensor principles with typical fields of applications.
Active Passive

Principle Applications Principle Applications
Optical Proximity, position Optical Proximity
Acoustic Distance, flow Temperature Temperature
Inductive/capacitive Proximity, level Electrical Force, load, pressure
Magnetic Position Mechanical Proximity
Microwave Movement, position Chemical Concentration

The distinction in sensing principles is important when discussing the signal process-
ing part of a sensor in relation to the parameters listed in Section 3.5. Some properties
are more easily provided with one principle compared to another principle. For instance
an optical proximity sensor typically has a much smaller response time than an acous-
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tic sensor simply because of the difference in transmission speed of electromagnetic and
acoustic waves. Incidentally, for the same reason an accurate distance sensor is more
easily deviced using the acoustic sensing principle.

3.2 Applications of Active Sensors

Sensors and sensor systems perform a diversity of sensing functions allowing the ac-
quisition, capture, communication, processing, and distribution of information about the
states of physical systems. This may be chemical composition, texture and morphology,
large-scale structure, position, movement, pressure and load, flow, etc. Sensors can act
as the link between an actuator and a decision process, and as a mean for recording or
visualizing the state of a physical process.

While sensors are used in very many different applications the individual sensor is
rarely capable of performing anything but a highly specific task. It is a characteristic
feature of a sensor that the device is tailored to the environment in which it is to operate.
And these environments are indeed quite different. A list of applications areas of sensor
products from Banner (a major manufacturer of sensors) is given in Table 3.2. The list

Table 3.2: List of industries using Banner products.
Air conditioning Grain processing Packaging
Aircraft & aviation Hazardous areas Paper manufacturing
Agriculture Heating Pharmaceuticals
Assembly Industrial machinery Plastics manufacturing
Automated storage Inspection Power transmission
Automotives Iron manufacturing Printing industries
Computers Material handling Raw materials processing
Converting Measurement Robotics
Conveyor control Medical manufacturing Semiconductor manufac.
Dairy processing Metalworking Systems integration
Electronic equipment Microelectronics Textiles
Factory automation Mining Transportation
Food and beverage Motion control Wastewater treatment
Forest industries Shipping & handling Wood processing

Source: Banner web site

includes many different areas, and each item in the list covers a long series of applications.
While this list is by no means exhaustive it gives an impression of the extent of the sensor
market. It is clear that sensors in general have a very broad range of applications and that
there is a sound basis for further development of sensors.

3.2.1 The Sensor Market

Sensor technology is one of the technologies that will play a major role in the future. The
current world market for sensors is estimated at 150 billion EUR with an annual growth of
around 15 per cent. This means that market growth for sensors is considerably higher than
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for industry in general, but lower than what has been observed in information technology.
This sensor market is divided approximately evenly between passive and active sensors.
Two of the most interesting sensor products of the next decade with respect to market
volume is optical sensors and multiple sensor systems.

There has been a trend in the sensor market for centralizing the production which
means decentralization of measurements. This leads to a shift in focus from final product
control to process control or even sensing of raw materials. This typically requires smaller
and more reliable and robust sensors. The same requirements are also supported by the
movement away from invasive towards non-invasive or non-contact sensors.

Sensors are used in practically all sectors of industry. They may be essential for a
given product or process or they may provide the value-added that makes the process or
product competitive. Knowledge about sensors, their applications, and their future devel-
opments thereby helps to position companies and research institutes to grasp emerging
opportunities.

All the information in this subsection is from the Sensor Foresight Report [73].

3.3 Existing Sensor Implementations

The huge variety of sensors in the market means that there exists very many different
ways of implementing the various parts of an active sensor. In this context it is especially
interesting to learn the most common types as well as the more recent types of implemen-
tations of the Signal generator and the Signal processing parts, see Fig. 3.1. However, it is
no simple task to gather this information, partly because of the diversity (and secrecy) in
the sensor industry, partly because research results in this area are published in a variety
of literature. While the author during the past few years have gathered some knowledge
on the traditional sensor principles (see below), it has been difficult to find any references
to previous research on signal processing solutions for low-cost active sensors. In fact,
all references to development of low-cost sensors that the author has been able to find is
focused, one way of the other, on reducing the cost or improving the performance of the
hardware. This does not mean that signal processing is not a research area in the field
of sensors, but to the best of the author knowledge the research is focused on providing
increased functionality by means of complex algorithms rather than providing robustness
and reduced cost by means of simple and efficient algorithms. This is especially so for
sensor-dedicated publications such as IEEE’s Sensors Journal, Wiley’s Sensors Update,
and the internet-based Sensors Online.

The consequence of this is that the first part of the thesis is not very well supported
by references to previous research results, at least not with respect to the structure and
overall choice of methods. The individual signal processing methods, in particular those
based on mathematical considerations, are in most cases supported by references.

A majority of the sensors in the market employ traditional frequency-based detec-
tion methods. This basically means that harmonic signals in on form or another is used.
This is not only the case for analog sensors, but often also for sensors employing digital
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hardware. The author believes that the reason for this is that the basic skill needed for
designing sensors is electrical engineering, and the primary mathematical tool in this field
is frequency analysis in the form the Fourier or Laplace transforms, transfers functions,
filter theory and the like. With such concepts in mind multiplexing in the frequency do-
main is an obvious solution to the challenge of designing signals for active sensors. The
signal itself can be a sinusoid, a square wave, a sequence of repeated pulses, and other
frequency (and time) localized forms.

Admittedly, a frequency-based approach is in many respects and in many cases a
reasonable choice, and the author acknowledges the fact that most sensors do function
correctly in whatever application they are being used. However, this thesis is a response
to the fact that many sensors are sensitive to frequency-localized noise, and the author is
aware of several examples of sensor products failing to behave appropriately in environ-
ments which should not have posed a problem.

3.4 BeoSound Ouverture

The Ph.D. study which has led to this thesis was initiated as a response to a desire of
Bang & Olufsen to develop a new type of sensor for some of their products. In particular,
the CD player BeoSound Ouverture employs an infrared sensor to detect the presence of
a hand. Two glass doors covering the front slide aside when the user wants to operate
the keyboard and the CD drive. The infrared sensors are locate behind two panels which
appear black, but they are transparent at near infrared wavelength. The Ouverture is
shown in Fig. 3.3. The detection system in the CD player is completely analog and is

Figure 3.3: The sliding doors in the BeoSound Ouverture is activated by
the presence of a hand. The hand is detected by infrared sensors behind the
black panels in each side of the CD player. Source: B&O web site.

based on a high amplification in the optical feedback loop combined with saturation to
indicate detection. The systems has a very low latency and thus gives the impression of
reacting instantly to an approaching hand.

Designing the detection system is a surprisingly difficult engineering challenge. The
specifications describes a system with almost zero standby power consumption, low re-
sponse time, robust to all types of typical and less typical optical and electrical distur-
bances in a domestic environment, requires no maintenance, and capable of withstanding
many years of wear and tear without failing. While the detection system does work ac-
cording to specifications it did require a significant amount of resources to get that far.
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It is therefore obvious to ask whether using a digital solution, as suggested in this thesis,
could reduce time and cost of developing a similar system in the future.

The two major challenges in this case is the very limited computational power avail-
able and the desire to have a method which can handle all types of noise that will emerge
during the next many years. This calls for a detection algorithm which is capable of adapt-
ing to changing noise conditions without the need for a thorough analysis of the noise.
At the same time the cost constraint limits the available processor to being a low bit res-
olution fixed point processor. The detection method therefore has to be numerically very
stable, too.

3.5 Sensor Performance Parameters

The range of applications for sensors is very wide, and the number of different sensors is
huge indeed. Since this thesis aims at providing better means for active sensing altogether,
it is necessary with some mean for comparing such a variety of sensors. To do this it is
convenient to have a series of parameters which are independent of field of application
and sensor principle. Consequently, it is necessary in this context to have a more abstract
view on sensor parameters than provided by data sheet and the like. For that purpose this
section lists a series of such parameters. It should be noted that this list is compiled to suit
this thesis, that is relatively low-cost sensors (see the low-cost property) for non-extreme
conditions. Thus, it does not include some of the parameters which might be relevant
for high-cost sensors such as radar equipment, highly reliable medical equipment, high-
precision laboratory equipment, and sensors for other extreme conditions such as high
temperature, high speed, and microscopic size.

The parameters in the following list are generic in the sense that they apply to all types
of active sensors, independently of sensing principle. At the same time these parameters
are closely related to the sensing principle employed. Therefore, this list is a good tool
when comparing methods of active sensing. This applies to traditional as well as new
methods, the latter being the main purpose of this thesis.

Robustness The robustness of a sensor describes the ability of the sensor to generate the
correct output in given situations. For instance, in the case of a proximity sensor a
high robustness means that the sensor is able to consistently determine the presence
of an object without responding positively whenever there is no object to detect. The
degree of robustness determines to what extent severe and different types of distur-
bances can be handled properly. The robustness thus describes how well the sensor
responds to noise which is significantly more powerful or of a different sort than the
noise (conditions) for which the sensor was design to operate under. Robustness does
not necessarily mean that the sensor is capable of maintaining the same precision or
response time in all conditions, but that the sensor can recognize disturbances, and
handle accordingly. That is, the sensor still behaves predictably instead of giving a
random or saturated output.
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Immunity The ability of the sensor to ignore external disturbances is called immunity.
Such disturbances are often a priori unknown except for some general characteristics
(unlike internal disturbances which are usually of a well-known nature). They are
in many cases generated by new products (ranging from cellular phones and energy
saving light bulbs to production machines and measuring equipment) emitting previ-
ously unseen electromagnetic or acoustic signals. Note that immunity is a necessary,
but not sufficient condition for robustness.

Adaptability The ability of the sensor to adapt to changes in the environment. This
includes fast changes such as electromagnetic signals from cellular phones, slow
changes such as lighting conditions, and long term changes such as aging. The adapt-
ability of the sensor can be one of the important factors in making the sensor robust.

Response time The time elapsed from the occurrence of a detectable state to the response
of the sensor is called response time. This varies dramatically depending on the appli-
cations. The fastest sensors interesting in the context of this thesis (small proximity
sensors) has a response time in the order of 10−5 s, while the slowest (level reading
in tanks and containers) has a response time in the order of 10 2 s. The requirements
for response time typically affects the accuracy and cost of the sensor.

Accuracy The accuracy of a sensor is the quantification of the possible difference be-
tween the true and the reported value of the sensor variable. Depending on the con-
text in which the term ‘accuracy’ is used, this can be a physical variable such as angle
or distance, it can be an electrical variable such as received intensity, and it can be a
signal processing variable. In case of the latter the accuracy often refers to the preci-
sion of internal computations, especially in fixed point and dedicated hardware. The
accuracy on all levels are primarily governed by cost and response time.

Flexibility The ease with which a sensor can be reconfigured is called flexibility. Such
reconfigurations range from simple updates for correcting minor problems to new
products based on old ones. The difference between versatility and flexibility is that
the former applies to final products, whereas the latter applies to the product platform.

Versatility The number of different uses for a given sensor determines the versatility.
This property is clearly interesting from the consumers point-of-view. For the man-
ufacturer high versatility can be a two-edged sword: A sensor which can be used in
many different applications is produced in larger quantities (typically increasing the
contribution marginal), but slight changes in consumer demand does not render the
product useless (thus, there is no need for more, new products).

Reliability The sensors ability to withstand wear and tear as well as extreme physical
conditions is called reliability. A sensor which functions correctly for many years
despite of dust, scratches, component aging, corrosion and the like is considered
reliable.

Intelligence The ability of the sensor to make decisions based on reason and available
information, and the ability to handle unforeseen situation is called intelligence. De-
pending on the degree of intelligence this ability introduces to some extent robust-
ness, adaptability, flexibility, and versatility simultaneously.

25



Section 3.5: Sensor Performance Parameters

Low-cost It is obviously desirable to have production costs as low as possible. In the
case of mass-produced sensors it is particularly desirable to keep the variable costs at
a minimum. The sensors considered in this thesis are of the cheaper kind (typically 5
to 25 EUR in production cost for a complete sensor component).

Reduced size The size of the entire sensor is an important factor in many applications.
A sensor is usually a component in a larger product, and less often a stand-alone
product. Consequently, a sensor must fit into whatever frame or base is available.
In general, this calls for the sensors to be small. Note, however, that for the sen-
sors considered in this thesis the size requirement is always secondary to the cost
requirement.

Fault tolerance The fault tolerance refers to ability of the sensor to detect and handle
mechanical and electrical malfunctions. Fault tolerance contributes to the robustness
in the sense that the ability of the sensor to properly handle a fault ensures a correct
output in an abnormal situation (see the definition of robustness).

Self-calibration Easy operations is a key issue in many sensor applications since the
user often is not familiar with the sensor construction or the sensing principle. At the
same time most sensors needs calibration. Self-calibration allows the user to install
the sensor, and to change the operating conditions without worrying about subsequent
calibration. This is therefore an important feature in many cases.

Table 3.3 gives an impression of approximately how the most common sensing principles
rates within the scope of these parameters. The wide variety of sensors means that the
ratings in this table is only intended as a guide. The 2nd and 3rd generation sensors might
employ any of the sensing principles (and new ones, too), and the ratings are intended to
express the (author’s) expectations to these sensors.

Table 3.3: A coarse classification of the various sensor types.
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• to a low degree, •• to some degree, ••• to a high degree, − not at all.

There are two other parameters which are of interest in many types of sensor systems,
but they do not fit well into the previous list. The first is the ability of a sensor to function
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in, or even benefit from being in, an environment with other sensors of the same type.
Not all types of sensors are sensitive to the presence of other sensors. Usually the sensors
with a large range will interfere with each other unless precautions are taken. Optical and
sonic sensors are examples of sensing principles which are likely to disturb other similar
sensor systems. As long as the sensors use different modulations and carrier frequencies
the problem is minimal, but two sensors of exactly the same type and model might cause
problems.

Larger systems that employ sensors usually have several identical sensors located near
each other. For instance, proximity sensors along a conveyor belt or an assembly line. It
is obviously important that they do not disturb or interfere with each other. Since the
sensors use the same signals the individual sensor must also be able to handle that other
sensors operate simultaneously. This is complicated by the fact that most low-cost sensors
are autonomous units with slightly varying performance specifications between units. In
particular, the frequencies used for signal emission and reception is usually not exactly
the same for any two sensor units.

The other property is synchronization between emitter and receiver. In some cases
the sensor consists of two physically separated units containing an emitter and a receiver,
respectively (i.e. through beam sensor). It then becomes necessary to have some sort of
synchronization to assure that the receiver records the correct transmission signal. This
can be done externally, i.e. by some other form of communication, like a RF link. Alter-
natively, the receiver can try to synchronize on the emitted signal directly. If the signal
processing algorithm in the receiver is capable of synchronizing on the received signals
this solution is often preferable due to the lower cost (this only requires more process-
ing power in the receiver). While a particular transmission sequence might be optimal
with respect to the noise conditions, it might not the useful for synchronization. Thus, it
possess an additional challenge to design transmission signals which are optimal in both
respects. While the author has indeed investigated various ideas for synchronization, the
work is not reported in this thesis.

If the emitter needs to transmit information to the receiver this can often be done by
means of the two sensor units themselves, since there is typically ‘connection’ between
the two units most of the time. Optimally, the information should be modulated in the
same way as the ‘sensor signal’, because then the transmitted information signal can be
used for sensing, and consequently, there is no time gap in the sensor output. Transmitting
information from receiver to emitter needs some extra means of communication.
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Methods for
Measurement of Channel
Gain 4
The basic concept that governs the choice of methods and means for making channel gain
measurements in this thesis is improvement on a number of parameters in active sensors.
The most important parameter is robustness. The background for this was discussed in
the previous chapter. The main tool for achieving the improvement is signal processing
algorithms, and in this chapter the focus is on designing an algorithm that fulfills a series
of performance requirements. The structure of the algorithm is based on engineering and
applicational considerations while the individual steps in the algorithm to a large extent
is based on mathematics. The algorithm is described in detail in this chapter, and applied
to real signals in the next chapter.

4.1 Two Methods for Measuring Channel Gain

The main purpose of the channel gain algorithm presented in this part of the thesis is
to estimate the change in intensity of a signal transmitted through a channel. For the
algorithm to be interesting in the context of low-cost sensors it has to conform with a series
of performance requirements. The performance parameters were listed in Section 3.5 in
the previous chapter, and in this section they are quantified for the purpose of specifying
the performance requirements of the algorithm. The generic algorithm has a variety of
embodiments, and two somewhat different embodiments are presented in details in this
section.

Ideally, the presentation starts with the performance requirements followed by the
generic algorithm and ending with the two embodiments. However, the author believes
that having the subjects introduced in this order will lead to a rather wearisome presenta-
tion. Instead, the two embodiments are presented first followed by the generic algorithm
in Section 4.2. A discussion of performance requirements in relation to the algorithm, as
well as to the two embodiments, is given in Section 4.3.

It is easier to understand the reasons for the chosen structure of the algorithm with
two specific cases in mind, and it is also easier to see what performance requirements can
reasonably be expected to be fulfilled with the generic structure in mind.

The following two sections describe two methods for determining the channel gain
in systems with multiple emitters and receivers. They are both designed such that is it
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easy to choose the trade-off between robustness and detection time by adjusting a single
parameter. The first method is based on spread spectrum (SS) signals while the second
method is based on wavelet generated signals. The first method is mainly useful in sensors
where only very little computational power is available, in sensors where the detection
must be fast, and in sensors where the noise is expected to be rather varying in nature.
The second method requires somewhat more computational power and will often be a
little slower than the first method. However, it is capable of in real-time adjusting to
many types of non-Gaussian noise.

It is assumed in this chapter that the reader is familiar with the Rudin-Shapiro trans-
form (RST) as well as the wavelet packet transform (WPT). A thorough description of the
RST is found in Chapter 11 (which can be read independently of Part I and II). The WPT
is a well-known transform, and there exists an incredible amount of literature on the sub-
ject. An easy introduction to the subject can be found in Jensen and la Cour-Harbo [45],
a somewhat more extensive introduction is Wickerhauser [83], and a good reference for a
purely mathematical presentation of wavelets is Daubechies [26].

4.1.1 Using Spread Spectrum Modulation

The basic idea of the SS based algorithm is to combine SS modulation with a multiplicity
of transmission channels, i.e. the channels are separated in the ‘spread spectrum domain’
or code domain (just like radio broadcasting is a separation in the frequency domain).

To perform the sensing one or more emitters simultaneously emits a single ping, like
a sonar. For each emitter this ping is actually a short, typically 16, 32, or 64 samples long,
SS sequence. Each emitter has its own sequence, and all the sequences are different from
each other and each represents a channel in the SS domain. Each receiver then receives
a mix of all the signals, which is processed to determine if there has been an occurrence
(based on the intensity of the ping in each channel) to which the sensor should respond.
The method reported in this subsection applies to the receivers individually, so in the
following only one receiver is considered.

Since the channels are not separated in neither the time nor the frequency domain
any noise occurrences localized in time or frequency will affect all channels more or less
evenly. The idea is then to use only a few channels for the actual transmission while the
remaining channels are used for detecting noise. That is, no ping is emitted into these
channels. The algorithm is thereby capable of detecting when the noise is such that the
transmission is corrupted beyond recognition. By changing the length of the short signals
it is possible to easily change the trade-off between response time and robustness.

One of the key elements in the algorithm is the modulation method. Here it is proposed
to use the Rudin-Shapiro transform (RST) for this purpose, since it has a series of useful
properties (see Chapter 11).

The sensing starts with a set of very simple digital signals to indicate which channels
are used for pinging. The signals are zero sequences with a 1 at the location of the chosen
channel. These signals are called designed signals. At the top of Fig. 4.1 three such signals
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RST
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0 · · · 0 0 · · · 0 0 · · · 0

RST RST
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Emitters Emitters
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Receiver

functionality
Sensor Sensor

robustness

Figure 4.1: The Rudin-Shapiro transform is used to multiplex in the code
domain. Here three channels are used, one for each emitter, and the re-
maining channels are used to increase the robustness. Note that this figure
does not include the electronics and the other necessary signal processing
algorithms.
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are shown. An RST of such an almost vanishing signal produces a binary SS signal with
a number of samples equal to the original, designed signal. The transformed signals
are transmitted by a number of emitters to the receiver through the sensor environment,
and the received signal is now demodulated with the RST. If the receiver behaves in a
linear fashion then, because of the orthogonality property of the RST, the entries in the
demodulated signal corresponding to the chosen transmission channels now holds the
energy of the received pings (y0 holds the energy from the first emitter, y1 holds the
energy from the second emitter, and so on) while the remaining entries y 3 through yn are
zero.

In any real life application there is obviously noise present, and thus the remaining
entries are not zero. However, in an ideal sensor they always remain unaffected by the
transmission from the emitters, and can therefore be used to determine properties of the
current noise. This information can in turn be used to validate the quantities obtained
from the transmission from the emitters. In a real sensor some inter-channel cross talk
is to be expected, however, if for instance the emitters and receivers use the same power
supply or the transfer function for the channel or the electrical circuit is not constant in
the used frequency range.

Two validation methods are reported later in this chapter in Section 4.9.

4.1.2 Using Wavelet Modulation

The spread spectrum modulation is useful in scenarios where the noise is far from sta-
tionary or where only little computational power is available. But in a scenario where the
noise is close to being stationary the SS method’s lack of ability to adjust to detectable
time and frequency-localized noise makes it less effective than a joint time-frequency
(JTF) modulation. This is not surprising given that the purpose of SS modulation is to
distribute energy evenly in time and frequency. By using the wavelet transform for modu-
lating signals it is possible to achieve a high degree of control of the distribution of energy
in time and frequency. Consequently, it is also possible to adapt a transmission signal to
noise occurrences which are stationary in the JTF domain. For more information on JTF
analysis in general, see Qian and Chen [64].

The sensing in the wavelet modulation case is performed in much the same way as
in the RS modulation case: One or more emitters simultaneously emits a single ping.
For each emitter this ping is a wavelet modulated sequence, and each emitter has its own
sequence. Each receiver then receives a mix of all the signals, and the received signal
is processed to determine if there has been an occurrence to which the sensor should
respond. As in the RS case the wavelet method applies to the receivers individually, so in
the following only one receiver is considered.

The signal generating process is a little more complicated than in the RS case (which
is indeed very simple). First a number of signals are designed. Each of these signals is
vanishing except on some interval which differs from signal to signal. Each interval cor-
responds to an element (or sub-band in the frequency interpretation) on some level in a
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wavelet packet decomposition, i.e. it is on the form [m · 2 J− j; (m+ 1) · 2J− j − 1] for the
m’th element (or sub-band) on the j ’th level (m and j counts from 0) in a WP decompo-
sition of a signal of length 2 J . Three such signals are shown on the top in Fig. 4.2. These
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Figure 4.2: The wavelet packet transform is used to multiplex in the joint
time-frequency domain.

signals are non-vanishing on intervals corresponding to the 3rd element on the 3rd level,
and to the 12th and 13th elements on the 4th level, respectively. Note that the signals are
typically not constant on the non-vanishing part since this yield transmission signals with
a rather narrow frequency content. Ideally the zeroth moment of each designed signal is
zero (see Section 4.6.2).
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Now the inverse WPT (IWPT) is applied to each signal. The basis chosen for this trans-
formation must comply with the chosen non-vanishing intervals. In Fig. 4.2 the vertical
lines in the signal show what basis has been chosen in this particular case. In the noiseless
case the received signal becomes a mix of the transmitted signals, and a subsequent for-
ward WPT will produce a signal which is a linear combination of the original, designed
signals. To determine the intensity in each channel the inner product is taken between
the received, transformed signal and each of the designed, original signal. This gives a
number which is a relative measure of the transmitted intensity.

In Fig. 4.2 there are three emitters and thus three intensities are measured. However,
the designed signals might easily have a length, say N , such that there are more than a
total of three samples in non-vanishing parts in the received, transformed signal. Note
that there has to be at least N = 16 samples for the WPT to make sense in the Fig. 4.2,
and in this case the non-vanishing parts have 4 sample in total. Since there are more non-
vanishing samples in the received, transformed signal than intensity numbers coming out
of the measurement, there is a potential for using the remaining channels for determining
noise characteristics, just as in the case of the RST method discussed in the previous
subsection. But where the SS channels corresponded to single samples in the y signal, see
Fig. 4.1, it is a bit more complicated with the wavelet modulation.

If the number of samples in the signals in Fig. 4.2 is N = 256 then the number of non-
vanishing samples in the first designed signal is 256/8 = 32, and the second and third has
256/16 = 16 non-vanishing samples each. Thus, the received, transformed signal y has
a total of 64 non-vanishing samples in a noiseless transmission. Since the inner products
yields only three values, there is room for 61 estimates of the transmission noise. These
can be obtained in the following way. The first transmission signal consists of 32 non-
vanishing samples. Now, let u0 through u31 be 32 orthogonal vectors in �32 , where u0 is
the original, designed signal. Inner product between y and the 32 u k’s will give a signal
with the same property as the y signal has in the RS method, i.e. a signal with the first
sample being the channel gain and the remaining samples being an indication of the noise
level. The same procedure is applied to the two other transmission signals (although only
16 u’ s are needed for these signals).

Of course, there is also the parts of y which is pure noise, and thus can be used right
away for determining noise characteristics.

Just as the RST the WPT responds in a easily predicted fashion to time and frequency-
localized noise occurrences. But in contrast to the RST it is fairly easy with the WPT to
reduce the effect of such localized occurrences. This is basically because the WPT is a
JTF modulation. Since each element in the WP decomposition represents the whole time
line of the signal, a time-localized occurrence remains localized in each element after
transformation. Consequently, it makes sense to apply various methods after transforma-
tion for removing transients from a signal. At the same time the WP decomposition yields
a band pass filtering of the signal and thus frequency-localized noise will only shown up
in one or two elements. Assuming that the noise is stationary it is easy to determine on the
basis of the received signal which elements in the WP decomposition will have the lowest
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noise energy in subsequent transmissions. This information can then be used to alter the
designed signals which determine the frequency bands used for transmission. The details
of these methods are discussed in Section 4.4 and 4.7.

4.2 Suggested Algorithm

The two methods for determining channel gain described in the previous two subsections
are special cases of a more general algorithm. In this section this general algorithm is
introduced and discussed. The general algorithm is presented after the two special cases
because, as mentioned in the beginning of this chapter, the author believes that having
the two embodiments in mind will make it easier to see which steps are necessary and to
imagine what the content and importance is of each step in given scenarios.

There is a long series of relevant requirements which ought to be taken into account
when designing the algorithm. These requirements are based on the various sensor perfor-
mance parameters listed in Section 3.5. The quantification of each requirement obviously
depends on the application, but as described in Chapter 3 some of the performance pa-
rameters are in general interesting in the context of this thesis. Especially robustness,
response time, and low-cost are essential parameters. Accordingly, the signal processing
steps of the algorithm provide a good performance with respect to these parameters.

4.2.1 Basic Idea

The suggested algorithm is basically divided into six parts, which are two hardware parts,
three signal processor parts, and one external part. The contribution from this thesis is
almost entirely in the two signal processor parts. The other parts have been included in the
following description of the generic algorithm to provide a proper context. A schematic
presentation of the algorithm is shown in Fig. 4.3.

The basic idea is to start with a set of simple, designed, digital signals which are
transformed by an invertible transform to create the transmission signals needed in the
active sensor. The signals are converted from digital to analog format, and then emitted
and received. After proper analog processing the received signals are converted to digital
form. The post-processing consists of inverse transformation, various types of denoising,
and estimation of transmission conditions. The latter includes the purpose of the entire
process, namely to determine the channel gain, i.e. the transmitted intensity.

The steps which the author believes are necessary for a proper implementation of this
idea are shown in Fig. 4.3, and discussed individually in Section 4.2.2 and 4.2.3. Each of
the signal processor steps covers quite a lot functionality. There are many different signal
processing methods which can be used to obtain this functionality. The more interesting
methods are discussed in further details in the remaining sections of this chapter. Appro-
priate references to these sections are given in the description list in the next subsection.

Note that although the descriptions of the algorithm throughout this and the following
chapter are fairly detailed and constructive, it is still necessary, in a given embodiment of
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Figure 4.3: A schematic view of the generic channel gain algorithm.36
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the algorithm, to carefully design, test, and tweak each step to accommodate exactly the
desired functionality.

4.2.2 Signal Processing Steps in the Algorithm

Each of the steps in the algorithm has a specific purpose. In this and the following sub-
section the steps are presented one by one and the key elements in each are discussed.
Since the focus in this thesis is on the signal processing part these steps received the most
attention, and are presented first. Following this in the next subsection the hardware steps
are presented along with the external communication.

Design of original signal There are basically two concepts when designing the original
signal. Either the design aims at spreading the energy in whatever domain the noise
is localized, in order to reduce the impact of the noise, or the design aims at local-
izing the energy in the noise domain, but at different locations than where the noise
occurs. The former method will have a low, but usually more or less constant sensi-
tivity to localized noise, whereas the latter method will have a (potentially) very low
sensitivity to localized noise.

The spreading method is useful when the localized noise has a highly unpredictable
behaviour, and since this method by its very nature does not require adaption it is
easier to use and cheaper in terms of computational power. It also means that the
design of the original signals becomes very easy since all the work in creating the
spread spectrum signal is done by the subsequent transformation.

The localizing method is useful when the noise is stationary in the localized do-
main. In this case the original signal is a simple, though not trivial, signal which is
designed in accordance with the various information gathered during past transmis-
sions. In particular, the design is based on the noise characteristics combined with the
properties of the inverse transform to construct a signal which is close to orthogonal
to the expected noise. This property guarantees a good separation in the localized
domain.

The concept of designed signal are discussed in more details in Section 4.5.1.
Inverse transformation This transformation will convert the designed signal into the

transmission signal. The transmission signal will then have properties which, hope-
fully, will allow the post-processing to do proper denoising, estimation of channel
gain etc. The entire transform might be fixed, or it might have a set of parameters
which allows for some degree of adaptation. For instance, the RST is a fixed trans-
form, while the WPT can use the best basis algorithm to search for the best location
in the WP domain to place the transmission. See Fig. 4.2 where a particular basis
was chosen, and Section 4.5.5 on finding holes in the noise.

While the only mathematical restriction on the transform is that it is invertible,
there are in many cases rather stringent restriction on the numerical stability of the
transform, and often it is necessary that the transform has a faster than O(N 2) im-
plementation, as is standard for linear transforms, because otherwise the real-time
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requirement can only be fulfilled with a rather powerful signal processor, see Sec-
tion 4.3.3.

Note that this step is called Inverse transformation because in the case of the WPT
this is the usual way of naming the transform which maps a number of frequency
bands into one ‘all-frequency’ signal. For some transforms the order of transforma-
tion does not matter at all, like the symmetric RST. For the set of transforms which
are only invertible from one side, i.e. the transform matrix is not square, it is of course
vital to have the right order of transformation. The Gabor transform is an example of
this phenomenon.

Forward transform After transmission when the signal is back on digital form it is sub-
jected to a forward transform (i.e. inverse of the transform applied prior to transmis-
sion). For a noiseless transmission this will reconstruct the original, designed signal
since the transform is invertible. However, since there are indeed always noise it is
necessary to include a number of ‘noise-handling’ methods in the post-processing.
This starts with the transform itself.

The main part of the noise energy is typically acquired at the receiver. Since
many types of receivers behaves in a close to linear fashion it is often reasonable
to assume that the noise is additive. Consequently, the signal can be ‘separated’
from the noise by a linear transform, i.e. transformation reconstructs the original,
designed signal with additive noise. If, however, the noise is convolved with the
signal a deconvolution is needed. Such a procedure is in most respects much more
difficult than a linear transform, and it is outside the scope of this thesis to investigate
the effects of convolution noise.

Beside linearity it is also important that the transform maps small perturbations
into small perturbations. This ensures that a small noise contribution has a small
impact on the transformed signal. A linear transform might lack this property if a
number of the basis vectors are close to being linearly dependent, i.e. the angles
between the vectors are small. By using a orthogonal transform this problem does not
exist, since energy is preserved under orthogonal transformation. It is not desirable
to require the transform to be orthogonal at all costs, however. For instance, the
classical 9-7 wavelet transform is not orthogonal, and some implementations of the
wavelet transform on a finite interval are not orthogonal, either. The orthogonality
aspect of the transforms is discussed in Section 4.5.4.

Signal processing I/II While the transform does the job of reconstructing the original
signal it does not (necessarily) denoise the signal and prepare it for estimation of
transmission conditions. Therefore two signal processing steps are including in the
algorithm. Typically, the first step (I) does the main part of the denoising, while the
second step (II) mainly prepares the signal for estimation of channel gain, noise level
etc.

The denoising in signal processing I can consists of various methods for remov-
ing high energy noise occurrences prior to transformation. For instance, large tran-
sients can be removed, and low and high frequency noise can be reduced by filtering.
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Though the chosen transform is suppose to handle such occurrences nicely, a suffi-
ciently powerful noise burst will inevitably reduce the accuracy of the channel gain
measurement. On the one hand it is therefore desirable to decrease the noise energy
as much as possible prior to transformation. On the other hand there is a limited com-
putational power available for denoising, and the applied methods must therefore be
a trade-off between complexity and efficiency.

It is obviously desirable to apply denoising methods which handles the transmitted
signal as gently as possible, or, alternatively, subject the transmitted signal to an easily
predictable alteration (which then can be ‘undone’ prior to the estimation steps). This
will make the result of the estimation steps more accurate. How to design the denois-
ing to fulfill this desire depends to a large extent on the chosen transform, especially
whether it is a spreading or localizing transform. A number of denoising methods
adapted to the two previously suggested transforms are presented in Section 4.7.

After denoising and transformation the signal goes through the second signal pro-
cessing step to prepare it for extraction of information. Here any alterations of the
signal caused by the first signal processing step is handled. Any method used for this
is obviously heavily dependent on the denoising and the transform. Then any other
post-processing needed is applied. This could be more denoising such as transient re-
moval (see Section 4.7.3), edge handling procedures, smoothing, etc. The outcome of
this second signal processing step is a signal which resembles the original, designed
signal as much as possible (except for the amplitude).

Estimation of channel gain The very purpose of the entire algorithm is to estimate the
channel gain, so this step is obviously very important. It does not involve signal pro-
cessing to the same extent as any of the other steps, however. The only task in this
step is to acquire a value for the gain in each channel (i.e. from each emitter). These
values (which will be denoted channel gain measurements, CGMs) are always ob-
tained by inner products between the original signals and the received, transformed,
denoised signal. The output is a number of CGMs, one for each emitter. The estima-
tion is discussed in details in Section 4.6.

Estimation of probability To estimate just how accurate the CGMs are the Estimation
of probability step evaluates the content in all the channels which were not used for
transmission. Usually the number of available channels are much bigger than the
number of emitters, and thus a pretty good estimate can be generated. The estimated
accuracy can be used to determine whether the CGM is sufficiently accurate for fur-
ther use, whether it is necessary to adjust the designed signal to adapt to changed
noise conditions, and whether various parameters throughout the algorithm needs
adjustment. An example of such an adjustment is the choice of basis in the WPT.

There is a lower limit to the accuracy of the CGMs which is determined by the
white noise contribution (this limit can be lowered by filtering several consecutive
CGMs, but this increases the response time). The white noise cannot be removed ex-
cept by filtering, and it is therefore important to have a good estimate of the variance.
This is best achieved by measuring the �2 norm of samples which are believed to be
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unaffected by anything but the white noise. The validation methods presented later
in this chapter both depend on a good estimate of the white noise variance. Some
methods for doing this is discussed in Section 4.6.

The output from this step is partly an estimate of the accuracy which is for immedi-
ate use (validation of measurements), and partly information for adjusting algorithm
parameters to the present noise conditions. This means that the output is used at the
signal level and the control level in the sensor level model (see Section 3.1.2). A
discussion of detection and validation is given in Section 4.9.

Noise characteristics It is not only the accuracy which can be determined based on the
noise in the received signal. The noisy channels can also be used for detecting for
instance if the sensor is experiencing some kind of failure or if the sensor is subjected
to an overwhelming noise occurrences (one which saturates the sensor making de-
noising useless). This final step might for that purpose employ a series of methods
for determining if the sensor has suffered from an extraordinary event. This thesis
does not focus on this part of the algorithm, as it is strongly dependent of each partic-
ular application. The output from this step is used at the decision level in the sensor
level model.

Supervision & Operations The entire process of measuring the channel gain is super-
vised and operated by this step. All decisions are taken here, and all the external
communication are handled by this step. The Supervision & Operations may also
control the various parameters in the hardware such as gain, analog filtering etc. This
step comprises the control and decision levels, and in the case where the output from
the algorithm is also the output from the sensor, this step also comprises the function-
ality level.

4.2.3 Hardware and External Communication in the Algorithm

The algorithm employs only standard hardware components in an effort to keep the vari-
able expenses at a minimum. The following descriptions are therefore brief and mainly
aims at visualizing the importance of each step in various scenarios.

Adaption to D/A converter The signal coming from inverse transformation is rarely suit-
able for D/A conversion. The signals needs to be scaled and shifted to fit the voltage
range of the converter. This step will in some cases be handled by the signal proces-
sor.

D/A conversion Converting a digital signal to analog is a fairly straightforward process,
and is usually handled by a separate electronic component. Note that when the signal
is binary this step is not necessary. This is the case with the RS sequences. This is
obviously an advantage, particularly in very low-cost sensors.

Amplifying electronics I The output from the DAC (or from the signal processor) needs
to be fed to the emitter with just the right voltage and current. The amplifying elec-
tronics I, also called the emitter driver circuit, supplies the required power to drive
the emitter. This step is almost always necessary as the DAC (or alternatively the
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signal processor) rarely is able to supply sufficient energy for driving the emitter. An
example of a driver circuit is given in Section 5.4.6.

Frequency modulation In some cases it is beneficial to abandon the base band in favor
of some higher frequency band. This is highly application dependent and could be
done by a standard modulator. None of the examples presented in this thesis uses a
frequency modulation, though.

Frequency demodulation The modulated signal must be converted back to base band to
suit the remaining steps.

Amplifying electronics II The Achilles’ heel of the sensor hardware is the amplification
of the received signal. Since the sensor usually by design is pushed to the limit
the received signal is often very weak, and consequently a high gain is necessary
to prepare the signal for A/D conversion. This means that the physical connection
from receiver to amplifier is very sensitive, and a sloppy PCB or sensor design can
therefore easily reduce the efficiency of the sensor.

Analog filtering While it is preferable to have an amplifier transfer function which is
ideal for the transmission signals, it might in some cases be necessary to employ an
extra filtering to reduce for instance high frequency noise. Filtering in the analog
domain is a well-known technique and will not be discussed any further in this thesis.

A/D conversion Converting the signal back to the digital domain is essential for the re-
maining steps in measuring the channel gain. While the DAC is relatively simple
the ADC is more challenging. Some microprocessors and most DSPs have a built-in
ADC since the A/D conversion is an integral part of signal processing. The accuracy
of the ADC (measured in bits) is an important information which determines a lower
limit for what can possibly be achieved in the signal processing, and, ultimately, the
sensitivity of the sensor.

Other CGM systems The presented algorithm can be part of a larger system where sev-
eral CGM algorithms work together, possibly with other types of algorithms. By
using multiple CGM systems it is possible to provide functionality which cannot be
achieved with just one CGM algorithm. An example is the 3D sensor presented in
Part II. Having several algorithms operating simultaneously also allows for exchange
of information which can increase the efficiency of the individual algorithms.

Output from algorithm The ultimate purpose of the CGM algorithm is to provide an
estimate of the channel gain and consequently this information is the primary output
from the algorithm. The outcome of the validation procedure is in many cases also of
interest, and may therefore be a part of the total output from the sensor. Sometimes
other parameters, e.g. variance of the noise, the elements chosen in the WPT, are of
interest also. The output is communicated to the functionality level in the sensor level
model (see Section 3.1.2) or directly to the interface level in case the CGM output is
the functionality.
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4.3 Sensor Performance

The algorithms presented in the previous section are based partly on the potentials and
limitations of low-cost sensor systems, partly on performance requirements for state of the
art sensors. This sections presents and discusses the various aspects of sensor performance
which forms the basis for the suggested algorithms in the previous section. First the
physical constraints are presented in Section 4.3.1. This is followed in Section 4.3.2 by
a discussion of how and to what extent the performance requirements can be achieved.
Finally, in Section 4.3.3 the real time requirement is discussed in relation to the suggested
algorithm for acquiring channel gain measurements.

4.3.1 Physical Constraints

The assumptions made about the physical framework are kept at a minimum to ensure a
fairly general algorithm.

The signal The signal is an important component in an active sensor, and one of the key
elements in the algorithm is the construction and post-processing of the signal. The
physical embodiment of the signal depends on the application (though it is obviously
electrical in the processing hardware). The emitted signal can be electromagnetic,
acoustic, radioactivity, electrical, or a jet of water, for that matter. The algorithm
does not depend on the form of the signal.

The channel The medium for transmission of the signal is called the channel. This is to
be understood in a wide sense. The channel can be many different things such as air,
water, wood, an electrical conductor, and so on. In some embodiments the channel
also includes a reflecting or refracting object, like a hand or a prism. The algorithm
does not include any a priori knowledge about the channel.

Number of signals It is assumed that an unspecified number of signals needs to be trans-
mitted simultaneously through the same channel. The algorithm must allow for sev-
eral emitters and several receivers to be operational at the same time, and it must
be able to determine the channel gain for each combination of emitter and receiver
simultaneously. It is assumed that all emitters and receivers are controlled by the
same clock such as to synchronize emission and reception. It is also assumed ei-
ther that the channel has sufficient bandwidth for an unaltered transmission, or that
the channel transfer function is known. A non-constant transfer function typically
causes inter-channel cross talk in the transform domain (e.g. spread spectrum domain
or joint time-frequency domain), which to some extent can be countered by signal
processing means.

Emitter It is assumed that the emitter and its driver circuit has the ability to convert the
digital signal fairly accurately on whatever form the application calls for (acoustic,
electromagnetic, etc.). This essentially means that response time and accuracy of the
emitter is such that it is possible to generate the desired transmission signal, and that
any non-linearity of the emitter is known. There are no assumptions on the size or
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shape of the emitter, and neither does the algorithm presume any preset direction or
location of the emitter.

Receiver The receiver must be capable of converting the transmitted signal into an elec-
trical signal fairly accurately and without significant loss. Again this means suffi-
ciently low response time, sufficiently high accuracy, and knowledge of any non-
linear behavior in the conversion from optical to electrical power.

Amplifiers The amplifying electronics must have a transfer function which match the full
range of frequencies in the signals. That is, the gain must be approximately the same
for any frequency encountered in the signals. Alternatively, the transfer function for
the amplifying electronics must be known.

Analog – digital conversion The accuracy of the ADC and DAC is not assumed to be
known a priori. The conversion accuracy has to be fixed, though.

4.3.2 Accommodating the Performance Parameters

The list of performance parameters in Section 3.5 presented a number of parameters which
are all relevant to address in most sensor applications. However, the suggested CGM al-
gorithm is not suited for improving on all the listed parameters. As it has been hinted a
number of times robustness is the primary concern of this thesis and the suggested algo-
rithm has been designed accordingly. The two other important parameters are response
time and the cost of the sensor. All three parameters are to some extent conflicting inter-
ests: Robustness can be obtained by waiting for more measurements, and by using better
(and thus more expensive) electrical components, and the response time can be reduced
by employing a faster ADC and faster signal processor. The algorithm is an attempt to
design a method which allows for a trade-off between the parameters without the need for
rethinking the entire process.

The algorithm does not only improve the robustness, but also some of the other listed
parameters. The algorithm includes some tools for increasing the adaptability, for instance
by the concept of finding holes in the noise by appropriate changes in the designed signal
(see Section 4.5.5). This allows for short term adaption. However, adaptability is also
about the ability of the sensor to switch between a number of modes depending on per-
manent changes in the operating conditions for the sensor. This subject is not addressed
with the CGM algorithm.

The improved robustness does not automatically lead to increased accuracy. The ac-
curacy parameter can often be increased at the expense of increased response time, but
how to do this in an optimal way is not discussed in this thesis. However, the validation
methods introduced later in this chapter will provide an estimate of the accuracy, and this
information can in turn be used for maintaining a predetermined accuracy by changing
the response time accordingly.

The flexibility of the sensor, i.e. how easy it is to reconfigure it for other purposes, is
not addressed directly. Of course, the parametric nature of the suggested algorithm does
provide some means for changing the configuration, but flexibility in general is only a
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peripheral issue in this thesis. The related parameter versatility is not addressed at all.
This also goes for reliability.

The problem of multiple sensors of the same type within range of each other is not
intentionally debated in the thesis, but the use of designed signals and orthogonal trans-
forms allows two or more sensors to transmit mathematically independent signals. In
general, the solution to the problem is easy when the sensors are synchronized, and a bit
more complicated when the sensors are not synchronized.

The remaining parameters reduced size, fault tolerance, and self-calibration are out-
side the scope of thesis. Intelligence is a somewhat fuzzy parameter, but it is certain that
the increased robustness is a (small) contribution to the process of creating an intelligent
sensor. And finally, the immunity is obviously increased as well.

4.3.3 Real-Time Signal Processing

The desire for improved robustness by means of signal processing requires the sensor to be
capable of doing the signal processing in real-time. This is because the robustness is based
on a feedback from receiver to emitter that allows the transmission signal to be adjusted to
the current transmission conditions. The feedback consists of information about the most
recent transmissions, and this information must be fed to the signal generator relatively
quickly if it is to have any value to the signal generating process. The analysis of the
received signals and the generation of the transmission signal must therefore be carried
out in real-time.

Also, real-time signal processing might easily be relevant in sensor systems where
there is no feedback from receiver to emitter. If the receiver needs to respond immediately
to changes in the transmission signal (like an abruption of the signal in a through-beam
system, i.e. a system where the emitter is facing the receiver from some distance with the
purpose of detecting someone or something moving in between the emitter and receiver)
real-time signal processing is also necessary.

Requiring that the sensor is able to respond in real-time to unknown occurrences puts
a rather strict limit on the amount of processing that can be done to the signal. This
limit is given by the signal processing hardware, typically quantified in instructions per
second or per sample. In general, the cost of signal processing hardware increases with
the computational capabilities, and consequently, the less processing is required the better.
The decision on what methods to employ in the algorithm is therefore not only based on
desirable mathematical properties, but also on how computational demanding any given
method is.

The real-time requirement is on a signal-by-signal basis rather than sample-by-sample.
This means that the signal processing is synchronous with the signals, not with each sam-
ple in the signals. Each time a signal is recorded it is processed to remove noise, estimate
channel gain, determine probabilities etc., and the relevant information is passed to the
signal generator which produces an entire signal based on this information.

This means that the timing requirement in hardware as well as software are less strin-
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gent than the sampling frequency indicates. For instance, if the sampling frequency in a
sensor is 12 kHz and the signal length is 600 samples the signal update rate is 20 Hz. Thus,
while the buffers related to the actual transmission and reception are accessed 12.000
times per second by the transmission/reception hardware, they are only accessed 20 times
per second by the signal processing hardware. However, in some cases the signal proces-
sor also handles the input and output of the digital signals (i.e. holds the two buffers). It
is still an advantage to do the signal processing on a signal-by-signal basis, though. It is
easier to make efficient use of memory, busses, pointers, etc. when there is a ‘deadline’
for the signal processing 20 times per second compared to 12.000 times per second.

4.4 Noise and Disturbances

The task of the CGM algorithm is to measure the channel gain between an emitter and a
receiver. The reason for using a sophisticated algorithm to accomplish this rather than just
emitting a constant signal and measuring the received intensity level is the fact that noise
will always be present in a real application. The challenge is therefore to design the sensor
such that the noise is kept at a reasonable level, and many measures against noise can be
taken a priori by carefully designing the casing, circuits, by choosing the right materials,
components, etc. The commercial sensor used in the fourth test setup in Chapter 5 is an
example of such a design. But it is indeed not possible to completely eliminate the noise.

This section presents the most common types of noise in active sensors. First time and
frequency-localized noise is discussed. This is followed by a short introduction to random
noise in Section 4.4.2. Finally, in Section 4.4.3 a brief discussion on internal noise in an
infrared type of sensors is discussed.

An introduction to some methods for handling the various types of noise is postponed
to Section 4.7. To fulfill the requirement for low-cost hardware these methods have to
have low computational complexity and thus have to be designed and implemented in
close ‘collaboration’ with the Forward transform and Signal Processing I/II steps in the
algorithm, and these are presented in Section 4.5 and 4.6.

4.4.1 Time and Frequency-Localized Noise

A noise occurrence is said to be localized in a given domain if the noise occurs only
in a single sample or a few consecutive samples when the signal is represented in that
particular domain. The two most common types of localized noise occurs in the time and
frequency domain.

Frequency-localized signals are arguably the most common type of localized noise
in most environments. Many types of processes generates harmonic signals, purposely
or accidentally, and in all sorts of physical forms including electrical, electromagnetic,
acoustic, and mechanical. Examples of sources of harmonic signals are loudspeakers,
artificial lighting, monitors and displays, electric motors, combustion engines, cellular
phones, and remote controls. Many wireless communication systems are also based on
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multiplexing in the frequency domain, and thus emit frequency-localized signals into the
environment. Any electrical apparatus based on alternating current has the potential of
emitting harmonic signals. Note that frequency-localized noise is sometimes referred to
as being stationary or non-time-varying. Frequency analysis of signals is a thoroughly
researched area, and a huge amount of literature exists in this field.

Any occurrence which is confined to one or a few samples in the received signal is
said to be time-localized. Such occurrences are typically not as common as frequency-
localized occurrences, although in some environments they appear regularly. Examples
of sources of such disturbances are electrical and mechanical apparatuses being activated
(or deactivated) causing rapid changes of state. For instance, activating a light source
in the presence of an optical receiver causes a sudden change in the signal level and
thus a time-localized event. Another example is communication system where the signal
is transmitted in bursts to reduce the overall energy consumption. Remote controls are
examples of such systems. In fact, the transients generated in the third and fourth test
signals in the third test setup, see Fig. 5.18 and 5.19 on page 117 and 118, have been
generated with a remote control.

Time-localized noise sometimes exhibits a ‘one-way’ deviation in the signal, i.e. the
affected samples are either above or below the average signal. This happens when short
bursts of energy are added to the signal. The circumstances of the conversion from phys-
ical to digital signals then determines the sign of the resulting transient.

4.4.2 Random Noise

The noise in a sensor will always be random to some degree as any emitter and receiver
component is subjected to quantum mechanical effects, thermal effect, etc. Randomness
means that the individual samples cannot be predicted as they are independent of all pre-
vious samples. However, often some statistical properties such as amplitude, distribution,
and spectral density is known. If the noise samples are not correlated (true randomness)
the spectral density is constant and the noise is referred to as being white. This type of
noise remains uncorrelated after any orthogonal transformation, but only normally dis-
tributed noise maps to the same distribution.

Colored or correlation noise can often be eliminated by taking appropriate (possibly
extreme) measures such as electrical and mechanical shielding of the sensor circuits and
the channel. This is not possible with the random noise which is caused by physical phe-
nomena such as the randomness of photon emission and the thermal motion of molecules.
Although the impact of these effects can be reduced in more controlled environments (for
instance by cooling) it is rarely worth the effort as the increase in production costs easily
outweighs the performance benefit in most types of sensors.

In the following subsection the light emission uncertainty noise and the thermal noise
is quantified for electromagnetic sensors.
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4.4.3 Internal Noise in Sensors based on Electromagnetic Radia-
tion

One of the most common physical forms of the signals in active sensors is electromag-
netic radiation. Especially visible and infrared light is widely used; the emitter and re-
ceiver components are small, robust, fast, and relatively inexpensive. The four test setups
presented in the next chapter are all based on infrared light. It is therefore appropriate to
include in this chapter a brief discussion of the internal noise conditions for sensor based
on electromagnetic radiation. All the information presented in this subsection is from
Rogers [65]. Most of the variables and constants used in this subsection are not found
anywhere else in this thesis, except for Section 5.4.6 in which the theory presented here
is applied to a test setup, and to ease the reading these variables and constants are listed
in Table 4.1 rather than being explained in the text.

Table 4.1: Variables and constants used in estimation of noise perfor-
mance.

Name Symbol Unit Description
Current i A
Power P W
Temperature T K
Radiant intensity I W/sr Radiant flux per unit solid angle of an emitter.
Wave length λ m Wavelength of electromagnetic radiation.
Diode capacitance C0 F Parasitic capacitance of photo diode.
Bandwidth B Hz Bandwidth of photo detection circuit.
Quantum yield η Fraction of photons creating electron-hole

pairs.
Planck’s constant h Js 6.626 · 10−34

Speed of light c m/s 3 · 108

Charge of electron e J 1.602 · 10−19

Boltzmann’s constant k J/K 1.38 · 10−23

We are seeking to detect a light power of Pr at an optical wavelength λ. Here Pr means
the power received by the receiver, not the power emitted by the emitter. This means that
Prλ/hc photons are arriving every second. Suppose that a fraction η of these produce
electron-hole pairs (and thus contribute to the generated current). Then there are ηP rλ/hc
charge carriers of each sign produced every second. The observed electric current is given
by

i P = eηPrλ

hc
. (4.1)

Note that the current is proportional to the optical power and to the square root of the elec-
trical power. It is therefore important when specifying the SNR for a detection process,
to be sure whether the ratio is stated in terms of electrical or optical power. Apparently,
this is a fairly common source of confusion in the specification of detector noise perfor-
mance [65].
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The receiver circuit is divided into the photo detection part and the amplifying part.
The amplification is often quite significant and the noise generated in the photo detection
part thus becomes the predominant source of internally generated noise. There are basi-
cally three types of noise sources in the photo detection part: Shot noise, thermal noise,
and dark current. The shot noise is the uncertainty in the arrival of photons from the
emitter, the thermal noise is generated in the load resistor, and the dark current is leakage
current flowing through the photo diode in the absence of any light input (it is temperature
dependent).

The photon emission process in the LED is governed by probability, and thus the
photons are emitted randomly. The emitted light intensity is in average a measurable,
constant (for constant conditions) quantity, but the random arrival times of the individual
particles in the stream imply that there will be statistical deviation from the true value.
This deviation must be quantified if the accuracy of the measurements is to be judged.
The emission process is Poisson distributed, and it can be shown that this leads to the
following shot noise expression for the photo detection

ishot =
√

2eB(i P + id) ,

where id is the dark current in the diode and where the bandwidth is given by

B = 1

2πRloadC0
. (4.2)

In order to gain a true practical appreciation of the noise performance it is necessary to
consider the complete photo detection part of the circuit, i.e. to include the thermal noise
generated by the load resistor R load. This is given by

iR =
√

4kT B

Rload
.

Note that ishot expresses the mean of the shot noise current in the sense that the mean
noise power is i 2

shot Rload. The same applies to i R .
The total noise generated by the photo detection circuit is i shot + iR . The optical SNR

in the receiver circuit is therefore given as (in dB)

SNR = 20 log10
i P

ishot + iR
.

In Section 5.4.6 in the next chapter these formulas are applied to a specific test setup.

4.5 Designed Signals and Invertible Transforms

The algorithm presented in Section 4.2 needs an invertible, linear transform to function
correctly. The invertibility requirement is necessary to use the transform in the fashion
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presented earlier, i.e. where the signal is transformed from one domain to another to suit
the transmission conditions, and then transformed back to the first domain. The linearity
is required to facilitate an easy post-processing (this will be evident in Section 4.6 on
estimation of channel gain).

A prerequisite for applying the transformation is having a signal to apply it to. And
if the outcome is to be a signal with certain properties needed for a robust transmission
the original signal must be carefully designed. Of course, the knowledge of the behaviour
of the transform is important information when designing the signal, but the idea of the
algorithm is to choose a transform which is well-suited for the given scenario such that the
designed signal is simple and straightforward to design, and such that a few parameters
in this design control all the important factors of the signal structure. The concept of
designed signals is introduced in Section 4.5.1. The design signal concept goes beyond
the transmission signals. A set of test signals is also designed. These serve a number of
purposes which are discussed in Section 4.5.2 and 4.7.4.

The choice of transform depends very much on the sensor application and there exists
a variety of transforms with a diversity of properties. They all fall into two basic cate-
gories, though. The time-frequency localizing transforms and the time-frequency spread-
ing transforms. In Section 4.5.3 some of the most important aspects of choosing transform
is discussed. In many cases it is recommendable to use an orthogonal transform due to its
nice properties, but occasionally the orthogonality must be skipped in favor of other more
important properties. In Section 4.5.4 it is discussed whether to choose an orthogonal
transform or not.

4.5.1 Concept of Designed Signals

One of the challenges when constructing an active sensor is making a list of transmission
signals that will be suitable in the various conditions which the sensor will be operating in.
The signals should be such that they are not easily confused with typical noise occurrences
and such that post-processing is easy to do. They have to comply with the limitations
of the sensor hardware such as finite precision and transfer function of amplifiers. In
multi-sensor systems the signals should also be easy to separate and in systems where the
emitter and receiver are not connected synchronization should be possible by using just
the signals.

It is not impossible to get signals which satisfies all of the above mentioned prop-
erties, at least to some extent. However, it is clear that it would be cumbersome, if not
virtually impossible, to make a list of signals by hand and then store each of them in the
sensor. The solution is to have a systematic method for creating signals on the fly and with
parameterized properties. The former enables the sensor to respond quickly to changed
conditions while the latter makes it easy to achieve a variety of properties in the signals
by simply adjusting the parameters.

While there undoubtedly exist a number of ways to systematize the construction only
one approach is discussed in this thesis. The basic idea is to use invertible transforms
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in combination with designed signals. Two versions of this idea was presented in Sec-
tion 4.1.1 and 4.1.2. The overall structure and properties of the constructed signals are
chosen via the choice of transform, while the parameterization is handled by the design
of the signals prior to transformation. Occasionally, the transform includes one or more
parameters also. The designed signals are kept relatively simple since this makes the post-
processing easier and less computational demanding. The use of transforms to generate
the signals is to a large extent an automation of the whole sensing process. For by using
a transform it also becomes easier to gather useful information about the sensor environ-
ment and to make decisions about the behavior of the sensor. This is explained in more
detail in Section 4.6.

The chosen transform is responsible for providing the properties listed in the begin-
ning of this subsection. These properties form the basis for the high degree of ease and
automation just mentioned. The aspects of the inverse transform is discussed in more
details in the subsections Section 4.5.3 and 4.5.4.

The total computational load of the CGM algorithm is somewhat higher than an al-
gorithm which uses a set of predetermined signals, but the benefits outweighs this dis-
advantage for two reasons. Firstly, the algorithm has the potential of becoming much
more adaptable, robust, and fault tolerant. Secondly, the computational load of the CGM
algorithm is still small compared to the computational power offered by existing signal
processing hardware.

4.5.2 Concept of Test Signals

Robustness is one of the important aspects of sensor design in the context of this thesis.
A high robustness is achieved partly by constructing transmission signals which are well
suited for the sensor environment and partly by estimating to what extent the signal has
been distorted or corrupted during transmission. Since the transmitted signals are known
there is indeed potential for obtaining a good estimate.

One way to do this was presented in the descriptions of the two embodiments earlier
in this chapter. The formulation was that a number of channels are available, and only
some of them are used for transmission while the remaining are used for detecting noise.
Here the same idea is formulated in terms of linear algebra.

Let N be the number of samples in the designed signals and in the transmission signal.
For the sake of convenience it is assumed that only one transmission signals is needed (this
has mainly a bearing on the notation). The signals which after transformation becomes the
transmission signals is called the designed signal or original, designed signal, depending
on the context. This signal is u0. It is possible to construct N − 1 other signals which
are linearly independent of each other and of u 0. These are denoted u1 through uN−1.
Though it is not strictly necessary to require these signals to be orthogonal it does make
some calculations as well as interpretations of results easier. It is therefore assumed in the
following that the signals are indeed orthogonal.

The purpose of designing many signals instead of just one is to have an easy and
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automated way of assessing the transmission noise. When orthogonal the signals have the
property that the inner product between the received, transformed signal, denoted y, and
un is δ[n] for an ideal transmission, and that the amplitude of 〈y,un〉, n ≥ 1, indicates to
what extent the transmission has been distorted. Consequently, an estimate on the form

p = 〈y,u0〉
∑K

n=0 | 〈y,un〉 |
, (4.3)

provides number between 0 and 1 which is a good indication of the noise level in the
transmission. Variations of this form is indeed possible, and for instance the validation
method described in Section 4.9.6 employs a somewhat different form of this estimate.

4.5.3 Choosing the Transform

It is important to choose the right transform for the algorithm. This is evident from the
introduction to the concept of designed and test signals in the previous two subsections.
It also became clear that the transform should possess a number of properties to ensure

• easy design of transmission signals,
• easy post-processing,
• easy estimation of different types of noise contributions,
• possibility for separation of signals in multi-sensor systems,
• high numerical stability,
• low computational complexity, and, of course,
• that the transmission signal can be constructed to suit the transmission conditions.

As the last property is essential for a successful channel gain measurement it has a top
priority. A good transmission signal is either easily distinguishable from or has a low sen-
sitivity to the most common noise contributions. Since it is assumed that for the sensor
systems described in this thesis the three most common types of noise is white noise, and
time and frequency-localized noise, the chosen transform should be able to isolate (local-
ize) these noise types or reduced the sensitivity to these noise types. When disregarding
the white noise this can be achieved by joint time-frequency (JTF) transforms while the
latter can be achieved by spread spectrum (SS) transforms. A white noise contribution
cannot be localized by any linear transform, though it can be reduced in predetermined
parts of the domain (which is what happens with band pass filtering).

The JTF transforms includes all transforms which yields some kind of separation of
the signal energy in time and frequency. Examples of such transforms are wavelet and
wavelet packet transforms, Gabor transform (Pedersen [63], Zielinski [84]), short-time
Fourier transform (Qian and Chen [64]), local trigonometric transform (Auscher et al. [3],
Hernández and Weiss [41]) and time-varying modulated lapped transforms (Vetterli and
Kovačević [79], Malvar [56]), Wigner transform (Claasen and Mecklenbrauker [18, 19,
20]), and, in general, transforms from Cohen’s class, see again Qian and Chen [64].
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While a JTF transform is capable of analyzing the distribution of energy in time and
frequency it is not, as a consequence of Heisenberg’s uncertainty relation, see for instance
Gröchenig [35], capable of perform the analysis with arbitrary accuracy. Consequently,
it is necessary to accept a trade-off between resolution in time and frequency. For some
transforms this trade-off is easy to adjust, and in many cases tricks exist for obtaining
particular properties in the time or frequency domain. An example is the WPT where
increased smoothness of the wavelet filter tends to degrade the time localizing ability. By
using a set of different, carefully designed wavelet filters throughout the decomposition
it is possible to retain the time localizing ability while preserving a certain degree of
smoothness, see Selesnick [69].

The spread spectrum transforms distributes the energy in the signals approximately
evenly throughout the spectrum, i.e. in the frequency domain. The spread spectrum tech-
nique has been widely used in the last few decades. Most notably, the global positioning
system and CDMA in mobile telephony, see Viterbi [81], employs spread spectrum sig-
nals. Also, a number of other communication systems employ spread spectrum modula-
tion, see for instance Kesteloot and Hutchinson [48] and Simon et al. [71]. There exists
a variety of methods for creating spread spectrum signals, each having properties suited
for particular scenarios. In this thesis the focus is solely on the Rudin-Shapiro transform,
in some literature denoted PONS (Prometheus orthonormal set), see Byrnes et al. [14].
There is a large number of references to Rudin-Shapiro related literature in Chapter 11,
but none of these references introduce the spread spectrum technique from an engineering
point-of-view. However, the nice tutorial on spread spectrum signals by Viterbi [82] does.
And more thorough presentations of spread spectrum systems is Dixon [30] and Cooper
and McGillem [25].

The easy design of transmission signals is a property which is totally dependent on the
interpretation of the transform. Obviously, any signal can be generated by any linear, full
rank transform with the right original, designed signal, but the idea is to have a transform
which allows suitable transmission signals to be generated by simple, designed signal. By
choosing a JTF or SS transform it becomes easy to design JTF and SS sequences, respec-
tively, and this provides the potential for parameterizing the construction of transmission
signals.

4.5.4 Orthogonal and Biorthogonal Transforms

Of the many properties listed in the beginning of the previous subsection only two are
addressed, namely the ability of the transform to constructed a signal suitable for the
transmission conditions and easy design of transmission signals. An easy way to get a
big step closer to having a transform with these properties is restricting the choice to an
orthogonal transform (alternatively, the transform might be required to be unitary, as this
is equivalent to orthogonal for real matrices). Although it is indeed possible to choose an
orthogonal transform which would not be useful at all (a Gram-Schmidt orthogonalization
of a random matrix is an example) it is nevertheless a very helpful restriction from an
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applicational point-of-view. This is because some of the properties are guaranteed with
an orthogonal transform. This includes easy estimation of white noise level, separation of
signals, and numerical stability. The separation of signals is obviously easy when cross-
terms between transmitted signals are zero, and the overall numerical stability is provided
by the fact that an orthogonal transform is energy preserving. Of course, there might be
numerical problems in a particular implementation if the intermediate calculations involve
very large and very small numbers simultaneously. An introduction to the concept of
orthogonal transforms in signal processing is found in Ahmed and Rao [1].

The easy estimation of white noise level is basically due to the fact that a white noise
contribution stays white under orthogonal transformation. Although it seems obvious that
any reduction of white noise caused by transformation is desirable, this is not the case.
This is because any transform is perfectly localizing in its ‘own’ domain, e.g. the RST is
perfectly localizing in the domain of RS sequences, and since the transmitted signals is
known, only a single sample holds the information on the channel gain (this is also true
for the orthogonal JTF transforms, see the next paragraph) while the remaining samples
are only noise. Since the noise stays white the effect on a single sample is limited to
1/N’th of the white noise energy. Obviously, it does not make sense to reduce the noise
on the samples which do not hold any energy from the transmitted signal. Instead, if the
noise is preserved, these samples can be used to estimate the statistical properties of the
noise, and thereby provide an estimate of the accuracy of the one sample that represents
the CGM.

Note that the set of test signals introduced in Section 4.5.2 also constitutes an orthog-
onal transform. Here the orthogonality means that it is easy to relocate the entire energy
of the transmitted signals into a single sample. This happens automatically for RS se-
quences, but not, in general, for JTF transforms. The concentration of the energy means
that the ‘true’ CGM can be measure in a single sample and that the remaining samples
are just noise. If the test signal transform was not orthogonal the noise samples would be
correlated with the signal making the post-processing more complicated.

In some cases it might be beneficial to abandon the orthogonality requirement de-
spite the nice properties that comes with an orthogonal transform. For instance, it is not
possible to have a finite, symmetric, orthogonal wavelet filter, and consequently, any or-
thogonal wavelet transform will not map symmetric signals to symmetric signals. Also,
it is in general easier to handle the edge problem (see Chapter 9 and 10) with symmet-
ric filters. An alternative is biorthogonal transforms where one basis is used to forward
transformation and another basis is used for inverse transformation. The two basis sets
are orthogonal to each other, but they are not orthogonal sets in themselves. Biorthogonal
transforms are well-known in the field of wavelets (they sometimes appear under the term
‘frames’), where many applications use this relaxed version of the wavelet transform.
Most books on wavelets include a chapter on biorthogonal wavelets. See for instance
Chui [17, Ch. 5] and Burrus et al. [10, Sect. 7.4]. Note that since Parseval’s theorem no
longer holds in the biorthogonal case there is a potential danger of an exponential growth
in sample amplitude. As severe numerical instability could be the result this concern
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should be addressed when using a biorthogonal transform.

4.5.5 Applicational Properties of the Transform

The previous subsections have discussed a number of important mathematical properties
of the transform. However, a transform might have a series of nice and desirable math-
ematical properties and still be useless in a low-cost sensor system. In order to apply a
transform to a real world problem it has to have a number of applicational properties, too.
It is required that the transform is

• numerically stable,
• subject to a sensible interpretation,
• easy to implement,
• flexible,
• computationally not too complex, and
• applicable to finite signals.

These requirements are related to the combination of transform and signal processing
hardware rather than to the mathematical properties, and ensure that the transform can
indeed be implemented and used in a low-cost sensor. The requirements are discussed
one by one in the following.

The numerical stability is an obvious requirement in fixed point signal processing
hardware. The relative low precision makes the transform vulnerable to rounding errors
and overflow if the transform has a large dynamical range on the intermediate calculations.
The presence of noise also adds to the problem if the transform is numerically unstable.

The basic vectors in the transform matrix must have an interpretation which is in line
with the expected type of noise. For instance, if frequency-localized noise is expected to
be dominating, and some isolated, time-localized noise burst are expected, too, the trans-
form should have an balanced interpretation in the frequency and time domains. That is,
the basic vectors must be frequency localizing to some extent without completely sac-
rificing the time resolution. A good interpretation allows the control part of the sensor
to easily detect the noise as well as easily change the design signal to avoid the noise.
This can be described as finding and exploiting ‘holes’ in the noise. This becomes quite
difficult if the noise does not have a simple interpretation in the given basis.

The only requirement which can be ignore without major consequences is the easy
implementation. This is also sometimes referred to as low programmable complexity.
While it is an advantages to have a simple transform structure when programming it is
not essential for the implementation. Note that the RST as well as the WPT have quite
simple structures.

Flexibility means that the transform can easily be changed to accommodate shorter or
longer signals, can be implemented in many types of hardware, is parameterized in a way
which enables easy adjustment to new applications, and so on.
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While all linear transforms can be implemented with complexity O(N 2) it is rarely ac-
ceptable. Fortunately, in many cases an O(N log N) implementation exists. The differ-
ence between such two implementations is significant for longer signals, and the exis-
tence of a good implementation can be the decisive difference between two transforms.
The most famous example of a fast implementation is the fast Fourier transform (FFT)
presented by Cooley and Tukey [24]. The WPT and the RST are also fast transforms;
both has complexity O(N log N). Examples of transforms with no fast implementation
(to the best of the authors knowledge) is the Gabor transform and Wigner transform.

Finally, a requirement which seems obvious, but which nevertheless tends to be ig-
nored until the actual implementation takes place. The transform should be able to handle
finite signals in an appropriate manner. Especially short signals cause problems for some
transforms. In the WPT it is a challenge to find a good method for handling the edges of
the signal (see Chapter 9 and 10) while the RST does not have any such problems as it is
based on two tap filters.

4.6 Estimating the Channel Gain

The very purpose of the algorithm is to estimate the channel gain in order to provide the
sensor functionality and this step in the algorithm is therefore of great importance. Yet, it
is the least computational demanding step, as will be evident by the end of this section.
First, the formulation of the transmission signals is given in given in Section 4.6.1 and
the result is subjected to a least square analysis in Section 4.6.2 to provide an estimate of
channel gain as well as noise.

4.6.1 Transmission of the Signal

The starting point is the original, designed signal u0 which is transformed by W−1 and
adjusted by an affine mapping to fit the DAC (to ease notation it is assumed that W is
square). The resulting signal is

t = αW−1u0 + β1.

The transmitted signal is given by x = T (t), where T is the transfer operator from emitter
to receiver, including component characteristics, cross talk, non-linearity in amplifier etc.
It is assumed that T is either a constant transfer function or a known transfer function
(except for the gain). It is also assumed that the transmission dampens the signal and adds
noise, that is T (x) = Gx + et. Note that a subscript ‘t’ has been added to e to avoid
confusion with the canonical basis vectors en . The forward transform W of the received
signal yields

y = Wx

= W(G(αW−1u0 + β1)+ et)
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= G(αu0 + βW1)+Wet, (4.4)

where G is the channel gain. The terms GβW1 and We t are both unwanted signal com-
ponents. The last term is unwanted simply because it is pure noise. The middle term is
unwanted because although it does theoretically assist in determining G it will usually
resemble the low frequency noise (this is the case with the RST method as well as the
WPT method) and it will usually have a significant amount of energy compared to the
first term. Depending on the transform this component can be removed one way or the
other. For instance, when W is the RST W1 is a constant signal which can be completely
removed simply by subtracting the mean of the whole signal (as this is a linear operation).

The gain G represents the total damping of the signal from it left the signal processor
and until it is back in the signal processor. In the vast majority of sensor applications all
the quantities in the entire physical setup of the sensor is not known, and G then becomes
a relative gain rather than an absolute gain. This means that a particular value of G does
not have a meaningful interpretation, but a variation in G does. Consequently, the α in
(4.4) can be considered a part of G without loss of information.

As a consequence, the received, transformed signal y can for the purpose of estimating
the channel gain be regarded as being on the form

y = Gu0 + ewt, (4.5)

where ewt is the transform of the noise component e t. Available in this equation are three
important degrees of freedom; the choice of original signal, the choice of transform, and
the choice of solution method. While the two first are intimately related the choice of
solution method is to a large extent independent of the first two degrees of freedom.

4.6.2 Estimating Gain and White Noise with Linear Equations

The vector equation (4.5) can be considered as a system of N linear equations with N +1
unknowns; the entries of the noise vector, and the gain. The size N of the system depends
only on the number of non-vanishing coefficients in the original signal u 0 and the chosen
transform. Since the coefficients on G is directly controllable via u 0 the linear equation
system can be tailored to fit an approximate solution method such as least squares. If the
noise is normally distributed, et ∼ N(µ, σ 2), this will give the best result, independently
of whether it is applied before or after a orthogonal transformation since e wt ∼ N(µ, σ 2)

if and only if the same applies to e t. A least squares approach could be formulated through
a rewriting of (4.5) to

‖y− Gu0 − µ1‖2 = σ 2 N, (4.6)

where N is the length of the signal. This is rewritten to

‖y‖2 + G2‖u0‖2 + µ2 N2 − 2G 〈y,u0〉 − 2µ 〈y, 1〉 + 2Gµ 〈u0, 1〉 = σ 2 N, (4.7)

The left hand side of (4.7) is an elliptic paraboloid inµ and G that opens upwards and with
minimum for some value σ 2. This is the best estimate of the variance, and for exactly this
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value only one set of (G, µ) satisfies the equation. This minimum point is found when
the G and µ derivatives are zero simultaneously. Solving that yields

G = 〈y,u0〉 N − 〈u0, 1〉 〈y, 1〉
‖u0‖2 N − 〈u0, 1〉2

, (4.8)

µ = 〈y, 1〉 ‖u0‖2 − 〈u0, 1〉 〈u0, y〉
‖u0‖2 N − 〈u0, 1〉2

. (4.9)

The smallest σ is then

σ 2 = ‖u0‖2‖y‖2 N − ‖u0‖2 〈y, 1〉2 − 〈y,u0〉2 N − ‖y‖2 〈u0, 1〉2 + 2 〈y,u0〉 〈u0, 1〉 〈y, 1〉
‖u0‖2 N2 − 〈u0, 1〉2 N

(4.10)

When these equations are subjected to the assumption that the zeroth moment of u 0 is
vanishing they reduce to

G = 〈y,u0〉
‖u0‖2

, (4.11)

µ = 〈y, 1〉
N

= 1

N

∑

n

yn , (4.12)

σ 2 = ‖y‖2 − G 〈y,u0〉
N

− µ2 , (4.13)

which are the expected formulas when the influence of the u 0 signal is ‘neutralized’.
Recall that if E(y) is the expected value of y then σ 2 = E(y2)− E(y)2. As long as the
noise is normally distributed no means for providing a better estimate of G exists. But
often the noise is not normally distributed, or at least consists of a white noise contribution
as well as a colored noise contribution. In that case the given estimates of G, µ, and σ 2

can be very misleading. In the next chapter these estimates are made for a number of
different signals, in particular Table 5.5 on page 5.5 presents the accuracy of the estimates
on three signals. However, since in all experiments throughout the next chapter the mean
of u0 is zero these estimates are merely the well-known formulas for mean and variance.

The misleading estimates of G, µ, σ 2 in colored noise makes it interesting to have
other methods for determining the properties of the noise. In particular, it would be nice
to be able to remove all colored noise from the signal as this will make (4.11) the best
estimate of G. As described in Section 4.4 two very common types of disturbances is
time and frequency-localized noise. The following section therefore focuses on methods
for removing these types of noise.

Sometimes it is not possible to perform a sufficient denoising within the limitations of
the hardware and the algorithm. This may be because no resources have been allocated
to denoising, or because the noise occurrence does not fit the chosen denoising methods.
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In such cases the best one can do is estimating how bad, i.e. to what extent, the noise
occurrence has affected the CGM. By having a threshold (or some other means) this
estimate can be turned into a validation of the CGM. Two methods for detecting and
validating CGMs are discussed in Section 4.9.

4.7 Denoising

There are various forms of denoising which can be applied to the received signal. This
and the following section present a number of suitable methods. This section focuses on
the traditional means, while the next sections discusses in details how to use polynomials
for removing low frequency noise in relation to the two previous embodiments (especially
the spread spectrum method).

4.7.1 Frequency-Localized Noise

The presence of frequency-localized noise is a problem is virtually all applications em-
ploying signal processing. There exists many method for removing, or at least reducing,
this noise, and this section will address only a few of these, namely

• Single frequency approximation
• Band pass filtering
• Wavelet decomposition
• Polynomial approximation

The first two are traditional, electrical engineering methods for noise denoising, and are
only discussed briefly. The wavelet decomposition is in the frequency interpretation a set
of band pass filters, and the effectiveness of these are discussed. Finally, a decomposi-
tion into a polynomial basis is discussed in Section 4.8 as a method for removing low
frequency noise in the spread spectrum case.

A common case of frequency-localized noise is a single, dominant frequency, e.g.
sinusoid in the signal. If the frequency is known the brute force way of removing such a
frequency is the following. Let s be a finite, continuous signal on the form

s(t) =
∑

n∈�
an sin(nt + φn), t, φk ∈ [0; 2π) . (4.14)

Then s ∈ L2
([0; 2π)

)
whenever a ∈ �2(�). The signal component represented by

ak sin(kt + φk) can be separated from the signal in the following way. Since
∫ 2π

0
sin(mt + φm) sin(nt + φn)dt = δ[m − n]π cos(φm − φn), m, n ∈ �

it follows that

〈s, sin(k·)〉 = akπ cos(φk) and 〈s, cos(k·)〉 = akπ sin(φk) ,
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with the inner products defined for L 2
([0; 2π)

)
. For a finite, sampled signal these inner

products can be estimated with an accuracy determined by the ratio of sampling rate and
the desired frequency. By subtracting

ak sin(kt + φk) = ak
(
sin(kt) cos(φk)+ cos(kt) sin(φk)

)

= 〈s, sin(k·)〉
π

sin(kt)+ 〈s, cos(k·)〉
π

cos(kt)

from the signal s(t) this particular frequency has been removed. Although this approach
is theoretically sound it may not be the best way of approximating a single frequency. A
number of ways have been investigated, see for instance Kay [47] and Klein [49].

An alternative to singling out a particular frequency (which has to be a priori known)
is band-stop filtering which targets a range of frequencies. Low frequency noise can
effectively be removed by a high pass filter which can be designed to fit any predetermined
break frequency and with any Q factor. Targeting a particular frequency (or at least a very
small range of frequencies) is possible with a notch filter. This is given as (s 2+ω2

0)/(s
2+

ξs+ω2
0) and a very small ξ yields a transfer function which is almost constant except in a

neighborhood of ω0. In some cases this approach is very useful, but bearing in mind that
the suggested algorithm is based on analysis of blocks of samples (referred to as signals)
a good filter becomes less attractive to use as a part of the denoising process. In particular,
a notch filter is an IIR filter with slowly decaying taps, and thus it is only effective when
many consecutive samples are available.

When a JTF localizing transform is used in the algorithm the band pass filtering is an
inherent part of the process and usually no other filtering is necessary in this case. This
is discussed in the next subsection. When a spread spectrum transform is used there is no
built-in parameterized reduction of particular frequencies (however, a SS transform does
necessarily suppress some fixed frequencies, see Section 11), and consequently any need
for removing particular ranges of frequencies must be handled outside the transform.
In that case a band pass filtering is one solution. Since band pass filtering is a well-
understood method and a huge amount of literature exists on the subject it is not discussed
in further details in this thesis.

As stated in the beginning of this section another solution is removal of low degree
polynomial content. On sufficient short intervals low frequencies can be well approx-
imated by a low degree polynomial and thus removed. This approach is introduced in
details in Section 4.8.

4.7.2 Frequency-Localized Noise in the Wavelet Packet Decompo-
sition

When the wavelet packet decomposition is interpreted in the frequency domain it is re-
vealed as a set of band pass filters. This is basically because the two wavelet filters used
in the decomposition is a low and a high pass filter. The details of this interpretation can
be found in most text books on wavelets, see for instance Jensen and la Cour-Harbo [45],
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Vetterli and Kovačević [80], and Daubechies [26]. There are a number of issues that
needs to be addressed if one wants to explicitly use the frequency related properties of
the WP transform. These will not be discussed here, as the mentioned literature covers
these issues. However, it is interesting in the context of this thesis to learn how good
the frequency localizing property of the transform is. This is the case not only in respect
of removing low frequency noise, but also when the designed signal is used through the
inverse wavelet transformation to generate a transmission signal with certain frequency
properties.

The quality of the various wavelet filters are discussed in the mentioned literature, and
one can choose whatever filter is believed to be most suitable for a given application as the
WPT structure is independent of the filters (the edge handling procedure is not, however).
No fairly short FIR wavelet filter has frequency localizing properties which comes close
to what can be achieved with other types of filters. An attempt to optimize frequency
localization was done by Hess-Nielsen, see [42] and [43].

Fortunately, the comparatively low quality factor of the filters is rarely a problem.
This is because the search for ‘holes in the noise’, as explained in Section 4.1.2 and 4.5.3,
is not directly aimed at finding low-noise frequency ranges, but rather at finding low-
noise ranges in the transform domain. When the transform domain then ‘happens’ to be a
frequency localizing domain, the low-noise parts will also be low-noise frequency ranges.
It is important to realize that the best basis algorithm, which would typically be used for
finding the holes in the noise, does not rely on the frequency interpretation, and therefore
gives the best estimate of distribution of noise in the transform domain regardless of the
fact that WPT might delivered a frequency separation of the signal which is far from being
the best achievable.

To get an impression of the frequency response of a typical wavelet filter Fig. 4.4
shows the frequency content of a designed, inversely wavelet transformed signal, where
the energy has been put into the fifth of eight elements on the fourth level of a WP de-
composition. Note that since every element represents the whole time line of the signal,
setting the signal to a constant non-zero value in one element prior to transformation will
yield a signal with a rather narrow frequency content. To use the full potential of the fre-
quency band corresponding to that particular element a spread spectrum sequence is used
instead. In Fig. 4.4 a sampled chirp has been used, but any SS sequence will do, including
an RS sequence.

In the same figure the frequency response of a three times iterated Symlets 6 tap filter
is shown, too. This filter has been used in the wavelet transformation of the designed
signal. Note how the frequency response is quite broad compared to the ideal filter. In
particular, the response is asymmetric with a side loop to the right.

Another example is shown in Fig. 4.5. Here the frequency response of the three times
iterated Daubechies 12 tap and CDF(4,6) filters are shown in all eight bands. Note that the
vertical scale is now linear. While the frequency response of the orthogonal Daubechies
12 is acceptable, in particular the lowermost band pass, the response of the biorthogonal
CDF(4,6) is rather poor. One should be careful using this filter for frequency related
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Figure 4.4: The top plot shows a designed signal which under a three
level inverse WP transformation will give a signal with energy approxi-
mately in the frequency band 4 f s/16 to 5 fs/16. The samples in the interval
[128; 160] are generated by sampling a chirp. The lowermost plot shows in
solid line the actual frequency content of the signal after inverse transfor-
mation and in dashed line the 5th sub-band of a 3 times iterated Symlets 6
filter. The second axis is relative dB.

denoising.
One important observation is that low frequency noise will indeed be handled appro-

priately by the wavelet transform in the sense that low frequency content will appear in
only one element after transformation. Consequently, it is not necessary to apply any ex-
tra filtering in case of low frequency noise when using the wavelet modulation method for
generating and post-processing signals.

4.7.3 Time-Localized Noise in JTF and SS Transforms

The presence of time-localized noise (transients) in the received signal yields two very
different results when subjected to a JTF transform and an SS transform, respectively.
While the former keeps the transient energy in relatively few samples the latter by con-
struction spreads the energy more or less evenly on all samples in the transformed signal.
Since this spreading effect as an alternative to denoising is one of the reasons for choos-
ing an SS transform, an attempt to denoise an SS signal obviously somewhat obscures the
point of choosing such a transform. This is not to say that denoising would not increase
the accuracy of the CGM, but the ratio between denoising effort and increased accuracy
is higher for SS signals than for JTF signals. Consequently, the time-localized denoising
is only considered for JTF transforms.

The claim that it is sensible to put an effort into removing transients from a JTF
modulated signal, but not from a SS modulated signal is perhaps a bit more subtle than one
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The band pass filtering on the fourth level in
WP decomposition with CDF(4,6) filter
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Figure 4.5: The band pass filters for three times iterated Daubechies 12
and CDF(4,6) filters. The frequency response of each filter is shown first
in a shared plot and below individually with the corresponding frequency
band in gray. Source: Jensen and la Cour-Harbo [45].
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would immediately realized from the above description. This is because of the following
calculation, which argues that the impact of a transient on the CGM is the same for the
RST and WPT, i.e. that the estimate of CGM has a certain accuracy independently of
whether the wavelet or RS modulation has been used.

Assume that a modulated signal has been transmitted and only one of the 2 J sam-
ples in the signal has been subjected to a disturbance (white noise is disregarded as this
arguably has equal impact under any orthogonal transform). Assume also that the distur-
bance is additive noise with energy E 2. If the transmitted signal is RS modulated the RST
will produce a signal where each sample, including the one providing the CGM, has been
affected (additively) by E/2 J/2, since

2J−1∑

n=0

( E

2J/2

)2 = E2 .

If the transmitted signal is wavelet modulated the WPT will produce a signal, where each
element in the chosen basis will have one significant non-vanishing entry (except for
the element representing the channel chosen for transmission where all entries are non-
vanishing). Since the orthogonal WPT is energy preserving (the biorthogonal is often
almost energy preserving) the total energy of the transients is E 2. A transient is presented
at all frequencies and therefore the transients, one in each element, have an amount of en-
ergy approximately reversely proportional to the number of entries in the element. Conse-
quently, a transient in a element on level j (starting index 0) has an energy approximately
equal to E/2 j/2, since

∑

j∈A

( E

2 j/2

)2 = E2
∑

j∈A

2− j = E2 ,

where A is a list of the level number of each element (0 being the top level, i.e. the
un-transformed signal). The following inner product, as specified in (4.11), applies ap-
proximately the same weight to all samples. For a unit energy designed signal u 0 this
weight is 2( j−J )/2, and thus the transient affects the CGM by

2( j−J )/2 E

2 j/2 =
E

2J/2 .

This argument goes to show that there is in general nothing gained in terms of CGM ac-
curacy under time-localized disturbances by employing the WPT rather than the RST (or
vice versa). This obviously raises the question why one transform is preferable to the
other in a case where the time-localized noise is expected to be dominant. The answer
is twofold: The WPT is not representative for all JTF transforms (see the two next para-
graphs), and detecting and removing transients is easier in a JTF transform scenario than
in a SS transform scenario (see the next section).

There exists many different JTF transforms that behave in different ways and produce
outputs in different formats, see Qian and Chen [64]. Not all JTF transforms have a filter
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bank output format like the WPT. For instance, the short-time Fourier transform (STFT)
and the local trigonometric transform (LTT) both have a segmentation of the output in
time domain, and each segment represents the entire frequency range, whereas the WPT
has a segmentation in the frequency domain where each segment represents the entire
time line (of the transformed signal).

When a signal with a transient is transformed with a frequency segmenting JTF, like
the WPT, the transient reappears at approximately the same time location in each segment.
When the same signal is transformed with a time segmenting JTF the transient affects all
the sample in the segment which corresponds to the location in time of the transient. This
means that while there is arguably no difference between the influence of a transient on
the CGM in the RST and the WPT cases, there is indeed if the JTF transform is the LTT.
Either the CGM estimate is distorted by the entire energy of the transient (when time
segment chosen by means of the original designed signal overlaps the transient) or there
is no influence at all (when the time segment does not overlap the transient).

4.7.4 Detecting and Removing Time-Localized Noise in a JTF Trans-
form

The presence of high energy time-localized noise, transients, in the received signal is not
difficult to detect. Such noise is by definition concentrated on a relatively small number
of samples which deviates significantly from the rest. The transmitted signals does not
contain transients, and any abnormally large signal sample is therefore noise transient.
Most of the energy in a transient can be removed from the signal simply by resetting the
sample to a more appropriate value, such as the mean value, for instance. An indication
of the number of transients can be obtained by sorting the samples according to magni-
tude and then determine the decay or the number of samples above, say, 3 times the � 2

norm. The downside of these easy-to-understand-and-implement ideas is that they require
a considerable amount of computational power, much more than is available in a low-cost
sensor.

A far less computational alternative is needed. One possible solution is to utilize
the idea of transmitting in a number of channels as described in Section 4.1.1 and 4.1.2
combined with a particular design of original u0 and orthogonal test signals un . While
the overall purpose of using the test signals is to detect any kind of noise, for instance by

p = 〈y,u0〉
∑N

n=0 | 〈y,un〉 |
, (4.15)

it is possible to adapt some of them to specifically detect time-localized noise. The idea
is to design some of the u’s in a particular way, which is illustrated here with just u 1
and u2. To make the notation easier the vectors in the rest of this section now represents
only the samples in the chosen element, i.e. the interval in which the designed signal is
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non-vanishing, and not the whole signal. First, let

u0 =






u0
0

u1
0

u2
0

u3
0






be given. Define

u1 =






u0
1

u1
1

u2
1

u3
1




 where






u0
1 0

u1
1 0

0 u2
1

0 u3
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�

uk =






0
0
0
0




 , k = 0, 1 .

It is assumed that uk
n have the same length for fixed k. Let χ k be the characteristic vector

for the interval associated with uk
0 and with the same length as the u0, i.e. it is 1 on the

interval corresponding to uk
0 and 0 elsewhere. Define then

pk
j =

M−1∑

s=0

u0[s]y[s]χk[s]
J∑

m=0 ∧ m= j

∣∣∣
M−1∑

s=0

um [s]y[s]χk[s]
∣∣∣

,

where J is the number of specially designed test signals and M is the length of u 0. This
formula does the same as (4.15) except it is confined to only parts of the signal (deter-
mined by k in χ k). The outermost sum in the denominator does not include the u m for m
between 1 and the examination level, since these u’s are not (necessarily) orthogonal to
u0 on the target interval.

Now, suppose that y is the WPT of the received signal in which there is a time-
localized noise occurrence in the second quarter (and suppose that there is no other noise).
Then p0

0, p0
1, and p1

2 is less than 1, while the remaining p’s are all 1. Although this does
not pinpoint the location of the transient it does reveal that something has happened in
the second quarter of the signal. At the same time the fact that the remaining p’s are
1 indicates that three quarters of y is noise-free. By changing the inner product 〈y,u0〉
from being a correlation between all samples in y and u0 to a correlation between the
noise-less three quarters of y and the corresponding samples in u 0 a good estimate of G
can still be obtained, even without extra effort if the initial estimate was obtained as the
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sum of the estimates based on each quarter. Note also that the designed u 1 and u2 still
complies with the requirements of Section 4.5.1. This means that the above suggested
calculations does not require extra computations besides those needed for the validation
described in Section 4.9 since the inner products have to be determined as a part of the
validation procedure, anyway.

This method can of course be extended to include more u signals. The effectiveness of
this approach does not increase linearly with the number of included u signals, however.
As the signals becomes more segmented, i.e. smaller and smaller parts are orthogonal to
equally small parts of the previous u’s, the p’s becomes less accurate, and also at some
point the management of the p’s becomes more extensive than an exhaustive search for
abnormal samples to exclude from the gain estimation.

Of course, knowing that something has happened in the second quarter of y provides
the opportunity to concentrate a denoising attempt on a relatively small part of the signal
(recall that in this section y in itself represents only a fraction of the transformed signal).
If the noise is indeed a transient, and not a corruption of the majority of the second quarter,
resetting the largest samples in the second quarter to what they should have been given
the current estimate of the gain would provide a little more accurate estimate of the gain.
Note that resetting samples to obtained increased accuracy of G should be done with care.
As more samples are reset to expected values the signal comes closer to being equal to a
scaling of u0 and the various p values thus increase correspondingly. At some point all
the p values becomes close to 1 indicating a highly accurate estimate, although the reason
for the high p values is really that the y signal has been adapted to fit the test signals.

Alternatively, the transients can be removed from the received signal prior to transfor-
mation. It is easy to get an approximate location of the transients, since each sample in
y corresponds to only a few samples in the signal prior to transformation. The downside
is that once a transient has been removed the signal has to be transformed again. The
advantage of this more cumbersome denoising is that the transient is removed from all
elements in the decomposition, and not just the element representing the chosen transmis-
sion channel. If the other elements are parts of a procedure for finding holes in the noise,
as described in Section 4.5.1 and 4.7.2, this method might be preferable.

The time-localized denoising is illustrated in Section 5.2 in the next chapter, where a
couple of experiments with wavelet modulated transmission signals are presented.

4.8 Polynomial Decomposition

One of the challenges when reducing the hardware to a minimum is low frequency noise,
because this is often removed by mechanical and electrical filters. Although these are still
necessary in order to avoid saturation of the ADC, they are usually less effective with
reduced costs, and it is expectable to experience some degree of low frequency noise in
the digital signals. This noise contribution is in many cases of a significant amplitude
compared to the transmitted signals, and some means of denoising is necessary. Not
because it is low frequency noise, but because the detection is less robust when the noise
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energy is much higher than the signal energy.
Fortunately, the wavelet transform is well suited to separate frequencies, and the low

frequency content will therefore influence only the few lowest frequency bands (which
consequently are never used for transmission). Things are not so easy with the RS se-
quences as the RST does not separate frequencies. This section is therefore dedicated to
presenting a method for removing the low frequency energy from the received signal in
the case where an RS sequence in present in the signal.

One possible method of removing this noise is obviously the use of a band pass filter,
and this would probably be the easiest approach from a pure denoising point of view.
However, it is important to remember that the received signal contains an RS sequence
which it is desirable to leave untouched. Any spread spectrum sequence will inevitably
be affected by filtering and any other denoising attempt for that matter, and the chosen
denoising method must therefore have an easily predictable influence on these sequences.
It is demonstrated in Chapter 12 on linear transforms applied to RS sequences that the
effect of a block diagonal matrix, i.e. on the form






B
B

. . .

B





, (4.16)

applied to the RS sequence is easy to predict.
Unfortunately, filtering is not well suited for a block diagonal structure. Therefore, as

an alternative the author suggests to do a polynomial-based decomposition of the signal
to separate low and high frequencies. An introduction to polynomial bases can be found
in Szego [74] and Chihara [16]. Though this works only in a fairly localized interval
the block diagonal structure can be utilized to do the separation of frequencies for any
length signal. The details of the polynomial decomposition is described in the following
sections, while the presentation and discussion of the prediction of the effect with respect
to the RS sequence is postponed to Chapter 12 (partly because it is a rather mathematical
and extensive discussion, partly because the ease and simple structure of the prediction
is an interesting result in its own right). However, the primary result of Chapter 12 is
also briefly introduced in Section 4.8.2 in an applicational manner. This is because it is
indeed necessary in signals from real applications, see the next chapter, to compensate for
the effect that occurs when removing low degree polynomial content from the signal (and
hence from the RS sequence).

The denoising method is constructed in two steps. First the polynomial basis used
to decompose a signal part into polynomials is defined and discussed (in the next sec-
tion). Then the block diagonal structure and the frequency aspects are discussed (in Sec-
tion 4.8.2).
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Section 4.8: Polynomial Decomposition

4.8.1 Polynomial Bases

The polynomial basis is in the following definition given in the form of a square matrix
� where each column is a polynomial sampled equidistantly on [−1; 1) and of degree
corresponding to the column number.

Definition 4.1 (Matrix of Sampled Polynomials)
Define the N × N matrix � = [φm,n] as

φm,n =
n∑

k=0

cn,k

(2m − N

N

)k
, m, n = 0, . . . , N − 1 , (4.17)

where C = [cn,k ] is a full rank N×N lower triangular, real matrix. Let φ n be the columns
of �, i.e. [

φ0 φ1 · · · φN−1
] = � .

Define also the matrix �m as the first m columns of �. Define further �(k) as the matrix
of size 2k × 2k .

The fact that the polynomials are of increasing order (and hence that changing a matrix on
this form to another matrix on the same form requires an upper triangular matrix) leads to
a uniqueness result.

Lemma 4.2
Let � be an orthogonal matrix on the form (4.17). Then � is unique up to a change of
signs of the columns.

The orthogonal case is also known as the Legendre Polynomials.

Proof
Any matrix on the form (4.17) is obtained by multiplying � from the right with an upper
triangular matrix U. The resulting matrix is orthogonal if and only if U is orthogonal,
which in turn implies that U is diagonal with ±1’s on the diagonal. �

Note that this lemma applies regardlessly of the sampling interval. An example of an
orthogonal matrix is the 64× 64 polynomial basis matrix, which is shown in Fig. 4.6.

A polynomial decomposition of a signal is done simply by multiplying the signal with
�� of the appropriate dimension. The result is a series of coefficients c which individually
depends on specific polynomials content. That is, c j depends on the polynomial content
of degree j and lower in the signal (since C is lower triangular).

Thus, the polynomial content of degree m of a signal can be removed by projecting
it onto the vector space span{φm+1, . . . ,φN−1}, and alternatively by subtracting from the
signal its projection onto the vector space span �m . For m 
 N the latter procedure is
far less computational demanding.

It should be noted that although the Gram matrix of φ 0, . . . ,φN−1 in the Legendre
case is the identity matrix the construction of the orthogonal polynomials is numerically
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Figure 4.6: The orthogonal 64× 64 matrix � (6) for some choice of col-
umn signs (left) and the absolute value of the matrix (right). The white,
dashed line in the right plot shows

√
1− (p/63)2 where 0 ≤ p < 63, see

Conjecture 4.4.

highly unstable. The condition number of � grows very rapidly with increasing dimen-
sionality of the spanned space. Fortunately, the first few (low degree) vectors of the basis
can be constructed without difficulty.

4.8.2 Applying Polynomial Decomposition

The idea for applying the polynomial decomposition in order to remove the low frequency
noise of the signal is the following. The signal x is separated into a number of consecutive
parts xk of equal length. Each part must have length equal to some power of 2. Then
the polynomial content of degree m is removed from each part. Finally, the parts are
concatenated to produce the denoised signal. Mathematically this can be achieved by a
multiplication by a matrix on the form (4.16). In practice this is accomplished as described
in the previous section, i.e. by first determining c = ��

mxk followed by subtraction from
the signal xdenoised = xk −�mc.

The number of signal parts and the degree of polynomial removal is based on the sam-
ple rate and the frequencies which is to be removed, and will therefore be determined by
the circumstance of the individual applications (see Section 5.4 for examples of applica-
tions of this method).

One can get an idea of frequency interpretation of this method by looking at the fre-
quency content of the basis elements in the polynomial decomposition, that is the columns
of �. This is shown in Fig. 4.7. It is clear from this figure that removing low degree poly-
nomial content very effectively removes the low frequency content of the signal. The
price paid for using this approach is also clear; some of the higher frequency content is
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Figure 4.7: The frequency content of each column of � (6), i.e. of each
polynomial in the basis. The black, dashed line shows 1 − √

1− p/63
where 0 ≤ p < 63, see Conjecture 4.4. The color scale is in relative dB.

removed as well. However, it turns out that this is not a major problem in real applications.
It was mentioned in the beginning of this section that it is easy to predict the impact

of removing low degree polynomial content from an RS sequence. Fortunately, it is also
easy to compensate for this impact, as the following example will show. Let x be a
signal which has been received under such circumstances that a major part of the signal
energy is concentrated in the low frequencies, and a minor part of the energy is in an
RS sequence. Applying the low degree polynomial removal will indeed remove most of
the low frequency energy from the signal. At the same time this process alters the RS
sequence such that a subsequent RST will not yield energy in only one sample, but rather
in a number of samples (how to determine which ones are discussed in Chapter 12). For
instance, a length 64 RS sequences, being the RST of e0, a vector with all but the first
entry vanishing, is subjected to a third degree polynomial removal on 8 length 8 signal
parts. That is, the first 8 samples have the third degree polynomial content removed, the
next 8 samples are subjected to this also, and so on. Then the signal is transformed ‘back’.
Without removing the polynomial content the result would be a signal vanishing in all but
the first entry. However, with the polynomial content removed the result is the signal
shown in Fig. 4.8. Note that as long as the receiver is linear the noise is of no concern to
this analysis, since the polynomial removal is a linear operation, and thus influences the
RS sequence independently of the present noise.

Since the only unknown parameter in a real application is the amplitude of the RS
sequence in the received signal it is possible, once this parameters has been estimated,
to approximately ‘undo’ the effect of the polynomial removal. This is accomplished by
applying to the transformed signal a method which when applied to the signal in Fig. 4.8
will yield e0. And this is done by multiplying the first entry in the transformed signal with
the reciprocal of the first entry in Fig. 4.8, and subtract from each of the remaining entries
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Figure 4.8: The result of removing third degree polynomial content from
8 length 8 parts of the first length 64 RS sequence (first row of matrix on
the left in Fig. 4.9). The black dots mark the samples which are poten-
tially affected by any ‘8 length 8’ linear transform of the first length 64 RS
sequence (first row of matrix on the right in Fig. 4.9).

in the transformed signal the value of the corresponding entry in the signal in Fig. 4.8.
An alternative to undoing the effect is to ignore the affected entries in the transformed

signal. After all, a majority of the entries are unaffected. The black dots in Fig. 4.8 show
which entries are potentially affected by any block diagonal linear transformation applied
to 8 length 8 signal parts prior to the RST (this is elaborated in Chapter 12).

The polynomial removal procedure can also be described in linear algebra terms. Let
L(3) be a 23 × 23 matrix which projects a length 8 vector onto the space spanned by
sampled polynomials of degree 4 through 7, i.e. L (3) = I−�

(3)
4 (�

(3)
4 )�. In order to apply

this matrix to the 8 length 8 parts of the signal, define the 2 6× 26 matrix L(6,3) = I8×8 ⊗
L(3), where ⊗ is the Kronecker product, which when applied to the received signal will
remove third degree polynomial content as described above. The entire process is then as
follows. The transmitted signal is given by P(6)e0. When received the signal is subjected
to L(6,3) and then transformed with P(6). The resulting signal is y = P(6)L(6,3)P(6)e0,
that is the first row of P(6)L(6,3)P(6). This row is the signal shown in Fig. 4.8. The entire
matrix is shown on the left in Fig. 4.9. On the right in the same figure is a matrix showing
which entries (marked with black) are potentially affected by any linear transform on the
form L(6,3), i.e. when applied to 8 length 8 signal parts. This matrix is presented in
Chapter 12.

When applying the polynomial removal procedure to consecutive signal parts there
is a potential risk of introducing discontinuities in the signal. This happens if the edge
of the polynomial approximation in one signal part matches poorly with the correspond-
ing edge in polynomial approximation in an adjacent signal part. This mismatch occurs
when the polynomials are poor approximations of the individual signal parts, and a poor
approximation is the result when the signal part exhibits non-differential behavior, and if
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Figure 4.9: The matrix P(6)L(6,3)P(6) (left) and the matrix indicating the
entries which are potentially affected by a block diagonal linear transform
applied to 8 length 8 signal parts prior to RS transformation (right).

the signal part contains a significant energy at a frequency not ‘covered’ by the chosen
polynomial degree. The former is typically a result of transients in or saturation of the
signal, while the latter happens when the disturbances oscillates too fast compared to the
chosen polynomial degree and number of signal parts.

The major problem with discontinuities in the signal is that they introduce non-trans-
mission-signal energy which degrades the subsequent estimate of the channel gain. It
should be noted that the problem is not that it becomes more difficult to undo the effect of
polynomial removal (as this step is independent of the quality of the approximation), but
rather that the introduced energy affects all the samples after transformation, including
the samples holding information on the channel gain.

4.8.3 Some Final Remarks

There seem to be an interesting relation between the two matrices presented in the pre-
vious section, i.e. the polynomial basis matrix � and symmetric Rudin-Shapiro matrix
P(N). This relation has not been verified by a proof, and is thus given as a conjecture.

Conjecture 4.3
Let � be an orthogonal matrix and define the 2 N × 2N matrix B = ��PN . Then the
distribution of the entries in each column of B, or, alternatively, the distribution of the
entries of B, converges to the normal distribution with zero mean and unit variance for
N →∞.

Whether this relation serves any purpose remains an open question. It is not explored in
this thesis.
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Before finishing the subject of polynomial filtering there are two interesting observations
to make. They do not have any particular bearing on this thesis, but they hardly escape
ones attention when looking at the figures 4.6 and 4.7. The functions given in this conjec-
ture have been marked in the two figures by a white and black dashed line, respectively.
The author does not have any theory or references to any theory to support these obser-
vations, and therefore they are presented here as conjectures. Having no relevance for the
thesis the subject will not be pursued any further.

Conjecture 4.4
Let � be a N × N matrix as defined in Definition 4.1.

1. Define for fixed N the function

η(t) = 2

N
arg max
0≤m<N/2

|φm,�t N�|, t ∈ [1/N; 1) .

Then
lim

N→∞ η(t) =
√

1− t2,

2. Define for fixed N the function

η̂(t) = 2

N
arg max
0≤k<N/2

∣∣∣
N−1∑

m=0

φm,�t N�e−ikmπ/N
∣∣∣, t ∈ [1/N; 1) .

Then
lim

N→∞ η̂(t) = 1−√
1− t .

The author does not have any plans to investigate the presented conjectures any further,
and interested readers are invited to attempt to verify them.

4.9 Validation of Measurements

When the measurement of the channel gain including the various forms of denoising have
been completed, an estimate of the channel gain and a sequence of pure-noise samples are
available. This information can be exploited in a number of ways to validate the CGM, i.e.
determine whether the inaccuracy on the CGM is within acceptable limits. The following
subsections presents three different methods of various mathematical complexity.

Validating a measurement means to decide whether it is useful or not useful. The
common aim of the validation methods is to make this decision with a predetermined
error rate. Making a error means making the wrong decision. The error rate might be set
once and for all, it might be adjustable at the decision or functionality level, or it might
be given by user input. In any case, it is important to distinguish between the two basic
types of error, false positive (FP), i.e. deciding that a useless measurement is useful, and
false negative (FN), i.e. deciding that a useful measurement is useless.
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4.9.1 Threshold on the Measurements

The easiest way of validating a measurement is to fix a threshold above which a measure-
ment is considered useful and below which it is useless. In most proximity sensors this
validation is also the output of the sensor; a sufficiently large measurement means that it
is most likely generated by an object close to the sensor. Typically, the threshold is set to a
level which empirically yields a predetermined probability of FP under given conditions.
If the distribution and variance of the noise is known it is easy to determine the threshold.
This method employs a fixed threshold and is therefore a widely used method in analog
sensors.

Although applying an FP-based threshold directly to the measurements is straightfor-
ward and simple to do, this approach does not yield the true error rate since it does not
include the FN probability. The challenge when including the FN probability is that it de-
pends on the noise level as well as the desired maximum sensitivity of the sensor whereas
the FP probability depends on the noise level only. This is illustrate in the following
example.

Assume that the noise in a given proximity sensor is normally distributed with zero
mean and standard deviation 10, and that the error rate is specified to 10−6. This cor-
responds to 4.75 times the standard deviation, and the threshold should be set to 48 ac-
cordingly (assuming that only integers are allowed). This ensures that the probability of
detecting an object when there is none is 10−6. However, if an object is present and results
in a true CGM of 48 half of the measurements will be below the threshold, and thus the
FN probability is 0.5. When the object moves closer and the true CGM increases to 96
the FN probability drops to 10−6. In both cases the FP probability is 10−6. If the sensor
is specified to have an error rate of (at most) 10−6 this is only valid for the presence of
objects which causes a true CGM of (at least) 96.

Note that while the fixed threshold on the measurements works fine in a white noise
scenario (when the above consideration are taken into account) the method lacks the abil-
ity to properly distinguish between large measurement caused by an powerful transmis-
sion and by noise.

4.9.2 Adaptive Validation

The deficiency of the fixed FP-based threshold validation demonstrates the need for an
adaptive validation method. In the following subsections two adaptive methods are re-
ported. They are both based on the principle of regular SNR,

10 log10
y2

k∑N−1
n=M y2

n

k = 0, 1, . . . ,M − 1 ,

where M is the number of emitters and N the number of samples in the emitted sequences.
This means that instead of validating the measurements by a threshold on the measure-
ments, the validation is based on some sort of SNR, called a validation function. The
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functions in the two validation methods reported here are

�(y) ≡ y2
0∑N−1

k=1 y2
k

(4.18)

and

�̃(y) ≡ y2
0∑N−1

n=1 y2
n + β|y0|3

, (4.19)

respectively. This implicitly assumes that y0 is the gain measurement and the channels
y1 through yN−1 are noise. Having information about the noise, it is natural to compare
the (potential) signal to the noise directly as in (4.18). The other function (4.19) requires
a little motivation. The idea is here that experience shows that it is sometimes necessary
to introduce a mechanism for handling large outliers in time domain (transients), which
is achieved for instance as in (4.19) by introduction of the cubic term in the denominator.
In the sequel, design procedures will be proposed for either function. Thus, for (4.19) the
challenge is to keep the detection criterion well-balanced for ordinary white noise at the
same time as being able to reject transients and other time-localized disturbances.

The validation is a two step procedure. First the measurement must be above a certain
threshold S, as in the previously described method. Then the validation function must be
above a certain threshold α. That is, the test of the hypothesis that a gain measurement is
useful is on the form

T (S, α) =






false y0 < S ,

false �(y) < α ,

true otherwise.

The same applies to T̃ and �̃. The validation test that uses a threshold on the signal level
is not be included in this work.

The purpose of using these two methods is to be able to properly validate measure-
ments in the case of severe noise. At the same time they must be able to provide a val-
idation with a predetermined error rate for normally distributed noise. This goes for FP
as well as FN errors. The ability of the validation methods to detect non-random noise is
demonstrated in the next chapter and will not be discussed any further here. The remain-
ing part of this section is dedicated to determining the parameters S, α, and β.

4.9.3 First Validation Method

Two parameters have to be determined in order to use the first validation method. They
can obviously be determined empirically by trail and error. However, if one wants to
quantify the error rates it is necessary to know the relation between instances of the (al-
most) stochastic process y, and S and α. As argued in Section 4.9.1 it is reasonable to
require the FP and FN error rates to be equal in the random-noise worst-case scenario, i.e.
in the case where the signal is the weakest possible and yet still useful.
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In the following a statistical model for balancing the probability of a FP decision and a
FN decision is presented. To reduce the complexity S is assumed to be −∞, i.e. it is not
a part of the validation. Therefore the entire exercise is about determining the correct α.
Obviously, the probability PFP of detecting a signal when none was received decreases
with large values of α. And vice versa, when α is small, the probability PFN of ignoring
a signal that was actually received is also small. Thus, choosing α can be seen as a
compromise between FP and FN risks.

The purpose of the statistical model is to determine the optimal threshold α. We
define an optimal threshold as that value of α for which the probability for a worst-case FN
decision based on T (α) equals the probability for an FP decision based on T (α). A worst-
case FN decision is understood as an FN decision in the presence of the faintest received
signal which is to be considered useful. It is straightforward to modify the approach
below in order to meet this compromise with a preference to either a low FP or a low FN
probability.

Note that in the following model � has been divided by N − 1 since this makes the
denominator resemble the variance of the signal.

The statistical model and the accompanying derivations and computations are due
to Jakob Stoustrup. The result presented here have also been submitted for publication
elsewhere, see la Cour-Harbo and Stoustrup [51].

4.9.4 Statistical Model for Deterministic Gain Signal

The reader is reminded that if N − 1 stochastic variables {Yk}k=1...N−1 are normally dis-
tributed, Yk ∈ N(0, 1), then

∑N−1
k=1 Y 2

k belongs to the χ 2(N − 1) distribution, which

is a special case of the � distribution, χ 2(N − 1) = �
(

N−1
2 , 2

)
. This means that the

probability of an FP decision is

PFP(α) = P(Z0 > α Z̄ )

where

Z0 = Y 2
0 ∈ �

(
1

2
, 2

)

and

Z̄ = 1

N − 1

N−1∑

k=1

Y 2
k ∈ �

(
N − 1

2
, 2

)
,

and the probability of an FN decision is

PFN(α, Rmax) = P(Rmaxσ
2 < α Z̄ ),

where σ 2 is the true (and unknown) variance of the noise. R max is the worst-case SNR,
i.e. Rmax = ylow/σ , where ylow is the lowest detectable signal level of y0. Note that this
makes Rmax the ‘real’ SNR since y0 is (for the time being) assumed to be deterministic.
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Rmax would typically be a design parameter or adjustable by the user of the sensor. Now,
the probability distribution function PFP can be computed by

PFP(α) =
∫∫

A
fz0 fz̄ dz0dz̄, A = {(z0, z̄) : z0, z̄, z0 − αz̄ > 0}

=
∫∫

A

z
− 1

2
0 e−

z0
2

�( 1
2 )
√

2
× z̄− N−3

2 e− z̄
2

�( N−1
2 )2

N−1
2

dz0dz̄ (4.20)

Introducing polar coordinates, the integral in (4.20) becomes

2− N
2

�( 1
2 )�(

N−1
2 )

∫ arctan 1
α

0

∫ ∞

0

(r N−2e−r(cos θ+sin θ)

cos θ sinN−3 θ

) 1
2

drdθ . (4.21)

The double integral can be separated into two single integrals by the substitution

r = r̄

cos θ + sin θ
,

that is,

PFP(α) = K1

∫ arctan 1
α

0

( (cos θ + sin θ)2−N

cos θ sinN−3 θ

) 1
2

dθ,

K1 = 2− N
2

�( 1
2 )�(

N−1
2 )

∫ ∞

0
r̄

N−2
2 e−

r̄
2 dr̄ .

(4.22)

Finally, it can be shown that the standard substitution t = tan θ
2 leads to the following

algebraic integrand

PFP(α) = 2
N−1

2 K1

∫ √1+α2−α

0

t
N−3

2

(2− (t − 1)2)
N−2

2
√

1− t2
dt . (4.23)

Even though the integral in (4.23) is algebraic, it can not be resolved analytically. How-
ever, numerical experiments show that e.g. an adaptive recursive Newton Cotes 8 panel
rule performs better on (4.23) than on (4.22). The resulting probability function for
N = 14 is shown in Fig. 4.10 (N = 14 is chosen to match the experimental signals
in the next chapter).

Exploiting the probability function PFP(α)which it is possible to evaluate numerically
by (4.23) it is straightforward to get a calibrating curve for α under the constraint that
PFP = PFN. To that end, we start with a value of α, and numerically determine PFP(α).
Then the inverse of the χ 2(N − 1) distribution function applied to PFP(α) yields the ratio
between Rmax and α. This relationship is shown in the top plot of Fig. 4.11.
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Figure 4.10: The probability for making an FP decision for a given SNR
threshold α and for N = 14.

4.9.5 Statistical Model for Stochastic Gain Signal

In the analysis above, we have modeled the false negative situation as receiving a noise-
free signal y0 of a certain magnitude, which is incorrectly classified as noise, since the
real noise signal y1 through yN−1 happens to be large at the same time. This is of course
unphysical to some extent, but was done in order to simplify the expressions.

A more realistic model is obtained by assuming that y0 is an outcome of a stochastic
variable, also in the false negative decision case. The analysis in principle involves the
same steps as above, but the algorithm to compute the calibration curve now becomes a
bit more involved.

With respect to the false positive decision case, nothing is changed and the false pos-
itive probabilities as a function of the threshold value α can be precomputed. In order
to determine the calibration case, the best approach is to choose a grid of values for the
threshold value, α. Then the task is to determine for each value of α, a corresponding
value of the signal-to-noise-ratio (SNR) which leads to the same probability for a false
negative decision as for a false positive decision for that α. It is obvious that for a fixed
value of α, the false negative probabilities are monotone (non-decreasing) functions of
the SNR. Thus, the right values of SNR can be found for instance by a simple bisection
approach with SNR as the independent variable. For fixed values of α and SNR, the false
negative probabilities can be computed as

PFN(α,SNR) = P

{
y2

0∑N−1
n=1 y2

n

< α : y0 ∈ N (ymin, σ ) , yi ∈ N(0, σ ) , i = 1 . . . N − 1

}

where ymin denotes the smallest possible (mean) signal received (at least the smallest
for which the algorithm is guaranteed to fulfill the specified probabilities). Introducing
SNR = ymin

σ
, ξ0 = y0

σ
, and ξ̄ = 1

σ 2

∑N−1
n=1 y2

n (which is then χ 2(N − 1) distributed), we
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Figure 4.11: The curves show the relationship between the worst-case
SNR value Rmax and the threshold value α in the test T (α). The top plot
for a deterministic y0 and the bottom plot for a stochastic y0. Here N = 14.
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obtain

PFN(α,SNR) = P

{
σ 2ξ2

0

σ 2ξ̄
< α : ξ0 ∈ N(SNR, 1), ξ̄ ∈ χ2(N − 1)

}

= P
{
ξ2

0 < αξ̄ : ξ0 ∈ N(SNR, 1), ξ̄ ∈ χ2(N − 1)
}

=
∫∫

ξ2
0<αξ̄

fN(SNR,1)(ξ0) fχ2(N−1)(ξ̄ ) dξ0d ξ̄

=
∫ ∞

ξ̄=0

(
FN(SNR,1)

(√
αξ̄

)
− FN(SNR,1)

(
−
√
αξ̄

))
fχ2(N−1)(ξ̄ ) d ξ̄

(4.24)

The calibration curve resulting from applying the bisection algorithm mentioned above
based on numerical evaluations of (4.24), can be seen in the bottom plot of Fig. 4.11.
Comparing the two subplots of Fig. 4.11, it is easy to see that they are almost identical for
large values of SNR, whereas the bottom plot suggests larger values of α for small SNR
values. In fact, the bottom curve has a left, horizontal asymptote for SNR → −∞, which
is easy to verify. Indeed, as SNR → −∞ the measurements y0 for the false positive and
the false negative decisions asymptotically belong to the same distribution, i.e. N(0, 1).
Thus, the requirement PFP = PFN in the limit leads to

P
{
ξ2

0 < αξ̄ : ξ0 ∈ N(0, 1), ξ̄ ∈ χ2(N − 1)
}

= P
{
ξ2

0 > αξ̄ : ξ0 ∈ N(0, 1), ξ̄ ∈ χ2(N − 1)
}

(4.25)

However, since these two probabilities in this case are obviously related also by PFP =
1− PFN, we obtain PFP = PFN = 1

2 , which corresponds to a unique value of α.
While the PFP is only dependent on α, and decreases with increasingα, the probability

of making a FN error is also dependent on the signal level (as described previously).
Thus, the PFN curve can be plotted for fixed y low, i.e. fixed SNR. In Fig. 4.12 seven
such curves are plotted for the SNR values corresponding to the seven marked points
on the PFP = PFN curve in the bottom plot of Fig. 4.11. As expected PFN increases
with increasing α. The points where the PFP curve intersects with the seven PFN curves
correspond to the points marked in the bottom plot of Fig. 4.11.

4.9.6 Second Validation Method

The first validation method performs well in most cases. This is demonstrated in the sec-
ond test setup in Section 5.3 in the next chapter. However, it is also demonstrated that
particularly powerful noise burst have a tendency to be accepted as useful measurements.
Experiments have shown that introducing the third order term in the validation function
helps to prevent this. Unfortunately, this also makes the choice of parameters more com-
plicated. This subsection first shows the meaning of the various parameters and give some
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Figure 4.12: The one PFP curve (dashed) and the PFN curves (solid) cor-
responding to the marked points in the top plot of Fig. 4.11. The crossing
points gives the α value which gives PFP = PFN for the SNR used for
drawing each of the seven PFN curves. The slight irregularity of some of
the curves are due to numerical instability.
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hints on how to choose them. Subsequently, a statistical analysis is performed in order to
calculate the PFP = PFN calibration curve for the sensor system.

4.9.7 Simple Design Rules for the Second Validation Method

An obvious concern with the introduction of the third order term is that for fixed noise
energy T (α) evaluates to false for sufficiently large y. In practice this is to be handled by
choosing β such that this does not occur within the dynamical range of y. To be able to
do that it is necessary to understand how y, α, and β influence the �̃ function.

In contrast to � in the first validation method �̃ is not monotonically increasing for
fixed noise level since

�̃(0,�) = 0 and lim
y→±∞ �̃(y,�) = 0 ,

where

�̃(y0,�) ≡ �̃(y) with � =
N−1∑

n=1

y2
n .

This means that the test T̃ (α) only evaluates to true inside some interval (ymin; ymax)

(and its negative counterpart since �̃ is an even function). Although y in a real signal
can be negative this only happens when the noise has significantly more energy than the
signal, in which case the measurement is considered invalid without testing. Thus, only
the positive solutions are of interest. These are

ymin = 4K1 − K 2
1 − 4− i

√
3(K 2

1 − 4)

12K1αβ

ymax = K 2
1 + 2K1 + 4

6K1αβ

where

K1 =
(
8+ 12β

√
81α3β2�2 − 12�− 108α3β2�

)1/3
.

Note that the solutions are indeed real, although the imaginary unit is present in the for-
mula. This is possible because K1 is complex. Since �̃ is continuous and �̃(0,�) =
�̃(∞,�) = 0 it has at least one maximum for some y > 0. Whenever α is larger than
this maximum ymin and ymax does not evaluate to a real value. The maximum is found by
means of the derivative, i.e.

d

dy
�̃(y,�) = 2y

�+ βy3 −
3y4β

(�+ βy3)2
.

The equation �̃′(y,�) = 0 reduces to a third degree monomial equaling a non-zero
constant, and thus has two complex and one real solution, the latter being

ytop = argmaxy>0 �̃(y,�) =
(2�

β

)1/3
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and the maximum value is
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Figure 4.13: The meaning of the variables defined in Section 4.9.6.

All the variables defined above are shown in Fig. 4.13, and some examples of �̃ curves
for various values of � and β are shown in Fig. 4.14.

Notice that changing � (as in the left plot) has an almost negligible effect on y max
when �̃max is somewhat larger than α, while the same is true for the relation between
ymin and β. The reason for this effect follows immediately from the validation function
since (for y ≥ 0)

y2

�+ βy3
= α ≈

{
y = (αβ)−1 for y � ytop

y = √
α� for y 
 ytop

(4.26)

Actually, y does not have to be very far from y top for the approximations to be fairly
accurate since y3 either becomes dominant or vanishes rapidly for increase or decreasing
y, respectively.

The main purpose of (4.26) is not to provide an approximation of the validation func-
tion for implementation purposes, but to provide a tool for determining the parameters α
and β in a real application. They can namely be chosen (crudely, at least) in the following
way. Since � is often known approximately, either as a rough estimate, as a range of typ-
ical values, or statistically, α can be chosen according to the desired FN and FP rate (i.e.
probability of FN and FP). Subsequently, β is chosen such that (αβ)−1 is approximately
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equal to the largest attainable value of y. It is better to choose β slightly smaller rather
than slightly larger since for β too large T (α) might evaluate to false in the case where
y is close to its upper limit and � is larger than generally expected (and that is usually
undesirable). In the next chapter an example on choosing α and β is given.

4.9.8 Computing the Calibration Curve for the Second Validation
Method

In order to compute the optimal threshold value α for the second validation function �̃,
we assume that a situation which is supposed to lead to a negative decision is modeled
by:

y0 ∈ N(0, σ ) , yi ∈ N(0, σ ) , i = 1 . . . N − 1

whereas a situation which is supposed to lead to a positive decision is modeled by

y0 ∈ N(ymin, σ ) , yi ∈ N(0, σ ) , i = 1 . . . N − 1

where ymin/σ is the worst-case signal-to-noise-ratio. Introducing this in the second vali-
dation function, we obtain:

PFP(α) = P

{
y2

0∑N−1
n=1 y2

n + β|y0|3
> α : y0 ∈ N(0, σ ), yi ∈ N(0, σ ) , i = 1 . . . N − 1

}

= P

{
σ 2ξ2

0

σ 2
(

1
σ 2

∑N−1
n=1 y2

n

)
+ σ 3β|ξ0|3

> α : ξ0 ∈ N(0, 1),

yi ∈ N(0, σ ) , i = 1 . . . N − 1

}

= P
{
ξ2

0 > αξ̄ + αβσ |ξ0|3 : ξ0 ∈ N(0, 1), ξ̄ ∈ χ2(N − 1)
}

=
∫ ∞

ξ0=−∞

∫ ξ2
0

(
1
α
−βσ |ξ0|

)

ξ̄=0
fN(0,1)(ξ0) fχ2(N−1)(ξ̄ )dξ0d ξ̄

=
∫ ∞

ξ0=−∞
fN(0,1)(ξ0)Fχ2(N−1)

(
ξ2

0

(
α−1 − βσ |ξ0|

))
dξ0d ξ̄

= 2
∫ ∞

ξ0=0
fN(0,1)(ξ0)Fχ2(N−1)

(
ξ2

0

(
α−1 − βσξ0

))
dξ0d ξ̄

The PFP curve for the second validation methods is shown in Fig. 4.15. Note that because
of the third order term in the validation function the noise variance σ 2 is not only repre-
sented in Rmax, but also in the equations leading to the PFP curve. The curve has been
obtained by numerical integration.
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Figure 4.15: The probability for making an FP decision with the second
validation method for a given threshold α, for N = 14, β = 0.01, and
σ = 3. The dashed curve is PFP for the first validation method (same as
Fig. 4.10).

Similarly, for a given SNR, we can compute the risk of a FN decision. In that case:

PFN(α,SNR) = P

{
y2

0∑N−1
n=1 y2

n + β|y0|3
< α : y0 ∈ N (ymin, σ ) ,

yi ∈ N(0, σ ) , i = 1 . . . N − 1

}

= P

{
σ 2ξ2

0

σ 2
(

1
σ 2

∑N−1
n=1 y2

n

)
+ σ 3β|ξ0|3

< α : ξ0 ∈ N(SNR, 1),

yi ∈ N(0, σ ) , i = 1 . . . N − 1

}

= P
{
ξ2

0 < αξ̄ + αβσ |ξ0|3 : ξ0 ∈ N(SNR, 1), ξ̄ ∈ χ2(N − 1)
}

= 1−
∫ ∞

ξ0=−∞

∫ ξ2
0

(
1
α
−βσ |ξ0|

)

ξ̄=0
fN(SNR,1)(ξ0) fχ2(N−1)(ξ̄ )dξ0d ξ̄

= 1−
∫ ∞

ξ0=−∞
fN(SNR,1)(ξ0)Fχ2(N−1)

(
ξ2

0

(
1

α
− βσ |ξ0|

))
dξ0d ξ̄

It is also possible to obtain the PFP = PFN curve. The computation is compli-
cated by the fact that the effect of α and SNR can not be separated in the expression for
PFN(α,SNR). The most efficient way to obtain the curve is to fix a value of SNR. Then
both the PFP and the PFN curves are monotone in α where the former is non-increasing
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and the latter is non-decreasing, which implies that they have a unique intersection. Due
to the smoothness of the two curves, e.g. an algorithm based on bisection in α converges
very fast. In each step of the bisection, two numerical single integrations have to be per-
formed. These two integrals (see above) are numerically sensitive, but can computed with
some care. The result can be seen in Fig. 4.16. Note, that the calibration curve has a left,
horizontal asymptote corresponding to the limiting case PFP = PFN = 1

2 as the SNR goes
to zero. In a doubly logarithmic plot, it also has a right asymptote, which in fact is the
curve α = 1

βσ ·SNR
Note also, that the PFP = PFN probabilities for the calibration curve always appear in

pairs at the same horizontal level. This is due to the fact that PFP is uniquely given by α,
and thus independent of the value of SNR.

In contrast to the first validation method the curve is upwards bounded. This is be-
cause for α sufficiently large T (α) always evaluate to false (as explained above).
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Figure 4.16: The curve shows the relationship between the worst-case
SNR value of Rmax and the threshold value α in the test T̃ (α). The dashed
lines shows the left and right asymptotes. Note that there is a unique min-
imal value of PFP = PFN at the top of the curve. The parameters are
N = 14, β = 0.01, σ = 3.

A reasonable way to design a sensor system using the second validation method would
be to balance the probabilities for SNRworst and SNRbest by tuning β until the weakest and
the strongest signals yield the same value of α at Figure 4.16. In that case, also the two
corresponding set of probabilities will all be equal: PFP,worst = PFN,worst = PFP,best =

87



Section 4.9: Validation of Measurements

PFN,best whereas all probabilities for false decisions will be smaller in the interval in
between the best-case and the worst-case.
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Results 5
Having introduced a series of signal processing methods the time has come to put these
methods to the test. While simulations is an invaluable tool for designing such algorithms
it is only by implementation in a real setup that a method can be ultimately verified. This
is indeed the purpose of this chapter.

All signals originate from setups, i.e. none of the signals presented in this chapter are
synthesized (except the designed transmission signals, of course). Nor have they been
altered in any way after they have been recorded.

5.1 Experimental Setups

A majority of all the methods presented in the previous chapter has been tested in an
experimental setup. A total of five setups has been used, four of which are presented in
this chapter. The fifth setup has been used for measuring a reflection intensity map (see
Chapter 8). The primary purpose of the setups has been to develop the CGM algorithm by
experimenting and testing numerous ideas. An important outcome of spending resources
on physical setups (as an addition to performing simulations on a computer) is that it
became clear that electrical and optical effects often play a significant role in the analog
transmission of signal, that is from it leaves the signal processor and until it is back on
digital form. Unexpectedly large time constants, unstable oscillating circuits, uneven op-
tical components, ineffective optical and electrical shielding, cross talk in power supplies,
unrealistic real-time requirements, and many other effects that occur in real applications
can ruin even the best signal processing algorithm if no precautions are taken. Actually
implementing the algorithm in real setups therefore provides an invaluable input to the
designing of the algorithm.

The process of experimenting and testing ideas will not be described in this thesis.
The focus is on the end result, and this chapter therefore only presents the outcome of
applying the algorithm in a number of setups. This section introduces the four test setups
and the data acquisition and signal processing hardware used. The following four sections
then discussed each setup in details. Finally, in Section 5.6 the implementation of the
algorithm in software is briefly discussed.
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5.1.1 Four Test Setups

The four test setups were all designed for the specific purpose of testing the methods pre-
sented in the previous chapter. Low-cost hardware components have been used through-
out the setups, and only in the fourth setup has there been an attempt to optimize all
hardware parameters in the electric circuits and the mechanical construction. In all cases
the setups are based on low-cost infrared technology and have been tested in a laboratory
at the Department of Control Engineering at Aalborg University. The four setup are the
following.

• Setup 1: Modified BeoSound Ouverture 2300
• Setup 2: Multiple emitters and receiver
• Setup 3: Distantly separated emitter and receiver
• Setup 4: Sensor of commercial standard

A list of specifications of the hardware and the tested algorithms is given in Table 5.1. A

Table 5.1: Important specifications of the four experimental setups.
Specification Setup 1 Setup 2 Setup 3 Setup 4

Transmission Diffuse Diffuse Through-beam Controlled, dif-

reflection reflection fuse reflection

Emitter TSHA440 SFH 405 SFH 487 P N/A

Receiver BPW82 BP 104 F BP 104 F N/A

Modulation WP RS RS RS

Sampling frequency 5 kHz 2.6 kHz 1.95 kHz 8 kHz

Signal length 512 16 64 8

Block frequency 9.77 Hz 164.7 Hz 30.5 Hz 1 kHz

Noise occurrences
Low frequency White noise Low frequency Low frequency

Few transients Transients Transients Transients

Denoising applied
JTF filtering None Polynomial None

Remove transient

Validation accuracy 2/3 channels 13 channels 63 channels 15 channels

Validation methods
Segmented test Regular SNR Regular SNR Regular SNR

signals Adapted SNR Adapted SNR Adapted SNR

Year 1999 2001 2002 2001

more detailed introduction to each setup is given in the following sections.
The two most important components in each of the setups are the emitter and receiver.

Two different receiver and four different emitter has been used (disregarding the fourth
test setup). The SHF 487 emitter has been used in the setup measuring reflection intensity
maps in Chapter 8. The most important specifications are copied from the data sheets
for easy reference. Although these specifications does not have a direct impact on the
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tested algorithms they do give an indication of the performance requirements which can
be achieved using this type of emitters and receivers. The specifications for the receivers
are given in Table 5.2, and for the emitters in Table 5.3.

Table 5.2: Data for receivers.

Type
OSRAM TEMIC
BP 104 F BPW82

Peak wavelength 950 950 nm
Area 4.84 ≈ 10 mm2

Half angle ±60 ±65 degrees
Dark current 2 2 nA

Quantum yield (η) 0.9 N/A electrons
photon

Raise/fall time 20 100 ns
Capacitance 48 70 pF

Table 5.3: Data for emitters.

Type
OSRAM OSRAM OSRAM TEMIC

SFH 487 P SFH 487 SFH 405 TSHA440
Peak wavelength 880 880 950 875 nm
Half angle ±65 ±20 ±16 ±20 degrees
Intensity (continuous) 2 20 2.5 20 mW/sr
Intensity (pulsed) 30 200 ≈ 60 240 mW/sr
Raise/fall time 600 600 1000 600 ns

Since this Ph.D. study is focused on algorithms and signal processing the hardware
will only be described to an extent which allows for an understanding, but not for a
component-by-component reproduction. This is mainly due to the author’s lack of ex-
perience with and knowledge of analog circuitry. An exception is the emitter and receiver
circuits in the third test setup. The receiver is copied from an application note, and the
emitter is a quite simple construction which has been designed in collaboration with two
colleges. The remaining hardware has been designed by more experienced ‘hardware
people’ under the supervision of the author.

5.1.2 Data Acquisition and Signal Processing Hardware

A PC with commercially available sampling boards have been used for generating, D/A
and A/D converting, and processing the signals. In the first setup from 1999 a 80486
processor at 33 MHz has been used while a Dual Pentium II 800 MHz machine was used
for the second, third, and fourth test setups. The data acquisition hardware is listed in
Table 5.4.
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Table 5.4: Data Acquisition Hardware.
Setup 1 Setup 2,3,4

DAC, ADC DAC ADC

Brand ADLink National Instruments National Instruments
Type ACL-8112PG PCI-6713 PCI-6071E
Channels 8 DA, 8 AD 8 32
Resolution 10 bit 12 bit 12 bit
Sample rate (multiplex) 100 kHz 1 MHz 1.25 MHz

5.2 First Test Setup

The Ph.D. study was initiated as a response to the desire of Bang & Olufsen to have a
digital method for detecting the presence of a hand, see Section 3.4 on page 23. The
hand detection property is a particular feature of the BeoSound Ouverture, and therefore
a detection mechanism is currently implemented in the product. This is an analog imple-
mentation and not suitable for testing a digital approach. The emitters and receivers fitted
in the Ouverture were still useful, though, and two new hardware circuits were made to
connect the diodes to the PC instead of to the built-in analog detector circuit.

This setup is used for testing and experimenting with the wavelet modulation, as the
Rudin-Shapiro transform were not introduced in the Ph.D. project until spring 2000.

5.2.1 Setup Specifications

The emitter and receivers diodes are all the original B&O diodes in the CD player. There
are two emitters and one receiver in either side of the CD player, see Fig. 5.1. The three
diodes in the right side are all connected to the sampling board in the PC. The transmission
frequency is 5 kHz at a 100 % duty cycle. The transmitted signal is fixed, and generated
by a three times inverse WPT of u0 where the basis is the eight elements on the fourth
level. Prior to transmission the signals are scaled by 2048 and shifted by +2048 to fit
the 10 bit DAC. The original signal and the transmission signal are shown in Fig. 5.2(a)
and (b) (only the first half of the transmission signal is shown since the two halves are
equal). The filter is Symlets 8 [27], and periodization is used to apply the WT to the finite
signal, see Section 9.5.

To be able to determine the accuracy of the estimate CGMs the transmission signal
is not actually emitted and received, but rather added to the received signal (where no
transmission took place). The receiver has been tested and it is very close to being linear in
behavior and the signal resulting from adding instead of transmitting the signal is therefore
believed to be quite realistic. The ‘genuine’ part of the received signal is sampled with
the infrared photodiode at 5 kHz, and the noise vector e t is shown in Fig. 5.2c. The gain
is set to G = 0.00642, and the constructed, received signal in shown in figure 5.2(d),
and the transform of this is shown in 5.2(e). The first part of this signal is intentionally
missing. This is because all the energy at DC is located here, and the mean of this first
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Figure 5.1: The BeoSound Ouverture with front panels removed. The
four circles show the location of the emitters and the two rectangles show
the location of the receivers. The black box on the right side contains the
driver and amplifier circuits for the diodes.

part is several thousands meaning that this part is way off the plot.

5.2.2 Accuracy of Estimated Gain, Mean, and Variance

The appearance of the original signal in the received, transformed signal is obvious, and
it seems that there is a good SNR allowing for a fairly accurate estimate of G. Since
the zeroth moment of u0 is zero the best estimate of G is simply u�0 y/u�0 u0 (under the
assumption that the present noise is normally distributed). As the gain is known in this test
it is possible to determine the real accuracy of G, and not just the approximated accuracy
p from (4.3). The first row of Table 5.5 shows the accuracy of the estimate of G, µ, and

Table 5.5: Results of applying the least square method (4.8)–(4.10).
Description Fig SNR G |�G| �µ �σ

No extra disturbance
5.2(d) -3.7 dB 0.00642 1.1% 0.000% 0.003%

-24 dB 0.000642 11% 0.000% 0.003%

Added 200 to sample 177
5.3(a) -8.0 dB 0.00642 13% 0.015% 62%

-28 dB 0.000642 129% 0.015% 62%

More transients
5.4(a) -12 dB 0.00642 34% 0.055% 164%

-32 dB 0.000642 344% 0.055% 164%

σ , respectively. Having the signal and noise separated it is possible to determine the true
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Figure 5.2: Experimental data from the first test setup. (a) The original
signal u0, (b) first half of transmitted signal, (c) transmission noise (ex-
perimental data), (d) constructed, received signal, (e) the received signal
wavelet transformed.
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SNR, too. Note that this SNR is determined as

20 log10
‖GW�u0 − E(GW�u0)‖

‖et − E(et)‖ ,

where E(·) is the mean value. It is obvious from the very small �µ and �σ in the first
two rows of Table 5.5 that the noise is indeed close to being normally distributed, and
consequently, the estimated G is quite close to the true value 0.00642. The second row
shows what happens if the gain is reduced by a factor 10 (the corresponding signal is not
showed in any figure).

If a transient is introduced in the signal, see Fig. 5.3(a), the accuracy of the estimates
decreases as shown in the third and fourth row of Table 5.5. Especially the estimated
standard deviation becomes rather poor, while the mean seems surprisingly accurate. This
is because the mean is quite large in the first place, and adding 200 to a single sample does
not change the mean much. The estimated CGM is also less accurate. This is because
the transient appears in each of the elements in the WP decomposition, and also in the
fifth element, as seen on Fig. 5.3(b). This single sample is weighted by 1/64 in the inner
product, and thus increases the estimate of G correspondingly.

If more transients are introduced, as shown in Fig. 5.4(a), the accuracy of the estimates
decreases. The gain is now 34% off even though the SNR has not decreased dramatically;
comparing the second and fifth rows of Table 5.5 reveals that while the estimate of G is
3 times worse in the signal with transients the SNR is actually 12 dB higher. This shows
that the orthogonal transform with designed signals are much more sensitive to localized
noise than white noise, and thus that some sort of denoising would be appropriate.

5.2.3 Handling Transients

The presence of just a single transient in the received signal influences the channel gain to
such an extent that it is worth trying to either circumvent or remove the transient. Some
suggestions on how to detect and remove transients were presented in Section 4.7.4.

One method for detecting transients involves a number of the test signals u n . Since the
original, designed signal u0 looks like Fig. 5.2(a) two orthogonal signals u1 and u2 could
be designed like Fig. 5.3(c) and d. These two signals will help determine the accuracy of
the estimate G. In Table 5.6 the inner products between y and the three designed signals
are shown along with

p = 〈y,u0〉
∑2

n=0 | 〈y,un〉 |
.

The first row shows the results of the signal with just regular transmission noise (the same
as the first row of Table 5.5). The good estimate of G is indicated by a relatively high p.
Remember that p ≤ 1 always. Introducing the transient in the signal increases the inner
product 〈y,u0〉. At the same time the transient also increases the amplitude of the inner
product with the test signals u1 and u2. As these two inner products responds to noise
only, and not to the transmitted signal, the large values in the second row indicates that
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a magnification of the interesting part of (b), (f) the result of using the first
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Table 5.6: Results of applying the solution method of Section 4.7.4.
SNR |�G| Inner product of y and

Description Fig (dB) (%) u0 u1 u2

No transient 5.2(d) −3.7 1.1 851 4 59 p = 0.93
Transient at 177 5.3(a) −8.0 13 947 −109 172 p = 0.77
On [257; 288] 5.3(e) 23 516 −135 134 p0

1 = 0.66
On [289; 320] 5.3(e) 2.3 431 26 38 p1

1 = 0.87
On [257; 272] 5.3(e) 2.7 216 −13 24 p0

2 = 0.85
On [273; 288] 5.3(e) 43 301 −122 110 p1

2 = 0.56
First method 5.3(f) −0.72 2.9 817 4 59 p = 0.93

the accuracy of the estimated G is less than in the first row. This is also evidenced by p
which has dropped to 0.77. The true error on G is 13%.

Note that the p value can be used as an indicator of the accuracy, but not as a quan-
tification of the accuracy. Actually, it is indeed possible to have a signal full of transients
and still having p close to 1. It is highly unlikely, but it is possible.

The design of u1 and u2 was not just an easy way of getting orthogonal signals. They
were also designed in accordance with the design rule laid out in Section 4.7.4 which
allows for p values on fractions of the transmission signal. When this method is applied
to the present signals it yields p0

1 = 0.66 on the first half and p1
1 = 0.87 on the second

half (the inner products in the third through sixth rows of Table 5.6 are all on the specified
intervals). This indicates that the disturbance has occurred in the first half, and that the
estimate based on the second half should be reasonably good (which indeed it is). Apply-
ing the method once more, this time to the first two quarters, locates the noise occurrence
in the second quarter, and since p0

2 = 0.85 the G estimated based on only the first quarter
should also be reasonably good.

It has now been established that there is some kind of disturbance on the second
quarter of the signals. Assuming that this disturbance is at most a few transients, and not
a total corruption of the second quarter, there are several methods for removing the noise.
One possible solution is to estimate G and then look for samples that deviates significantly
from Gu0. These samples are then reset to the value they should have had according to
Gu0. An abnormal value y[n] can be defined as being larger than C · Gu 0[n] for some
constant C . Applying this method for C = 2 to the signal in Fig. 5.3(e) yields the signal
shown in Fig. 5.3(f). The new estimate of G, see the last row of Table 5.6, is improved
significantly compared to the original estimate. However, it is not better than the estimates
based on those fractions of the signal which was undisturbed by the transient. Note that
it is not an error that p = 0.93 in the first and last row even though the u 0 inner products
yields 851 and 817. This anomaly is caused by ‘unfortunate’ rounding.

An alternative to denoising the transformed signal is to remove transients directly from
the received signal. As before abnormal samples are found in the transformed signals,
but instead of resetting this sample the transient from which it originates is found in
the received signal. This is easy since the location of the transient in the element is
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approximately equal to the location of the transient in the received signal (when the two
signals are regarded as having the same time range). It it therefore sufficient to search a
few samples in the received signal to find the transient. After resetting this samples the
WPT is applied again. If the estimated G is still not satisfactory the search for another
transient begins.

It is possible to avoid the repeated transformation by adding appropriately scaled low
and high pass filter taps in the right fashion to the signal. This approach will not be
discussed in this thesis.

The result of applying this second method is shown in Table 5.7 and Fig. 5.4. Three

Table 5.7: Results of applying the second transient removal procedure.
SNR |�G| Inner product of y and

Description Fig (dB) (%) u0 u1 u2 u3 p

Transients 5.4(a) −12 34 1125 −180 167 54 0.73
Step 1 −12 25 1052 −108 101 123 0.75
Step 2 5.4(d) −10 13 952 10 −17 1 0.97
Step 3 −9.1 4.1 876 −26 20 32 0.92
Step 4 5.4(e) −3.5 0.1 842 8 57 0 0.93
Step 5 −3.5 0.7 835 14 64 −7 0.91
Step 6 −3.5 2.0 825 4 53 −10 0.93
Step 7 −3.5 2.9 817 11 61 −2 0.92

more transients have been added to the signal which is shown in Fig. 5.4(a). The result
of the WPT is shown in (b). The estimate of G is not very good, as the relatively low p
witnesses. The p is given by the obvious formula

p = 〈y,u0〉
∑3

n=0 | 〈y,un〉 |
.

After removing the most predominant transient the accuracy does improve, and removing
one more transient reduces the inaccuracy to 13%. Notice how the p in this case is close
to 1 which could lead one to believe that a very good estimate has been obtained, though
it is still more than 10% wrong. As more test signals are used for estimating the accuracy
the risk of such misleading information decreases, but even though an extra test signal
has been included here, there are still significant risk of getting a high p value for rather
inaccurate estimates of G. Note that the opposite is also possible, i.e. having a low p
value even though the estimate is good.

The first seven steps of the iterative process of removing transients are shown in Ta-
ble 5.7. In this case there are only four transients, and consequently, after four iterations
the estimate does not improve.

The primary advantage of this method is that the transients in each element of the
transformed signal are removed. This can be seen in Fig. 5.4(d) and (e), where first one
transient and then the remaining transients disappear in the element to the left of the
chosen element.
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99



Section 5.3: Second Test Setup

5.3 Second Test Setup

The first test setup employed the wavelet modulation for measuring the channel gain. In
this setup the Rudin-Shapiro spread spectrum modulation is used. The primary purpose
is to demonstrate and evaluate the validation methods presented in the previous chapter.

The test setup used is actually designed for recognition of objects (see Section 7.6.1),
and the measurement of channel gain is in that context merely a tool for acquiring infor-
mation about the object to be recognized. The setup has three emitter and three receivers,
all facing in the same direction, and each is connected separately to the PC. Thus a total of
nine CGMs are generated simultaneously. The setup has been constructed in engineering
and financial collaboration with LEGO Engineering, Denmark, and it is shown in Fig. 5.5.

Figure 5.5: The second test setup was constructed in collaboration with
LEGO Engineering. There are three emitters and three receivers facing
forward towards the LEGO model. The setup is connected to the computer
on the right. Three circles show the emitters, and the three squares show
the receivers.

The emitter and receivers are infrared, like in the first test setup. The sampling fre-
quency is the same order of magnitude as in the first test setup, but the comparatively
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short length 16 RS sequence that is used means that the frequency of signals transmitted
is almost 20 times higher, namely 165 Hz. While the setup is capable of generating nine
CGM, only one is analyzed here. The separation of the signals is described in the previous
chapter and is a straightforward procedure. It will therefore not be discussed any further.

5.3.1 Validation of Measurements

This test setup is used mainly for evaluating the validation methods presented in Sec-
tion 4.9. For that purpose three test signals have been recorded. Note that test signal here
refer to signals recorded with the test setup, and not designed signals described in the pre-
vious section and previous chapter. The signals are all from the same receiver (in Fig. 5.5
it is the one on the bottom right). The three emitters (from right to left in Fig. 5.5) are
transmitting signals on RS channel 0, 1, and 2, respectively. There are 16 samples in each
block, so there are 3 signal channels and 13 noise channels. All channels of each of the
three received, transformed signals are shown in Fig. 5.6 and 5.7. The signals have been
generated in the following way:

Test signal 1: A hand has been moved slowly into the space in front of the emitters and
receivers, and then, at 3 seconds, moved out. Then it has quickly been moved back
in and out twice, and finally back in. The hand has been ‘inserted’ from the right and
thus the contribution from the left-most emitters has a smaller amplitude.

Test signal 2: The hand has now at the beginning been moved into the space in front of
the emitters and receivers and out again. Then at 4 seconds it has been moved back
in. Meanwhile the receiver circuit has been subjected to an electrical disturbance (by
quickly touching on of the pins on the photodiode with a screwdriver).

Test signal 3: Again a hand has been moved in front of the emitters and receivers. This
time somewhat closer than in the previous two signals. For 2.5 seconds the screw-
driver has been touching the photodiode pin.

It is immediately clear from these test signals that there is a potential for detecting the
noise occurrences in the second and third test signals. While the noise channels in the
first test signals are pure white noise (this is evident from the histograms in Fig. 5.8)
the noise channels in the two other test signals show clear evidence of inflicted noise.
The question is now whether the two validation methods are capable of classifying each
sample in the test signals correctly. It is possible to apply the validation methods to all
16 channels jointly, but the theory to support this approach has been left as future work.
In this thesis the validation methods are applied to each channel separately. Actually, the
validation is applied only to y1, the second of the three signal channels, as the procedure
is exactly the same in all cases.

The two validation methods use a threshold on the ratio between signal and noise to
classify the CGM. When adapted to the test signals at hand the first validation method is

T (α) : �(y) ≡ y2
1∑15

k=3 y2
k

> α
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Figure 5.6: All 16 channels y0 through y15 of the first and second test sig-
nals the first test setup. Note that the unit in the horizontal axis is seconds.
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Figure 5.7: All 16 channels y0 through y15 of the third test signal in the
first test setup. Note that the unit in the horizontal axis is seconds.
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while the second method is

T̃ (α) : �̃(y) ≡ y2
1∑15

n=3 y2
n + β|y1|3

> α .

Both methods have been applied to the three test signals.

5.3.2 Applying the First Validation Method

The first thing to do is determine worst-case SNR, i.e. the weakest detectable signal com-
pared to the expected random-noise level. The weakest signal is chosen to be y low = 15.
In the present setup this depends on the maximum distance at which a given object should
be detectable. The first half of the y1 channel in the first test signal is generated by mov-
ing an object from far away into the maximum detection distance and a little further in,
thus showing the weakest detectable signal to be approximately 15. Since the variance
σ 2 is approximately 9.1, Rmax = ylow/σ = 4.8. Using the curve the lower-most plot in
Fig. 4.11 on page 79 this yields approximately α = 0.5 for which PFP = PFN ≈ 0.02.

The first test signal subjected to the first validation methods is shown in Fig. 5.9. The
lowermost graph shows the validation function�(y) and the α is plotted as a dashed line
in the same axis. The validation behaves as expected. For the ‘no signal’ part in the be-
ginning T (α) is false for almost all samples (approximately 1 out of 50 is expected to be
accepted as a useful GM). When the signal level approaches y low, which equals 15 and
is shown with a dashed line, the validation shifts in favor increasingly more useful mea-
surements. Again the fraction of measurements validated incorrectly is 1/50 for signal
level close to ylow. Note that the point in time (here measured in samples) at which more
measurements are considered useful than not useful is the same as where the average level
of the signal is ylow/2. This happens around sample number 250. This corresponds with
the notion that if the signal itself was used for validation (as explained in Section 4.9) and
PFP should equal PFN for the weakest detectable signal the threshold should be half the
weakest detectable signal level. This level is 48 in the example in Section 4.9.

When the signal level then raises above y low the PFN decreases (but PFP is still the
same), and the last 200 samples of the signal shows that every single measurement is
considered useful. Here PFN equals approximately 10−4 (for signal level 27). Note also
that the transient-like measurements are (correctly) considered useful by T (α).

Now, applying the validation to the two other test signal and using the same param-
eters the result is less gratifying, see Fig. 5.10. The second test signal seems to be as
expected, at least for the non-transient samples. Zooming in on the transients (not shown)
reveals that a majority, but not all, of the transients have indeed be classified as useless.
The third test signal shows this only too clearly. When not just a few, but 400 consecutive
samples are transient noise, the incorrect validation becomes evident as the majority of
these samples are classified as useful.

It is worth noting that the validation does not fail because there is no difference sig-
nificant difference between �(y) for the useful and useless parts of the third test signal.
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Figure 5.9: The first validation method applied to the first test signal. In
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lines on top show for each sample 1) when the test T (α) is false and 2)
true. Here α = 0.5 (which is −3.0 in the dB scale of the above graph and
marked by the dashed line) and PFP = PFN ≈ 0.02.
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Figure 5.10: The first validation method applied to the second and third
test signals.106
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It fails because the threshold is wrong. However, the threshold has been determined such
that it complies with our notion of proper behavior in a random noise scenario, and ac-
cordingly it works fine for the signal without transients. This problem can be solved easily
by increasing the threshold to around 20, which seems to separate nicely the useful and
useless parts in the third test signal. However, the result of simply increasing the thresh-
old (which applies to all three test signals) is that virtually all the samples in the first test
signal are classified as useless. Evidently, another validation method is needed to handle
this problem.

5.3.3 Applying the Second Validation Method

This is why the second validation method is relevant. The introduction of this second
methods is solely an attempt to handle the transient in a proper manner while at the same
time responding to random noise exactly as the previous method. In this method the S
test parameters is included and β has to be determined, too. The S parameter is mainly
to ensure that in the case where the signal is too weak for any reliable detection the
validation function is not used (there is no reason to use a function than depends on a
stochastic process if the measurement is indeed too small). For this test S = 7.5 which is
half the weakest detectable signal level.

The next step is to determine α (see Section 4.9.6). Using the PFP = PFN curve
in Fig. 4.15 yields a value a little smaller than for the first validation methods, namely
α = 0.6. The β is determined according to the guidelines given in Section 4.9.6 with
a maximum value of y set to approximately 100. This gives β = 0.017. To ensure a
not too large value β = 0.012 is used. The result is shown in Fig. 5.11 and 5.12. It
is clear that the results in the first two test signals are approximately the same as in the
first validation method (though almost all the transients in the second test signal have
been classified as useless by the second validation method), but the third test signal is
now in general classified correctly. More of the transients can be ‘caught’ by increasing
β, but as described previously this lowers the maximal acceptable value of y 1. In this
case experiments have shown that increasing β to 0.016 will produce a very good result.
However, if this value is chosen, new y1 signals must not exceed 100, or they will be
classified as useless.

It is interesting to note that while the chosen values yields a PFP = PFN ≈ 0.02,
choosing α ≈ 2, which corresponds to an SNR of approximately 10 and thus a weakest
detectable signal of 10 · 3.1 = 31, would actually be optimal in terms of balanced prob-
abilities; for the given number of noise channels and for given β and noise variance it
is simply not possible to achieve a better balanced error rate with the second validation
method.
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Figure 5.11: The second validation method applied to the first test signal
in the second setup. In the middle is a graph of the y 1 channel with the
S value plotted as a dashed line. The lowermost is a graph of the corre-
sponding validation numbers �̃ (in dB). The three lines on top show for
each sample 1) when y1 < S, 2) when the validation number is less than
α = 0.6 (which evaluates to −2.2 on the dB scale), and 3) the remaining
cases which are the useful measurements.
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Figure 5.12: The second validation method applied to the second and
third test signals in the second setup. 109
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5.4 Third Test Setup

The first two test setups relied on a reflecting object for directing the light from the emitter
onto the receiver. In this the third setup the emitter is facing towards the receiver and the
light travels directly from emitter to receiver and the distance is approximately 3 meters.
While the descriptions of the first two test setups did not include the hardware, the driver
and amplifier circuits are presented for this setup. This includes a brief discussion of the
internally generated noise, see Section 5.4.6.

The primary purpose of this setup is still the signal processing, though. Especially, this
setup is used for evaluating the polynomial removal procedure introduced in Section 4.8.
As this method applies to the spread spectrum type modulation, the Rudin-Shapiro trans-
form is used for coding the transmission signal. It is interesting to examine the result
of polynomial denoising in the typical noise cases, i.e. white noise, and frequency and
time-localized noise. Therefore, a set of signals having such noise types are recorded and
subjected to the polynomial removal procedure. The result is presented and discussed in
Section 5.4.2.

First, a brief description of the polynomial removal procedure is given. The theory
was presented in the previous chapter, and the following description is therefore simply
the application of the procedure to a specific signal.

Note that as in the previous section the term ‘test signal’ refers to the signals recorded
with the test setup.

5.4.1 Polynomial Removal Procedure

A signal containing a high amplitude low frequency disturbance has been recorded. The
disturbance is the artificial lighting in the laboratory, and is approximately one magnitude
more powerful than the transmitted signal. This recording is a small part of the signals
presented in the next subsection (the 260th transmitted length 64 RS sequences in the
second test signal), and is shown in the top graph of Fig. 5.13. It is decided that eight
third degree polynomials should be fitted to the signal, and the result is the dashed line in
the same graph. The difference is the thick line. It is clear that a major part of the energy
has been removed from the signal by this procedure.

In the second graph in the figure is shown the result of transforming (with the RST)
the received signal and the denoised signal. The transform is energy preserving and con-
sequently the oscillations in the transformed non-denoised signal have a much higher
amplitude. As the transformed signal is ideally all vanishing except for the first sample,
it is obvious that the SNR is quite small without denoising. Removing the low-degree
polynomial content makes a big difference as the energy is significantly reduced in the
63 noise channels. At the same time the first sample (which indicates the energy in the
transmitted signal) has changed from about−60 to +30. A noiseless transmission yields
a positive number, and −60 therefore indicates a major noise contribution while 30 is
plausible as an estimated channel gain.
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Figure 5.13: The original signal is the one received by the photodiode.
Eight third degree polynomials are fitted to the signal and subtracted. Then
below the signal is transformed (for comparison the signal with the polyno-
mial still there are also shown after transformation). The effect described
in Section 4.8.2 are also shown in this second plot. In the third plot the
compensation, also described in the previous chapter, has been applied.
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As described in Section 4.8.2 the polynomial removal affects the RS sequence in a pre-
dictable way. In the second graph in Fig. 5.13 the circles show the predicted effect, i.e.
the shape a noiseless RS sequence subjected to the same polynomial denoising. This sig-
nal is normed to have the same energy as the denoised signal. The match is rather good,
and thus the compensation, see Section 4.8.2, applied to the denoised signal by means
of this predicted signal yields another signal which has very little energy in the 63 noise
channels. This is shown in the third graph in Fig. 5.13.

The result of denoising the entire second test signal in this fashion is shown in Fig. 5.17.
The highly oscillating graph in the top plot shows the received signal while the more
‘calm’ graph in the bottom plot shows the signal after denoising. To see the effect of
compensation (this is not immediately evident in Fig. 5.17) the amplitude of the two of
the most affected channels, that is number 10 and 21, is shown in Fig. 5.14 for a part of
the second test signal.
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RS sequence number

Figure 5.14: The energy in the 10th (top) and 21st (bottom) channels
in the second test signal after polynomial removal, and without and with
compensation.

5.4.2 Generating Noise for Test Signals

To be able to the compare the effect of polynomial denoising when different types of
noise occurrences are present a set of six test signal has been recorded. The intensity of
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the transmitted signal has been varied approximately equally in all six recordings. The
graph in Fig. 5.15 shows the intended variation. The strong signal corresponds to the

No signal
Weak signal Strong signal

Brief dampingWeak to strong

Figure 5.15: All the six test signals in the third test setup are recorded
such that they roughly follow this pattern.

photodiode being fully exposed to the incoming light. The weak and weak to strong parts
have been achieved by mounting the receiver circuit vertically and such that it can turn
around its vertical axis. At the same time a small 30 mm high screen was mounted right
next to the diode on the PCB. By rotating the circuit the screen covers a smaller or larger
part of the photodiode, thereby weakening the signal. A complete covering results in
the weak signal as some light finds its way around the screen by reflections. The brief
damping in the end is achieve by moving a hand in between emitter and receiver. The
very first part of each test signal shows the noise in the setup as the emitter here is turned
off.

The test signals have been recorded in the presence of time-localized noise generated
optically and electrically. The former with a remote control from B&O (this is a particu-
larly powerful remote control) and the latter by touching one of the pins on the photodiode
with a screwdriver. The two noise types plus the ‘no noise’ case has been recorded with
and without the presence of artificial lighting. The lighting produces significant amounts
of low frequency noise in the signals. A list of the test signals is given in Table 5.8 along
with a figure numbers.

Table 5.8: List of noise types in the 6 test signals.
Number Artificial light Other disturbance Figure
Test signal 1 No None 5.16, 5.22
Test signal 2 Yes None 5.17, 5.22
Test signal 3 No B&O remote control 5.18, 5.23
Test signal 4 Yes B&O remote control 5.19, 5.23
Test signal 5 No Screwdriver on receiver circuit 5.20, 5.24
Test signal 6 Yes Screwdriver on receiver circuit 5.21, 5.24

The figures 5.16 through 5.21 show the test signals after transformation along with the
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validation according to the second validation method (see Section 4.9.6). These figures
have the same structure as Fig. 5.11 showing one of the test signals in the previous section,
i.e. for the second test setup. In all cases α = 1, S = 5, and β = 0.01. Only S has been
changes compared to the previous test setup. This is because the noise floor is lower in
this setup.

5.4.3 Effect of Polynomial Denoising

The first test signal, see Fig. 5.16, does not contain any intentionally generated noise, and
the noise is therefore (mainly) the shot and thermal noise from the photo detection part of
the receiver circuit (see Section 5.4.6). It is therefore expected that the signal is classified
as useful in all parts except in the no signal part in the beginning. This is almost the case as
all but a few measurements have been classified as useful. Apparently, the abrupt changes
in signal level has caused some of the measurements to have quite low rating in terms of
the adapted SNR. The reason is a little more subtle, though. As a hand was moved in
between the emitter and the receiver the overall light intensity on the receiver changed,
too. The natural light in the laboratory is the main contributor to the current generated in
the photodiode (even when the weather is cloudy), and this light comes from all directions
as it is reflected by the walls, the floor, the equipment etc. When an object is moved in the
close vicinity of the receiver the amount of natural light on the receiver changes a little,
and sometimes sufficiently fast for some of the low frequency energy to ‘escape’ the DC
removal in the receiver circuit. The consequence is a low frequency contribution in the
received signal. This decreases the SNR and the affected samples are thus classified as
useless. Incidentally, this phenomenon is, for obvious reasons, significantly reduced with
the polynomial removal procedure. This is clearly seen in the polynomial denoised signal
in the bottom plot in Fig. 5.16, where all the samples are now classified as useful (except
for the first few samples).

Denoising the next test signal seems to be a bigger challenge, see Fig. 5.17. The
artificial lighting of the laboratory causes a quite powerful 100 Hz harmonic to be present
in the signal. This also causes an oscillation in the CGMs (see Fig. 5.17 and 5.22). Note
that the oscillation frequency in the transformed signal is not necessarily equal to the
frequency of the oscillations in the received signal. This oscillation in the transformed
signal depends on the phase shift of the 100 Hz oscillation from received signal block to
block. The sampling frequency is 1950 Hz so there are 19.5 sample per 100 Hz oscillation
in the received signal. This means that there are 64/19.5 = 3.282 oscillations per signal
block. The fractional part of this number indicates the phase shift between consecutive
signal block, and it takes 1/0.282 = 3.5 blocks to do a complete 2π shift. Thus, every
third and a half signal block is approximately equal in terms of the dominating harmonic,
and the estimated CGM is for these signals approximately the same (wrong) value. The
CGM therefore oscillates with a frequency of 3.5 ·1950/64 = 106.6 Hz. This observation
should not be confused with the fact that 64/19.5 ≈ 1/0.282, i.e. that the reciprocal of
the fractional part of 64/19.5 is approximately equal 64/19.5 itself. This is merely a
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Figure 5.16: This and the following 5 figures shows the same as Fig. 5.11,
but for the test signal of the third setup. This is the first test signal. The
top plot shows the signal without polynomial content removed, the bottom
plot shows the signal where eight times third degree polynomial content
has been removed followed by compensation. Note that all test signals are
shown after transformation.
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Figure 5.17: Test signal 2. With artificial lighting.
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Figure 5.18: Test signal 3. B&O remote control noise.
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Figure 5.19: Test signal 4. B&O remote control noise and with artificial
lighting.
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Figure 5.20: Test signal 5. Screwdriver on receiver circuit.
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Figure 5.21: Test signal 6. Screwdriver on receiver circuit and with arti-
ficial lighting.
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Figure 5.22: Zoom on the test signals 1 and 2 with the three lines of dots
now applied directly onto the signal. Note that the �̃ is not shown in this
plot.
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Figure 5.23: Zoom on test signals 3 and 4.
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Figure 5.24: Zoom on test signals 5 and 6.
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coincidence! This becomes evident when one does the same calculations with a sampling
frequency of, say, 1600 Hz.

Though these observations are interesting they still leave the challenge of removing
the 100 Hz from the received signal. The very same polynomial removal procedure as
applied to the first test signals is used here. The result is shown in the bottom plot of
Fig. 5.17 and 5.22. Evidently, the main noise energy has been removed without signif-
icantly disturbing the transmitted signal. The SNR is somewhat lower compared to the
first test signal, and consequently a few samples are classified as useless. In general, the
result of polynomial removal is quite good, both in terms of the CGMs and the ability of
the method to validate samples correctly. It is still unclear, however, whether truly cor-
rupted samples will be handled correctly, i.e. classified as useless, when high amplitude
low frequency noise is present.

5.4.4 Polynomial Denoising when Transients are Present

To examine the behaviour of the polynomial denoising when transients are present in the
signal the remaining four test signals contain two different types of transient energy. Two
of the signal have low frequency energy and the two others do not. The first of these sig-
nals is the third test signal in Fig. 5.18. A number of transients have been generated using
an infrared remote control close to the receiver. The remote control uses short bursts of
modulated signals to transmit information, and the result is that a few consecutive sam-
ples in the transformed signal is disturbed (for each burst). The bursts are quite powerful
and renders the received signal useless for determining the CGM. The second validation
method were presented in Section 4.9.6 in the previous chapter, and in Section 5.3 in this
chapter, and will not be discussed any further here. The focus in this section is on the
consequences of polynomial denoising.

There does not seem to be much of a difference between the two signals in Fig. 5.18,
and the validation rates the CGMs approximately equally. It is more interesting to exam-
ine the same transient noise in the case where low frequency noise is also presented. An
example of this is shown in Fig. 5.19. The received signal is clearly useless for estimating
channel gain, and every single sample is accordingly classified as useless (or too small).
The polynomial denoising is capable of removing the main part of the low frequency en-
ergy and restore the non-transient parts of the signal. This is not surprising, though, as
the denoising is applied to each RS sequence individually and each sample in Fig. 5.19
represents one sequence. That is, the samples in the figure is independent of each other
and it is therefore possible to polynomial denoise a sequences (i.e. a sample) even though
the one before and the one following it are both subjected to transients. It is not easy to
determine by means of the figure how the transients have changes under the denoising,
since it is hard to tell by the top plot which samples are indeed corrupted. The previous
figure tells this story, however. Since the transform and the denoising are linear opera-
tions the transients and the low frequency noise can be regarded separately. Notice how
the usable parts of the signal in the lowermost plot of Fig. 5.19 exhibits the same slightly
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more white noise-like structure that was found in second test signal after denoising.
Another type of time-localized disturbance is shown in Fig. 5.20. The disturbance

is not applied optically, but electrically. While optically generated noise only generate
positive transients (as the extra light only causes more, not less energy) electrically gen-
erate transients can be positive as well as negative. This type of noise can also cause
other effects such as shift of DC level and increased white noise energy. In contrast to the
test signal in Fig. 5.18 there is in this case a significant difference between the signal be-
fore and after polynomial denoising. Touching the photodiode pin with a screwdriver has
caused not only transients, but also a major change in the signal level. As the circuit sta-
bilizes the signal level returns to normal and a charge curve shape (exponential) is clearly
seen following some of the transients in the signal. Such a slowly change obviously qual-
ifies a low frequency component, and it thus removed by the polynomial denoising. The
result is that more of the samples are classified as useful.

The combined effect of transients, the 100 Hz harmonic, and charge curve shapes is
found in the sixth test signal. Due to the linearity of the algorithm it is easy to predict
the effect when polynomial denoising is applied. And indeed, apart from the samples
corrupted by transients the signal exhibits the structure of weak and strong signal parts
which it is supposed to do.

5.4.5 White Noise

The random noise found in any electromagnetic receiver is obviously also present in the
test signals of the third setup. In the previous test setup the noise was analyzed in the
individual channels. Instead of showing the same plots for this setup Fig. 5.25 shows the
distribution of the noise samples from all the 63 noise channels. A total of 1.7 million
samples have been recorded and the quality of the fit between the distribution of the
samples and the solid curve shows that they are very close to being normally distributed.
A small amount of outliers have been recorded, too. They are distributed fairly evenly
throughout the signal and the origin of these noise samples is unknown.

Another interesting graph is the distribution of the denominator of (4.3) on page 51
in the presence of white noise. It has been stated in the presentation of the validation
methods that this quantity is χ 2 distributed with K + 1 degrees of freedom. This can be
visually verified in Fig. 5.26. The few outliers in the noise recording causes the estimated
p.d.f. to be shifted slightly to the right of the histogram of the sums-of-squares.

5.4.6 Hardware in Setup 3

The emitter and receiver circuits used in the third test setup both have a fairly basic con-
struction. Obviously, it has been attempted to achieve well-designed circuits with few
components, but since they are meant to serve in various other setups there has been no
attempt to adapt them specifically to the transmission conditions in this particular setup.
The reason for introducing them in this thesis (which is definitely not about analog hard-
ware) is on the one hand to show readers with some interest or knowledge in basic elec-
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Figure 5.25: The dots shows the histogram (bin width is 1) of the 64
channels together for 15 minutes of noise (no transmitted signal and no
artificial lighting) in the third test setup. The solid line shows the normal
pdf with mean and variance estimated from the signal. The vertical axis is
logarithmic.
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Figure 5.26: The dots shows the histogram (bin width is 1/3) of
∑63

n=0 y2
n

for the noise shown in Fig. 5.25 where each channel has been shifted and
scaled to have zero mean and unit variance. The solid line shows the χ 2

distribution with 64 degrees of freedom scaled to correspond to bin width
and the number of samples. Note that this plot is the same before and after
a orthogonal (i.e. energy preserving) transformation of y.
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trical circuits exactly what has been used to record the signals analyzed above. And on
the other hand to allow for a quantitatively analysis of the internal noise conditions in the
receiver.

The emitter circuit is shown in Fig. 5.27. The circuit is designed to convert voltage
input in the range 0 to 5 V to a current through the LED in the range 0 to 1 A. The LED
is the near-infrared emitter SFH 487 P with peak wavelength at 880 nm which is just
above the visible wave length of red light. This emitter has been chosen because of its
size (3× 4 × 4 mm) and directional characteristics (±65 degrees half angle). While the
radiant intensity at 100 mA, the maximal continuous operating current, is quite small the
intensity with pulsed current, ≤ 100 µs at 1 A, is 15 times higher, namely 30 mW/sr.
The large half angle ensures that the emitter does not have to be accurately faced towards
the receiver. Deviations of up to 20 degrees are hardly noticeable since the directional
characteristics is approximately a cosine.

Signal

+10 V

−
+

5 �1 k�

9 k�

5 k�

45 k� 4 �

SFH 487 P

1000 µF

BC547

Figure 5.27: The emitter circuit for setup 3.

The receiver circuit is shown in Fig. 5.28. This circuit uses three coupled transistor to
achieve a specified amplification. Alternatively, an integrated amplifier could have been
used. This particular designed in found in an application note by Hyder [44]. The main
part of the circuit is the amplifier including a few filters. The photo detection part of the
circuit is the photodiode and the load resistor. The amplifier amplifies the voltage over
Rload which is proportional to the current generated by the diode. The output at Signal is
feed to the ADC.

To quantify the ‘goodness’ of the sensor it is important to know approximately how
the receiver circuit performs in terms of transfer function of amplifier, response time,
and internal noise. The remaining part of this subsection is dedicated to analyzing the
quantities.

The bandwidth of the circuit is governed by a number of factors. The first is the
bandwidth of the photo detection part. The photodiode has a (parasitic) capacitance which
together with the load resistor acts as a low pass filter. The time constant of this is given
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Figure 5.28: The receiver circuit used in setup 3. Source: Hyder [44]
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by (4.2),

B = 1

2π × 105 �× 48 · 10−12 F
= 33.2 kHz .

In most sensor applications this is sufficient bandwidth, but if a higher bandwidth is
needed this can obviously be achieved by using a smaller resistance.

Since the three transistors function like an op-amp the gain is given by the standard
transfer equation for a non-inverting amplifier. The amplification is essentially given by
R1 and R2, so

Gamp = R1 + R2

R2
= 10 k�+ 150 �

150�
= 67.7 .

The bandwidth of the amplifier is more complicated to quantify, and in this context it is
sufficient to state that the transfer function is band pass with break frequencies at approx-
imately 200 Hz and 50 kHz.

To estimate the SNR in the receiver circuit it is necessary to know the approximate
light power Pr at the receiver. The emitter was placed 3 m from the receiver and the area
of the receiver is 2.2× 2.2 mm , so

Pr = 2.2 · 2.2 · 10−6 m2 × 30 · 10−3 W/sr

32 m2/sr
= 1.61 · 10−8 W.

The current produced in the photodiode is given by (4.1), i.e.

i P = 1.602 · 10−19 J× 0.9× 1.61 · 10−8 W× 950 · 10−9 m

6.626 · 10−34 Js× 3 · 108 m/s
= 11.1 nA .

This current generates a voltage drop over the load resistor of 11.1 nA ×100 k� =
1.1 mV. This is then amplified by a factor 67.7 which yields a voltage output of 74 mV. In
reality there is a spectral mismatch between emitter and receiver, resulting in an approxi-
mately 50% reduction of the transmitted light power, and the estimated voltage output is
therefore 34 mV. The ADC is set to map ±250 mV to 12 bit, so the signal generated by
the diode at 3 m distance excites the 8 LSBs.

To estimate the accuracy of the CGM resulting from the transmission it is necessary
to have an estimate of the noise. The external, colored disturbances have been discussed
in the previous chapter, and only the internally generated noise is addressed here. The
main source of noise is the photodiode and the load resistor (because of the subsequent
large amplification of the noise current flowing through them). The shot noise is given by

ishot =
√

2× 1.602 · 10−19 J× 1.31 · 106 Hz× (11.1 nA+ 2 nA) = 11.8 pA ,

where id = 2 nA is the dark current in the diode. The thermal noise of the load resistor
Rload is

iR =
√

4× 1.38 · 10−23 J/K× 293 K× 1.31 · 106 Hz

105 �
= 73.3 pA ,
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The total noise generated by the photo detection circuit is i shot + iR = 85.1 pA. This is
equivalent to a voltage output at 0.6 mV which excites the 3 LSBs. The SNR the becomes

SNR = 20 log10
11.1 nA

85.1 pA
= 42.3 dB .

Note that the dark current is not included in the SNR as this produces a constant offset in
the current, and this is removed by the subsequent amplification.

5.5 Fourth Test Setup

The last of the four test setups is a sensor that complies with a typical commercial stan-
dard. That is, the PCB layout, the amplification, the electric shielding, and the optical
and mechanical construction are all optimized. The validation in this setup will also be
much more significant than in the previous setups in the sense that the error rate must be
below 10−5. The sensor is based on diffuse reflection like the first and second test setups.
The higher the signal value is the closer the reflecting object is. Two test signal have
been recorded, without and with short time disturbances. The laboratory lighting was on,
but the daylight filter combined with optimized amplifier effectively removes the 100 Hz
sinusoid.

A thorough examination of the ‘background’ noise reveals that, as in the previous
three cases, the noise is normally distributed. The standard deviation is approximately 3.6
and a probability of 10−5 for making a false detection corresponds to a threshold of 4.3
times the standard deviation, i.e. ≈ 16. The threshold on samples classified as too small
for proper detection is therefore set to S = 8. The sensor has a large dynamical range to
handle detection in a large span of distances. The ADC saturates at signal level 205, and
signal values in the entire range is expected. Therefore β must be no bigger than 1/205

By using the PFP = PFN curve for this particular values of β and σ (this curve is
not shown) it can be determined that PFP = PFN = 10−5 corresponds approximately to
α = 2.1 and Rmax = 15.4. The weakest detectable signal level is therefore Rmaxσ =
15.4 · 3.6 ≈ 55.

The second validation method is now applied with these parameters to the first test
signal, see to top plot in Fig. 5.29. The validation of the measurements works fine in
the sense that the signal level at which more samples are classified as useful than useless
is approximately 20 (this is a little difficult to see on the plot, however a magnification
reveals that the level is approximately 20) while the level predicted by the theory is 16,
and as the signal level increases all the samples are validated correctly.

However, there seems to be a mismatch between the theory and the present validation;
the weakest detectable signal level is predicted to be 55, which corresponds rather poorly
with the fact that every single sample above 35 has been classified as useful. The reason
for this is that the weakest detectable signal level is the level at which the probability for
making a FN decision is 10−5. At lower signal levels the probability is higher, but even
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Figure 5.29: The two test signals in the fourth setup. The layout of the
plots is the same as in Fig. 5.11. The top plot shows the ‘clean’ signal
and the lowermost plot shows the signal with multiple time-localized dis-
turbances. Here S = 8, α = 2.1 (equivalent to 3.2 in dB), and β = 1/205.
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a probability of, say, 10−3 only produces one wrong classification for every 1000 sam-
ples. And in Fig. 5.29 there are only approximately 700 useful samples. To demonstrate
with test signals, and a comfortable margin for the uncertainty error, that PFN = 10−5

corresponds to a signal level of 55 requires in order of 10 7 samples.
Note that for the first validation method the weakest signal level is 32, i.e. two times

the level corresponding to PFP = 10−5. The third order term in the denominator of
the validation function (4.19) has as a consequence that �̃ does not increase a fast as �
for increasing signal level y, and thus y has to be somewhat higher to achieve the same
probability.

It is particularly interesting to see the result of applying some severe external distur-
bance to the sensor as it is designed, mechanically as well as electrically, to be robust to
such disturbances. For this purpose the remote control from in the third test setup is used.
The result is the second test signal shown in the lowermost plot in Fig. 5.29. The majority
of this signals is ‘no object’-samples. There are three reflections, a very short one close
to sample number 200, and two somewhat longer reflections. The disturbance have been
applied from sample 250 and to the end of the signal.

It is obvious from the signal that a time-localized disturbance has occurred, though
the transient are not nearly as powerful as in the fourth test signal in the third setup (see
Fig. 5.19 on page 118). The validation of the samples responds as it is designed to do. Not
a single sample from the ‘no object’-parts is classified as useful, and the three reflection
parts are clearly identified. But it is not easy to see whether the validation classifies all
the samples in the reflection parts correctly, i.e. whether all the transients are classified as
useless. However, it is reasonable to believe that they do, for the following reason. All
the transients in the ‘no object’-parts are classified correctly, and a signal level between
40 and 50 is classified correctly (this is evident from the first test signal). Although the
validation function is not linear, this indicates that the at least the majority of the sample
are classified correctly in the ‘reflection’-parts.

Finally, note that while the S threshold is 8, indicating that a signal level below 8 is
simply to small to be useful, setting S = −∞ would not alter the number of samples clas-
sified as useful. This is obvious since the all the parts of the two signals classified as too
small (dots in line 1) is also below the α threshold in the validation function �̃. Choosing
S = −∞ would thus effectively result in all the dots in line 1 move to line 2. However, by
doing this the distinction between ‘no detection’ and ‘not a useful measurement’ is lost.

5.6 Implementations of the Algorithm

The primary implementation of all the steps in the algorithm is in MATLAB. Some of the
steps have also been implemented in C, partly to reduce the processing time in simula-
tions, partly to test the algorithm in the real time test setups presented in this chapter. All
the graphs in this chapter have been generated in MATLAB, but the signals are all recorded
using the PC connected to the various test setups. In most cases the recorded signals have
also been post-processed real time.
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The most important steps have been implemented in C in order to make the test setup
work in real time. The simplicity of the methods applied in the individual steps means
that the main challenge in C is keeping track of the many indices. The C implemented
steps are

• Wavelet packet transform.
• Rudin-Shapiro transform.
• Polynomial decomposition and denoising.
• Channel gain estimation.

These have all been implemented in MATLAB prior to the C implementation. The follow-
ing steps have only been implemented in MATLAB, mainly due to lack of time.

• Validation of measurements.
• Transient removal and specialized test signals.
• Adaptive generation of designed signals.

All implementations in connection with the CGM algorithm have turned out to be straight-
forward and without any numerical stability problems whatsoever ∗. This is not the case
for the implementation of the reflection map model presented in Chapter 8, for instance.
The actual code is not printed in this thesis because it would require very many additional
pages and yet only serve a minor important purposes.

The next step, and indeed the real challenge, is implementation of the CGM algorithm
in signal processing hardware. This has not been attempted because it is outside the scope
of this thesis. However, the suggested algorithm is prepared for a future signal processing
implementation since numerical stability, low program complexity and limited dynamical
range is some of the design criteria of the CGM algorithm. This has been discussed a
number of times in the previous chapters. To give an idea of the stability, the rounding
error after a six level wavelet packet decomposition and reconstruction in the Analog
Device 16 bit fixed point processor ADSP2181 is shown in Fig. 5.30. The transform
is a regular wavelet transform where the filters obey

∑
k |hk | = 1 rather than the usual

scaling in order to maintain an approximately fixed dynamical range. For virtually all of
the samples only the 3 LSB are affected by rounding (3 LSB corresponds to 8 steps on
the ‘stair’ in the lowermost plot).

For comparison the dynamics in an implementation of a discrete cosine transform in
shown in Fig. 5.31. Thanks are due to Jan Østergaard for doing the necessary computa-
tions in order to make this figure.

∗The conditioning matrices used in the moment preserving edge filter wavelet transform did
present a significant stability problem. However, this is not a implementational issue, but a intrinsic
problem in the edge filter construction.
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Figure 5.30: The rounding error in a six level wavelet packet decompo-
sition and reconstruction of a length 4096 music signal in the 16 bit fixed
point processor ADSP2181. The lowermost graph shows the error signal
sorted according to amplitude.
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DCT applied to the same music signal as the WPT in Fig. 5.30.
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5.7 Conclusion

The main purpose of Chapter 5 is to demonstrate the various methods and ideas presented
in Chapter 4. This is done by recording a series of test signals by means of four test setups.
While all the setups use infrared technology for emission and reception the electric circuit
varies in design, and thus a range of different principles for handling the electric signals
have been tested.

All the major steps in the CGM algorithms are tested in the four test setups. These are
wavelet and RS modulated transmission signals, identification and removal of time and
frequency-localized noise, and two methods for validation of measurements. In general,
the suggested algorithm works quite well and fulfills the expectations presented in Chap-
ter 3. In particular, it has been demonstrated that by combining denoising and validation
of measurements it is possible to achieve a significant level of robustness in the presence
of noise. At the same time the computational load and complexity of the solutions are
acceptable, and there are no numerical stability issues. Both of these results are important
for implementation in low-cost signal processing hardware.

implementations in C has shown that the wavelet transform as well as the Rudin-
Shapiro transform have a low program complexity, and are easily portable from one pro-
gramming environment to another. The C implementations also provide good estimates
of the quantified computational load (this is a matter of counting operations in the code).
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Methods for Determining
Spatial Position 6
A fast, robust, and inexpensive determination of the three dimensional position of a pas-
sive object is an interesting scientific challenge. It is also an interesting functionality from
an industrial and commercial point of view. There are a series of technical and theoretical
challenges which must be overcome before this functionality can be achieved in small
and low-cost sensors. This part of the thesis focuses on generic methods for providing
this functionality. More accurately, two of the more important theoretical aspects are pre-
sented and discussed. The author have chosen to delimit this part of the thesis to only
those two aspects since the subject of spatial position sensors is simply too extensive for
a proper treatment in the present context. Thus, the author does not claim to have even
remotely overcome the challenge of constructing a small and low-cost 3D sensors, but
rather to have provided a valuable input to the process of designing and constructing the
3D sensor.

6.1 Introduction

As opposed to a system determining 3D positioning of active objects, (such systems are
well-known and widely used; one of many examples is the global position system, GPS),
a system for determining position of passive objects usually has to rely on signals which
are emitted in the direction of an object and reflected by the object, rather than signals
emitted by the object itself. This approach poses two basic challenges. Emitting and
receiving a signal in order to obtain information about the object, and converting this
information into a spatial position. The first challenge was faced in the first part of this
thesis with a CGM as the result. This part is therefore dedicated to converting CGMs, i.e.
intensity of reflections, into a spatial position.

To make the challenge more tangible it is useful to have a specific application in mind.
The author suggests an infrared touch-free 3D mouse. Many other positioning systems
could be used, but the 3D mouse has been chosen because it is cheap and relatively easy
to build (once the theory is ready to be put to a test), has suitable real time requirements,
is of some commercial interest, and it has ‘laboratory-friendly’ dimensions. The idea is to
emit a whole range of signals from various position and measure the reflected intensities.
The relations between the intensities is then converted into a spatial position. The signals
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Figure 6.1: The physical design and basic principle of the 3D mouse. A
number of infrared emitters (circles) and receivers (squares) are located in
the 3D mouse under the IR transparent top cover. All necessary electronics
are also located inside the 3D mouse.

are infrared light, and the IR emitters and receivers are located in a box with dimensions
equivalent to a thick ordinary mouse pad. The spatial position of an object, like a hand,
can then be determined when it is over the mouse pad. The physical design and basic
principle of the 3D mouse is shown in Fig. 6.1.

6.2 Determining the Spatial Position

The basic mathematical problem in determining the spatial position is mapping a high
dimensional data vector, which is noisy measurements made on an object in space, into a
three dimensional data vector containing the coordinates of the object. The challenge is
not to define or create the mapping per se, but to devise a method that produces a fairly
accurate result when noise is present in the CGM.

There are a number of a priori feasible ways for converting the CGMs, ranging from
purely analytical derived equations to a table of a discretized mapping based on meticu-
lously measured CGMs. The former is definitely preferable to the latter since analytical
approach allows for parameterization of the mapping. This would be quite useful in ap-
plications where the conditions are likely to change. The question is to what extent it is
reasonable to rely on the modeling needed for an analytical solution.

In any case the mapping must fulfill some basic requirements to be usable in real
applications. The following prioritized list shows these requirements. The mapping

1. works well for good measurements,
2. yields a reasonable relation between error in measurements and error in 3D position,
3. has low computational complexity,
4. has low dynamic range in computations,
5. is easily adaptable in real time,
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Since the measurements are expected to be good most of the time, the primary concern is
that the mapping does well in this case, and the second requirement ensures that a small
decrease in accuracy does not result in too large deviations in the spatial position.

In an attempt to construct a mapping by theoretical means a geometrical description is
presented in the following chapter. A neural network solutions has also been investigated,
although not nearly to the same extent. This latter solution in presented in Section 6.3.

6.2.1 Geometrical Approach

The mapping of high dimensional data to three dimensional position can, theoretically,
be accomplished by purely geometrical consideration. Such a solution is desirable since
it gives a thorough understanding of the properties of a 3D setup, and it provides formu-
las for the dependencies and correlations that exists between the physical and electrical
components in the setup. This approach requires models of the individual physical com-
ponents in the setup, which in turn requires a series of assumptions and approximations.
In experience the use of geometry in combination with approximations of various kinds
is challenging, because geometric equations tend to be numerically sensitive. The fact
that the CGMs usually originates in signals with a low SNR only makes the geometric
solution even more challenging. To demonstrate the usefulness (or lack of same) a rather
naive geometrical solution to the mapping problem is presented in Chapter 7.

6.3 Neural Network

There are various ways of constructing this mapping ranging from completely theoreti-
cal, geometrical consideration to purely ad hoc methods. This section present a choice
which adopts the best of those two extremes (that is the intention, anyway). On the one
hand a neural network offers a systematic and fairly well-described way of defining and
describing the desired mapping, and at the other hand requires a lot of guessing and test-
ing. Moreover, as is shown in the following a neural net has the potential of fulfilling the
requirements mentioned in the previous section.

In this particular framework there are two ways of using a neural net; as a classifier
and as a function approximation. The former is useful when only one of a few possible po-
sitions are needed instead of the actual position. This applies, for instance, when the hand
is pointing at icons on a monitor. In this presentation only the function approximation
network is investigated, being the most interesting type in the case of the 3D mouse.

A radial basis function (Gaussian) network has been chosen because it is well-suited
for function approximation, plus it requires only a relatively limited amount of training.
For a more detailed description on radial basis function network, see Chen et al. [15].
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0 50 100 150 200 250 0 10 20 30 40 50

Figure 6.2: The simulated reflection intensities. The triangle is the emit-
ter, and the square the receiver. The first two columns have the same color
scale, and so does the last two. The axes limits are the same as in the other
figures.
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6.3.1 Simulating the Spatial Positioning

To estimate the spatial position by a neural net it is necessary with measurement data from
an array of emitters and receivers. Although a data set has been acquired (it is presented
in Chapter 8) this preliminary examination relies on modeled reflection maps. This is be-
cause real measurements are certain to be erroneous, simply because of the physics (light
emission and reception is a quantum mechanical process subject to uncertainty). To have
complete control of the measurements, and to eliminate noise in this first experiment, a
model is used to produce the measurements. This is a rather complex and computationally
heavy model, which simulates the reflection of a sphere at any given position by means of
a ray-tracing like procedure. The model produces data close to equivalent real measure-
ments. The model is presented in detail in Chapter 8. The model is in two dimensions for
reasons discussed in the chapter presenting the model. One of those reasons is that it is
easier to test the various ideas for creating mappings when it is done in two dimension.
The philosophy is that if the mapping does not work in two dimensions it will not work
in three dimensions.

The setup simulated here consists of 4 emitters and 3 receivers located along a line. A
line represents a reduction of the dimensionality by one, and thus is equivalent to placing
the emitters and receiver in a plane in the case of the 3D mouse. The simulated measure-
ments are shown in Fig. 6.2 along with the location of the emitters and receivers. Note that
the overall intensity depends heavily on the distance between emitter and receiver. The
size of each measurement set is 16×20 units (which might be interpreted as centimeters).
The idea is now to use a neural net to map the 12 dimensional measurements to a spatial
position. The network is constructed by repeatedly adding neurons (which in this case are
functions on the form Ae−x2−y2

) until the mean square error (MSE) between the true and
simulated 2D position in a set of training points is below a threshold. Two nets have been
trained, one with 8×9 training points, and one with 13×13 training points. Experiments
have shown that a slightly uneven distribution of training points yields a better approxi-
mation. The training points and the accuracy of the two nets are shown in Fig. 6.3. The
MSE of all the training points are 0.3 units.

The neural network is here trying to ‘guess’ the position of the reflection object by
means of the CGMs. The net has been trained by providing the true set of CGMs corre-
sponding to each point in 2D, and the net is then approximating the mapping from CGMs
to 2D by Gaussian functions. The shading of the plots shows how wrong, in the plot
units, the neural network predicts the 2D position based on the true CGMs. The net is not
completely accurate because a limited number of neurons, Gaussian functions, have been
used for the approximating mapping. The net corresponding to the left plot in Fig. 6.3 has
57 neurons, while the net corresponding to the right plot has 82 neurons.

While this procedure specifically reduces the error in certain points, the goal is to have
a good approximation in all 2D points. In between the training points, however, there is no
control of the the error, which can easily become quite large. But adding training points
in places with large error will inevitably also increase the number of neurons (to meet the
MSE threshold requirement).
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Figure 6.3: The error in distance (Euclidean norm) between the true 2D
positions and 2D positions simulated by a neural net. The crosses mark the
training points. The left set of training points yielded 57 neurons, while the
right gave 82 neurons. The color scale is log2.

One obvious goal is to have as few neurons as possible, but it is equally important that
the neural net is not too sensitive to noise. To test this (on the neural net with 82 neurons)
the net has predicted the 2D position based on the 12 dimensional CGMs with added
Gaussian noise. This is shown in Fig. 6.4. Here the shading also shows the deviance of
the predicted 2D position from the true 2D position. Since the added noise have the same
variance all over the 16 × 20 plane, while the measurements are varying in amplitude
(as seen in Fig. 6.2), the SNR varies somewhat. Although the weaker noise is typical for
laboratory tests (an SNR of 42 dB was estimated in one of test setups in Chapter 5), the
more powerful noise is not uncommon. Fig. 6.4 shows one major weakness of the neural
net; the large sensitivity to even Gaussian noise. It is obvious that the predicted positions
are useless.

The problem is that although the ‘clean’ measurements are 12 dimensional, they con-
stitute a 3 dimensional sub-manifold since they are originally mapped from � 3 . If a
12 dimensional measurement is too far from this embedded sub-manifold the prediction
made by the neural net becomes arbitrary and hence useless. There at least two potential
solutions to this; the neural net could be trained with erroneous data as well, or some pro-
jection onto the three dimensional sub-manifold could be applied in the 12 dimensional
data space. The former idea has been tested with a partly positive result, but a significantly
larger number of neurons is needed, since an even more complicated structure than the
three dimensional sub-manifold is approximated. The latter solution is somewhat more
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Figure 6.4: The mean and maximum distance error for 200 instances of
Gaussian noise (SNR range from 50 to 25 dB in the uppermost row, and 30
to 5 dB in the lower row). The shading shows for any given 2D position
how wrong, in plot units, the neural network predicted 2D position becomes
when noise is added to the CGMs. The color scale is log2.
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complicated because it requires a fine-gridded non-Euclidean multi-dimensional structure
(consisting of splines, for instance) of the three dimensional sub-manifold in order to fa-
cilitate computation of a numerical projection, as an analytical projection is not expected
to be feasible. This idea has not been tested in this thesis.

6.4 Future Work on Spatial Position Sensors

This Part of the thesis presents two different approaches to implement the mapping of
CGMs to spatial position, and a measurement of the reflection characteristics in a setup
with infrared emitters and receiver. These contributions might be useful in the design of
a spatial position sensor, but they do not themselves represent a research effort sufficient
for actual constructing a spatial position sensor. This section briefly reviews some of the
work which the author consider as necessary, but has not been addressed in this thesis.

The primary task is to determine what method is appropriate for creating the mapping
from measurements to position. Two methods which a priori seemed promising have
been suggested. A neural network is briefly examined, and a geometrical approach is
investigated more thoroughly.

The result of the examination of the neural network was inconclusive. The brute force
construction of the network did not yield satisfying results. However, a number of solu-
tions were suggested, one of which has actually proven fairly good. But the complexity
of this solutions is quite high, and it has not been tested and simulated to an extent which
justifies any final conclusion to be drawn. Much more work is needed to determine the
feasibility of a neural network generated mapping.

The investigation of a geometrical approach is also in some sense inconclusive. While
the outcome of the investigation is a series of interesting and probably useful observations,
it fails to finally conclude on whether this approach is doable. Comparing the obtained
result to a real measurements the geometrical modeling turns out to be inadequate under
the given assumptions, and it is an open question if a more complex model, or indeed an
adaption of the physical setup to the assumptions, would do the trick. Consequently, it is
necessary to further develop the geometrical model if this approach is to be used for the
mapping.

To get a good feeling with a suggested solution, i.e. to discover its advantages and
disadvantages, and to estimate its potential, it is imperative to make extensive testing with
real data from a real setup, either in real time or off-line. This also lacks from the present
research effort.

A measurement of the reflection characteristics of a real setup with one emitter and
one receiver has been made, however. This is not done to provide the above mentioned test
data. They have been recorded partly to estimate the how realistic the model assumptions
are, and partly to see if it is possible to model, and possible parameterize, the reflection
characteristic. While it is possible to model the characteristics fairly well, the complexity
of this modeling prohibits any easy parameterization.
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Geometric Solution
based on Intersections of
Spheroids 7
The basic concept in the geometric approach is to derive the mapping from high dimen-
sional measurement data to 3D position by purely analytic means. In order to do this the
entire setup is modeled geometrically. The assumptions used for this model leads to a
description of the mapping by a set of equations describing intersection curves for three
dimensional prolate spheroids, that is ellipses revolved around their semimajor axes. This
chapter presents the making of the mapping. This includes a more detailed description of
the concept and assumptions leading to spheroids, a rigorous derivation of the intersec-
tion of said spheroids, a discussion of the choice of locations of emitters and receivers, a
discussion of the usefulness of the model, and a series of examples to demonstrate various
concepts presented throughout this chapter.

7.1 The Basic Concept of a Geometrical Solution

The construction starts with the observation that an emitter/receiver (E/R) pair transmits
an ‘amount’ of light from emitter to receiver. This amount depends on various factor
such as directional characteristics of the E/R pair and the position and properties of the
reflecting object. This means that there is a vector function M mapping 3D position in
front of the emitter/receiver pair to an intensity. When an intensity I is measured at the
receiver it is immediately known that the reflecting object is located somewhere in the
isocandela set corresponding to I of this mapping, since the isocandela set is the set of
points in 3D which – according to the mapping – yields a reflected intensity I . When
sufficiently many such 3D sets (each set stems from a particular emitter/receiver pair) are
known for the same object, the intersection of these sets is a single point, which is then
the location of the object. What we want eventually is the ‘reverse’ mapping U, called
the intersection function, which given a set of intensities (that is the CGMs) provides the
intersection point for the isocandela sets corresponding to those intensities, thus yielding
the 3D position of the reflecting object.

In this chapter the reflecting object is assumed to have properties (see the next section)
such that this mapping M : �3 �→ � is on the form

M(p) = (‖p− e‖ + ‖p− r‖)−2
, (7.1)
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where p, e, and r are the 3D position of the object, the emitter, and the receiver, respec-
tively. The locus of M(p) = constant is easily seen to be a prolate spheroid with focal
points in e and r. Note that this observation is independent of the power −2, which is
included here merely for visual reasons to model the reduction of the intensity by the
square of the distance to the object. This does in fact not have any qualitative influence
on the final mapping function U.

Note that the form (7.1) requires the object to reflect the light without any scattering.
The + sign holds the implicit assumption that the light ‘continues on’ when reflected
instead of being scattered. If the object scatters the light the intensity function would be
along the lines of the form

M(p) = (‖p− e‖‖p− r‖)−2
, (7.2)

that is with multiplication rather than addition. The reflection map is very different from
that of (7.1), which is evident by inspection, see Fig. 7.10 on page 171. The form (7.2)
is admittedly strongly simplified, but it does show the basic form when two scatterings
are involved (the first ‘scattering’ happens as the emitter emits light in many directions).
Thus, the model (7.1) requires the object surface to be mirror-like.

Obviously, in the real case the mapping M depends on the orientation and reflectivity
of the object, and these properties should therefore be included in the mapping func-
tion (which they are clearly not). This also goes for other properties such as emitter and
receiver characteristics etc. However, even simple assumptions prove difficult to accom-
modate in the mapping, and will therefore not be included in this geometric solution. Fur-
thermore, the idea of analytically deriving the intersection function for the isocandela sets
does not depend in a fundamental way on the aforementioned properties (the complexity
of the approach does to a very high degree, though). Consequently, the assumptions are
chosen such that they are very simple and results in a relatively simple intersection func-
tion U. To what extent the resulting model and intersection function mimic the real world
is a question still to be answered (however, see the discussion of the geometric approach
in Section 7.5 and 7.6 starting on page 170).

Although the results presented in this chapter are mainly of analytical nature there
are no (to the best of the authors knowledge) literature to support them (except in a few
peripheral cases, which are marked with citations).

7.2 Assumptions

In a real setup of E/Rs there is a series of factor which should be accounted for. Since
most of these factors add significantly to the complexity, a sufficient model might be very
complicated and difficult to handle. In this chapter most of these factors have been left out
in order to simplify the model to an extent which allows for relatively simple equations.
The factors in question are
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Directional characteristic of the E/Rs. It is most common that emitter has a directional
characteristic which is not just significantly different from being uniform, but also
asymmetric and uneven. Although the receivers are also not uniform, they do usually
exhibit a nice characteristic, such as a cosine. In this model both characteristics are
assumed to be uniform.

Noise The ever present problem of noise has not been accounted for in this model. This
means that there has been no attempt to robustify the equations (for instance by
adding some kind of low pass filtering property). There is currently no guarantee
that even small perturbations of the high dimensional data will be handle properly.
One analytical steps has been taken to reduce the influence of noise, however. This is
related to the location of the sensors.

Location of E/Rs Since it is a priori unknown what the optimal locations of emitters and
receivers are it is desirable to have complete freedom. The question of the optimal
locations of E/Rs is discussed in Section 7.4. In this model there is one requirement,
however. The emitters and receivers have to be located such that each emitter is
located adjacent to a receiver. Such an E/R pair is in this chapter referred to as a
sensor. Note that it still makes sense to talk about an E/R pair, which is an emitter
and a receiver that are not necessarily located adjacently.

Characteristics of reflecting object The most ’unrealistic’ assumption in this model is
the characteristics of the reflecting object. To reduce the complexity it is assumed that
the object is reflecting the light in such a way that the 3D isocandela map of an E/R
pair consists of concentric spheroids. This assumption holds only when the received
intensity is related only to the distance from the emitter to the object and back to the
receiver as shown in (7.1). This in turn is true only when the object reflects light
without any scattering and in the direction of the receiver (a reduction of the intensity
is allowed). This can be achieved for instance by a plane mirror positioned such
that it is tangent to the spheroid with focal points in the emitter and the receiver, or
by a sphere mirror. At the same time the reflection has to happen at the same point
in 3D for all involved pairs of E/Rs (to justify the idea of a spheroid intersection
point). The obvious conflict in ‘the spheroid assumption’ (that is, having reflection
in different direction at the same point) raises the question of to what extent this
assumption is valid in any real setup. To investigate possible solutions to this problem
the characteristics of the reflecting object is discussed in detailed in Section 7.5.2.
The possibly unrealistic assumptions does make the geometric equations relatively
simple, however, and thus allows for a not too complicated analytical solution to the
problem of mapping high dimensional measurement data to 3D.

Note that the reflectivity of the object is accounted for in the model, since it in-
cludes a uniform scaling r of all the intensity measurements.
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7.3 The Intersection Function

The smallest number of spheroids with which it is possible to uniquely determine an
intersection point is three. The smallest number of sensors that gives three spheroid is
also three. From this set of three sensors any two give the focal points of a spheroid.
The objective of this section is to construct the function which maps these three spheroids
with different semimajor axes given by the three measured intensities into that particular
point in 3D where they intersect. The measured intensities are not used ‘as is’ since the
transmitted light is subjected to a unknown reduction (governed by the reflectivity of the
object and amplification in the receiver). To account for this the intensities are all scaled
by a common factor r . A more detailed description of this scaling is given in Section 7.3.4
on page 155. Note also that throughout this chapter the focal points are in the xy plane.

7.3.1 Definitions

Before deriving the intersection function it is convenient to reduce the number of degrees
of freedom to a minimum by means of scaling, rotation, and translation of the triangles
spanned by the sensors. In order to do this a few new variables are needed. They are
introduced in Definition 7.2. First of all, the rotation operation needs to be defined (scaling
and translation is trivial).

Definition 7.1 (Givens rotation)
A clockwise rotation θ radians of a point in xyz space around the z axis is accomplished
by multiplying with

G(θ) =



cos θ sin θ 0

− sin θ cos θ 0
0 0 1



 .

Definition 7.2 (Focal Points)
Let P, Q, and S be three points in the xy plane. Define the vectors

p =
[

Q1 − S1
Q2 − S2

]
, q =

[
P1 − S1
P2 − S2

]
, s =

[
Q1 − P1
Q2 − P2

]
,

define the angle

θ = q2

|q2| arccos
( q1

‖q‖
)
,

and define d and γ as

G(θ)
[
q p
0 0

]
= 2γ




d1 d2
0 1
0 0



 .

The points P QS must be such that

〈s× q, e3〉 > 0 and 〈p,q〉 < ‖p‖‖q‖,
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and d1 ≥ d2 ≥ 0.

The definition is closely related to Fig. 7.1.

θ

S

p

2d2γ

2γ

Q

q
2d1γ

s P

Figure 7.1: The setup for the focal points.

Note that any set of three points in the xy plane complies with this definition when

(i) they are not lying on a line,
(ii) they are enumerate with P, Q, and S counter-clockwise, and

(iii) Q is associated with the obtuse angle (whenever there is one).

Thus, effectively, this includes all triangles.
The next step is to introduce the spheroids. According to the assumptions presented in

the beginning of the chapter they are prolate spheroids, that is they are given as the locus
of a revolution of an ellipse around it’s semimajor axis.

Definition 7.3 (Prolate Spheriod I)
Define the prolate spheroid form by

E(c, r, θ) = c�G(θ)




r1 0 0
0 r2 0
0 0 r2





−1

G(−θ)c.

It is not immediately obvious how this definition relates to a prolate spheroid with focal
points in the xy plane. The prolate spheroid form is obtained by first noting that the
equation

(x − x0)
2

r2
1

+ (y − y0)
2

r2
2

= 1

is an ellipse with centre in (x0, y0), semimajor axis r1 parallel to the x axis, and semiminor
axis r2. Then the following lemma justifies the definition.
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Lemma 7.4 (Revolution of Ellipse)
A spheroid described by revolving the ellipse

(x − x0)
2

r2
1

+ (y − y0)
2

r2
2

= 1 (7.3)

around the line
[
x0 + t y0 0

]
followed by a rotation θ clockwise around the line[

x0 y0 t
]
, is given by

E

(


x − x0
y − y0

z



 ,
[

r2
1

r2
2

]
, θ

)
= 1 . (7.4)

Proof
Assume without loss of generality that x0 = y0 = 0. Expanding (7.4) then yields

(
x cos θ − y sin θ

)2

r2
1

+
(
x sin θ + y cos θ

)2

r2
2

+ z2

r2
2

= 1. (7.5)

Define the result of a counter-clockwise rotation of the locus of (7.5) around the z axis
as
[
x̃ ỹ 0

]� = G(−θ) [x y 0
]�

. Then

x̃2

r2
1

+ ỹ2

r2
2

+ z2

r2
2

= 1,

which is the result of revolving the ellipse (7.3) around the x axis. �

7.3.2 Examples

Throughout this chapter a number of examples will be given to support the various theo-
rems, lemmas etc. They are all based on the same setup which is presented here.

A total of four sensors are located in the xy plane at F1 : (3, 2), F2 : (9, 5), F3 :
(6, 10), and F4 : (2, 9), see Fig. 7.2. This generates four triangles F1 F2 F3, F2 F3 F4,
F3 F4 F1, and F4 F1 F2 (which all complies with Definition 7.2). The reflecting object is
located in F5 : (5, 4, 3). This point gives a set of measurements which are related to
the distances from the sensors to the point (i.e. the object). While measured reflected
intensities are proportional to the square of reciprocal of the distance, the ‘measurements’
used in the following equations are assumed to be proportional to the distance. Thus, in
a real application it is necessary to apply a mapping on the form (·)−2 to the measured
intensities. Note that the mapped measurements are also referred to as measurements.

There are two equal measurements for each sensor pair. In a real setup the two mea-
surements will most likely not be equal due to noise, and the redundancy can the be used
to decrease the noise level. Since there are a total of six different combinations of two
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Figure 7.2: The locations of the four sensors and the projection onto the
xy plane of the location of the object.

Table 7.1: The values according to Definition 7.2 for the four triangle.
Triangle θ θ γ γ d1 d2

F1 F2 F3 arccos
( 3√

73

)− π -1.9296 39
73
√

73
2.2823 73

39
31
39

F2 F3 F4 − arccos
( 7√

65

)
-0.51915 23

65
√

65
1.4264 65

23
3
4

F3 F4 F1 arccos
( 3√

73

)
1.2120 29

73
√

73
1.6971 73

29
53
29

F4 F1 F2 π − arccos
( 7√

65

)
2.6224 45

65
√

65
2.7908 13

9
2
3

sensors there are also six measurements. Simulated measurements corresponding to the
point F5 are given in Table 7.2. Here the measurements are actually the sum of the dis-
tance from the object to the two sensors, and not intensities.

Table 7.2: Simulated measurements for the point F5 (see Fig. 7.2).
Sensor pair F1 F2 F1 F3 F1F4 F2 F3 F2 F4 F3 F4
Measurement 9.2221 10.905 10.681 11.881 11.656 13.340

7.3.3 Fixing the Focal Points

The general intersection function is based on the intersection function for spheroids with
fixed focal points. Actually, the section title is slightly misleading since they are not all
fixed, but the restrictions imposed on them reduce the number of degrees of freedom from
six (three points times two dimension) to three. This simplifies the construction somewhat
and the remaining degrees of freedom are easily introduced again later.

Since each set of three spheroids will generate exactly one intersection function the
following derivations are, unless otherwise stated, for three spheroids and their three focal
points.
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The three focal points are denoted P, Q, and S (see also Fig. 7.1). The point S is fixed in
the origin (0, 0), the point P is constrained to the x axis, that is P = (2d 1, 0) with d1 > 0,
and Q is constrained to the horizontal line x = 2, i.e. Q = (2d 2, 2). Furthermore, Q is
always the obtuse angle, so we also have 0 ≤ d2 ≤ d1. This is equivalent to Definition 7.2
with θ = 0 and γ = 1. To avoid symmetry one more restriction could be imposed
(for instance 2d2 < d1). However, this ‘redundancy’ does not complicate the following
computations (they are actually a little easier without this restriction), and moreover, it
does not reduce the number of degrees of freedom.

The three spheroids generated by the three focal points each have one degree of free-
dom, namely one of their semi axes. In this setup the semimajor axes are free. The
measurements made in the physical setup are the intensities of the reflected and received
light. The results of the (·)−2 conversion are denoted w1, w2, and w3, and corresponds
to the measurements made for |P Q|, |QS|, and |PS|, respectively. That is, a w k is pro-
portional to the distance from an emitter to the object plus the distance from the object
to a receiver. The assumption that all emitters have the same uniform characteristics (and
ditto for the receivers) leads to a single unknown variable r , which represents the level or
amplitude of these characteristics.

In the following equations describing the three spheroids the semimajor axes arew nr ,
and the semiminor axes are computed based on the fact that the square of the semima-
jor axis equals the square of the distance between focal points minus the square of the
semiminor axis.

P Q : E

(


x − d1 − d2

y − 1
z



 ,
[

w2
1r2

w2
1r2 − (d1 − d2)

2 − 1

]
, arctan

(
(d1 − d2)

−1)
)
= 1

(7.6)

QS : E

(


x − d2
y − 1

z



 ,
[

w2
2r2

w2
2r2 − d2

2 − 1

]
,− arctan d−1

2

)
= 1 (7.7)

PS : E

(


x − d1

y
z



 ,
[

w2
3r2

w2
3r2 − d2

1

]
, 0

)
= 1 (7.8)

All the expressions in the above equations are easily derived from geometrical observa-
tions using the triangle in Fig. 7.1.

The purpose of this Section 7.3 is to demonstrate that for all values fixed such three
spheroids have at most one intersection point in �2 ⊗ �+ (�+ is the non-negative half-
line), and that the locus of the intersection for variable r is a well-defined and well-
behaved curve. Further, it is demonstrated that the same holds for the more general
case with arbitrary focal points. This is done in several steps, starting in the next sec-
tion with an exemplification of the restriction introduced previously. This is followed in
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Section 7.3.5 by the derivation of the intersection function in the restricted case. Finally,
the general case is treated in Section 7.3.6.

7.3.4 One Embodiment of the Spheroids

Assume that a reflecting object has been positioned in F5 and that the measurements given
in Table 7.2 have been obtained. Using (7.6) through (7.8) three spheroids can be con-
structed, each corresponding to a set of two corners in, say, the triangle F3 F4 F1. The
Fig. 7.3 shows the triangle F3 F4 F1 subjected to the restrictions described above (and thus
renamed P QS), and z contours of the corresponding spheroids for fixed r = 0.295. The
third row in Table 7.1 gives the scaling and rotation necessary to map between F3 F4 F1 and
P QS. The point F5 is relocated by the scaling, rotation and translation from (5, 4, 3) to
(1.52,−0.690, 1.77), approximately. This point is denoted F ′

5. Since all the points have
shifted, the distances between the corners of the triangle and F ′

5 have changed, too. Con-
sequently, the values in Table 7.2 do not equal the distances in the P QS setup. However,
the scaling (which is the only operation that matters in this context) scales the distances
equally, and since the scaling is known the (simulated) measurements can be converted to
match the P QS setup by division by γ . Note, however, that this division is not necessary
in relation to the intersection function presented shortly since the r factor in the spheroid
equations also scales the measurements equally. The measurements needed in the present
triangle is w1 = F3 F4, w2 = F1 F4, and w3 = F1 F3 from Table 7.2.

In Fig. 7.3 the contours of the three spheroids with r = 0.295 are shown for z = 0
and z = 1.77. Note how the contours all meet in F ′

5 for the latter choice of z. In the
following sections the relation between w, the (x, y, z) coordinate of the intersection, and
r is given. For instance, it will be evident that for a given admissible choice of w (meaning
that it comes from a point in 3D) there is a unique vector function U : �+ �→ �2 ⊗ �+
mapping r to a space curve such that the correct 3D point (the one which corresponds to
w) is mapped to exactly when r = 1/(2γ ).

It is important to note that in a real setup the ‘admissible measurements’ are known
up to a scaling factor, which means that it is not w, but rather aw for some unknown
a that fits the description in the previous paragraph. Thus, knowing γ is not sufficient
information to determine the correct point in 3D. The r factor has been introduced for the
very purpose of accommodating this particular ‘lack of information’.

7.3.5 Intersection for Fixed Focal Points

The intersection function for the restricted setup is presented in this section. The function
is derived on the basis of purely geometrical consideration, namely by solving the three
spheroid equations simultaneously.

Notation 7.5 (The Positive Orthant)
The positive orthant of �N is that subset of �N for which all coordinates are ≥ 0. This
subset is denoted �N+ . For N = 1 the notation �+ is used.
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Figure 7.3: The triangle P QS is F3 F4 F1 scaled, rotated, and shifted ac-
cording to Table 7.1. The left plot shows the contour of the corresponding
spheroids for z = 0, and the right plot shows the contour of the spheroids
for z = 1.77. In both plots r = 0.295. The values in Table 7.1 and 7.2 have
been used.

In the following we will need quantities on the formwn −wk several times. The notation
wnk will be used as an ‘acronym’ for this.

Lemma 7.6
The (x, y, z) solution to the set of equations (7.6), (7.7), and (7.8) for which z ≥ 0 when
w corresponds to a point in (x, y, z) space is a vector function �6+ �→ �2 ⊗ � given by

Ũ�(w,d, r) =



x
y
z



 = 1

d1




w21w3r2 + d2

1
(d1w2w31 + d2w3w12)r2 + d1(1− d1d2 + d2

2 )√
A�(w,d)r4 + B�(w,d)r2 + C�(d)



 , (7.9)

where

A�(w,d) = −[d2w12w3 − d1w13w2
]2 − w2

12w
2
3

B�(w,d) = 2d1d2w3w12(d1d2 − d2
2 − 1)+ d2

1

(
w2

23 + 2d2w2w13(d2 − d1)+w2
1

)

C�(d) = −d2
1 (d

2
2 + 1)((d1 − d2)

2 + 1) .

This and some of the following proofs describe fairly simple constructions, where the in-
termediate formulas are huge expressions (some could fill an entire page). Consequently,
they have been left out, since they in this do not serve any important purpose. The follow-
ing proof is shown with more details in Appendix B.

Proof
A proper scaling of (7.8) followed by a subtraction of (7.8) from (7.7) eliminates z, and
a second degree equation in x emerges. (The trigonometric functions resolve nicely).
The two solutions to this equation are then inserted in (7.6) and (7.8). Another scaling
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followed by a subtraction yields two other second degree polynomials in y, which then
gives four candidates for y. Inserting those along with the corresponding x in (7.7) gives
a total of eight candidates for z, all on the this ±√· form. Since we are interested in
z ≥ 0, we are left with four z candidates. The true solution is found by choosing a point
in space and three focal points, determine the corresponding w, d, and r , inserting this set
of arguments into z. Only one candidate will then yield a real z coordinate. This z and
the corresponding x and y are given in (7.9). �

The lemma gives the form of one of the solutions to spheroid equations. There are actually
eight solutions (as hinted in the proof) because the equations involves second degree terms
of all three variables. The other solutions have similar forms, but unlike the one given
above they do not give a z ∈ �+ for the coordinate (x, y, z) that matches w (recall that w
is completely determined by the coordinates of the reflecting object and the locations of
the sensors).

It is obvious from (7.9) that the x and y coordinates will be real independently of the
choice of w and d. This is not the case for z, however. Because on the one hand a choice
of w which makes the spheroids too small or too large to intersect cannot give a real z for
any r , and on the other hand choosing w such that it matches a particular point in � 2⊗�+
must give a real z for some r . Based on this, the previous observations, and a continuity
argument we can conclude the following.

Lemma 7.7
The z in Ũ�(w,d, r) in Lemma 7.6 is real when and only when there exists t ∈ �+ such
that

(i) Ũ�(tw,d, r) ∈ �2 ⊗ �+
(ii) and r belongs to an interval on the form

[ t

2γ
− e1; t

2γ
+ e2] ⊂ �

+

where e1, e2 > 0.

Note that Ũ� was constructed under the assumption that γ = 1, and the lemma therefore
currently applies only in this case. However, later it will be evident that this restriction
have no influence on the observations that lead to this lemma, and consequently the lemma
also holds in the general case presented in Section 7.3.6.

Based on the lemma it is easy to give a definition of admissible measurements; it is
exactly those points w ∈ �3+ which corresponds to a point (x, y, z) in �2 ⊗�+ , as stated
in the lemma.

Definition 7.8
Let P, Q, and S be three points satisfying definition 7.2. The set F �

P QS is defined as the

set of vectors u ∈ �3+ for which there exist a point P0 = (x, y, z) ∈ �2 ⊗ �+ and r > 0
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such that

ru1 = dist(P0, P)+ dist(P0, Q),

ru2 = dist(P0, Q)+ dist(P0, S),

ru3 = dist(P0, P)+ dist(P0, S).

The same observations made for intersections of the spheroids can be made for intersec-
tion of the spheres. It is therefore relevant to have the following definition.

Definition 7.9
Let P, Q, and S be three points satisfying definition 7.2. The set F ◦

P QS is defined as the

set of vectors u ∈ �3+ for which there exist a point P0 = (x, y, z) ∈ �2 ⊗ �+ and r > 0
such that

ru1 = 2 · dist(P0, P),

ru2 = 2 · dist(P0, Q),

ru3 = 2 · dist(P0, S).

We are now finally ready to define the intersection set for the spheroids.

Theorem 7.10 (The Particular Intersection Function for Triangles)
The three spheroids (7.6), (7.7), and (7.8) intersect iff rw ∈ F �

P QS . In this case Ũ�(r) is

mapping I ⊂ �+ into �2 ⊗ �+ , where I is a compact set.

For future reference define D� = (B�)2 − 4A�C�. Since it is assumed that there is
a sensor at each focal point, there will also be measurements available for the reflected
intensity of light emitted from and received at the same point (the same sensor).

Theorem 7.11 (The Particular Intersection Function for Spheres)
The exists an (x, y, z) ∈ �2 ⊗ �

+ solution to the following set of spheres equations

P : (x − 2d1)
2 + y2 + z2 = v2

1r2 (7.10)

Q : (x − 2d2)
2 + (y − 2)2 + z2 = v2

2r2 (7.11)

S : x2 + y2 + z2 = v2
3r2 (7.12)

iff rv ∈ F ◦
P QS , and this solution is given by

Ũ◦(v,d, r) = 1

4d1




(v2

3 − v2
1)r

2 + 4d2
1

(d1(v
2
3 − v2

2)− d2(v
2
3 − v2

1))r
2 + 4d1(1− d1d2 + d2

2 )√
A◦(w,d)r4 + B◦(w,d)r2 + C◦(d)



 (7.13)

where

A◦(v,d) = −(d1(v
2
2 − v2

3)+ d2(v
2
3 − v2

1)
)2 − (v2

1 − v2
3)

2
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B◦(v,d) = 8d1
(
(d1 − d2)(d

2
2 + 1)v2

1 + d1(d2(d2 − d1)+ 1)v2
2 + d2((d1 − d2)

2 + 1)v2
3

)

C◦(d) = −16d2
1 (d

2
2 + 1)

(
(d1 − d2)

2 + 1
)
.

In this case Ũ◦(r) is mapping I ⊂ �+ into �2 ⊗ �+ , where I is a compact set.

For future reference define D◦ = (B◦)2 − 4A◦C◦.
To illustrate the result of applying Ũ�(r) to an actual case Fig. 7.4 shows three inter-

section sets. They appear to be well-behaved, and it is demonstrated in the next section
that this is actually always the case for intersection sets of spheroids and spheres (under
the given assumptions and constraints presented previously in this chapter).

1

3

4

–4

2

–6–4–224

2

4

–4
–3

–2
–1

1
2

–6
–4

–2

2
4

Figure 7.4: Three intersection curves generated by Ũ�(w,d, r) with val-
ues from Table 7.2 and 7.1. The three curves (clock-wise seen from the
center of the circle) havew2 modified by−1.5, 0, and 1.2. The intervals for
r are [0.275; 0.560], [0.236; 0.854], and [0.233; 2.14], respectively. Note
that they all include 1/(2γ ) = 0.295.

7.3.6 The General Intersection Function

Having introduced the particular intersection functions which are valid only for sensors
located at rather restricted locations in the xy plane, we are now ready to relax some of
these conditions. This is done by returning to the original definition of sensor locations,
that is Definition 7.2. To extend the intersection function presented in the previous section
all that is necessary is to perform the inverse of the scaling, rotation, and translation which
was applied to the general case in order to restrict it to the particular case of Section 7.3.3.

At the same time the variables γ , θ , d1, and d2 are ‘hidden’ in the general intersection
function since they relate, in a sense, to the particular case, whereas the P QS notation
is more natural in the general case. A new and more simple definition of the intersecting
objects is therefore also given. It is based on the immediately available information, that
is the sensor locations, rather than the derived quantities θ , γ , d 1, and d2.
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Definition 7.12 (Prolate Spheriod II)
Let E(H,G, a) denote the locus of a prolate spheroid constructed by revolving an ellipse
with focal points in H and G around the semimajor axis a.

Note that E(H, H, a) will give a sphere with centre in H and radius a.
This definition allows a simple formulation of the general intersection functions.

Theorem 7.13 (The Intersection Functions)
Let P, Q, and S be three points satisfying definition 7.2. The three spheroids E(P, Q, w 1r),
E(Q, S, w2r), and E(P, S, w3r) intersect iff rw ∈ F �

P QS . The intersection point is given
by

U�
P QS(w, r) = γG(−θ)Ũ�(w,d, r)+ [S1 S2 0]�. (7.14)

Equivalently, the three spheres E(P, P, v1r), E(Q, Q, v2r), and E(S, S, v3r) intersect iff
rv ∈ F ◦

P QS . The intersection point is given by

U◦
P QS(v, r) = γG(−θ)Ũ◦(v,d, r)+ [S1 S2 0]�. (7.15)

Note that the functions U�
P QS(w, r) and U◦

P QS(v, r) are undefined when rw �∈ F �
P QS

and rv �∈ F ◦
P QS , respectively.

It was stated earlier that the intersection set generated by a varying r and fixed w
produced a well-behaved curve. This was also demonstrated for a few examples of w in
Fig. 7.4. The following lemma shows that this is indeed always the case, and, moreover,
that this set is always a half circle.

Lemma 7.14
Let P, Q, and S be three points satisfying Definition 7.2, and let w ∈ F �

P QS . Then

U�
P QS(r) equals the intersection of �2 ⊗ �+ and a circle with centre in the xy plane.

The projection of this circle onto the xy plane is a part of a line which goes through the
center of the circumscribed circle to the triangle P QS. This also holds for U ◦

P QS(r) with
v ∈ F ◦

P QS .

The projection on the xy plane of an intersection set is shown in Fig. 7.5.

Proof
The projection of Ũ� onto the xy plane is

[
x
y

]
= 1

d1

[
w21w3

d1w2w31 + d2w3w12

]
r2 +

[
d1

1− d1d2 + d2
2

]
. (7.16)

For any fixed choice of w and d (7.16) is a straight line through [d 1, 1− d1d2 + d2
2 ]. The

center of the circumscribed circle is the intersection of the perpendicular bisectors. Two
of these are given by

QS : y = −d2x + d2
2 + 1, PS : x = d1,
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and the intersection of these are the point (d1, 1− d1d2+ d2
2 ). Showing that Ũ describes

a circle is done in two steps. First Ũ is rotated around the z axis such that the y coordinate
becomes independent of r , then the xz coordinates are shown to described a plane circle.

The angle between the line (7.16) and the x axis is

θ = arctan
(d1w2w31 + d2w3w12

w21w3

)
.

By applying G(θ) to Ũ, the x and y coordinates becomes two large expressions, where
the y coordinate is independent of r . Isolating r in the x coordinate and inserting into the
z coordinate yields

z2 = −x2 + p1

p3
x + p2

p3
⇔ z2 + (x − p1

2p3
)2 = 4p2 p3 − p2

1

4p2
3

, (7.17)

where pn are multinomials in d and w (the expressions are given in Appendix B). Since
the properties stated in the lemma are independent of rotation, scaling, and translation it
follows that it not only applies to Ũ�, but also to U�.

The proof for U◦(r) is equivalent. �

The existence of two different intersection functions for the same set of sensors might

–3

–2

–1

0

1

2

Figure 7.5: The projection onto the xy plane of an intersection set is part
of a line which goes through the centre of the circumscribed circle. Values
from Table 7.2 are used.

give the impression that the unknown variable r can be determined by finding the point
in which the two function intersect (they have to since they both include the point corre-
sponding to w and v). But as the following lemma shows the two intersection functions
provide exactly the same information. Consequently, the r cannot be determined by cor-
relation of the two functions.

Lemma 7.15
Let P QS satisfy Definition 7.2. Let w ∈ F �

P QS and v ∈ F ◦
P QS correspond to the same

point in �2 ⊗ �+ . Then

(i) rw ∈ F �
P QS , r ∈ �+ iff rv ∈ F ◦

P QS , and
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(ii) U�
P QS(w, r) = U◦

P QS(v, r) for all r where rw ∈ F �
P QS .

Proof
First (ii) is shown by substituting

w = 1

2




1 1 0
0 1 1
1 0 1



 v

in U�
P QS(w, r). Then (i) follows from Lemma 7.14. �

Since the two intersection functions are equal the notation U P QS will be used whenever
the function expression does not matter (this is usually the case in theory, and usually not
the case when using real (noisy) measurements).

Finally, the nice behaviour of the intersection functions inspires a conjecture for an-
other nice property.

Conjecture 7.16
Let any two of w1, w2, w3 be fixed, and the third varying. Then the locus given by

{
U�

P QS(w, r)
∣∣ rw ∈ F �

P QS , r ∈ �+
}

equals the intersection of �2 ⊗ �+ and a sphere with centre in the xy plane.

The basis for this conjecture is given in Fig. 7.6, where the three loci defined in the
conjecture are shown. To further justify it the z contours are shown in Fig. 7.7.

7.3.7 Combining Several Sensors

To find the location of a reflecting object it is not enough to have three sensors and an
intersection function (or indeed two intersection functions based on the same set of three
sensors, as demonstrated in Lemma 7.15). There is one unknown variable still to be
determined. The r in the intersection functions cannot be determined based on reflection
information from three sensors. It is therefore necessary to introduce a fourth sensor. This
will result in a total of six spheroids, and any combination of three of those will give an
intersection function U. In general, for a setup with N sensors located in such a way that
any combination of three sensors describes a triangle there is a total of

(
N
3

)
= N !

6(N − 3)!
spheroid combinations. For any combination of two sensors there is a measurement and
for each sensor there is further one measurement (from the sensor to the object and back
to the sensor). Consequently, the total number of measurements with N sensors is

(
N
2

)
+ N = N !

2(N − 2)! + N = N(N + 1)

2
.
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Figure 7.6: The result of varying both r and (from top to bottom)w 1, w2,
or w3 subject to rw ∈ FP QS . All other values are from Table 7.1 and 7.2.
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Figure 7.7: The same objects as Fig. 7.6 are shown here with z contours.

Table 7.3: Number of sensor and measurements.
# of sensors (N) 3 4 5 6 7 8 9 10
Spheroid combinations 1 4 10 20 35 56 84 120
# of measurements 6 10 15 21 28 36 45 55

These two number for N = 3, . . . , 10 are given in Table 7.3. It is obvious that four sensors
provide plenty of information for determining r . In a real life setup this redundancy can
be very useful to reduce the effect of noise. However, it is not immediately clear how to
do this.

7.4 Locations of Sensors

Introducing a multiplicity of sensors brings up a new and rather important question. The
complete freedom in the locations of the sensors (except no three sensor can be on a line)
makes it relevant to ask what the optimal locations are for N sensors. This question relates
to real applications, since the task of finding the location of the reflecting object is trivial
(once the intersection function is given) in a theoretical setting. Optimality of sensor
locations in this context means locating the sensor such as to have the determination of
the location of the reflecting object being least sensitive to factors such as measurement
noise, hardware degeneration, finite accuracy, rounding errors etc. which inevitably will
affect the ‘goodness’ of the conversion from high dimensional data to three dimensions.
Finding the optimal sensor locations thus becomes a matter of combining the influence of
each of these factors with the behaviour of the intersection function. Note that the four
sensors in Fig. 7.2 are not in any way claimed to be optimally located, they are merely
located in what seems to be a nice and close-to-symmetric way.

Although optimality to a great extent depends on a priori unknown factors there are
still some theoretical consideration worth doing. In fact, some choices of sensor locations
leads to high sensitivity without the possibility of reducing it by either software and hard-
ware solutions. For the purpose of considering theoretical optimality the first step is to
determine which mathematical properties of the intersection functions have any influence
in this context, and the second step is to determine which model parameters governs these
properties.
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7.4.1 Optimal Locations

The location of the reflecting object is found as the common point of the intersection
curves described in the previous sections. Without noise this point is uniquely defined
since all intersection curves coincide at the same point. With noise chances are that no
two intersection curves coincide. In the latter case some method is needed to determine
which point is ‘best’ or ‘closer’ to the right point. This method is necessarily based on
not just a single point on each intersection curve, but rather on a interval of the curve, or
indeed the whole curve. With two intersection curves a possible solution is to determine
the smallest distance between (points on) the two curves, and then let the ‘intersection
point’ be the point which is located half way in between. The question of usefulness
of this particular approach is left unanswered at this point. It is easy to come up with
variations of this idea, and they all share the need for finding some distance between
two (or more) curves. Such an operation is less sensitive when the curves are closer to
being perpendicular than parallel. The primary question is therefore (in regards to sensor
locations) how to control the intersection curves such as to comply with the desire to have
‘mostly perpendicular curves’.

This is to some extent easily answered by Lemma 7.14 which states that any intersec-
tion curve projected onto the xy plane is part of a line going through the centre of the cir-
cumscribed circle. Thus, having the centres well separated guarantees a not insignificant
angular difference between the curves. Moreover, the curves exist in three dimensions, a
fact that can cause an increase, but never decrease, in the angular difference.

This raises two new question: 1) What is the optimal location of the centres, and 2)
how can the centres be placed in a given pattern? The latter question is relevant since the
locations of the centres are completely determined by the location of the sensors.

There are one important observation relating to the first question. Whenever the (x, y)
coordinate of the common point of the intersection curves (i.e. the projection of the posi-
tion of the reflecting object onto the xy plane) lies within the convex hull spanned by the
centres of the circumscribed circles (which is a quadrilateral with four sensors) there is a
lower limit determined by the ‘flatness’ of the convex hull to the angles between the inter-
section curves. No such limit exists outside this convex hull. This lower limit is relatively
high when the ’flatness’ of the convex hull is small. At least for a four sensor setup this
observation is in favor of a large, close to being square, quadrilateral.

But the two questions cannot be finally answered independently, especially not in a
real setup which is subject to physical constraints. The dependency between the location
of sensors (or more accurately, corners of the triangles) and the centres of the circum-
scribed circles is by no means linear in behaviour, and consequently small adjustments
of the location of a corner might have a significant effect on the location of the centre,
and vice versa. Moreover, some pattern of centres cannot be achieved (except in a limit
sense).
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7.4.2 Sensor Locations and Centres of Circumscribed Circles

It is fairly easy to describe the relation between four sensors and the centres of the cir-
cumscribed circles. Since the centre of the circumscribed circle to a triangle is the inter-
section point of the three (and thus two of) the perpendicular bisectors of the sides, each
of the four centres is found as the intersection point of the perpendicular bisectors of two
adjacent sides in the (non-intersecting) quadrilateral spanned by the four sensors. This
is shown in Fig. 7.8 where the sensor locations are named (x n, yn) and the centres are
named (x̃n, ỹn).

(x3, y3)

(x4, y4)

(x̃4, ỹ4)

(x̃1, ỹ1)

(x2, y2)

(x̃2, ỹ2)

(x̃3, ỹ3)

(x1, y1)

Figure 7.8: Four sensors span a quadrilateral (solid line) and a total of
four circumscribed circles can be generated. The four centres each lies on
the two perpendicular bisectors (dashed lines) of the sides which are shared
by the quadrilateral and the circumscribed triangle.

Two things are immediately noted. Firstly, the quadrilateral spanned by (x̃ n, ỹn) looks
like it might be congruent to the quadrilateral spanned by (x n, yn). Secondly, the two
points (x̃1, ỹ1) and (x̃2, ỹ2) lie on the perpendicular bisector to the side (x 1, y1)− (x2, y2)

(and likewise for the three other sides).
The first observation is unfortunately not correct. To each angle v n in the original

quadrilateral there is a corresponding angle νn such that νn = π − vn . Although this
gives a close relation between the two quadrilaterals, it means that they are not in general
congruent. They are in special cases, for instance when two opposing sides are parallel.
The relation between the two quadrilaterals can be uniquely determined, however. Inci-
dentally, the second observation provides the equations necessary to derive this relation.

Since the line �̃ through (x̃1, ỹ1) and (x̃2, ỹ2) is perpendicular to the line � through
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(x1, y1) and (x2, y2) we have

[
x1 − x2 y1 − y2

] [x̃1 − x̃2
ỹ1 − ỹ2

]
= 0 , (7.18)

and likewise for the three other sides. We also noted that �̃ intersects � at the midpoint
between (x1, y1) and (x2, y2). Since the inner product of the normal vector to a line and
any point on the line is the same for all points, we also have

[
ỹ2 − ỹ1 x̃1 − x̃2

] [x1 + x2
y1 + y2

]
= 2

[
ỹ2 − ỹ1 x̃1 − x̃2

] [x̃1
ỹ1

]
, (7.19)

and likewise for the three other sides. It is possible to find other equations describing
the relations, but the ones presented here have one nice property; they are linear in the
unknowns (x1, y1) through (x4, y4). Expanding the eight equations gives the following
equation to be solved






x̃1− x̃2 ỹ1− ỹ2 x̃2− x̃1 ỹ2− ỹ1 0 0 0 0
0 0 x̃2− x̃3 ỹ2− ỹ3 x̃3− x̃2 ỹ3− ỹ2 0 0
0 0 0 0 x̃3− x̃4 ỹ3− ỹ4 x̃4− x̃3 ỹ4− ỹ3

x̃1− x̃4 ỹ1− ỹ4 0 0 0 0 x̃4− x̃1 ỹ4− ỹ1
ỹ1− ỹ2 x̃2− x̃1 ỹ1− ỹ2 x̃2− x̃1 0 0 0 0

0 0 ỹ2− ỹ3 x̃3− x̃2 ỹ2− ỹ3 x̃3− x̃2 0 0
0 0 0 0 ỹ3− ỹ4 x̃4− x̃3 ỹ3− ỹ4 x̃4− x̃3

ỹ4− ỹ1 x̃1− x̃4 0 0 0 0 ỹ4− ỹ1 x̃1− x̃4











x1
y1
x2
y2
x3
y3
x4
y4






= 2






0
0
0
0

ỹ1 x̃2 − x̃1 ỹ2
ỹ2 x̃3 − x̃2 ỹ3
ỹ3 x̃4 − x̃3 ỹ4
ỹ4 x̃1 − x̃4 ỹ1






. (7.20)

Note that the first row corresponds to (7.18), while the fifth row corresponds to (7.19).
Solving this equation means inverting the square matrix. Fortunately, the matrix has full
rank in most cases. Examples of degenerate cases are when the two center points coin-
ciding and when the four centres span a rectangle (in both cases the rank is 6). Assuming
that the the matrix is not degenerate the solution to (7.20) is provided directly by invert-
ing the matrix. Unfortunately, the determinant is a huge expression, and consequently, the
solutions are not very nice. For instance x 1 = N/D where (x̃ and ỹ are written as x and
y in the following two expressions)

N = y2
3 x2

4 y1 − y2
1 x2

4 y3 − x2
1 y2

2 y3 + x2
4 y2

2 y3 − x2
4 y2

3 y2 − y2
1 x4y3x3 − x2

2 y2
1 y3
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− y2
2 y3x3x4 − x2y2

1 x4y4 − x2
1 x2x4y4 − x1y2

2 x4y4 + x1x2
2 x4y4 + 2x2y2 y1x4y4

− 2y4x1x2y2 y1 + y2
2 x2

1 y4 + x2x1y2
4 y2 − x2

2 y1 y2
4 + x2x1y1y2

4 + x2
2 y2

1 y4

− y2x2
1 y2

4 + x2
1 y2y2

3 + 2y3y2x1x4y4 − 2y3x2x1y2
4 + y3x2

2 y2
4 − 2y3x2x4y2y4

+ y3x2
1 y2

4 − y2
3 x1y4x4 + 2y2

3 x1x2y4 + 2y1y3x3x4y2 + y2
3 x2x4y4 − y2

3 x2
1 y4

− y2
3 x2

2 y4 − 2x1y2y3 y1x4 + x1y1y2
2 x4 − x1x3 y1y2

2 + x1y2
2 y3x3 − x1x2

4 y1x3

− x1x2 y2y2
3 + x1x2

4 y3x3 + x1x4 y1x2
3 − x2

3 x1y4x4 + 2x1x2y2y3y1 + x1x2x2
4 y1

− x1x2x2
4 y2 − x1x2x2

3 y1 + x1x2x2
3 y2 − x1x2y1y2

3 + x2
1 x2x4y2 − x2

1 x4y3x3

− x1x2
2 y3x3 + x2

1 x2y3x3 − x2
1 x2 y2x3 + x1x2

2 x3y1 − x1x2
2 y1x4 + x3x1y2

4 y3

− x3x2 y2y2
4 − x3x4x2

2 y4 − x3x2 y2
4 y3 + x2y2

1 y3x3 + x2x2
4 x3y2 − 2x2y1 y2

3 x4

+ 2x3y4x1y1 y2 + 2x3y1x2 y2
4 − x3x1y1y2

4 + x3x2
1 x4y4 − 2x3y2

1 x2y4 − y1x2
4 y2

2

+ x2
3 y1 y2

2 + x1 y1y2
3 x4 + x4y2

2 x3 y4 − 2y2x3y1x4y4 − x2
3 y4y2

2 + x2
3 y2

4 y2

− y2x2
3 y2

1 − y1x2
3 y2

4 + y2
1 y4x2

3 + x2
4 y2y2

1 + x4y4 y2
1 x3 + x2

3 x2x4y4 + x2x3 y2y2
1

− 2x2y2y3y1x3 + x2
2 y1y2

3 − x2x4x2
3 y2 + x2

2 x4 y3x3 + 2x2y2
1 y3x4 − x2y2y2

1 x4

+ x2y2 y2
3 x4 − x2x2

4 y3x3 + 2x3y3x2y2y4 − 2x3y3x1 y4y2

D = y4x3x2
1 − y4x2

3 x1 + x2y2
1 y3 + y2

2 y3x4 + x2
4 x3y2 − x4x2

3 y2 + x2
2 y3x4 − x2x2

4 y3

− y2
1 x2 y4 + y2

1 x3y4 − y1x3y2
4 + y1x2y2

4 + x1x2
2 y4 − x2

1 x2y4 + x2
1 x2y3 + y2y2

1 x4

− x2
1 y2x3 + x2

1 x4y2 − x2
1 y3x4 − x1y3x2

2 + x1x2
3 y2 + x1y2y2

3 − x1x2
4 y2 − y2

1 y3x4

+ x1x2
4 y3 − x2

4 y1x3 − x1y2
2 y3 + x4y1x2

3 − y4x3 y2
2 + x2y4y2

3 − x2y2
4 y3 + x2

2 x3y1

− y2y2
3 x4 + x2

3 x2y4 − x3x2
2 y4 − y1y2

2 x4 − x3y2 y2
1 + x3y1y2

2 + y1y2
3 x4 − x2

2 y1x4

+ x1y2
2 y4 − x1 y2y2

4 − x1y2
3 y4 + x1y2

4 y3 + y2x3 y2
4 + x2x2

4 y1 − x2y1y2
3 − x2x2

3 y1

This and the seven other similar expression does not by themselves provide much knowl-
edge on the relation between the location of sensors and the centres of the circumscribed
circles. But they do provide easy means for numerical experiments regarding sensor and
centre locations.

7.4.3 Examples of Sensor Locations

An important conclusion of the results presented in the previous section is that locating
the sensors in a rectangle (or close to a rectangle) is a bad idea in respect to robustness.
The sensor locations in Fig. 7.2 are no exception, as Fig. 7.9 shows. Here the four centres
of the circumscribed circles are shown along with the intersection curves for the point
(4, 3.5, 2). It is immediately evident from the figure that determining the position of the
reflecting object is very sensitive to variations in the intersection curves because they are
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Figure 7.9: Three different locations of sensor. The solid lines show the
quadrilateral and triangles spanned by the sensors, while the four small
circles shown the centres of the circumscribed circles. The left column
shows the projection onto the xy plane.
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‘almost parallel’. Moving one sensor to another location (here F2 are moved from (9, 5)
to (9, 1)) improves the robustness even though the quadrilateral spanned in the latter case
seems to be just as close to a rectangle as the quadrilateral in the former case.

It is important to note that the sensitivity is high in the first example independently of
the location of the reflecting object since the centres of the circumscribed circle almost
coincide. In the second example the sensitivity is reduced inside the quadrilateral spanned
by the centres because the directions to the four centres are more different for points in
this region compared to points outside this region, as described previously in this section.
It is therefore an important observation that the centres now span a significantly larger
quadrilateral. Choosing a completely different set of locations, see the third examples in
Fig. 7.9, can give a much high robustness since the quadrilateral spanned by the centres
is significantly larger than in the second examples.

7.5 Assumptions Revisited

There are a number of differences between the presented model and reality. The most
obvious and important ones were presented in Section 7.2 in the beginning of this chapter.
They are still valid and they do raise the question on the usability of the model. Being
clearly inaccurate the model does not provide the final solution to the mapping from high
dimensional data to 3D position, and the usability is therefore more of a qualitatively
kind rather than quantitatively. This section briefly discusses the importance of the model
inaccuracy, possible ways of handling this, and what effect they have on the solution given
by the model.

7.5.1 Emitter and Receiver Characteristics

The choice of ellipses (and thus spheroids) to model the reflection map in Section 7.3
were primarily based on two assumptions. The first was that the emitters and receivers
have uniform directional characteristics, the second was that the reflecting object has an
ability to reflect light in a certain manner. The former assumption is discussed here, while
the second assumption is discussed in Section 7.5.2.

In order to give a qualitatively description of the significance of the directional charac-
teristics of the emitters and receivers Fig. 7.10 shows the contours of the reflection maps
under the assumption of uniform and angularly varying directional characteristics (in the
first two rows as a cosine, in the third row with a modeled characteristic). The emitter and
receiver are located in (0,−1) and (0, 1), respectively, and e and r are the vectors from
any point in the 2D map to the emitter and receiver, respectively.

The assumption made in this chapter gives the non-diffuse uniform directional reflec-
tion map (top left). The contours in this graph are exactly ellipses with focal points in
(0, 1) and (0,−1), as was argued in the beginning of this chapter. This also follows from
the reflection function shown above the graph. Introducing the angularly varying direc-
tional characteristics for emitter and receiver (a cosine in both cases) produces a some-
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Figure 7.10: Contours for simulated reflection maps under various as-
sumptions (the lower right contour plot is very close to measurement data). 171



Section 7.5: Assumptions Revisited

what different contour graph (top right). The difference from the uniform characteristic is
apparent, especially in the vicinity of emitter and receiver.

Introducing the diffuse reflection in its generic form actually does not change the
contour lines very much except close to the emitter and receiver. Again there is a different
between uniform and cosine directional characteristic.

Using a modeled reflection, see Chapter 8, the contour lines become asymmetric and
the directional characteristic suddenly seems to have a major influence on the reflection
map. And nonetheless the modeled reflection map with cosine characteristics is in general
reasonably close to the simple formed used for constructing the geometrical solution in
this chapter. Although the difference are too big to be neglected it seems fair to assume
that the qualitative conclusions drawn in this chapter does to some extent apply to real
setups, too.

7.5.2 Reflecting Object

In the introduction to this chapter it was mentioned that the assumptions for this model are
rather unrealistic. Especially the assumptions on the reflecting object seemed far-fetched.
The object should reflect the light such that the isocandela sets are prolate spheroids. This
is achieved by an intensity function on the form (7.1). This calls for the reflection to be
without any scattering and in the direction of the receiver. The former property is easily
achieved, whereas the second posses a problem. As it was hinted in the beginning of the
chapter it is not possible to have reflection in different directions in the same point. A
very small sphere

comes close, but does not obtain the exact property except in a limiting sense. Using a
very small sphere might therefore be a good idea, at least in a theoretical setting where the
emitter is considered a point source. In a real setting where the emitter has a finite spatial
extension the curvature of the reflecting object determines the amount of light reflected
in any given direction, in particular towards the receiver, i.e. the smaller the sphere, the
smaller the reflection of the emitter looks from the receiver’s point of view. Enlarging the
sphere does reduce this problem, but at the same time the object becomes more distant
from the property of reflecting in different directions from the same point in space.

Perhaps a satisfactory object, i.e. a good trade-off between the opposing desired prop-
erties, can constructed in the following way. The object is constructed using a convex
polyhedron with a sufficient high number of faces and with (almost) equal angles between
them. This could be for instance a trapezoidal or pentagonal icositetrahedron (24 faced
polyhedron). The faces need to have the property that incoming light is scatter slightly
such that in the case where a face of the polyhedron is almost, but no quite tangent to a
spheroid, there is still some light reflected onto the receiver. More precisely, the reflection
characteristic of the surface should be such that an incoming ray of light perpendicular to
the surface is reflected such that the outgoing rays of light covers a range from [−θ; θ ],
where angle 0 is perpendicular to the surface and where θ is the angle between normal
vectors to two adjacent faces on the polyhedron. The principle is shown in Fig. 7.12. As
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Figure 7.11: A trapezoidal (left) and a pentagonal (right) icositetrahedron.

Incoming light

Face of polyhedron

normal vector

Reflected

Incoming light

light θ

θ

θ

2

θ

θ

Figure 7.12: The principle for an alternative reflecting object.
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this figure demonstrates the object will have the property that any two faces will reflect
the incoming light in a way that forms ‘disjoint’ cones of reflected light. Each cone rep-
resents an angle equal to the angle between normal vectors of adjacent faces. This will
enable the object to reflect light in all direction (like a sphere) without the incoming light
being reflected in any direction by more than one face. Such an object would indeed be
tangent to several different spheroids at almost the same point (provided that the object
is small), while at the same time taking into account the finite size of the emitter. The
downside is the introduction of some degree of scattering. This is kept at a minimum by
the many-faced polyhedron, however.

One question remains; how to produce a surface with the desire property. This could
be done by a structure like the one shown in Fig. 7.13. The surface structure is shown in
a side view, i.e. the same view as in Fig. 7.12. Seen from the top the structure consists
of concentric annuli, each with the outer edge higher than the inner edge (except for the
center circle, which is flat).

Figure 7.13: A suggestion for the structure of surface with a slight scat-
tering property.

It is not known how well this construction will approximate the fictitious object which
is the basis of the spheroidal-based model presented in this chapter.

7.6 Conclusion

A geometrical model of the mapping of CGMs to spatial position has been presented
in this chapter. A series of assumptions were imposed to reduce the complexity of the
model, and a number of parameters were included to provide a flexible model. The result
is a mapping which in some respects is quite useful for determining properties of multiple
emitter/receiver setups, but in other respects is inaccurate to an extent which rules out the
immediate use in real applications. Despite the fact that the model is quite restricted by
the assumptions the model is still rather complex. This does not rule out implementation
in signal processing hardware, though.

The result of modeling the multiple emitter/receiver setup is a set of equations which
directly maps CGMs to a coordinate in �3 . The geometrical derivation ensures the an-
alytical correctness of the equations, but does not guarantee numerical stability. On the
contrary, the equations includes polynomial forms which typically have a inherent insta-
bility problem. The author has investigated a method for stabilizing the mapping, but no
conclusion has been reached so far, and the results so far are therefore not reported in this
thesis.

The question of the optimal locations of the emitters and receivers was also discussed.
An analysis of the mapping equations revealed that certain sensor positions were a priori
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bad in the sense that the mapping becomes sensitive to disturbances independently of any
stabilizing methods applied to the data (such as filtering). In fact, it was demonstrated
that placing emitter and receivers at the corners of a square increased the sensitivity to
infinite as a singularity in the mapping occurs in that situation. It was also discovered that
a best case scenario is application specific as the optimal placement depends on the space
available for arranging the emitters and receivers.

7.6.1 Recognition of Objects

An interesting alternative to determining the position of a object given its physical struc-
ture is to determine physical structure given its position. That is, recognizing an object in
a fixed position. An application could be to determine orientation of gadgets on a con-
veyor belt in order to allow a robot arm to grab the gadgets (for painting, packaging, etc.).
The procedure is in many respects the same as presented here, i.e. acquiring reflectivity
information about the object and map it to form or orientation, or use it for classification.
The latter is relatively easy if a priori training of the sensor system is possible. The second
setup presented in Chapter 5 is originally designed object recognition. It employs three
emitters and three receivers, and is currently trained to recognize thirteen different objects.
One of them is the LEGO model shown in the fixed position in Fig. 5.5 on page 100. This
functionality has not been discussed in this thesis, partly to limit the extent of the thesis,
partly because another Ph.D. study focusing on exactly this functionality has just been
started to continue the work initiated here.
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Modeling Reflection
Maps 8
The need for a model of the reflection map in an ‘emitter, receiver, reflecting object’ setup
became clear in the previous chapter. In the attempt to determine the position of an object
in three dimensions the need for finding intersections of isocandela curves emerged. A
series of assumptions lead to prolate spheroids as a model for such curves, but it was also
argued that the assumptions were perhaps not very realistic. Consequently, there is still
a need to determine how such isocandela curves behave in reality. For the purpose of
determining spatial position of an object there is also a need for modeling the curves, and
if possible, to parameterize the curves to ease the implementation of the intersection idea
presented in the previous chapter.

In this chapter a model involving the emitter and receiver characteristics as well as
the reflection characteristics of the object is presented. While the emitter and receiver are
modeled according to real physical specifications, the reflecting object is a considered to
be completely round, i.e. a ball. This reduces the model considerably as the orientation
of the object is then of no concern. The model is constructed in two dimensions in order
to reduce the geometrical and the numerical complexity. Obviously, this might turn out
to be insufficient since the real setup is, of course, in three dimensions. All references
to the round object is therefore ‘circle’, although this conflicts with a rigid interpreta-
tion of properties such as the surface of the object. However, there are no mathematical
difficulties in having a ‘surface’ in two dimensions.

The first section presents the setup and the individual components. Then, in Sec-
tion 8.2, the model in the form of an integral equation is developed by a series of geo-
metrical observations. The real reflection intensity map is acquired by measuring on a
real setup. This and the resulting measurements are presented in Section 8.3 which also
introduces one of two methods for evaluating the model. Then in Section 8.4 the integral
equation is rewritten to an inverse problem in order access the robustness of the model.
Getting a useful solution requires regularization which is discussed in Section 8.5. Finally,
Section 8.6 gives a brief conclusion of the chapter.
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8.1 Components in the Model

The entire setup consists of three separate components, namely the emitter, the receiver,
and the reflecting object. Each component has a geometrical description which is pre-
sented in the following subsections. Since the movable object is reflecting the light it
is necessary to include a surface reflection model which is introduced in Section 8.1.3.
Finally, a brief introduction to the structure of the model is given in Section 8.1.4. The
derivation of the model takes place in Section 8.2

8.1.1 Emitter and Receiver

The emitter is capable of emitting light in many directions with varying intensity. Typi-
cally, the data sheet specification of the directional characteristic of an LED is a Gaussian-
like function, and to indicate the width of this the half angle is often specified, i.e. the an-
gle between the maximum intensity direction and the half of maximum intensity direction.
In many cases, e.g. low-cost LEDs, the true directional characteristic can be significantly
different from the data sheet specification. At any rate the directional characteristic of the
emitter must be geometrically described to become a part of the reflection map model.

In contrast to the emitter the directional characteristic of the receiver is straight for-
ward. Since it consist of a flat piece of semiconducting material the only quantity (con-
cerning the incoming light) affecting the current generated is the amount of light arriving
at the receiver. For parallel light rays this is equal to cos θ times the intensity of the light,
where θ is the angle deviation between the normal to the receiver and the incoming light.

In the model the emitter is considered infinitely small while the receiver is assumed
to have a (small) spatial extension.

8.1.2 Reflecting Object

The emitted light signal can be transferred in four difference ways from to the receiver.

By reflection from small, nearby objects This is (supposed to be) the primary sources
of light from the receivers point of view, since the intensity of this light is the basis
for determining the channel gain.

By reflection from large, distant objects This could be bright clothing, windows, walls
etc. Although the intensity of the emitted light is typically very low large areas such
as a wall can still contribute significantly to the amount of reflected light.

Directly from emitter to receiver This could be through the air, through some conduc-
tor like glass or plastic, or by reflection from components close to the emitter or
receiver (like electrical components and plastic fittings for holding emitter and/or
receiver).

Through the wiring and cross talk Since the emitters and receiver often share the power
source there is a electrical connection between them. Moreover, to keep the cost low
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there is only a sparse screening of the circuits, making cross talk a possible contribu-
tor to the received signal.

The undesired contributions are all more or less difficult to reduce, and almost impossible
to eliminated completely. Therefore it might be necessary to include some of them in the
model. In the case of the measurements presented in Section 8.3.1 precautions have been
taken to reduce the impact of ‘false’ reflection.

To determine the characteristics of the setup (or how well the model fits the true setup)
it is imperative to use a known object. To ease the modeling a sphere (a circle in 2D) is
chosen. This also eliminates any discussion on the effect of rotating the object.

8.1.3 Surface Reflection Model

The next concern is how the light is reflected from the surface of the circle. For other
surfaces than a perfect mirror, the answer is not particularly simple. There is, however,
a fairly simple way to approximate the reflection. The idea is as follows: Since light
in reality is a vast number of photons, it is instructive to consider the behaviour of just
one photon hitting the surface. It seems fair that this one photon is either absorbed or
reflected in some direction (which is determined by the properties of the surface), and
that the occurrence of both events and the direction is controlled by probability. If this
probability is known (e.g. determined by measurements of that surface), it is possible
to calculate, for a given number of photons, how many are absorbed and how many are
reflected in any given direction. This situation can be approximated by a number of flat,
not completely reflecting mirrors whose angles with respect to the surface is determined
by the above-mentioned probability. The advantage of this mirror model is that it is easy
to predict how light is reflected when nothing but the angle of incidence is known. Let
m(ρ), ρ ∈ [−π

2 ; π2 ], be the probability density function (p.d.f.) of the angles of the
mirrors, where ρ is the angle with respect to the (flat) surface, and let κ ∈ [0; 1] be the
reflection coefficient for the (imperfect) mirrors. If for instance the angle of incidence for
the light is ϕ the amount of light reflected at the angles −ϕ must be equal to κ times the
probability that the mirrors have angle 0. Generally if the angle of incidence is ϕ then the
amount of light reflected in a given angle interval ρ1 to ρ2 must be

κ

∫ ρ2

ρ1

m(ρ + ϕ)dρ . (8.1)

In Fig. 8.1 the two angles ρ and ϕ are shown. The p.d.f. for the angle of mirrors could
be a normal distribution (Fig. 8.2 left), and the corresponding p.d.f. for the reflected light,
when the angle of incidence is ϕ, is just the normal distribution translated (Fig. 8.2 right).
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ϕ Reflected light

Incoming light

ρ
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Figure 8.1: The angle of the incoming light is denoted ϕ and the angle of
reflection is denoted ρ. The amount of light reflected in a given direction is
determined by the p.d.f. m(ρ).

8.1.4 Model Idea

After considering several approaches for modeling this setup the following seemed most
appropriate. The idea is to integrate with respect to the angle of emitted light. Since
the emitter covers a half circle, the integration interval is of length π . For convenience
the interval [−π/2;π/2] is chosen. The integrand is then a function which maps angle
of emitted light into an intensity at the receiver. This integrand vanishes outside the
angle interval corresponding to the extend of the circle. But some intervals on the circle,
although receiving light, do not reflect light onto the receiver, since they are ‘too far
around the circle’ to be seen by the receiver. This is exemplified by interval 1 on Fig. 8.3.
In the corresponding integration interval the integrand should also vanish. The interval
[θ1; θ2] in which the integrand does not vanish is determined by geometrical observations
in Section 8.2.1, and it is denoted emitter integration interval. In Fig. 8.3 the setup is
shown with the two angles θ1 and θ2. The two radius lines show what part of the circle is
within the integration interval. To make the model a little more simple the partly visible
interval, no. 2 in the figure, is considered not visible from the receiver. This introduces
only a very small error as the spatial extension of the receiver is much smaller than the
distance from the circle to the receiver.

For any angle θ the reflection is modeled as described in Section 8.1.3, and it is thereby
determined how much light is reflected in the direction of the receiver. This procedure will
include the directional characteristic of the receiver (which is described in Section 8.1.1
about the receiver).

8.2 Integral Equation Model

From the descriptions in the previous section it is clear that two integrals are needed. One
for the emission of light and one for the reflected light. Hence two integration intervals
must be determined. This is done in the following two subsections, starting with the
emitter integration interval in Section 8.2.1 followed by the reflector integration interval
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Figure 8.2: To the left is an example of a p.d.f. m(ρ)modeling the surface
reflection, where the angle of incidence ϕ is just below π/4. To the right is
the reflected intensity as a function of angle of reflection. This is just the
p.d.f. m translated −ϕ. An example of an integration interval [ρ 1; ρ2] is
also shown.

in Section 8.2.2. Then the integral equation is presented in Section 8.2.3. Finally, some
examples of using the model is given. The basic components in the model is shown in
Fig. 8.4. The two integration variables are θ and ρ for the emitted light and the reflected
light, respectively. The center of the reflecting circle is (C x ,Cy) and it has radius R.

8.2.1 Emitter Integration Interval

Since most of the initially known positions (of emitter, receiver, and reflector) are in
Cartesian coordinates the angles θ1 and θ2 are derived via the slopes of lines through the
emitter. The slopes are mapped to angles by arctan.

The first slope α1 = tan θ1 can be found by solving an equation in which the radius
R of the circle equals the distance from center of the circle to lines through (0, E). Since
‖a× b‖ = ‖a‖‖b‖ sin v, where v is the angle between a and b, this can be accomplished
with

∣∣∣∣∣∣




1
α1
0



×



Cx

Cy − E
0





∣∣∣∣∣∣
√

1+ α2
1

= R ⇔ (
Cy − E − Cxα1

)2 = R2 + R2α2
1 (8.2)

Rewriting this yields

(Cx
2 − R2)α2

1 + 2Cx (E − Cy)α1 + (E − Cy)
2 − R2 = 0.
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Upper edge

Lower edge

Emitter

Receiver

θ1 θcθ2

C3

2
1

Figure 8.3: The position of the emitter, receiver, and reflecting circle.
The integration interval is θ1 to θ2. Note that while the emitter is consid-
ered infinitely small the receiver has finite length. The three enumerated
intervals are all illuminated and (1) invisible, (2) partly visible, (3) visible
from receiver.

Since the solution of interest is ‘below’ the circle (see Fig. 8.3), the desired slope is

α1 = min
Cx (Cy − E)±

√
Cx

2(E − Cy)
2 − (Cx

2 − R2)
(
(E − Cy)

2 − R2
)

Cx
2 − R2

,

which simplifies to

α1 = Cx (E − Cy)+ R
√

Cx
2 − R2 + (Cy − E)2

R2 − Cx
2 ,

because Cx > R > 0. The second slope is determined by one of the two points on
the circle where the tangent line goes through the lowermost edge of the receiver, that is
(0, Rl). (Note that this disregards a small interval on the circle from which only part of the
receiver is visible. This is exemplified by interval 2 on Fig. 8.3.) This point on the circle
is found by first determining the slope β of the tangent line by an equation like (8.2), then
constructing a vector with slope −1/β (normal to line) and length R, and finally adding
this vector to (Cx ,Cy). In formulas the process looks like the following. First the slope
is found to be

β = Cx (Rl − Cy)− R
√

Cx
2 − R2 + (Cy − Rl)

2

R2 − Cx
2 .
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Figure 8.4: The basic components in the model.

The radius vector added to the center vector yields the point
(
Cx − Rβ(1+ β2)−1/2, Cy + R(1+ β2)−1/2).

The second slope α2 is then given as

α2 = Cy + R(1+ β2)−1/2 − E

Cx − Rβ(1+ β2)−1/2
= (Cy − E)

√
1+ β2 + R

Cx

√
1+ β2 − Rβ

.

The integration interval is [arctanα1; arctanα2].

8.2.2 Reflection onto the Receiver

Since the integration variable is the angle (and not the slope) an equidistantly discretiza-
tion of the integral interval ensures that the amount of emitted light (the directional char-
acteristic of the emitter disregarded) is the same for any discrete angle in the integration
interval. For each discrete angle the emitted light covers a small interval on the circle.
This interval will be considered straight, since this allows it to be described by the surface
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model presented in Section 8.1.3. The distribution of the light reflected by this small area
is then determined by m(ρ) and the angle of incidence ϕ. For any given angle θ ∈ [θ 1; θ2]
the light arrives at the circle in a point P determined as the intersection of the circle and
the line through (0, E) with slope tan θ . Knowing this point the angle of incidence is
easily found.

Given the distribution of the reflected light the amount of light reflected onto the
receiver is found by considering the small area as a point, since this gives the small area
the same properties as an emitter, i.e. the total amount of light ‘emitted’ within an angle
interval, as covered by the receiver (e.g. [ρ1; ρ2] in Fig. 8.5) is found by integration. Since
the reflecting point P is known, it is easy to determine this interval. The entire setup is
depicted in Fig. 8.5.

ρ2

ϕ

ρ1

Emitter

Receiver

θ

Reflecting area

Reflecting object

P
Ru

Rl

E

Figure 8.5: The light emitted at (the discrete) angle θ falls on a small area,
which reflects the light onto the receiver. For a given θ the quantities ϕ, ρ 1,
ρ2, and P are determined by geometrical calculations.

First the point P is found. The points of intersection of the line with slope α = tan θ
and the circle

(0, E)+ t (1, α), (x − Cx )
2 + (y − Cy)

2 = R2,

is determined by those t which solves

(1+ α2)t2 + 2(α(E − Cy)− Cx )t + (Cy − E)2 + Cx
2 = R2.
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The smallest root

t =
α(Cy − E)+ Cx −

√
2Cx(Cy − E)α + (R2 − C2

x )α
2 − (Cy − E)2 + R2

1+ α2

inserted into the line yields P. The explicit expression is omitted, and the coordinates to
the point is denoted (Px , Py).

The angle of incidence ϕ is found as the angle between the ‘slope vector’ [1, α] � and
radius vector [Cx − Px ;Cy − Py]�. This would usually be

ϕ = arccos

[
1
α

]� [Cx − Px

Cy − Py

]

R
√

1+ α2
,

but this formula will always give a positive number. In order to give ϕ the right sign
(which dependents on whether the incoming light is ‘above’ or ‘below’ the normal to the
circle) the following is used instead.

ϕ = arccos

[−α
1

]� [
Cx − Px

Cy − Py

]

R
√

1+ α2
− π

2

= arccos
Cy − Py + (Px − Cx )α

R
√

1+ α2
− π

2
. (8.3)

The two angles ρ1 and ρ2 are found in a similar fashion. The formula for ρ 1 is

ρ1 = arccos

[
Py − Ru

−Px

]� [
Px − Cx

Py − Cy

]

R
√

Px
2 + (Ru − Py)2

− π

2

= arccos
(Py − Ru)(Px − Cx )− Px(Py − Cy)

R
√

Px
2 + (Ru − Py)2

,

while the formula for ρ2 is identical except that Ru is substituted for Rl .
There is, however, another way to calculate ϕ which comes in handy when interpreting

the integral equation. From Fig. 8.6 it follows that

r

sin(π − ϕ) =
R

sin(θ − θc)
⇔ ϕ = π − arcsin

r sin(θ − θc)

R
.

and when rewriting to obtain the correct sign

ϕ = arcsin
r sin(θ − θc)

R
. (8.4)
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ϕ

Emitter

θ

C

θc

r

R

Figure 8.6: An alternative way to find ϕ.

Since this equation is in polar coordinates, like the integral equation in the next section,
it is the one to use when interpreting the integral equation. Notice, however, that the
measurements presented in Section 8.3.1 are in Cartesian coordinates. It is therefore
necessary when implementing the integral equation to either changes the coordinates in
(8.4) using

r =
√

Cx
2 + (Cy − E)2, θc = arctan

Cy − E

Cx

or to use (8.3) instead. Although this form includes the point P, which therefore has to
be calculated, it does not increase the number of calculations since this point is needed
anyway (to find ρ1 and ρ2).

8.2.3 Formulating the Model as an Integral Equation

Having modeled the reflection from the surface with (8.1), the angle of incidence with
(8.4), and by letting Ie be the directional characteristic of the emitter, it is now possible to
form the equation which models the entire setup.

The entire amount of light reflected by the circle onto the receiver is the sum of the
amounts reflected by the small areas which each corresponds to a value of the discrete
angle θ . For infinitely small θ this sum becomes an integral.

I (θc, r) =
∫ θ2

θ1

Ie(θ)

∫ ρ2

ρ1

m
(
ρ − arcsin

r sin(θc − θ)
R

)
dρdθ, (8.5)

where m is any sufficiently nice function (determined by the surface properties of the
circle), θc and r is the center (polar) coordinate of the circle, and

θ1 = arctan
ECx − CyCx + R

√
Cx

2 − R2 + (Cy − E)2

R2 − Cx
2 ,
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θ2 = arctan
(Cy − E)

√
1+ β2 + R

Cx

√
1+ β2 − Rβ

,

β = RlCx − CyCx − R
√

Cx
2 − R2 + (Cy − Rl)

2

R2 − Cx
2 ,

ρ1 = arccos
(Py − Ru)(Px − Cx )− Px (Py − Cy)

R
√

Px
2 + (Ru − Py)2

,

ρ2 = arccos
(Py − Rl)(Px − Cx )− Px (Py − Cy)

R
√

Px
2 + (Rl − Py)2

.

The point P, that is (Px , Py), is found by inserting

t =
α(Cy − E)+ Cx −

√
2Cx(Cy − E)α + (R2 − C2

x )α
2 − (Cy − E)2 + R2

1+ α2

into the line (0, E) + t (1, α), there α = tan θ , θ being the integration variable for the
outermost integral. Moreover

Cx = r cos(θc), Cy = r sin θc.

The quantities R, E , Rl , and Ru are all constants. The visualization of the function
I (θc, r) for a particular circle produces a three dimensional map, which will be denoted
the intensity map for that circle.

8.2.4 Examples of Modeling

To demonstrate what type of ‘output’ the model (8.5) produces a number of examples
are now given. The model has several adjustable parameters, and it would be rather
extensive to explore all possible combination. The figures 8.7, 8.8, and 8.9 show six
different choices of parameters. The position of emitter and receiver are fixed, however.
The most remarkable observations is that for a flat emitter directional characteristic the
position of the circle causing the highest intensity is very close to the receiver and quite far
from the emitter. The cosine emitter characteristic used in the lowermost plot in Fig. 8.7
resembles the characteristic of the LED used for the measured data. The exponential
emitter characteristic function used in the lowermost graph in Fig. 8.8 and both graphs in
Fig. 8.9 have actually been found in one emitter.

To improve the speed of calculations (about 100 times) the innermost integral has
been pre-calculated using

f (x) =






0 for x ∈] −∞;− π
2 [,∫ x

− π
2

m(ρ)dρ for x ∈ [− π
2 ; π2 ],

f (π2 ) for x ∈] π2 ;∞[,
(8.6)
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Figure 8.7: Computed intensity at receiver for given circle center coordi-
nate. In both cases R = 3, E = 5, Ru = −4.9, and Rl = −5.1.
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Figure 8.8: Computed intensity at receiver for given circle center coordi-
nate. In both cases R = 3, E = 5, Ru = −4.9, and Rl = −5.1.
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Figure 8.9: Computed intensity at receiver for given circle center coordi-
nate. In both cases E = 5, Ru = −4.9, and Rl = −5.1.
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which is sampled in 100.000 points in the interval [−π;π]. This is possible because
the integrand in (8.1) is merely a translation φ of m and this corresponds to the same
translation of f . Note that the integral of the functions used (Gaussian functions) is very
small in the intervals ] −∞;− π

2 [ and ] π2 ;∞[ making the approximation fairly accurate.

8.3 Evaluating the Model

The model which has been developed in the previous sections describes a two dimensional
setup with an emitter and a receiver and a circular, diffuse-reflecting object. The output of
the model is a reflection map that shows the reflected intensity of any given position of the
reflecting object. Some assumptions were made to reduce the complexity of the model,
and the next step after constructing the model is therefore to evaluate it, i.e. compare it to
a real reflection map.

For this purpose an experimental setup has been made to provide the necessary data.
This is described in Section 8.3.1. There are many possible means for comparing the
measured and the modeled reflection maps. One such method, based on gradients, is
presented in Section 8.3.2.

A more subtle approach to evaluating the model is using it for estimating the di-
rectional characteristics of the emitter by solving an inverse problem. This method is
presented in Section 8.4 and 8.5.

8.3.1 Measuring a Real Reflection Map

The setup used for acquiring reflection map data is quite similar to the setups described
in Chapter 5. The emitter is the same as used in the third setup, see Section 5.4.6. The
receiver circuit is not described in Section 5, but it is quite similar to the one used in
the second setup, in particular the photo diode is the same type. The WPT channel gain
methods, as presented in Section 4.1.2 starting on page 32, is used to make the measure-
ments. The signal length is 512 samples, sampled at 5 kHz. The reflection map data is an
average over approximately one second (10 signals). A ball of light wood with diameter
60 mm has been used as reflecting object. It is mounted on a 300 mm long stick which is
fixed on the head of an A3-size XY table. This enables the computer performing the data
acquisition to control the XY position of the reflecting object. The accuracy of the table
is < 0.01 mm. The setup is shown in Fig. 8.10.

Reflections has been measured in a grid with 31 × 70 points, which is equivalent to
the physical rectangle [50; 122] × [−130; 70]. The emitter is located at (5,−45) and the
receiver at (5, 50). All units are mm. The measured reflections are shown in Fig. 8.11 with
contour lines and a circle showing the size of the wooden ball. The same data is shown in
three dimensions in Fig. 8.12. The height/coloring of the data is according to measured
intensity which in this case is simply the inner product without any modifications. As
argued in Section 4.6.1, page 55, this is a relative measure with any a priori physical
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Y
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Emitter
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stick

X

Figure 8.10: The setup with an XY table for measuring reflection map
data. The X and Y motion corresponds to the axes on all the plots of the
measured data.

interpretation, and no attempt has been made to related the amplitude of the data to the
physical conditions of the setup.

The reflection map has an interesting structure which is highly asymmetric vertically
and non-monotone horizontally. Both phenomena match poorly with the intuition; that the
emitter and receiver are interchangeable and that the reflected intensity decreases when
the reflecting object is moved further away from the emitter and receiver. The existence of
these phenomena does not have any direct impact at this point. For now the main interest
is determining the accuracy of the model. However, the three dimensional modeling of
a multiple emitter/receiver setup presented in Chapter 7 relies heavily on the reflection
map, in particular the geometrical structure of the isocandela curves.

8.3.2 Quality of Model Measured by Gradients

At a first glance the measured reflection map seems to exhibit the same structure as the
model when emitter and receiver is assumed to have cosine-like directional characteris-
tics, see the lowermost reflection map in Fig. 8.7. However, a closer examination reveals
that there is a mismatch in terms of variation in intensities as well as the directions of the
isocandela curves.

There are several adjustable parameters in the model and it is possible to find the best
match simply by varying all the parameters in an exhaustive search for the optimum. An
important question in the respect is what should be the measure for the goodness of a
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Figure 8.11: The measured reflection map. The small circle shows the
position of emitter and the small square shows the position receiver. The
big circle shows the size of the reflecting wooden ball. The white lines
shows 15 evenly distributed contour lines (isocandela curves). The axes
unit is cm.
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Figure 8.12: A three dimensional view from two different angles of the
measured reflection map with isocandela curves superimposed.
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match. The perhaps most apparent measure is the �2 norm of the difference between the
two reflection maps, but experiments will show that the �2 norm optimum is a model with
isocandela curves quite different from the ones of the measured data and with parameters
that in some cases do not come close to the real value of the parameter.

An alternative measure is therefore the difference between isocandela curves. This
measure can be defined as the total sum of deviations between the projections of the
gradients onto the xy plane in the two maps in each point, i.e. the angular deviation in
the xy coordinates between the normal vectors to the tangent planes in each point. The
projection onto the xy plane is not mandatory, but it makes the measure insensitive to
difference in amplitudes/scaling of the two maps. In the discrete case the tangent plane
must be based on the number of neighboring points, and in the present case the four
adjacent points are used. An exhaustive search with varying parameters yields a result
(not shown here) which is much closer to the measured data than the particular model
presented in Fig. 8.7. However, there is still a significant difference which seems to
originate in the structure of the model rather than the parameters. Recalling that the
model is two dimensional and the measurements are acquired in three dimensions, it
seems worth to attempt to adjust the model to include the third dimension. Instead of
redoing all the geometrical observations and derivations in three dimensions a simple
‘compensation’ can be applied. The extra dimension can crudely be added by multiplying
the reflection map in each point by a factor that is inversely proportional to the distance
from emitter to the point and to the receiver raised to the power n, where n = 1 is the
natural choice. The result of this action is shown in Fig. 8.13. The left plot shows the
isocandela curves for the measured and the modeled reflection maps, while the right plots
shows the angular difference measure. Parallel isocandela curves means zero difference
(white) and orthogonal isocandela curves means maximum difference (black). Notice
how the difference is largest where the curves has the highest curvature. This is because
even a small misalignment of the curves in this particular case produces large angular
differences. There also seems to be a measurement error in the top right corner of the data
set. The parameters corresponding to the best match is given in Table 8.1.

Table 8.1: Parameters for real data and best model.
Reality Model

Y location of emitter -45 mm -43.3 mm
Y location of receiver 50 mm -47.5 mm
Extension of receiver 2.2 mm 1.67 mm
Radius of object 30 mm 31.3 mm

Reflection model of object N/A e−|θ |3

Power on 3rd dim. compensation N/A 1.20
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The contours for the real Angular difference between real
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Figure 8.13: A visual estimation of the accuracy of the reflection map
model. The left plot shows 15 evenly distributed contour lines, i.e. iso-
candela curves, for the measured (solid) and modeled (dashed) reflection
maps. The right plot shows the same contour lines for the measured re-
flection map and the gray-shaded squares show the angular difference for
isocandela curves in each point for the measured and modeled reflection
map. White is zero difference, and black is for orthogonal curves.
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8.4 Solving the Integral Equation

The evaluation of the model in the previous section focused on the immediate relation
between model and reality. Although this gives a qualified hint as to whether the model
is good or completely off track it does not reveal the whole truth about the model. In par-
ticular the model might be more accurate at some xy areas than others, and the slightly
‘wrong’ parameters in Table 8.1 might have some so far undiscovered effect on the model.
Obviously, it would be nice to have another estimate of the model accuracy, one which
is not based on parameter optimization. The that end it might be beneficial to regard the
model as an inverse problem Ax = b where the mapping A ∼ I (θ c, r) is the model,
the output b is the measured data, and the input x ∼ I e(θ) is an unknown emitter char-
acteristic. This means going from the measurements via the model back to the emitter
characteristic. In reality the emitter characteristic is known since it has been measured,
and comparing the the true characteristic (also called the true solution) to the solution of
the inverse problem may indicate how accurate the model is.

The measured data does not come in a infinitely fine resolution, so the integral equa-
tion must be discretized and the problem then converts to a matrix inversion problem with
an ill-conditioned matrix. Solving the matrix equation by brute force is therefore prone
to produce a numerically unstable solution, and regularization methods are required to
obtain a reasonable solution. The discretization is described in the next section, while the
regularization is described in Section 8.5.

All what remains of this chapter is based on theory of numerical deconvolution. In
particular, the preprint [36] and a regularization toolbox [37], both by Hansen, has been
very useful. Thanks are also due to Hansen himself for reading this part of the chapter
and providing useful suggestions.

8.4.1 Discretization of the Integral Equation

To identify the model (8.5) as an inverse problem it is helpful to rewrite it into

I (θc, r) =
∫ π

2

− π
2

K (θc, r, θ)Ie(θ)dθ, (8.7)

where the kernel K is

K (θc, r, θ) =
∫ ρ2(θc,r)

ρ1(θc,r)
m
(
ρ − arcsin

r sin(θc − θ)
R

)
1[θ1(θc,r);θ2(θc,r)]dρ.

The form (8.7) reveals the model to be a Fredholm integral equation of the first kind. As
just described only discrete solutions are interesting, and a Fredholm integral equation
can be discretized into a set of linear equations on the form

N∑

n=1

wn K (θc,m, θn)Ie(θn) = I (θc,m , r), m = 1, . . . ,M,
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where θc,m, θn ∈] − π
2 ; π2 [. The quantity wn is a weight parameter determined by the

method of discretization (trapeze, Simpson etc.). In terms of matrices the model is written
Ax = b with

amn = wn K (θc,m, θn, r)
xn = Ie(θn)

bm = I (θm)





n = 1, . . . , N,
m = 1, . . . ,M.

The A matrix is always a band matrix in the sense that the left uppermost and right low-
ermost parts are zeros. The band itself can be curved (if for instance the circle is moved
along a line in Cartesian coordinates) or straight if the distance r to the circle is fixed.
The former type is useful when the intensity map is sampled in a Cartesian grid. The
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Figure 8.14: The gray area shows at what angle interval there is potential
reflection from the circle (visible from receiver), while the black area shows
the angle interval at which the circle is illuminated but not visible from the
receiver. The parameter functions describe the center coordinate of the
circle. The white line shows the corresponding θc which is always in the
middle of the bands.
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first form used in Section 8.5.2 which describes the results of regularization. The generic
kernel matrices A for four different forms are shown in Fig. 8.14. The horizontal width
of the band corresponds to the size of the circle as seen from the emitter.

Since the equations presented in the previous sections does not support a position of
the circle where it intersects x = 0 the variable θc must be in the interval [− π

2 +v; π2 −v],
where v = arcsin(R/r) is half the size of the circle as seen from the emitter. The end
points of this interval are reached when the circle ‘touches’ x = 0. The integration
variable θ will always cover a half circle, though.

8.4.2 Need for Regularization

The first solution method applied to the matrix problem Ax = b is the straight forward
x = A†b († meaning pseudo inverse). This method will do in some cases, namely when
the matrix is not ill-conditioned and the measurements b are noise-free. Neither of these
conditions are fulfilled for the inverse problem at hand, and the direct solution clearly
shows that a more subtle approach should be used. This approach is shown in Fig. 8.15.
The measurements b and the model generated equivalent Ax are shown in the first plot.
They seem to correspond fairly well. The true solution x and the band matrix is also
shown separately. The matrix is 100× 100. The non-vanishing parts corresponds to the
gray parts of the band matrices shown in Fig. 8.14. When A is (pseudo) inverted and
multiplied with b the result is highly erratic. The problem is the high condition number
for the matrix combined with a noisy b. If the condition numbers is determined by the
largest singular value divided by the smallest, the A matrix in this case, the one shown in
Fig. 8.15, has a condition number in the order of 10 21! This follows from the plot of the
singular values in the same figure.

8.5 Singular Value Decomposition Solution Approach

Their exist a number of different approaches for solving ill-conditioned inverse problems.
One of these is the SVD approach which utilizes the decomposition of the matrix into
orthogonal matrices and singular values. To see how this can improve the regularity of a
solution some linear algebra is needed.

8.5.1 Basic SVD Theory

The SVD is defined for any m × n matrix A and takes the form

A = U�V� =
min(m,n)∑

k=1

ukσkv�k , U = [u1, . . . ,um], V = [v1, . . . , vn].

Both decomposition matrices U and V are orthogonal. This implies that the singular vec-
tors uk form an orthonormal set, and likewise for vk . The middle matrix � is a diagonal
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Figure 8.15: The components in the inverse problem. The individual plots
are presented in the text. Note that the direct solution is actually obtained
by Gaussian elimination and not via the pseudo inverse, and note that the
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matrix whose diagonal elements σk are the singular values in non-increasing order. The
condition number of A has a simple expression in terms of the SVD if the 2-norm is used,
because

cond(A) = ‖A‖2‖A†‖2 = σ1

σmin(m,n)
, ‖A‖2 = sup

x�=0

‖Ax‖2

‖x‖2
,

i.e. ‖A‖2 is the operator norm of A. Since the column space of u k is �m and the column
space of vk is �n , the vectors b and x can be decomposed in these bases

b =
m∑

k=1

〈uk,b〉uk =
m∑

k=1

(u�k b)uk and x =
n∑

k=1

(v�k x)vk .

Then

Ax =
n∑

k=1

(v�k x)Avk =
min(m,n)∑

k=1

(v�k x)σkuk .

The last equation is derived from the property Av k = σkuk of the SVD. Noting that

(u�k b) = (v�k x)σk ⇔ (u�k b)

σk
vk = (v�k x)vk, k = 1, . . . , n,

the equation Ax = b can be rewritten to (now for simplicity assuming m ≥ n)

n∑

k=1

(u�k b)

σk
vk =

n∑

k=1

(v�k x)vk = x. (8.8)

This equation provides the brute force solution to the original problem Ax = b. The major
difference compared to the solution A†b is that (8.8) clearly demonstrates a potential
numerical instability in containing a fraction of which the denominator is a non-increasing
sequence. In practice the instability is unavoidable; the following three properties for a
matrix A that arises from the discretization of first-kind Fredholm integral equation and
the concluding arguments demonstrates this.

1. The singular values of A decay gradually. They level off, however, if machine preci-
sion is reached.

2. The singular vectors uk and vk have an increasing number of sign changes in their
elements as k increases. Often, the number of sign changes is precisely k − 1.

3. Whenever there exist a solution f ∈ L 2([−π
2 ; π2 ]) to the Fredholm integral equation

the quantities |u�k b| will decay faster than the singular values, until they reach a
plateau approximately equal to the noise level in b at which they level off.

An immediate consequences is that in the region in which |u�k b| is decreasing the coeffi-
cients |u�k b|/σk are also decreasing. The sum of (u�k b/σk)vk in this region is dominated
by slow oscillations. But whenever |u�k b| levels off the singular values keep decreasing,
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and in this region the coefficients |u�k b|/σk are increasing and might easily reach a level
above the starting level for the coefficients. Since in this region v k has an increasing num-
ber of oscillations the sum of (u�k b/σk)vk in this region is dominated by fast oscillations,
the amplitude of which is often high compared to the slowly oscillating part of x.

The described properties and their effect are demonstrated in Fig. 8.15 and 8.16. In the
latter the singular values are plotted along with the quantities |u�k b| and the coefficients
|u�k b|/σk . The singular values are gradually decaying all the way through, while |u�

k b|
is decaying until the 35th element after which they level off at about 5 · 10−2 = 0.05.
The plot of b and Ax in Fig. 8.15 show an approximate noise level with the same order of
magnitude, in agreement with the third property.
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Figure 8.16: Picard plot.

If K : �2 �→ � is in L2([−π
2 ; π2 ]) and

b(s) =
∫ π

2

− π
2

K (s, t)x(t)dt,

then there exist functions uk(s) and vk(t), k ∈ �, such that

K (s, t) =
∑

k∈�
µkuk(s)vk(t)

and both {uk}k∈� and {vk}k∈� are orthonormal basis for L 2([−π
2 ; π2 ]). This decomposi-

tion is called singular value expansion (SVE). It is easy to derive (in a fashion similar to
the one for SVD)

x(t) =
∑

k∈�

〈uk, b〉
µk

vk(t). (8.9)
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The relation ∑

k∈�

∣∣∣
〈uk, b〉
µk

∣∣∣ <∞

is a necessary and sufficient condition for (8.9) to hold. In the context of inverse prob-
lems this inequality is also known as the Picard condition. This explains why the plot in
figure 8.16 is called a Picard plot.

8.5.2 Truncated SVD and Tikhonov Regularization

Having identified the cause of the instability of the direct solution the next step is to
suggest some method to reduce or maybe even eliminate the instability. Based on the
observations made in the previous section it is natural to start by reducing the number of
addends in the sum (8.8) by excluding a number of the terms with the highest indices.
The choice of truncation parameter is quite easy: One of the conclusions in the previous
section is that the SVD components (u�k b/σk)vk in (8.8) can be ‘trusted’ as long as |u�k b|
is decreasing. By inspection of Fig. 8.16 it therefore seems that the first 34 to 40 terms
would be appropriate. This rather brute method of regularization is denoted truncated
SVD (TSVD).

The result of using this on the problem at hand is shown in Fig. 8.17. The slow
oscillations are clearly dominating the solutions consisting of only a few terms, and as the
number of terms increases so does the irregularity, especially in the left part of the solution
curve. The result of the TSVD is not really satisfying as the oscillations dominating the
solution for any number of sum terms.

The TSVD solution xK for the truncation parameter K is equal to A†
K b where

AK =
K∑

k=1

u�k b

σk
vk .

This solution also solves the minimization problem

min ‖x‖2 subject to min ‖AK x− b‖2.

Note that the latter minimization problem has an infinity of solutions (since rank(A K ) =
K ), and the one with minimum 2-norm is singled out. Based on this observation a more
subtle approach is now conceivable. By abandoning the desire to eliminate the residual
norm ‖AK x−b‖ a smaller solution norm is achievable. By combining the two minimiza-
tion requirements into

min
{‖Ax− b‖2

2 + λ2‖x‖2
2

}

a trade off, controlled by the regularization parameter λ, between residual and solution
norm is possible. This method is most commonly referred to as Tikhonov regularization.
It can be shown that the problem always has a unique solution, which is denoted the
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Tikhonov solution. Note that for λ → 0 the Tikhonov solution tends to the brute force
solution, while the solution is smoothed out as x → 0 when λ→∞.

It can be shown that the SVD form of the Tikhonov solution is

xλ =
n∑

k=1

fk
u�k b

σk
vk, where fk = σ 2

k

σ 2
k + λ2

. (8.10)

Note that the TSVD solution also is on this form with f k ∈ {0, 1}. The quantities fk are
called filter factors. They all satisfy 0 ≤ fk ≤ 1, and they control the damping of the
individual SVD components. Specifically, if λ is fixed somewhere between σ 1 and σn ,
then for σk � λ it follows from (8.10) that

fk = σ 2
k + λ2 − λ2

σ 2
k + λ2

= 1− −λ2

σ 2
k + λ2

≈ 1,

and for σk 
 λ it follows that

fk = λ2σ 2
k

λ2σ 2
k + λ4

= λ2σ 2
k + σ 4

k

λ2σ 2
k + λ4

− σ 4
k

λ2σ 2
k + λ4

= 1+ σ 2
k λ

−2

1+ λ2σ−2
k

+ O
(σ 4

k

λ4

)
= σ 2

k

λ2 + O
(σ 4

k

λ4

)
≈ σ 2

k

λ2 .

This implies that the first SVD components, corresponding to the singular values greater
than λ, contributes with almost full strength to the Tikhonov solution. Similarly, the last
SVD components corresponding to singular values smaller than λ are damped consider-
ably and therefore contribute very little to the solution. Hence, it is expectable to see the
Tikhonov solution resembling the TSVD solution when K and λ are chosen such that
σK ≈ λ.

The Tikhonov solution to the problem is shown in Fig. 8.18. For λ around 2.5 the
solution is not too bad, at least in the left half of the interval. Overall the Tikhonov
solutions are somewhat better than the TSVD solutions. An even smoother solution is
obtainable with the Tikhonov regularization (as seen for larger values of λ), but as λ
increases so does the deviation from the true solution.

Another thing to notice is that all the solutions fail to resemble the true solution to the
far left and in the right half of the interval. This may partly be due to the matrix A which
(see Fig. 8.15) has less significant data in those particular ranges.

8.6 Conclusion

A model has been proposed for a setup of an emitter and a receiver facing in the same
direction, and with a circular object reflecting the light from the emitter onto the receiver.
The model includes the directional characteristics of the emitter and the receiver, and a
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Figure 8.17: TSVD used on the problem in Fig. 8.15. The dotted curve
is the true solution and the solid curve is the TSVD solution for the given
number K of sum terms.
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Figure 8.18: The Tikhonov solution for some values of λ. The dotted
curve is the true solution.
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description of the reflection property of the object. The model has been derived purely
by geometrical observations and is formulated as a Fredholm integral equation of the first
kind.

The output of the model is a reflection intensity map which shows the intensity of the
reflected light for any (two dimensional) position of the reflecting object. A number of
examples of such maps were given for a variety of parameter choices.

A physical setup was constructed in order to obtain a real reflection intensity map.
Using ordinary emitter and receiver electronics, and an XY table for moving the reflect-
ing object, a data set was recorded. An immediate comparison of the data set to the model
revealed a structural difference which was crudely patch by introducing ‘third dimension
compensation’. This improved the model to an extent which called for a quantifiable com-
parison. Two methods were then applied to compare the modeled map to the measured
map.

First the angular difference between gradients throughout the map was used a measure
for evaluating the model. An exhaustive search in the parameter space yielded a rather
good match, although the parameters did not match the real ones exactly. In this measure
the model seems to be good, except in a small elongated region in the space between and
in front of emitter and receiver. This measure essential compare isocandela curves, i.e.
contour lines, of the maps.

An alternative method was applied to investigate the accuracy of the model. The
model was considered an integral equation with unknown input, modeled kernel, and
measured output. This yields an inverse problem since this approach is an attempt to go
from the measured data via the model back to the directional characteristic of the emitter.
Since this is known it is possible to quantify the model accuracy in an alternative fashion
compared to the direct measure in the previously mentioned method. The modeled kernel
is ill-conditioned, and thus the direct solution to the inverse problem is not useful. Ap-
plying Tikhonov regularization yields an estimated emitter characteristic which is fairly
accurate in the region in front of the receiver. The other regions, i.e. in front of the emitter
and on the other side of the receiver seems to be modeled less accurately.

The cause of this apparent inaccuracy has not been investigated thoroughly and is thus
on the list of future work.
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The Problem of Finite
Signals 9
One of the major issues in the field of applications wavelets is the handling of finite sig-
nals. The classical wavelet theory involving the multiresolution analysis (such as Daube-
chies [26]) is usually not concerned with this aspect. However, in most signal processing
applications using wavelets this issue is of importance, since all real world signals are ob-
viously finite. In some cases the ratio between the length of the filter and signal is almost
vanishing, though, making the edge issue negligible. But the applications in this thesis
are of such nature that the edge problem needs attention. This is the reason for this and
the following chapter.

The content of this chapter is a presentation of four different solutions to the edge
problem. All are fairly simple and rely on basic linear algebra and calculus. The following
chapter is dedicated entirely to a fifth solution, which requires some knowledge of the
multiresolution analysis.

This chapter is a condensed and rewritten excerpt from Jensen and la Cour-Harbo [45].

9.1 Defining the Problem

There exists a number of different solutions to the edge problem. Common to those
considered here is the preservation of the perfect reconstruction property of the wavelet
transform. The three most often used ones is edge filters, periodization, and mirroring.
An obvious and very simple, but unattractive solution called zero padding is presented
first with the argumentation for not choosing this approach in any real applications.

9.2 Zero padding

The most obvious solution to the edge problem is to extend a finite signal to a infinite
signal by applying zeros a both ends. This is called zero padding. In practice this means
that when the computation of a coefficient in the transform requires a sample beyond the
range of the given samples in the finite signal, the value zero is used.

Applying zero padding to a signal with 8 samples followed by the Haar transform
yields (up to) 4 nonzero entries in each of the low and the high pass parts. Going through
the steps in the Daubechies 4 transform will show that in the high pass part the entries
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Section 9.2: Zero padding

with indices 0, 1, 2, 3, 4 can be nonzero, and in the low pass part those with indices
−1, 0, 1, 2, 3 can be nonzero. Thus in the two components in the transform there may
be a total of 10 nonzero samples. It is important to note that all 10 coefficients above
are needed to reconstruct the original signal, so two of them cannot just be left out if the
perfect reconstruction property is to be preserved. In general the number of extra coeffi-
cients is proportional to the filter length. For orthogonal transforms (such as those in the
Daubechies family) the number of extra signal coefficients is exactly L − 2, with L being
the filter length.

When using zero padding the growth in the number of nonzero entries is unavoidable.
It is not a problem in the theory, but certainly in applications. Suppose a signal of length
N is to be transformed with DWT over k scales with a filter of length L, where k is
compatible with the length of the signal, i.e. N ≥ 2k . Each application of the DWT adds
L−2 new nonzero coefficients, in general. Thus the final length of the transformed signal
can be up to N + k(L − 2).

The result of using zero padding is illustrated as in Fig. 9.1. As the filter taps “slides”
across the signal a number of low and high pass transform coefficients are produced, a
pair for each position of the filter. Since there are (N + L)/2− 1 different positions, the
total number of transform coefficients is twice this number, that is N + L − 2.

Original signalZeros Zeros

2 taps

(length N)

Low pass part High pass part

Transformed signal

Length
N + L

2
− 1 Length

N + L

2
− 1

(length N + L − 2)

L L L H H H HL

Length L

Figure 9.1: The result of zero padding when transforming a finite sig-
nal. The grey boxes illustrates the positions of the filter taps as the filtering
occurs. Each position gives a low pass and high pass coefficient. The num-
ber of positions determines the number of transform coefficients. Note that
most of the ‘interior’ filters have been left out to simplify this figure.
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For wavelet packet decompositions the problem is much worse. Suppose one computes
the full wavelet packet decomposition down to a level J , i.e. applying the DWT J − 1
times, each time to all elements in the previous level. Starting with a signal of length N
and a filter of length L, then at the level J the total length of the transformed signal can
be up to N + (2J−1 − 1)(L − 2). This exponential growth in J makes zero padding an
unattractive solution to the edge problem.

Thus it is preferable to have available edge correction methods, such that application
of the corrected DWT to a signal leads to two components, each of half the length of
the original signal. Furthermore preservation of the perfect reconstruction property is
high desirable. Three different methods are presented below, and one in the following
chapter. The first three methods use a number of results from linear algebra. The fourth
method requires extensive knowledge of the classical wavelet theory and some harmonic
analysis. Two of the solutions attempts to handle the problem by (initially) changing the
signal, while two others introduces edge filters (a change of the transform).

The idea behind edge filters is to replace the filters in each end of the signal with some
new filter coefficients designed to preserve both the length of the signal and the perfect
reconstruction property. This idea is depicted in Fig. 9.2.

LL L H H H HL
Low pass part High pass part

length
N

2
length

N

2

(length N)Transformed signal

Original signal

2 taps

(length N)

length L

Figure 9.2: The idea behind all types of edge filters is to replace the fil-
ters reaching beyond the signal (see Fig. 9.1) with new, shorter filters (light
grey). By having the right number of edge filters it is possible to get ex-
actly the same number of transform coefficients as signal samples while
preserving certain properties of the wavelet transform.
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9.3 DWT as a Matrix

The probably most common interpretation of the DWT is as a low and high pass filtering
followed by down sampling by 2. This is also the usual form of implementation of the
transform. In this section the attention is turned to another possibility. Since the DWT is
linear and (now assumed to be) finite, it can be carried out by multiplying the signal with
an appropriate (non-singular) matrix. The reconstruction can of course also be done by
a single multiplication. Note that in the following it is implicitly assumed that the input
signal, denoted by x, is of even length whenever finite.

Recall from (A.2) that the low pass filtered and down sampled signal is given as

(H x)[n] =
∑

k

h[2n − k]x[k] . (9.1)

This convolution is interpreted as an inner product between a zero padded h and x, or as
the matrix product of the reversed filter row vector and the signal column vector. The high
pass part Gx is found analogously, see (A.3). The symbols H and G emphasize that the
transitions from x to H x and Gx are linear maps. It is necessary to decide how to combine
the coefficients of H x and Gx into a single vector to get the matrix form of the transform.
There are two obvious possibilities. One is to take all the components in H x, followed
by all components in Gx. This is not an easy solution to use, when one considers infinite
signals. The other possibility is to interlace the components in a column vector as

y = [· · · (H x)[−1] (Gx)[−1] (H x)[0] (Gx)[0] (H x)[1] (Gx)[1] · · ·]� .
Since the four vectors in an orthogonal filter set have equal even length (in contrast to most
biorthogonal filter sets), it is easier to describe the matrix form of the DWT for orthogonal
filters. Later on it is fairly easy to extend the matrix form to biorthogonal filters.

The rows of the matrix consist of alternating, reversed low and high pass IRs, each
low pass IR is shifted two places in relations to the preceding high pass IR, while the
following high pass IR is not shifted. The low pass filter is now denoted by h and the high
pass filter by g.

If the length of the filter is 6, then the matrix becomes

Ta =






. . .
. . .

. . .
. . .

. . .
. . .

. . . h[5] h[4] h[3] h[2] h[1] h[0] 0 0 0 0 · · ·
g[5] g[4] g[3] g[2] g[1] g[0] 0 0 0 0 · · ·

· · · 0 0 h[5] h[4] h[3] h[2] h[1] h[0] 0 0 · · ·
· · · 0 0 g[5] g[4] g[3] g[2] g[1] g[0] 0 0 · · ·
· · · 0 0 0 0 h[5] h[4] h[3] h[2] h[1] h[0]
· · · 0 0 0 0 g[5] g[4] g[3] g[2] g[1] g[0] . . .

. . .
. . .

. . .
. . .

. . .
. . .






.

(9.2)
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Given an infinite signal x as a column vector the wavelet transform can be calculated
simply by y = Tax. Obviously the original signal should be reconstructable in the same
manner, so another matrix is needed such that T sTa = I. For finite matrices this implies
that Ts = T−1

a , and for infinite matrices this condition is imposed. Fortunately, it is easy
to show that T−1

a = T�a for orthogonal filters. Now x = Tsy, so in order to reconstruct
the original signal the matrix Ts is applied to a mix of low and high pass coefficients.

The major difference in the case of biorthogonal filters is that T a is not orthogonal,
and hence Ts cannot be found simply by transposing the direct transform matrix. To
understand how Ts is constructed in this case, first examine Ts in the orthogonal case. It
is easy to show that

Ts = T�a =






. . .
. . .

...
...

...
...

. . . h̃[0] g̃[0] 0 0 0 0

. . . h̃[1] g̃[1] 0 0 0 0

. . . h̃[2] g̃[2] h̃[0] g̃[0] 0 0

. . . h̃[3] g̃[3] h̃[1] g̃[1] 0 0

. . . h̃[4] g̃[4] h̃[2] g̃[2] h̃[0] g̃[0]
h̃[5] g̃[5] h̃[3] g̃[3] h̃[1] g̃[1] . . .

0 0 h̃[4] g̃[4] h̃[2] g̃[2] . . .

0 0 h̃[5] g̃[5] h̃[3] g̃[3] . . .

0 0 0 0 h̃[4] g̃[4] . . .

0 0 0 0 h̃[5] g̃[5] . . .

...
...

...
...

. . .
. . .






(9.3)

for a length 6 orthogonal filter.
In the same way Ts can be written for biorthogonal filters, except with the obvious

difference that there is not the close connection between analysis and synthesis that char-
acterized the orthogonal filters.

The matrices of the direct and inverse transforms have been introduced in order to
explain how to construct edge filters. Computationally both filtering and lifting are much
more efficient transform implementations.

9.4 Gram-Schmidt Edge Filters

The construction of edge filters begins by looking more carefully at the problem with zero
padding. Suppose a finite signal x of length N is given. First zero padding is applied,
creating the new signal s of infinite length, by defining

s[n] =






0 if n ≤ −1 ,

x[n] if n = 0, 1, . . . , N − 1 ,

0 if n ≥ N .

(9.4)
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Suppose that the filter has length L, with the nonzero coefficients having indices between
0 and L − 1. To avoid special cases assume also that N is substantially larger than L, and
that both L and N are even. Examine now (see (A.2))

(H s)[n] =
∑

k∈�
h[2n − k]s[k] =

N−1∑

k=0

h[2n − k]x[k]

for each possible value of n. If n < 0, the sum is always zero. The first nonzero term can
occur when n = 0, in which case (H s)[0] = h[0]x[0]. The last nonzero term occurs for
n = (N + L − 2)/2, and it is (H s)[(N + L − 2)/2] = h[L − 1]x[N − 1]. The same
computation is valid for the Gs vector. Thus in the transformed signal the total number of
nonzero terms can be up to N + L − 2.

This computation also shows that in the index range L/2 < n < N − (L/2) all
filter coefficients are multiplied with x-entries. At the start and the end only some filter
coefficients are needed, the others being multiplied by zero from the zero padding of the
signal s. This leads to the introduction of the edge filters. The filters are modified during
the L/2 evaluations at both the beginning and the end of the signal, taking into account
only those filter coefficients that are actually needed. Thus to adjust the h filter a total of
L new filters will be needed. The same number of modifications will be needed for the
high pass filter. It turns out that fewer modified filters are needed, if the location of the
finite signal is shifted one unit.

So repeat now the computation above with the following modification of the zero
padding. Define

sshift[n] =






0 if n ≤ −2 ,

x[n + 1] if n = −1, 0, 1, . . . , N − 2 ,

0 if n ≥ N − 1 .

(9.5)

With this modification the first non-zero term in H s can be

(H sshift)[0] = h[1]x[0] + h[0]x[1] ,
and the last nonzero term can be

(H sshift)[(N + L)/2− 2] = h[L − 1]x[N − 2] + h[L − 2]x[N − 1] ,
due to the assumption that L is even. With this shift a total of L−2 corrections are needed
at each end. This shifted placement of the non-zero coefficients will be used in the next
subsection.

9.4.1 The DWT Matrix Applied to Finite Signals

Instead of using zero padding the matrices Ta and Ts could be truncated, by removing the
parts multiplying the zero padded parts of the signal. Although this gives finite matrices
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it does not solve the problem that the transformed signal can have more nonzero entries
than the original signal. The next step is therefore to alter the truncated matrices to get
orthogonal matrices (only orthogonal filters will be treated here).

The procedure is first discussed using an example with a relatively short filter (other-
wise the matrices will be rather big). A generalization is presented in Section 9.4.2. For a
filter of length 6 and a signal of length 8 the transformed signal can have 12 non-vanishing
elements, as was shown previously. The the part of the matrix that multiplies zeros in s shift
is now removed, and the result, denoted by T ′

a, is given as

T′ax =






h[1] h[0] 0 0 0 0 0 0
g[1] g[0] 0 0 0 0 0 0
h[3] h[2] h[1] h[0] 0 0 0 0
g[3] g[2] g[1] g[0] 0 0 0 0
h[5] h[4] h[3] h[2] h[1] h[0] 0 0
g[5] g[4] g[3] g[2] g[1] g[0] 0 0

0 0 h[5] h[4] h[3] h[2] h[1] h[0]
0 0 g[5] g[4] g[3] g[2] g[1] g[0]
0 0 0 0 h[5] h[4] h[3] h[2]
0 0 0 0 g[5] g[4] g[3] g[2]
0 0 0 0 0 0 h[5] h[4]
0 0 0 0 0 0 g[5] g[4]











x[0]
x[1]
x[2]
x[3]
x[4]
x[5]
x[6]
x[7]






=






y[0]
y[1]
y[2]
y[3]
y[4]
y[5]
y[6]
y[7]
y[8]
y[9]

y[10]
y[11]






.

(9.6)
It is evident from the two computations above with the original and the shifted signal that
the truncation of the Ta matrix is not unique. As described above, choice here is to align
the first non-vanishing element in x with h[1] and g[1]. This makes T ′

a “more symmetric”
than if h[0] and g[0] had been chosen. Moreover, choosing the symmetric truncation
guarantees linear independence of the rows, see [40], a property which will be needed
later. Applying the same type of truncation the synthesis matrix, i.e. reducing T s to an
8× 12 matrix T′s, yields T′sT′a = I, so perfect reconstruction is still possible.

The next step is to change T′
a such that y has the same number of coefficients as x.

When looking at the matrix equation (9.6) the first idea might be to further reduce the size
of T′a, this time making an 8× 8 matrix by removing the two upper and lower most rows.
That is

T′′a =






h[3] h[2] h[1] h[0] 0 0 0 0
g[3] g[2] g[1] g[0] 0 0 0 0
h[5] h[4] h[3] h[2] h[1] h 0 0 0
g[5] g[4] g[3] g[2] g[1] g0 0 0

0 0 h[5] h[4] h[3] h[2] h 1 h0
0 0 g[5] g[4] g[3] g[2] g1 g0
0 0 0 0 h[5] h[4] h[3] h 2
0 0 0 0 g[5] g[4] g[3] g2






(9.7)

At least this will ensure a transformed signal with only 8 coefficients. Removing the
two first and two last columns in T′

s produces an 8× 8 synthesis matrix. These matrices
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cannot fulfill the perfect reconstruction condition T ′′
s T′′a = I; the 1’s on the diagonal of

T′sT′a comes from
∑5

n=0 |hn |2 = 1, and since the diagonal of T ′′
s T′′a contains partial sums

of this sum, the diagonal cannot be all 1’s. But T ′′
a and T′′s both have full rank. This is

made plausible by the following argument. Suppose the first and second row of T ′′
a are

linearly dependent, i.e.

α
[
h3 h2 h1 h0

] = [
h2 −h3 h4 −h5

]
,

then αh3 = h2 and αh2 = −h3 implying that α = ±i , which is clearly inadmissible.
Consequently, the orthogonality can be restored by using the Gram-Schmidt orthogonal-
ization procedure.

9.4.2 The General Case

In the previous section the construction of edge filters was partly demonstrated using a
particular filter, but it is not difficult to generalize the method. For any wavelet filter it is
always possible to truncate the corresponding analysis matrix T a, such that the result is
an N × N matrix M (with N even) with all but the first and last L/2− 1 rows containing
whole IRs, and such that the upper and lower truncated rows have an equal number of
non-vanishing entries. If L = 4K + 2, K ∈ �, the first row in M will be (a part of) the
low pass IR h, and if L = 4K the first row will be (a part of) the high pass IR g. It can be
shown (see [39]) that this symmetric truncation always produces a full rank matrix. All
the truncated rows are orthogonalized by the Gram-Schmidt procedure. Since the rows
containing whole IRs are mutual orthogonal, and since all rows containing truncated IRs
are orthogonal to all of the rows containing whole IRs, the first L/2− 1 rows need to be
orthogonalized (with respect to themselves). The same applies to the last L/2 − 1 rows.
So the left edge filters ml

k are defined as

m′
k = mk −

k−1∑

n=0

mnm�
k

‖mn‖2
mn, ml

k =
m′

k

‖m′
k‖2

, k = 0, 1, . . . , L/2− 2 .

Note that this order of orthogonalization preserves the staggered length (i.e. number of
non-vanishing coefficients) of the left edge filters. In the same way the vectors m N−L/2+2
through mN−1 are converted into L/2− 1 right edge filters, which is denoted m r

0 through
mr

L/2−1. The Gram-Schmidt orthogonalization of the right edge filters starts with m N−1.
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The new orthogonal matrix then becomes

M′ =






ml
0
...

ml
L/2−2





L/2− 1 left edge filters ,

mL/2−1
...

mN−L/2+2





N − L + 2 whole filters ,

mr
0
...

mr
L/2−2





L/2− 1 right edge filters ,






(9.8)

The edge filters belonging to the inverse transform are easily found, since the synthesis
matrix is the transpose of analysis matrix.

9.5 Periodization

The simple solution to the edge problem was zero padding. Another possibility is to
choose samples from the signal to use for the missing samples. One way of doing this is
to periodize the finite signal. Suppose the original finite signal is the column vector x, of
length N . Then the periodized signal xp is given as a vertical concatenation of infinitely
many x. This signal is periodic with period N , since x p[k+N] = xp[k] for all k ∈ �. It is
important to note that the signal xp has infinite energy. But it can still be transformed with
Ta, since the filters are of finite length, such that each row in Ta only has a finite number of
nonzero entries. Since yp = Taxp is periodic with period N , this formula defines a finite
signal y by selecting N consecutive samples from yp. Note that the choice of these entries
is not unique. The same procedure can be used to inversely transform y into x using the
infinite Ts. Thus periodization is a way of transforming a finite signal while preserving
the length of it. In implementations only enough samples to cover the extent of the filters
are needed, which is at most L − 2. It is of course desirable to avoid extending the signal
at all, since this requires extra time and memory in an implementation. Fortunately, it is
very easy to alter the transform matrix to accommodate this desire.

First the infinite transform matrix is truncated such that it fits the signal, i.e. for a
signal of length N , the matrix is reduced to an N × N matrix. The matrix now consists of
some whole IRs and some truncated IRs. The removed filter taps from the latter is then
inserted in the matrix N positions to the right (in the upper part of the matrix) or to the
left (in the lower part) of their locations prior to truncation.

This is easily visualized with an example. For a signal of length 10 and filter of length
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6 the truncated matrix performing transformation by periodization is given as

Tp
a =






h[3] h[2] h[1] h[0] 0 0 0 0 h[5] h[4]
g[3] g[2] g[1] g[0] 0 0 0 0 g[5] g[4]
h[5] h[4] h[3] h[2] h[1] h[0] 0 0 0 0
g[5] g[4] g[3] g[2] g[1] g[0] 0 0 0 0

0 0 h[5] h[4] h[3] h[2] h[1] h[0] 0 0
0 0 g[5] g[4] g[3] g[2] g[1] g[0] 0 0
0 0 0 0 h[5] h[4] h[3] h[2] h[1] h[0]
0 0 0 0 g[5] g[4] g[3] g[2] g[1] g[0]

h[1] h[0] 0 0 0 0 h[5] h[4] h[3] h[2]
g[1] g[0] 0 0 0 0 g[5] g[4] g[3] g[2]






. (9.9)

Then y = Tp
ax is equal to one particular choice of N consecutive samples in y p. Now

Tp
a is orthogonal, so the inverse transform is given by (T p

a)
�. Note that the symmetric

structure of the matrix is not a necessity for the preservation of length and energy.
The same principle can be applied to biorthogonal filters. For an example of this, see

Jensen and la Cour-Harbo [45].
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Moment Preserving
Edge Filters 10
The methods for handling the edge problem presented so far have focused on maintaining
the orthogonality of the transform. Orthogonality is important, since it is equivalent with
energy preservation. But there are other properties beside energy which can prove useful
to preserve under transformation. One of them is related to moments of a sequence,
which in turn is related to the ability of the wavelets to approximate functions in C r , that
is spaces of r times continuous-differentiable functions, disregarding that the wavelets do
not form an orthogonal basis for C r (they form unconditional bases).

This chapter is divided into a number of sections, starting with an introduction to
moments of sequences and why the preservation of moments is relevant. Then in Sec-
tion 10.3 the edge scaling functions and wavelets are derived. This is done mostly in the
form of proofs of lemmas and theorems. It turns out that an extra step is needed to com-
plete the construction. This is presented and discussed in Section 10.4. Two examples
of edge functions and filters are then given in Section 10.5, and the numerical stability of
the procedure is discussed in Section 10.6. Finally, the chapter ends with conclusion in
Section 10.8.

The majority of the results in this chapter is from Cohen et al. [22].

10.1 The Idea of Moment Preservation

This first section is dedicated to a brief and incomplete explanation of the idea behind the
construction of moment preserving edge filters. The incitement for being concerned with
the subject is given in the following section, while a rather short ‘recipe’ is provided in
Section 10.1.2.

10.1.1 Why Moment Preserving Transforms?

The answer to this question begins by making some observations on the smoothness of the
wavelet ψ . For all wavelets it is true that ψ ∈ C M (�) for some M ∈ � (see for instance
Corollary 5.5.2 in Daubechies [26, p. 154]), which means that (see Cohen et al. [22])

∫
tkψ(t)dt = dk

dξ k
m0(ξ)

∣∣∣
ξ=π = 0, k = 0, . . . ,M − 1,

219



Section 10.1: The Idea of Moment Preservation

and this is equivalent to
∑

n

nk gn = 0, k = 0, . . . ,M − 1, (10.1)

where g is the corresponding IR. Note that this implies that g has at least 2M non-
vanishing coefficients. For Daubechies 2N this property holds for M = N , since the
Daubechies 2N wavelets are constructed as

m0(ξ) =
(1+ e−iξ

2

)N
QN (ξ), (10.2)

where Q N is a polynomial of order N−1 in e−iξ . For CDF(2,2) M = 2, and for CDF(4,6)
M = 4. A sequence satisfying (10.1) for some M is said to have M vanishing moments.

Assume that the filter g has M vanishing moments. Take a polynomial p(t) =∑M−1
j=0 p j t j of degree at most M − 1. Take a signal obtained by sampling this poly-

nomial at the integers, i.e. s[n] = p(n), and filter this signal with g.

(g ∗ s)n =
∑

k

gksn−k

=
∑

k

gk

M−1∑

j=0

p j (n − k) j

=
∑

k

gk

M−1∑

j=0

p j

j∑

m=0

(
j

m

)
(−1)mkmn j−m

=
M−1∑

j=0

p j

j∑

m=0

(
j

m

)
(−1)mn j−m

∑

k

km gk = 0 . (10.3)

Note that g is of finite length, so all sums above are finite. Thus filtering with g maps a
signal obtained from sampling a polynomial of degree at most M − 1 to zero. Note also
that the polynomial need not be sampled at the integers. It is sufficient that the sample
points are equidistant.

This property of the high pass filter g has an interesting consequence when applying a
DWT. Because of the perfect reconstruction property, the polynomial samples get mapped
into the low pass part. This is consistent with the intuitive notion that polynomials of low
degree do not oscillate much, meaning that they contain no high frequencies. The com-
putation in (10.3) shows that with the particular filters used here (that is, with sufficiently
many vanishing moments) the high pass part is actually zero, and not just close to zero, as
is typical for non-ideal filters (at this point one should recall the filters used in a wavelet
decomposition are not ideal).

Due to these properties it would be interesting to have an edge correction method
which preserved vanishing moments of finite signals of a given length. Such a method
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Chapter 10: Moment Preserving Edge Filters

was found by A. Cohen, I. Daubechies, and P. Vial [22]. Their solution is presented in
detail in the following sections.

To illustrate what moment preserving filters can accomplish, Fig. 10.3 shows the result
of using three different edge handling methods.

1 16 32
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15

1 16 32
−10

0
10
20
30

1 16 32
−10

0
10
20
30

1 16 32
−10

0
10
20
30

(a)

(b)

(c)

(d)

Figure 10.1: In (a) the polynomial t 3 − 4t2 + 2t + 6 is sampled in 32
points in the interval [−1; 4]. The following graphs (b), (c), and (d) show
the result of transforming using periodization, Gram-Schmidt orthogonal-
ized edge filters, and moment preserving edge filters. Daubechies length 8
filters are used. The (d) graph clearly shows the advantage of moment pre-
serving filters, as the high pass part is completely vanishing (as it should be
according to (10.3)), while the low pass part is another third degree poly-
nomial sampled in 16 points.
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Section 10.1: The Idea of Moment Preservation

10.1.2 How to Make a Moment Preserving Transform

The idea for preserving the number of vanishing moments, and hence be able to reproduce
polynomials completely in the low pass part, is simple, although the computations are
non-trivial. This section begins with a brief review of the reason for and idea behind the
transform which can reproduce polynomials.

Redoing the computation in (10.3) for a general filter h of length L yields

(h ∗ s)n =
L−1∑

k=0

hksn−k =
L−1∑

k=0

hk

M−1∑

j=0

p j (n − k) j

=
L−1∑

k=0

hk

M−1∑

j=0

p j

j∑

m=0

(
j

m

)
nm(−k) j−m =

M−1∑

m=0

qmnm , (10.4)

where complicated expressions for the coefficients qm are omitted, since they are not
needed. This computation shows that convolution with any filter h of finite length takes a
sampled polynomial of degree at most M − 1 into another sampled polynomial, again of
degree at most M − 1. If the signal in question have a finite number of nonzero samples,
then the resulting convolution will have more samples, as explained above.

This computation must be invertible. This means that if the starting point is the signal
x of length N , obtained by sampling an arbitrary polynomial of degree at most M − 1,

x[n] =
M−1∑

m=0

qmnm , n = 0, . . . , N − 1 ,

then the goal is to find another polynomial p of degree at most M − 1, and a signal s
of the same length N , obtained by sampling p, such that x = h ∗ s. To do this for all
polynomials of degree at most M − 1 yields a set of edge filters, in a way similar to the
constructions already done in Section 9.4.

As described previously the idea is to make corrections to the filters used at the start
and end of the signal in order to preserve vanishing moments for signals of a fixed finite
length. It is done as follows. The first (leftmost) edge filter on the left and the last
(rightmost) edge filter on the right is chosen such that they preserve vanishing of the
moment of order m = 0 in the high pass part. The next pair is chosen such that moments
or order m = 1 vanish. This continues until M edge filters are produced for the transform
under consideration.

It is by no means trivial to construct the edge filters and to prove that the described
procedure does produce a moment preserving transform, and it takes further computations
to make these new edge filters both orthogonal and of decreasing length.

Unfortunately, the efforts so far are not enough to construct a transform applicable
to finite signals, such that it preserves vanishing moments. Thus the description so far
is incomplete. Briefly, what remains to be done is an extra step, which consists in pre-
conditioning the signal prior to transformation by multiplying the first M and the last M
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Chapter 10: Moment Preserving Edge Filters

samples by an M × M matrix. After transformation the result is multiplied by the inverse
of this matrix, at the beginning and end of the signal.

10.2 Polynomials and Wavelet Bases

Before venturing into the comprehensive description of the construction of moment pre-
serving edge scaling functions it is necessary to understand in more detail the relation
between polynomials of a certain order and wavelets with an equal number of vanishing
moments.

10.2.1 Polynomials on the Real Line

The first thing to do is to establish that the scaling functions actually do generate poly-
nomials up to the degree of the number of vanishing moments, and in what sense this is
valid. To investigate this, first define the set in question. Let

PN (I ) ≡
{

f (t)
∣∣∣ f (t) =

N−1∑

n=0

antn, t ∈ I ⊆ �, an ∈ �
}
.

Note that PN (I ) is vector space.
As described in the previous section we want to do approximations in some instance

of this space (for a certain choice of I ), preferably for I = �. The approximation should
be by translated version of the scaling functions (no dilation) because the vanishing mo-
ments of ψ(t) leads us to believe that one level of scaling functions is enough to span
polynomials with sufficiently low degree. This expectation is expressed by the mapping
of sampled polynomials to the zero sequence by the high pass filter in (10.3). Thus, we
are interested in an approximation on the form

p(t) =
∑

n∈�
enφ(t − n), p ∈ PN (I ).

There are significant difference between P N (�) and PN (I ), where I is a compact set.
The latter is a space with much more structure, in particular, it is a Hilbert space in the
L2 inner product, as will be demonstrated shortly. But first a general statement on the
approximation is given. This theorem, or rather the proof of it, contains much of the work
in linking polynomials and wavelets.

Theorem 10.1 (Generation of Polynomials)
Let φ(t) be a scaling function with m (k)

0 (π) = 0 for k = 0, . . . , N − 1. Then for any
p ∈ PN (�) there exists a sequence en ∈ � such that

M∑

n=−M

enφ(t − n)→ p(t) (10.5)
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Section 10.2: Polynomials and Wavelet Bases

pointwise and locally uniformly on � for M →∞.

Local uniform convergence on � means uniform convergence on any bounded subset of
�.

The following proof is from Cohen et al. [22].

Proof
First note that ∑

n

(t − n)kφ(t − n) = Ck , (10.6)

where Ck is a constant for fixed k. This is seen in the following way. Since (10.6) is
periodic with period 1 it is completely characterized by its Fourier coefficients

∫ 1

0

∑

n

(t − n)kφ(t − n)e−i2πrt dt =
∑

n

∫ 1

0
(t − n)kφ(t − n)e−i2πr(t−n)dt

=
∫

�

tkφ(t)e−i2πrt dt = √
2π
[
tkφ(t)

]∧
(2πr) = i k

√
2πφ̂(k)(2πr) .

The last equality is a property of the Fourier transform, and can be formally derived as

i k f̂ (k)(t) = i k

√
2π

dk

dtk

∫

�

f (ξ)e−iξ t dt = i k

√
2π

∫

�

f (ξ)(−iξ)ke−iξ t dt = [
tk f (t)

]∧
(ξ) .

Since

φ̂(k)(2πr) = dk

dξ k

[
m0(ξ)φ̂(ξ)

] ∣∣∣
ξ=πr

= 2−k
k∑

n=0

(
k

n

)
m(k)

0 (πr)φ̂(k−n)(πr) , (10.7)

and since m0(ξ) is 2π periodic and m (s)
0 (π) = 0 for s = 0, . . . , N − 1, it follows that

φ̂(k)(2πr) = 0 for r odd, and by applying (10.7) to φ̂(k−n)(πr) that φ̂(k)(2πr) = 0 for
r �= 0 even. This implies that (10.6) is constant. Moreover,

Ck =
√

2π
[
tkφ(t)

]∧
(0)

= 2−1/2
∑

m

hm

∫

�

tkφ(2t − m)dt

= 2−k−3/2
∑

m

hm

∫

�

(y + m)kφ(y)dy

= 2−k−3/2
∑

m

hm

∫

�

k∑

n=0

(
k

n

)
mn yk−nφ(y)dy

= 2−k−1
k∑

n=0

(
k

n

)
2−1/2

∑

m

hmmn
∫

�

yk−nφ(y)dy
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= 2−k−1
k∑

n=0

(
k

n

)
MnCk−n ,

where the last equality follows from

Ck =
∫ 1

0
Ckdt =

∫ 1

0

∑

n

(t − n)kφ(t − n)dt =
∫

�

tkφ(t)dt

and from defining Mn = 2−1/2 ∑
m hmmn . In order to prove (10.5) it suffices to show

that
tk =

∑

n

en,kφ(t − n), k = 0, . . . , N − 1. (10.8)

As a consequence of (10.6)

∑

n

nkφ(t − n) =
∑

n

(t − (t − n))kφ(t − n)

=
∑

n

k∑

m=0

(
k

m

)
tk−m (−1)m(t − n)mφ(t − n)

=
k∑

m=0

(
k

m

)
(−1)mtk−m Cm

= tk +
k∑

m=1

(
k

m

)
(−1)mtk−m Cm . (10.9)

This means that t k for k = 0, . . . , N − 1 can be written as a linear combination of φ and
tn for n = 0, . . . , k − 1, thus proving (10.8).

The convergence in (10.5) is only pointwise and not uniformly on � since we cannot
have for any ε > 0 that |∑M

−M enφ(t − n)− p(t)| < ε for any M . This is because φ has
compact support and not all function of P N (�) converges to zero in ±∞. However, we
do have local uniform convergence, that is uniform convergence on any bounded subset
of �, since all the involved functions are continues on �. �

We would like to describe the relation between wavelets and polynomials in the setting
of a more structured space. Wavelets and scaling functions are in the context of this
thesis always used as building blocks for orthonormal bases, and it is therefore natural to
look for a space with enough structure to introduce an orthonormal basis. Thus an inner
product is needed. Since the usual L 2 inner product is obviously not an inner product in
PN (�), some other definition is needed. For instance

〈
p1, p2

〉
PN

≡
∫

�

(1+ |t|2)−N p1(t)p2(t)dt . (10.10)
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Since PN (�) is complete with the induced norm (it is isomorphic to �
N ), this makes

PN (�) a Hilbert space. The φ(t − n) is indeed a basis in the induced norm, but it is not
an orthogonal basis, nor do the φ(t − n) have unit norm. In fact, the norm is rapidly de-
creasing due to the shift variant property of the inner product (10.10). This will cause the
basis coefficients to blow up when approximating polynomials. Alternatively, orthonor-
malization of φ(t − n) (and thus bringing the basis coefficients into � 2) will produce a set
of functions with rapidly increasing sup-norm.

The blow up of either coefficients or the magnitude of the basis function demonstrates
the difficulties in PN (�). Another inner product will not solve this problem, because of
the fundamental and intrinsic difference between polynomials on � and bases for L 2(�).

One of the properties shared by polynomials and wavelets with a sufficient number of
vanishing moments is differentiability. Thus, it seems obvious to investigate the relation
in a Hölder space setting. It is true (see Meyer [58]) that if ψ ∈ C r (�) then φ(t − n)
and ψ− j,n , j ∈ � and n ∈ �, provide a unconditional basis (the convergence of the
approximation is dependent only on the magnitude of the coefficients) for the function
space Cs , for all s < r . Since Cs is a Banach space a norm (the Hölder norm) is available.
Unfortunately, the polynomials defined on � are not in any Hölder space, as such a space
contains only L∞(�) functions. If this constraint is disregarded the resulting space is a
Fréchet space, which is a complete metric space. But we do not have a Banach space
since no single norm exists which induces a valid metric on the space. See Trèves [78].

10.2.2 Polynomials on the Interval

The above discussion indicates that as long as we confine the polynomials to a bounded
interval on the real axis everything works out fine. This is true in the sense that P N (I ) is a
complete subspace of L 2(I ), and (10.5) converges uniformly on I . Moreover, φ(t − n) is
a basis for this space. It is not an orthogonal basis, however. And the φ(t−n)with support
partially inside, and partially outside I , the so-called edge scaling functions, obviously do
not integrate in square to 1 on I . A simple scaling will solve the latter problem in the
sense that the internal φ together with the re-scaled edge scaling functions is a normed
basis for PN (I ) (this approach, first suggested by Meyer, is discussed in [22, Sect. 3]).
Unfortunately, this also introduces potentially severe numerical instability. The scaling
functions with the main part of their L 2 norm outside I can require an arbitrarily large
scaling to achieve unit norm when restricted to the interval. This is especially so for the
scaling functions where the tails tends to zero so fast that the support, by visual inspection,
seems somewhat smaller than it really is. For instance the scaling function in Fig. 10.2(d)
seems to have support [1; 6] where it actually is [0; 9]. Consequently, the smoothness
of the kept part of the scaling function (the part inside the interval) becomes important,
since heavy scaling will, when viewed on a fixed scale, potentially alter the smoothness
drastically. This in turn results in arbitrarily large transform coefficients.

This is easily demonstrated with an example. We are satisfied at this point by consid-
ering the left edge only, and we choose the interval to be [0;∞). Different translations
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Figure 10.2: The result of restricting a scaling function to an interval
followed by orthonormalization. The plots are described in the text.
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of a scaling function will then give either exterior, interior, or edge scaling function. The
latter are those translations which place the scaling function such that it’s support is a
subset of both (−∞; 0) and (0;∞). For instance, the Coiflet 12 scaling function, shown
in Fig. 10.2(d), gives exactly 8 edge scaling functions since the support has measure 9.
The left-most of those, i.e. the translated version with support [−8; 1], is shown in plot
(a). It has been restricted to the interval and normalized. The left-most but one is shown
in plot (b). This, too, is restricted to the interval and normalized. The latter function is not
orthogonal to the former. This is easily handled by the Gram-Schmidt procedure. The re-
sult (where (b) is orthonormalized with respect to (a) to preserve the staggered support) is
shown in (c). Several more edge scaling functions have to be constructed before the trans-
form is ready. But it is obvious just by looking at these plots that using this procedure
for constructing edge scaling functions will result in a transform which is numerically
unstable at the ends of the function.

In general, this method of construction produces edge scaling functions which have
much faster high amplitude oscillations than the scaling function itself. The same oscilla-
tions are of course present in the tail of the scaling function, but with a much smaller am-
plitude. With longer scaling functions many edge scaling functions must be constructed,
and the oscillatory behaviour will typically spread due to the orthonormalization.

Note that all scaling functions have connected support (see Lemarié-Rieusset and Mal-
gouyres [52]), i.e. it cannot be vanishing (except in single points) inside the outer bounds
of the support. There is therefore no reason to search for a scaling function with ’mostly
vanishing’ tail.

Moreover, the frequency interpretation of the wavelet basis also suffers under this
construction. On the real line we can think of wavelets at a certain scale as a basis for
representing a frequency band of approximately one octave. The highly oscillatory be-
haviour seen in Fig. 10.2 clearly cover many octaves. This concern is also expressed in
Cohen et al. [22] at the end of Section 3 where the Meyer construction is discussed. This
includes figures showing the full set of edge scaling functions for the Daubechies 4 and
8 scaling functions, which exhibits the same oscillatory behaviour as the Coiflet 12 edge
scaling functions presented here.

10.2.3 Conclusion

The discussions throughout this section has shown that it is not a trivial task to base a
construction of edge wavelets and edge scaling functions on polynomials. The reasons for
investigating this subject nonetheless are 1) a lack of really suitable alternatives combined
with 2) the nice properties of the low and high pass filters demonstrated in the beginning
of this chapter.

The lack of alternative has not been explicitly stated, but the discussions in Chapter 9
on various methods for transforming finite signals hinted this, since this chapter presents
the more well-known theoretical approaches to the problem of finite signals (at least to
the best of the author’s knowledge), and none of these includes the moment preserving
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property of wavelets.
The nice polynomial-related properties of the wavelet filters was discussed in Sec-

tion 10.1, and demonstrated explicitly in (10.3) and (10.4).
The task at hand is therefore to combine the moment preserving property of wavelets

on the real line (or at least interior wavelets) with the idea of a transform that operates
on a bounded interval of the real line. The difficulty in this task is basically how to
construct the edge scaling functions such that they have not only the moment preserving
property, but also the other nice properties that we expect of wavelets; orthonormality,
staggered support, numerical stability, and agreement with the MRA. The latter property
is important since this is the key to the filter taps. The following section describes in detail
how to construct the edge functions to achieve all the desired properties simultaneously.

10.3 Construction of Moment Preserving Edge Filters

The process of constructing the edge filters to preserve both orthogonality and moments
is not trivial, and requires a substantial number of computations. The process in divided
into the following steps:

1. First we showed that polynomials of sufficiently low degree can be written as a linear
combination of one layer of scaling functions (for fixed j ), and that the convergence
is nice on compact subsets of �.

2. The next step is pursuing the idea mentioned in Section 10.1.2, that is constructing the
edge functions one at a time, where each added function preserves one extra moment.

3. Changing the support of these new functions such that it becomes staggered leads to
the definition of left edge scaling functions in Definition 10.2.

4. Theorem 10.3 shows that the left edge functions together with the interior scaling
functions generate the desired polynomials.

5. Subsequently, Theorem 10.4 shows how to orthogonalize the left edge functions to
make an orthonormal basis for L 2([0;∞)), that the construction stays within the
framework of MRA, and finally how to make the corresponding low pass filter taps.

6. The left edge wavelets are defined in a MRA sense in Lemma 10.5, and orthonor-
malized in Lemma 10.6, which also provides the high pass filter taps.

7. A necessary extra step in the transformation is introduced in Lemma 10.7, 10.8,
and 10.9.

10.3.1 Constructing the New Edge Scaling Functions

The basic concept in the following approach is to construct the necessary scaling functions
almost from scratch. Instead of modifying the edge functions that emerged naturally from
looking at a compact subset I , we construct the edge functions specifically to be able to
reproduce polynomials. All the other properties will be incorporated in the construction
subsequently.
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The edge functions are constructed one at a time, starting with the shortest (the left-most)
scaling function. We want this function together with the interior scaling functions to
generate the zeroth order polynomials, that is the constant functions, on I . To make
things a little easier we first consider the interval [0;∞), that is the left edge only. We
will later return to the right edge.

Now, to achieve the above mention property we define on [0;∞) the function

ϕ̃0(t) ≡ 1−
∞∑

n=N−1

φ(t − n) =
N−2∑

n=−∞
φ(t − n) =

N−2∑

n=−N+1

φ(t − n). (10.11)

Then φ0,m , m ≥ N − 1 together with ϕ̃0 generates all constant functions on [0;∞). Note
that ϕ̃0 has compact support. It remains to ensure that this approach stays within the
framework of the MRA. The two-scale equation for the translated φ is given by

φ(t − n) = √
2

N+2n∑

m=2n−N+1

hm−2nφ(2t − m). (10.12)

Combining (10.11) and (10.12) yields

ϕ̃0(2 j−1t) = 1−
∞∑

n=N−1

φ(2 j−1t − n) (10.13)

= 1−
∞∑

n=N−1

√
2

N+2n∑

m=2n−N+1

hm−2nφ(2 j t − m)

= ϕ̃0(2 j t)+
∞∑

m=N−1

φ(2 j t − m)−
∞∑

m=N−1

√
2

∞∑

n=N−1

hm−2nφ(2 j t − m)

= ϕ̃0(2 j t)+
∞∑

m=N−1

[
1−√

2
∞∑

n=N−1

hm−2n

]
φ(2 j t − m). (10.14)

Hence

span{ϕ̃− j+1,0, φ− j+1,n}n≥N−1 ⊂ span{ϕ̃− j,0, φ− j,n}n≥N−1, (10.15)

since both sums in (10.14) are finite. This gives a series of spaces equivalent to V j of the
MRA. The next step is adding the 1st order polynomials. Using the same approach as
before gives (here C1 is chosen as the right constant)

ϕ̃1(t) ≡ t −
∞∑

n=N−1

nφ(t − n)− C1

=
∑

n

nφ(t − n)+ C1 −
∞∑

n=N−1

nφ(t − n)− C1
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=
N−2∑

n=−∞
nφ(t − n)

=
N−2∑

n=−N+1

nφ(t − n) .

Then

2ϕ̃1(2 j−1t) = 2 j t − 2
∞∑

n=N−1

nφ(2 j−1t − n)− 2C1

= ϕ̃1(2 j t)+
∞∑

n=N−1

nφ(2 j t − n)− 2
∞∑

n=N−1

nφ(2 j−1t − n)− C1

= ϕ̃1(2 j t)+
∞∑

n=N−1

nφ(2 j t − n)− C1

(
ϕ̃0(2 j t)+

∞∑

n=N−1

φ(2 j t − n)
)

− 2
∞∑

n=N−1

n
√

2
N+2n∑

m=2n−N+1

hm−2nφ(2 j t − m)

= ϕ̃1(2 j t)+
∞∑

n=N−1

nφ(2 j t − n)− C1

(
ϕ̃0(2 j t)+

∞∑

n=N−1

φ(2 j t − n)
)

−
∞∑

n=N−1

φ(2 j t − n)2
√

2
∞∑

m=N−1

mhn−2m (10.16)

= ϕ̃1(2
j t)− C1ϕ̃0(2

j t)

+
∞∑

n=N−1

(
n − C1 − 2

√
2

∞∑

m=N−1

mhn−2m

)
φ(2 j t − n) (10.17)

Note that in (10.16) the letters m and n have been interchanged in the last two sums. Now
(10.14) and (10.17) gives

span{ϕ̃− j+1,0, ϕ̃− j+1,1, φ− j+1,n}n≥N−1 ⊂ span{ϕ̃− j,0, ϕ̃− j,1, φ− j,n}n≥N−1,

Again this implies the existence of a series of spaces equivalent to the V j of the MRA.
Finally, just to establish the pattern;

ϕ̃2(t) = t2 −
∞∑

n=N−1

n2φ(t − n)− 2C1t + C2 =
N−2∑

n=−N+1

n2φ(t − n).

It now seems obvious how to define the set of edge scaling functions (for the left edge).
As is clear from the above, it is necessary with one edge function ‘per degree’. With an
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N vanishing moment scaling function it is possible to generate (in the pointwise sense)
polynomials of degree N − 1 on �. In order to generate the same polynomials on [0;∞)
a total of N edge function, at each edge, is needed. For j sufficiently large there is exactly
2 j − 2N + 2 interior scaling function. Since the desired total number of scaling function
is 2 j on level j , this leaves room for N − 1 edge functions; one degree seems to be lost.
To reclaim this degree the outermost interior scaling function is included in the definition
of the edge scaling function. Thus, by defining

ϕ̃k(t) =
N−1∑

n=−N+1

nkφ(t − n), k = 0, . . . , N − 1 , (10.18)

we have a set of scaling functions which generates polynomials of degree N−1 on [0;∞).

10.3.2 The Desired Additional Properties

Unfortunately, the function defined in (10.18) all have the same support, which for a
practical implementation gives a larger number of edge filter coefficients than the more
direct Gram-Schmidt approach described in the previous chapter, and, more significantly,
the resulting edge transform coefficients are subject to different interpretation that the
interior transform coefficients. However, since

ϕ̃k(t) = (−1)k
N−1∑

n=−N+1

nkφ(t + n)

= (−1)k
2N−2∑

n=0

(n − N + 1)kφ(t + n − N + 1)

= (−1)k
2N−2∑

n=0

k∑

m=0

(
k

m

)
nm(1− N)k−mφ(t + n − N + 1)

= (−1)k
k∑

m=0

(
k

m

)
(1− N)k−m

2N−2∑

n=0

m∑

u=0

(
n

u

)
γ̃m,uφ(t + n − N + 1)

= linear combination of
2N−2∑

n=0

(
n

u

)
φ(t + n − N + 1), (10.19)

(where the second last equation follows from Lemma B.1, p. 311) and
(n

u

) = 0 for n < u,
the property is restore by the following definition.
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Definition 10.2 (Left Edge Scaling Functions)
For given N define the N edge scaling functions ϕk , k = 0, . . . , N − 1, on [0;∞) by

ϕk(t) =
2N−2∑

n=k

(
n

k

)
φ(t + n − N + 1). (10.20)

The properties of these edge function can be summarize in the following theorem.

Theorem 10.3 (Generation of Polynomials by the New Edge Scaling Functions)
The N functions ϕk , k = 0, . . . , N − 1 are linearly independent, and orthogonal to φ 0,m ,
m ≥ N . Together with φ0,m , m ≥ N they generate all the polynomials up to degree N −1
on [0;∞). Finally,

ϕk(t) =
k∑

m=0

αk,mϕk(2t)+
3N−2−2k∑

n=N

βk,nφ(2t − n), (10.21)

where

αk,n = 1√
2

k∑

q=n

2−qγk,q

q∑

r=n

γ̃r,n

(
q

r

) q−r∑

m=0

(
q − r

m

)
(N − 1)m

N∑

u=1−N

huuq−r−m (10.22)

βk,n =
√

2
k∑

m=0

γk,m

N−1∑

s=1−N

(s + N − 1)mh2s+n (10.23)

Proof
The linearly independency is immediate from the staggered support, which is suppϕ k =
[0; 2N − 1− k]. The orthogonality with respect to the φ0,m , m ≥ N is also evident.

Proving that the edge functions generate the desired polynomials begins by returning
to a slightly modified version of the original proposal (10.18) for edge functions. Define,
again for t ∈ [0;∞),

ϕ̃k(t) =
2N−2∑

n=0

nkφ(t + n − N + 1), k = 0, . . . , N − 1. (10.24)

Since these redefined ϕ̃k are linearly independent for N ≥ 2 (due to the coefficients n k),
and since they, according to (10.19), span the same space as ϕ k , it follows that the ϕk and
φ0,m , m ≥ N generate all polynomials up to degree N− if and only if the same holds
for ϕ̃k and φ0,m , m ≥ N . But applying the same trick as in (10.9) shows that the set of
polynomials pk(t), k = 0, . . . , N − 1, with

pk(t) ≡
∑

n

nkφ(t − n − N + 1)
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=
∑

n

[t − N + 1− (t − n)]kφ(t − n)

=
k∑

m=0

(
k

m

)
(−1)m(t − N + 1)k−mCm ,

generates all polynomials up to degree N − 1 (since the leading terms of p k(t) is exactly
tk), and from (10.24) it is seen that for t ∈ [0;∞)

pk(t) = (−1)k ϕ̃k(t)+
∞∑

n=1

nkφ(t − n − N + 1).

This implies that ϕk together with φ0,m , m ≥ N , generate all polynomials up to degree
N − 1.

It now remains to establish the recurrence (10.21). From (10.12) and (10.24) follow
(by substitution m = s + 2n − 2N + 2) that

ϕ̃k(t) =
2N−2∑

n=0

nk
√

2
N∑

m=−N+1

hmφ(2t + 2n − 2N + 2− m)

= √
2

3N−2∑

s=−3N+1

φ(2t − s)
2N−2∑

n=0

h2n−2N+2+s nk

= √
2

N−1∑

s=−N+1

φ(2t − s)
2N−2∑

n=0

h2n−2N+2+s nk (10.25)

+√
2

3N−2∑

s=N

φ(2t − s)
N−1∑

n=−N+1

(n + N − 1)kh2n+s , (10.26)

using that t ≥ 0 for the last equality, and that h n = 0 for n < −N + 1 and n > N . The
last part (10.26) is now on the right form. To rewrite (10.25), first note that

0 = m(r)
0 (π) = 1√

2

∑

n

hn(−in)r e−inπ =
∑

n

hnnr (−1)n(−i)r ,

for r = 0, . . . , N − 1, and hence

∑

n

hn−m(−1)nnr = (−1)m
∑

s

hs(−1)s(s + m)r

= (−1)m
∑

s

hs(−1)s
r∑

u=0

(
r

u

)
mr−usu = 0.
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Thus
0 =

∑

n

hn−s (−1)nnr =
∑

n

h2n−s (2n)r −
∑

n

h2n+1−s (2n + 1)r ,

such that

∑

n

h2n−s (2n)r =
∑

n

h2n+1−s(2n + 1)r = 1

2

∑

n

hn−s nr

= 1

2

∑

n

hn

r∑

m=0

(
r

m

)
smnr−m = 1√

2

r∑

m=0

(
r

m

)
sm Mr−m .

Then the last sum in (10.25) can be substituted by

∑

n

h2n−2N+2+s nk =
∑

n

2−kh2n−N+1−(N−1−s) (2n)k

=
∑

n

2−kh2n−N+1−(N−1−s)
[
2n + (N − 1− s)− (N − 1− s)

]k

=
k∑

r=0

(
k

r

)
(N − 1− s)r 2−k

∑

n

h2n−N+1−(N−1−s)
(
2n − (N − 1− s)

)k−r

= 1√
2

k∑

r=0

(
k

r

)
(N − 1− s)r 2−k

k−r∑

m=0

(
k − r

m

)
(N − 1)m Mk−r−m ,

such that

(10.25) =
N−1∑

s=−N+1

φ(2t + s)
k∑

r=0

(
k

r

)
(s + N − 1)r 2−k

k−r∑

m=0

(
k − r

m

)
(N − 1)m Mk−r−m

=
k∑

r=0

ϕ̃r (2t)

(
k

r

)
2−k

k−r∑

m=0

(
k − r

m

)
(N − 1)m Mk−r−m .

By applying lemma B.1, see p. 311 to (10.24) and (10.20), respectively, yields

ϕ̃k(t) =
k∑

m=0

γ̃k,mϕm(t) and ϕk(t) =
k∑

m=0

γk,m ϕ̃m(t).

Using this on (10.25)/(10.26) with the above rewriting yields

ϕk(t) =
k∑

q=0

γk,q

q∑

r=0

r∑

u=0

γ̃r,uϕu(2t)

(
q

r

)
2−q

q−r∑

m=0

(
q − r

m

)
(N − 1)m Mq−r−m
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+√
2

k∑

q=0

γk,q

3N−2∑

s=N

φ(2t − s)
N−1∑

n=−N+1

(n + N − 1)qh2n+s . (10.27)

Define now

dq,r = 2−q
(

q

r

) r∑

m=0

(
r

m

)
(N − 1)m Mq−r−m .

Then

ϕk(t) =
k∑

q=0

γk,q

q∑

r=0

dq,r

r∑

u=0

γ̃r,uϕu(2t)+
3N−2∑

s=N

βk,sφ(2t − s)

=
k∑

q=0

γk,q

q∑

u=0

ϕu(2t)
q∑

r=u

dq,r γ̃r,u +
3N−2∑

s=N

βk,sφ(2t − s)

=
k∑

u=0

ϕu(2t)
k∑

q=u

γk,q

q∑

r=u

dq,r γ̃r,u +
3N−2∑

s=N

βk,sφ(2t − s)

=
k∑

u=0

αk,uϕu(2t)+
3N−2∑

s=N

βk,sφ(2t − s)

�

This provides a set of edge scaling functions which together with the interior scaling
functions generate the desired polynomials. But they do not provide an orthonormal basis,
since the ϕ’s are not orthogonal. This, however, is achievable through a linear mapping
of the ϕ’s.

Theorem 10.4 (Orthonormal Left Edge Scaling Functions and Filter Taps)
There exists an N × N invertible matrix Ẽ = E−1 such that ϕ left

k (t), k = 0, . . . , N − 1,
defined by 




ϕleft
N−1
...

ϕleft
1
ϕleft

0





≡ Ẽ






ϕ0
...

ϕN−2
ϕN−1





, (10.28)

1. have support [0; N + k],
2. together with φ0,m , m ≥ N generate all the polynomials up to degree N − 1 on
[0;∞),

3. have the property that

{ϕleft− j,k}k=0,...,N−1 ∪ {φ− j,m}m≥N (10.29)
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is an orthonormal set with the property that

V left
j ≡ span

[{ϕleft
− j,k}k=0,...,N−1 ∪ {φ− j,m}m≥N

]
(10.30)

satisfy
· · · ⊂ V left

2 ⊂ V left
1 ⊂ V left

0 ⊂ V left
−1 ⊂ V left

−2 ⊂ · · · (10.31)

and ∩ j V left
j = {0} and ∪ j V left

j = L2
([0;∞)),

4. satisfy the recurrence

ϕleft
j,m =

N−1∑

s=0

hleft
m,sϕ

left
j−1,s +

N+2m∑

s=N

hleft
m,sφ j−1,s, (10.32)

where

hleft
m,s =

1√
2

N−1∑

n=0

en,N−1−s

N−1∑

k=n

ẽN−1−m,kαk,n for s < N, (10.33)

hleft
m,s =

1√
2

N−1∑

k=N−1−m

ẽN−1−m,kβk,s for s ≥ N . (10.34)

Proof
To orthonormalize the ϕ’s the overlap matrix E = [ηk,n] ≡ [〈ϕk, ϕn〉] is needed first of
all. By the recurrence (10.21)

2ηk,s =
k−1∑

m=0

s∑

n=0

αk,mαs,nηm,n +
s−1∑

n=0

αk,kαs,nηk,n + αk,kαs,sηk,s +
3N−2−2k∑

m=N

βk,mβs,m

= 2

2− 2−k−s

( k−1∑

m=0

s∑

n=0

αk,mαs,nηm,n +
s−1∑

n=0

2−kαs,nηk,n +
3N−2−2k∑

m=N

βk,mβs,m

)
.

Note that according to (10.22) αk,k = 2−k . Now it is possible to determine ηk,s for
s = 0, . . . , k (in that order) when ηm,n is known for m, n = 0, . . . , k − 1 with n ≤ m.
To preserve the staggered support orthogonalization begins with the last edge scaling
function ϕN−1. The Gram-Schmidt procedure is in that case

ϕ×k (t) = ϕk(t)−
N−1∑

n=k+1

〈
ϕ×k , ϕ×n

〉

〈
ϕ×n , ϕ×n

〉ϕ×n (t). (10.35)

In each step this procedure relies on previously orthogonalized functions (which is de-
noted ϕ×), and therefore the ‘orthogonalized’ η’s are also need. Define therefore

η̃k,n =
{〈
ϕk, ϕ

×
n

〉
for n > k

〈
ϕ×k , ϕ

×
k

〉
for n = k.
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The link to the η’s is the recursive equation

η̃k,n = 〈ϕk, ϕn〉−
N−1∑

s=n+1

〈
ϕn, ϕ

×
s

〉

〈
ϕ×s , ϕ×s

〉
〈
ϕk, ϕ

×
s

〉 = ηk,n−
N−1∑

s=n+1

η̃n,s η̃k,s

η̃s,s
, k ≤ n. (10.36)

Given all η̃k,n for n > m, (10.36) determines η̃k,m for k = 0, . . . ,m (in no particular
order). The orthogonalization can now be carried out in the following manner. Define the
N × N matrix

Ẽk = IN×N +



0k×N

−ẽk

0N−k−1×N



 , (10.37)

where

ẽk =
[

0 · · · 0
η̃k,k+1

η̃k+1,k+1
· · · η̃k,N−1

η̃N−1,N−1

]
, k = 0, . . . , N − 1, (10.38)

that is starting with k + 1 zeros. Define also ϕ = [
ϕ0 . . . ϕN−1

]�
. From (10.35) now

follows that 




ϕ0
...

ϕN−2

ϕ×N−1





= ẼN−1ϕ ,

and using (10.35) once more yields






ϕ0
...

ϕN−3

ϕ×N−2
ϕ×N−1





= ẼN−2ẼN−1ϕ .

Since the ϕ×’s are orthogonal only the normalization remains. Hence the complete or-
thonormalization is given by






ϕleft
N−1
...

ϕleft
1
ϕleft

0





=






η̃
−1/2
0,0 0

. . .

0 η̃
−1/2
N−1,N−1






N−1∏

m=0

Ẽm






ϕ0
...

ϕN−2
ϕN−1





= Ẽϕ . (10.39)

The ϕleft’s are the orthonormalize edge scaling functions. Note that these are indexed
reversely. This is to retain the ‘shift of support’ structure, which exists for the interior
scaling functions, i.e. the support of ϕ left

k increases to the right with increasing k. In
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order to use these scaling functions the corresponding filters are needed. This is done
via a recurrence equivalent to (10.21), but with ϕ left instead of ϕ. Expanding the m’th
orthonormalized scaling function yields

ϕleft
j,N−1−m =

N−1∑

k=m

ẽm,kϕ− j,k

= 1√
2

N−1∑

n=0

N−1∑

k=n

ẽm,kαk,nϕ j−1,n +
N−1∑

k=m

ẽm,k

3N−2−2k∑

s=N

βk,sφ j−1,s .

Then

ϕleft
j,m = 1√

2

N−1∑

n=0

ϕ j−1,n

N−1∑

k=n

ẽN−1−m,kαk,n

+ 1√
2

N−1∑

k=N−1−m

ẽN−1−m,k

3N−2−2k∑

s=N

βk,sφ j−1,s

= 1√
2

N−1∑

n=0

N−1∑

u=0

en,N−1−uϕ
left
j−1,u

N−1∑

k=n

ẽN−1−m,kαk,n

+ 1√
2

N+2m∑

s=N

N−1∑

k=N−1−m

ẽN−1−m,kβk,sφ j−1,s

=
N−1∑

u=0

hleft
m,uϕ

left
j−1,u +

N+2m∑

s=N

hleft
m,sφ j−1,s ,

where h left
m,u are given by (10.33) and h left

m,s are given by (10.34). �

This concludes the construction of left edge scaling functions, and the attention now turns
to constructing a corresponding set of edge wavelets. As with the MRA on the real line
the scaling functions generates a set of spaces V left

j , and it is therefore natural to define the

edge scaling functions based on the ‘difference space’ V left
j−1 # V left

j , or, more elaborately,

W left
j ≡ V left

j−1 ∩ (V left
j )⊥. The ψ j,m , m ≥ N , all belong to W left

j , so N extra functions in

W left
j orthogonal to these ψ j,m are needed. Since the focus is on the difference between

two successive V left, an obvious definition of the N extra functions would be:

Lemma 10.5 (MRA Construction of Left Edge Wavelets)
Define the function ψk , k = 0, . . . , N − 1, by

ψk ≡ ϕleft
−1,k −

N−1∑

m=0

〈
ϕleft
−1,k, ϕ

left
0,m

〉
ϕleft

0,m . (10.40)
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Then the ψk are N linearly independent functions in W left
0 , and orthogonal to the ψ0,m ,

m ≥ N .

Proof
Since the φ0,m , ψ0,m , m ≥ N are linear combinations of the φ−1,m , m ≥ N + 1, which
in turn are orthogonal to ϕ left

−1,k , k = 0, . . . , N − 1, the ψk are orthogonal projections of

ϕleft
−1,k onto W left

0 , and, being linear combinations of functions orthogonal to ψ 0,m , the ψk

are obviously orthogonal to ψ0,m , m ≥ N .
To establish the linear independence, note that

suppϕ−1,k = [0; N/2+ k/2] and suppϕ0,k = [0; N + k],
which implies that ϕ−1,k and ϕ0,k are 2N linearly independent functions. Substituting ψ k

into
N−1∑

s=0

asψs +
N−1∑

n=0

βnϕ
left
0,n = 0 (10.41)

gives
N−1∑

s=0

asϕ
left
−1,s +

N−1∑

n=0

ϕleft
0,n

(
βn −

N−1∑

s=0

as

〈
ϕleft
−1,s, ϕ

left
0,n

〉)
= 0

This holds if and only if all as = 0. Then by (10.41) all βn = 0, showing that ψk and ϕ left
0,k

are 2N independent functions. Hence ψk are N independent functions. �

This way of constructing the ψk does not give them staggered support. But since they are
linearly independent this can be done through Gaussian elimination. And it turns out that
the nice structure of the edge scaling function filter coefficients is preserved for the edge
wavelet coefficients.

Lemma 10.6 (Orthonormal Left Edge Wavelets and Filter Taps)
There exists a linear map L such that ψ left

k , k = 0, . . . , N − 1, defined by





ψ left
0
...

ψ left
N−2

ψ left
N−1





≡ L






ψ0
...

ψN−2
ψN−1





, (10.42)

have support [0; N + k], and have the property that

{ψ left− j,k}k=0,...,N−1 ∪ {ψ− j,m}m≥N (10.43)

is an orthonormal set. Moreover there exists constants g left
k,s , k = 0, . . . , N − 1, s =

0, . . . , 3N − 2, such that

ψ left− j,m =
N−1∑

s=0

gleft
m,sϕ

left
− j−1,s +

N+2m∑

s=N

gleft
m,sφ− j−1,s . (10.44)
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The proof is made short by postponing the actual calculations.

Proof
From (10.32) it follows that there exists constants dk,m such that

ψk =
N−1∑

u=0

dk,uϕ
left
−1,u +

3N−2∑

u=N

dk,uφ−1,u, (10.45)

Since the ψk are all orthogonal to φ0,N+n for n = 0, . . . , N − 2,

0 = 〈
ψk, φ0,N+n

〉

=
3N−2∑

u=N

dk,u

N∑

m=−N+1

hm
〈
φ−1,u, φ−1,m+2N+2n

〉

=
3N−2∑

u=N+1+2n

dk,uhu−2N−2n . (10.46)

Now, if dk,3N−2 = 0 for all k, let ψ̃N−1 = ψN−1. But if dk,3N−2 �= 0 for some k, reorder
the ψk so that dN−1,3N−2 �= 0, and let ψ̃N−1 = ψN−1, and for k ≤ N − 2, let

ψ
(1)
k = ψk − dk,3N−2

dN−1,3N−2
ψN−1.

Since from (10.46) with n = N − 2

dk,3N−3h−N+1 + dk,3N−2h−N+2 = 0,

it is clear that when coefficient to φ−1,3N−2 is zero, so is the coefficient to φ−1,3N−3.
Hence ψ(1)k , k = 0, . . . , N − 2 satisfy a recursion relation similar to (10.45) with the

upper limit 3N − 4. Consequently the support of ψ (1)
k is in [0; 2N − 2]. Repeating this

N − 1 times yields the staggered support.
By orthonormalizing the ψ̃k via the Gram-Schmidt procedure starting with k = 0 (the

smallest support), the result is an orthonormal set ψ left
k , k = 0, . . . , N − 1 with staggered

support. For any j ∈ � define ψ left− j,k(t) = 2 j/2ψ left
k (2 j t). Together with ψ− j,m , m ≥ N ,

they (by construction) provide an orthonormal basis for W left
j . �

The actual calculations are quite easy, because the ψ left
k does not, as opposed to the edge

scaling functions, dependent on themselves. First note that

ψk = ϕleft
−1,k −

N−1∑

m=0

hleft
m,k

(N−1∑

u=0

hleft
m,uϕ

left
−1,u +

N+2m∑

u=N

hleft
m,uφ−1,u

)

= ϕleft
−1,k −

N−1∑

u=0

ϕleft
−1,u

N−1∑

m=0

hleft
m,khleft

m,u −
3N−2∑

u=N

φ−1,u

N−1∑

m=0

hleft
m,khleft

m,u
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=
N−1∑

u=0

dk,uϕ
left
−1,u +

3N−2∑

u=N

dk,uφ−1,u,

where D ≡ I− (Hleft
N )�Hleft

N and

Hleft
N ≡






hleft
0,0 . . . hleft

0,N 0
hleft

1,0 . . . hleft
1,N hleft

1,N+1 hleft
1,N+2

...
...

. . .

hleft
N−1,0 . . . hleft

N−1,N hleft
N−1,N+1 . . . hleft

N−1,3N−3 hleft
N−1,3N−2





.

(10.47)
For future reference, define G left

N equivalently. Since D has full row rank it is possible
through Gaussian elimination to produce a ‘lower triangular’ matrix. This procedure is
standard, and will not be explicitly presented here. The following orthonormalization
can now be carried out directly on the lower triangular matrix, starting from the top to
preserved the staggered support.

This concludes the derivation of edge functions and edge filters.

10.4 Conditioning

Now that the edge filters have been constructed, the next step is to see them in action.
Using, for instance, the Daubechies length 8 filter (see Table 10.1) to transform an arbi-
trarily chosen third degree polynomial we are in for a surprise. A third degree polynomial
is shown in Fig. 10.3(a) and the transform into low and high pass part is shown in (b).
The low pass part is obviously not a sampled third degree polynomials (which it ought to
be, according to the Lemma 10.7), nor is the high pass part the zero sequence (although
this is supposed to be one of the key features of the edge filters). Alas, there seems to be
a malfunction somewhere in the construction laid out in the previous section.

Fortunately, this is not the case. But the theory needs to be extended to handle this
problem. This section is dedicated to a thorough description of how to do this. The
first step is to establish that what we expected on the interval, is indeed true on the real
line. Namely that the wavelet transform of a polynomial (of sufficiently low degree)
will produce a new polynomial of the same degree, and reversely that any polynomial of
sufficiently low degree is the wavelet transform of some other polynomial of the same
degree.

Then Lemma 10.8 shows that although this does not hold on the interval, the edge
filter transform is indeed a mapping from a vector space � ′ onto itself. It is thus possible
to construct a mapping A between that space and the space � of sampled polynomials.
This is done in Lemma 10.9 and Lemma 10.10. The principle is depicted below. The
mapping B is the desired one, but, as Fig. 10.3 demonstrated, it is unfortunately not the
same as the edge filter DWT. Thus, the mapping A is needed to move the signal between
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Figure 10.3: In (a) the polynomial t 3 − 4t2 + 2t + 6 is sampled in 32
points in the interval [−1; 4]. When applying the DWT using the low and
high pass edge filters derived in the previous sections, the result (b) is not
exactly as expected. Daubechies length 8 filters are used. When applying
the preconditioning matrices the high pass part becomes vanishing, showed
in (c), while the low pass part needs an additional postconditioning before
it becomes a third degree polynomial sampled in 16 points, as is seen in (d).
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the two spaces.

�
B−−−−→ �

A

0
1A−1

�′ DWT−−−−→
edge

�
�

′

It is hinted in Fig. 10.3(b) that A should only affect the ends of the signal. As this is
indeed the case, the mapping is divided into two parts, one for each end. This is made
explicit in Lemma 10.9.

10.4.1 Identifying the Problem

First, this lemma establishes that the approximation by φ(t − n) on the real line is a
mapping from the space low ordered polynomials onto the space of sampled equally low
ordered polynomials.

Lemma 10.7 (Mapping of Polynomials on the Real Line)
Let φ be a scaling function with m (s)

0 (π) = 0, s = 0, . . . , N − 1. Let k ≤ N − 1
and pk(t) ∈ Pk(�) have of degree k, and let a ∈ �k+1 , ak �= 0. Then there exists a
p′k(t) ∈ Pk(�) of degree exactly k and b ∈ �k+1 such that

∫

�

pk(t)φ(t − x)dt =
k∑

s=0

bs xs, (10.48)

and
k∑

s=0

as xs =
∫

�

p′k(t)φ(t − x)dt , (10.49)

both for all x ∈ �.

Note that although the integration in the lemma and the proof is over � (implicitly), all
the integrands are compactly supported functions. Note also that the equalities are, as
demonstrated in Section 10.2, only valid pointwise.

Proof
The first equation (10.48) follows immediately from

∫
tkφ(t − x)dt =

∫
(t + x)kφ(t)dt =

∫ k∑

m=0

(
k

m

)
tm xk−mφ(t)dt

=
k∑

m=0

(
k

m

)
xk−m

∫
tmφ(t)dt .
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For the second equation let p ′k(t) =
∑k

m=0 b′mtm . Then

∫
p′k(t)φ(t − x)dt =

∫ k∑

m=0

b′mtmφ(t − x)dt =
k∑

m=0

b′m
m∑

s=0

xm−s
(

m

s

)∫
tsφ(t)dt

=
k∑

m=0

b′m
m∑

s=0

xm−s Bm,s =
k∑

m=0

xm
k∑

s=m

b′s Bs,s−m .

Define now

B =






B0,0 B1,1 . . . Bk,k

B1,0 . . . Bk,k−1
. . .

...

0 Bk,0





, Bm,s =

(
m

s

)∫
tsφ(t)dt

then B is invertible, since Bm,0 = 1, and hence choosing b ′ = B−1a gives the coefficients
of the polynomial p ′k(t). �

As a consequence of this lemma sequences originating from equidistantly sampled poly-
nomials of sufficiently low degree gets mapped to zero under the high pass filtering, since
for any such sequence cn , n ∈ �, one can, according to (10.49), find a polynomial p(t)
such that cn =

∫
p(t)φ(t − n)dt . Thus (and this has actually already been demonstrated

in (10.3))

∑

n

gn−2kcn =
∫

p(t)
∑

n

gn−2kφ(t − n)dt =
∫

p(t)2−1/2ψ(t/2− k)dt = 0 .

In particular, the sequence {∫ φ(t − n)}n∈�, which is just all 1’s, maps to the zero se-
quence under high pass filtering. This is still true on the interval [0; 1], where

[ ∫
ϕleft
− j,0 . . .

∫
ϕleft
− j,N−1

∫
φ− j,N . . .

∫
φ− j,2 j−N−1

∫
ϕ

right
− j,−N+1 . . .

∫
ϕ

right
− j,0

]
(10.50)

maps to the zero sequences (see Lemma 10.8). However, the sequence (10.50) is no
longer a sequence consisting of just 1’s, since the edge functions do not have integral 1!
For instance, for the Daubechies 8 filter the edge functions integrate like

n
∫
ϕleft

n (t)dt n
∫
ϕ

right
n (t)dt

0 1.443 0 1.000
1 1.373 −1 0.347
2 1.209 −2 -0.443
3 1.032 −3 0.434
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However, the following lemma shows that although the transform with edge filters maps
sequences on the form (10.50) to zeros (instead of mapping sampled polynomials to zero),
it is at least well-behaved in the sense that it maps these sequences to the same type of
sequences.

Lemma 10.8
Let φ be a scaling function with with m (s)

0 (π) = 0, s = 0, . . . , N − 1, and p(t) a
polynomial of degree at most N − 1, and let ϕ left

k , k = 0, . . . , N − 1, be edge scaling
functions as defined in Theorem 10.4. Define

c = [〈p, ϕleft
− j,0〉 . . . 〈p, ϕleft

− j,N−1〉
〈
p, φ− j,N

〉
. . .

〈
p, φ− j,3N−2

〉]�
(10.51)

Then
Hleft

N c = [〈p, ϕleft
− j+1,0〉 . . . 〈p, ϕleft

− j+1,N−1〉
]� (10.52)

and
Gleft

N c = 0 . (10.53)

Proof
From (10.32) it follows that

N−1∑

m=0

hleft
k,m 〈p, ϕleft

− j,m〉 +
N+2k∑

m=N

hleft
k,m

〈
p, φ− j,m

〉 = 〈p, ϕleft
− j+1,k〉 ,

which proves (10.52). Likewise, from (10.44)

N−1∑

m=0

gleft
k,m 〈p, ϕleft− j,m〉 +

N+2k∑

m=N

gleft
k,m

〈
p, φ− j,m

〉 = 〈p, ψ left
− j+1,k〉 ,

and (10.53) then follows from
∫

tkψ left− j,m(t)dt = 0, k = 0, . . . , N − 1 .

�

10.4.2 Constructing the A Mapping

So, one way to handle this problem is to convert polynomials sequences
∑k

s=0 bsns into
sequences on the form (10.51) prior to transformation, and convert them back after trans-
formation. The brute force way of construction this mapping is to first convert the poly-
nomial sequences ‘out of’ the domain of sampled polynomials (the mapping V −1) and
subsequently ‘into’ the domain of altered polynomials (the mapping W ).
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Lemma 10.9 (The Condition Matrix)
Define the N × N matrices

Vm,n =
∫

tmφ(t − n)dt and Wm,n =
∫

tmϕleft
0,n(t)dt, (10.54)

m, n = 0, . . . , N − 1. The matrices are non-singular and A = WV−1 is an bijective
mapping from the N dimensional vector space of sequences on the form

cn =
N−1∑

m=0

amnm , n = 0, . . . , N − 1 (10.55)

to the N dimensional vector space of sequences on the form

c̃n =
〈
p, ϕleft

0,n

〉
, n = 0, . . . , N − 1, (10.56)

where a ∈ �N and p(t) =∑N−1
m=0 bmtm .

Proof
The linear independence of the row of V and W is established with equivalent arguments.
Beginning with W, first observe that if it was singular then one linear combination of
the rows would be the zero column vector. The corresponding polynomial p ′ is then
orthogonal to all the ϕ left

0,n . But there exists a finite linear combination of the ϕ left
0,n and the

φ0,m , m ≥ N , which coincides with p ′ on [0; 2N − 1]. Since p ′ is orthogonal to the ϕ left
0,n

this combination reduces to a combination of the φ0,m , m ≥ N , which vanishes identically
on [0, 1]. Since p �= 0 on [0; 1] this is a contradiction. The exact same argument holds
for V when ϕ left

0,n is replaced by φ0,m , 0 ≤ m ≤ N − 1.
Since A is invertible and defined on all sequences of the form (10.55) it is injective,

and since the dimensions are the same, it is also surjective.
Any sequence on the form (10.55) can be written as linear combinations of the columns

of V. Thus there exists a vector α such that c = Vα, so

Ac = WV−1Vα = Wα,

which is a sequence on the form (10.56). �

The mapping constructed here applies to the left edge only, and accordingly the matrix
is denoted Aleft. It is applied to the left end of the signal prior to transformation in order
convert the left end of the signal into a sequence on the form (10.56). In a similar way the
mapping Aright for the right end of the signal is constructed. Applying it to the right edge
prior to transformation produces the result shown in Fig. 10.3(c) on page 243, where the
high pass part is indeed the zero sequence. However, the low pass part is still not a third
degree polynomial. This is because signal is still in ‘the domain of adulterated edges’,
and it is necessary to transform the signal back to ‘the domain of polynomials’. This is
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accomplished by postconditioning the signal by multiplying the left and right edges with
A−1

left and A−1
right, respectively. The result is shown in Fig. 10.3(d).

It is an important point that once the signal has been transformed to ‘the domain
of adulterated edges’ one can do several consecutive transforms, say a wavelet packet
decomposition, without at any step loosing the ability to map polynomials to polynomi-
als in the low pass part and the zero sequence in the high pass part. Once the desired
decomposition is determined and the corresponding decomposition signal is found, the
postconditioning can be applied to retrieve the signal in ‘the domain of polynomials’.

To determine A explicitly it is necessary to compute the all the quantities in (10.54).
But computing those directly is a cumbersome task, since the scaling functions are only
available numerically. Fortunately, the A matrix can be computed using the known one-to-
one correspondence between polynomials of degree N −1 and the polynomial coefficient
sequences of their expansion in the φ(t−n). This is demonstrated in the following lemma.

Lemma 10.10 (Numerical Construction of Conditioning Matrices)
Define Ṽm,n =

(n
m

)
. Then A = ẼṼ

−1
, where Ẽ is defined in Theorem 10.4.

Proof
Note first that

Ṽm,n =
(

n

m

)∑

k

∫
φ(t − N + 1+ k)φ(t − N + 1+ n)dt

=
∫ ∑

k

(
k

m

)
φ(t − N + 1+ k)φ(t − N + 1+ n)dt

=
∫

qm(t)φ(t − N + 1+ n)dt ,

where the last equality defines qm(t). This implies that the corresponding mapping into
the space of sequences on the form (10.56) should be

W̃m,n =
∫

qm(t)ϕ
left
0,N−1−n(t)dt =

∫ N−1

0
ϕm(t)ϕ

left
0,N−1−n(t)dt

where the second equality follows from (10.20). Thus W̃ is the transition matrix Ẽ. �

It is now easy to construct the A matrix necessary for the transformation.

10.5 Examples of Edge Filters

So far there has been no attempt to actually compute any edge functions or edge filter
taps. This section is therefore dedicated to give some examples on both. The MATLAB

code needed for making these examples are given in Appendix C. The first examples
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Table 10.1: Filter taps for two Daubechies filters.
Daubechies 4 Daubechies 8

n hn gn hn gn
0 -0.1294 -0.4830 -0.0106 -0.2304
1 0.2241 0.8365 0.0329 0.7148
2 0.8365 -0.2241 0.0308 -0.6309
3 0.4830 -0.1294 -0.1870 -0.0280
4 -0.0280 0.1870
5 0.6309 0.0308
6 0.7148 -0.0329
7 0.2304 -0.0106

is the classical Daubechies 4 filter with two vanishing moments. The filter is given in
Table 10.1. Since each moment results in four edge functions, two scaling functions and
two wavelets, there is a total of eight functions, which are shown in Fig. 10.4. A number
of features are apparent in these graphs. Firstly, the staggered support is immediately
visible, in particular because the functions are shown on their support, i.e. the vanishing
intervals are not drawn. Secondly, the functions are well-behaved in the sense that they
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Figure 10.4: The edge scaling functions and wavelets from Daubechies 4
(N = 2). The functions are shown on their support, which is staggered as
described in Theorem 10.4 and 10.6.

do not oscillate vigorously as is the case for the (less subtle) Meyer construction, see
Cohen et al. [22, p. 64-69]. Thirdly, it is interesting to notice that on the interval [0; 1] the
ϕleft

k , k = 0, . . . , N − 1 are pure polynomials of degree N − 1. This is because the left
most interior scaling functions was sacrificed to make room to N edge scaling functions.
Consequently, the interior scaling functions have no influence for t < 1, and the adapted
edge scaling functions are therefore polynomials on the first unit interval.

The edge filter taps for Daubechies 4 is given in Table 10.2. The filter taps come from
two different equations, namely (10.33) and (10.34), for n < N and n ≥ N , respectively.
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Table 10.2: The edge filters for Daubechies 4 (N = 2).

n hleft
0,n hleft

1,n gleft
0,n gleft

1,n Aleft

0 0.8705 -0.1942 -0.2575 -0.3717 2.0963 0
1 0.4349 0.1902 0.8014 0.3639 -0.8008 1.0898
2 0.2304 0.3750 -0.5398 0.7176
3 0.7676 -0.4011
4 0.4431 -0.2316

n hright
0,n hright

1,n gright
0,n gright

1,n Aright

−4 -0.1292 0.4830 1.0014 0.0372
−3 0.2238 -0.8366 0 0.3249
−2 0.8501 -0.3983 0.2274 0.2588
−1 0.4573 0.6909 0.1224 -0.5464

0 0.0375 0.6033 0.0100 0.7965

This division is shown in the table with a gray line.
The next example is the Daubechies 8 filter, which has four vanishing moments. The

characteristics discussed in the Daubechies 4 examples are equally apparent in this case.
It is therefore left uncommented.

10.6 The Problem of Numerical Instability

There still exist one major problem with the particular construction laid out in the previ-
ous sections. Although a lot of effort was put into constructing the edge functions with
just the right properties, the construction fell short of providing a set of orthonormal edge
functions. Consequently, it was necessary to introduce the conditioning matrices. Un-
fortunately, these matrices turn out to be numerical unstable. In Fig. 10.6 the condition
numbers (the ratio between largest and smallest singular value) of A left and Aright are
shown for the Daubechies filter with N = 2 through N = 12.

The problem traces back to Ṽ and Ẽ in Lemma 10.10, which both grows exponentially

in condition number for increasing size. In some cases the matrix product ẼṼ
−1

do have
a smaller condition number than both of the matrices, as is evident from Fig. 10.6. Note
that another implementation of the A matrices will not solve the problem, since in this
construction, they are unique.

It is interesting to note that while the condition number of the right and left condition
matrices are of the same magnitude, the entries in the one matrix has is of a magnitude
which is equal to the reciprocal of the magnitude of entries in the other matrix. This
in some sense shift the stability problem to the one edge of the signal for the forward
transform and to the other edge for the inverse transform.

To demonstrate what happens when a filter of even moderate length is applied to a non-
polynomial signal, Fig. 10.7 shows the transform of a third degree polynomial followed
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Figure 10.5: The edge scaling functions and wavelets from Daubechies
8.
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Table 10.3: The edge filters for Daubechies 8 (N = 4).

n hleft
0,n hleft

1,n hleft
2,n hleft

3,n gleft
0,n gleft

1,n gleft
2,n gleft

3,n

0 0.9220 -0.3137 0.1308 -0.0371 -0.0185 -0.0517 0.0983 0.1427
1 0.3629 0.5401 -0.3350 0.1067 0.1585 0.3058 -0.4070 -0.4107
2 0.1268 0.5595 -0.0747 -0.0047 -0.5515 -0.5282 0.2861 0.0180
3 0.0445 0.4073 0.1410 -0.0616 0.7591 -0.1493 0.3922 0.2371
4 0.0139 0.2998 0.3020 -0.0865 -0.3070 0.7406 0.2397 0.3332
5 0.1928 0.4180 -0.0506 -0.2212 -0.7043 0.4329
6 0.0621 0.5672 -0.0940 -0.0713 -0.0828 -0.3763
7 0.4831 0.0993 0.1610 -0.5279
8 0.1557 0.6520 0.0519 -0.0091
9 0.6926 0.1799

10 0.2232 0.0580

n hright
0,n hright

1,n hright
2,n hright

3,n gright
0,n gright

1,n gright
2,n gright

3,n

−10 -0.0106 0.2304
−9 0.0329 -0.7148
−8 0.0312 -0.0317 0.6309 0.2283
−7 -0.1883 0.0983 0.0279 -0.7085
−6 -0.0272 -0.2014 -0.2017 -0.1870 0.6070 0.0500
−5 0.6318 0.3518 0.6259 -0.0308 0.0844 -0.1551
−4 0.7140 -0.2837 -0.5036 -0.3031 0.0328 -0.2278 0.1027 0.0250
−3 0.2292 -0.0236 -0.1757 0.9405 0.0105 -0.0638 0.1342 -0.0964
−2 -0.0029 0.6177 -0.1732 -0.0985 -0.0001 0.0865 0.7374 0.1659
−1 0.0008 -0.5014 0.3837 0.0692 0.0000 -0.0698 0.3767 0.6706

0 0.0058 0.3332 0.3253 0.0952 0.0003 0.0447 -0.5091 0.7161

Aleft Aright
16.588 1.0000 0.0127 -0.0087 -0.0000

-34.605 3.7077 0.3346 -0.4869 0.5882
26.731 -3.3528 1.4796 0.0525 -0.1891
-7.270 1.0165 -0.2701 1.0321 0.0350
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Figure 10.6: The condition numbers for A left (solid) and Aright (dashed)
for the three types of filters. The horizontal axis is the number of vanishing
moments, the vertical axis is the magnitude of the condition numbers.

by a transform of the same polynomial with mild noise added.

10.6.1 Obtaining Numerical Stability

The numerical instability of the conditioned transform, as described previously in this
section, is so severe that it cannot simply be ignore or accepted. This is clear demonstrated
in Fig. 10.6 and 10.7. At the same time the polynomial regenerating filters seems too
promising to be abandoned as edge handling method. Thus, the question addressed in
this section is how to modify the method in order to achieve numerical stability without
sacrificing the polynomial regenerating property.

It was noted in the previous section that condition matrices A left and Aright are unique
for a given set of edge scaling functions. Consequently, these cannot be chosen differently.

However, the condition matrices are, according to Lemma 10.10, defined by A = ẼṼ
−1

,
where Ẽ is a non-unique orthonormalization matrix. One choice of Ẽ is given in the
constructive proof on Theorem 10.4, but there are many other choices, since multiplying
Ẽ with a orthogonal transform will give another orthonormalizing matrix. But even this
freedom is not enough to solve the problem.

Lemma 10.11
There exists an orthonormal set

{
fk
}

k=0,...,N−1 obtained by an orthonormalization of the
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Figure 10.7: In (a) the polynomial t 3 − 4t2 + 2t + 6 is sampled in 32
points in the interval [−1; 3], and the result of preconditioning, transforma-
tion with edge filters, and postconditioning is showed in (b). Daubechies
length 8 filters are used. This produces the expected result: The high pass
part is completely vanishing, while the low pass part is another polyno-
mial sampled in 16 points. When even mild normal noise is added to the
polynomial, (c), the result of transforming using pre- and postcondition-
ing is highly numerical unstable, as is clearly seen in (d). Using Symlets
length 8 filter instead, (e), produces a more stable result (which is hinted in
Fig. 10.6 at N = 4). Note that (b) and (e) are not directly comparable since
two different filters are used.
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set
{
ϕk
}

k=0,...,N−1 such that
∫

fk(t)dt = 1 if and only if

N−1∑

k=0

∣∣∣
∫
ϕleft

k (t)dt
∣∣∣
2 = N . (10.57)

The link between ϕ and ϕ left is given in Theorem 10.4 on p. 236.

Proof
Assume first that the set { fk} exists. This set is orthonormal if and only if there exists a
orthogonal matrix B ≡ [βm,n] such that






f0
f1
...

fN−1





= B






ϕleft
0
ϕleft

1
...

ϕleft
N−1






since

〈 fs , fu〉 =
〈

N−1∑

m=0

βs,mϕ
left
m ,

N−1∑

n=0

βu,nϕ
left
n

〉

=
N−1∑

m=0

βs,mβu,m = δs,u ,

where the last equality is valid for a orthogonal B only. Then

N =
N−1∑

m=0

∣∣∣
∫

fm(t)dt
∣∣∣
2

=
N−1∑

m=0

∣∣∣
N−1∑

n=0

βm,n

∫
ϕleft

n (t)dt
∣∣∣
2

≤
N−1∑

n=0

N−1∑

m=0

∣∣βm,n
∣∣2
∣∣∣
∫
ϕleft

n (t)dt
∣∣∣
2

=
N−1∑

n=0

∣∣∣
∫
ϕleft

n (t)dt
∣∣∣
2

together with
N−1∑

m=0

∣∣∣
∫
ϕleft

m (t)dt
∣∣∣
2 ≤

N−1∑

m=0

∫ ∣∣ϕleft
m (t)

∣∣2dt = N

gives (10.57).
The other way is not proved here, as the author by the deadline of the thesis did not

have a finished proof. �

The Daubechies 4 and 8 filters do not satisfy (10.57), and in fact, neither does any of the
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Section 10.7: Application of Edge Filters to Real Measurements

Daubechies filters. Consequently, it is not possible in the case of these filters to achieve
unit integral by means of a different orthonormalization matrix Ẽ in Theorem 10.4. This
also means that giving up the staggered support will not solve the problem.

This leaves two choice: Either an ad hoc solution is used to reduce the effect of the
conditioning matrices, or a theoretically founded solution is introduced by changing the
construction at a very early stage. The former choice is obviously dependent on the signal
processing task at hand. In particular, it is important whether perfect reconstruction and
the frequency interpretation is needed. The latter choice, although it requires a good idea
and a lot of work, is clearly preferable to the former.

One ad hoc solution is to simply disregard the conditioning matrices. It is not a very
attractive solution, however. This is evident from the plot in Fig. 10.3(b). The deviation
from the expected result is evident, in particular the coefficients at the right end of the
signal differ significantly from a third degree polynomial and the zero signal, respectively.

Another solution is to alter the signal at the ends prior to transformation, for instance
by replacing the outer most coefficients by a (sampled) low degree polynomial fitted to the
original coefficients. This will only solve the problem if at least 2 J−1(3N − 3) samples
are replaced in the one end (the end where the large condition number of the precon-
ditioning matrix is due to medium to very small entries), where J are the number of
consecutive transform steps, i.e. levels in the decomposition, and N samples are replaced
at the other end (the end where the large condition number is due to medium to very
large entries). The former number can quickly become large compared to the length of
the signal. The 2 J−1(3N − 3) is motivated by the fact that the longest edge filter in this
construction has 3N − 1 filter taps, and the effect kicks in with the second edge filter
(it is currently unknown why the first edge filter does not cause instability). While this
method does produce good results it is an ‘unnatural’ way of handling the problem. The
numerical instability is still latent in the conditioning matrices, and implementation in
low-cost signal processing hardware becomes difficult (if not impossible). It also requires
significantly more computations since an approximating polynomial has to be determined
prior to transformation.

A more theoretical approach is to introduce more freedom in the construction, and
thereby allowing for an orthogonalization of the scaling functions such that unit energy
is achieved. More freedom is available by claiming more than the just the first interior
scaling function (which was claimed at the end of Section 10.3.1). This approach was
suggested to the author by Jan Olov Strömberg. But although it seems promising the
author still has not found the time to investigate it any further.

10.7 Application of Edge Filters to Real Measurements

The presentation and discussion of moment preserving edge filters has so far been the-
oretical. The construction of the edge filters and the conditioning matrices have been
presented in detail with the corresponding MATLAB code. The filters have been shown to
possess a series of useful properties. But the construction also has a significant stability
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problem. To demonstrate that the filters can indeed be used as long as the right wavelet
filter is chosen this section applies the method to a real signal with low frequency noise.
For comparison the Gram-Schmidt orthogonalized edge filters, see Section 9.4, are also
applied.

In Fig. 10.8(a) an example of a very powerful low frequency noise is shown. This
noise has been generated moving a neon tube, mounted with a metal protection grid,
in the vicinity of the receiver. The shown signal contains 3072 samples and has been
recorded at 5.7 kHz. The shown signals thus represents 0.54 seconds. The receiver used
for making the recording is the same as is used in the measurement of reflection maps,
see 8.3.1. The noise contains a 100 Hz disturbance from the oscillations of the light, and
a somewhat slower oscillation. The latter is caused by the movement of the light which
in turn causes the metal grid to occasionally cover the neon tube partially.

The following examples is presented to demonstrate what happens when a sensor
employing the wavelet modulation is subjected to this type of disturbance. The entire
process is much the same as in the first test setup, see Section 5.2. A five level WPT
of a length 512 sample signal is used, and the original signal is designed such that the
6th of 16 elements are non-vanishing. This element is the 19th RS sequence (row) of a
32×32 RST matrix. The reason for using a SS sequence here is explained in Section 4.7.2.
This designed signal is inversely WP transformed (using the Symlets 12 taps filter), and
the transmission is simulated by scaling this signal and adding the noise. The interval
[1024; 1536] in Fig. 10.8(a) is chosen as the noise, and the simulated, received signal is
shown in Fig. 10.8(b). The transmitted signal is mixed with the white noise in the signal
and is therefore not explicitly visible in the plot.

The plots in Fig. 10.8(c) and (d) show the result of using a set of Gram-Schmidt
orthogonalized edge filters and a set of moment preserving edge filters with conditioning
matrices to generated and post-process the signal. Note that the DC component is present
in the first element which is therefore way off the scale. The artifacts generated by the
introduced discontinuities in the GS edge filter case are clearly visible in Fig. 10.8(c). It
is also easy to see the benefit of using the moment preserving edge filters as there are
(almost) no artifacts in Fig. 10.8(d).

The designed signal is vanishing except for the 6th element which corresponds to the
interval [160; 192]. In the 6th element of the GS edge filter WPT the edge effect is most
noticeable at the left edge. Actually, there seems to be no effect at the right edge. The
RST of the 6th element does not reveal the 19th sample as significant, see Fig. 10.8(e).
This is mainly because the the first sample of the 6th element contains most of the energy
in the 32 samples. Thus, the RST shown in Fig. 10.8(e) is mostly the first RS sequence.
The amplitudes of these edge effects in Fig. 10.8(c) are not fixed, but change throughout
the elements with the low frequency noise. Or more accurately, with the different between
the amplitudes at the ends of the signal (since the edge effects are artifacts generated by
the discontinuity in the periodized signal). In fact, they almost disappear when the two
edges happen to ‘meet’. But only almost since a discontinuity in the first derivative of the
signal also contributes a little to the edge artifacts.
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Figure 10.8: The effect of using Gram-Schmidt and moment preserving
edge filters on real signal. (a) an example of low frequency noise. (b) the
transmission signal plus the noise in [1024; 1536]. (c) WPT of transmitted
signal, with Gram-Schmidt edge filters, (d) WPT with moment preserving
edge filters, (e) RST of the 6th element. See text for further explanations.
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When the moment preserving edge filters have been used the edge artifacts are avoided
and the RST of the 6th element now shows a significant difference between the 19th
sample and the other samples, see Fig. 10.8(e). Note that the two signals in Fig. 10.8(e)
has been energy normalized for easy comparison.

At this point one may wonder why this application of the moment preserving edge
filters went well despite the fact that the transform is numerical unstable. The reason
is that the Symlets 12 taps filter is one of the few relatively stable filters (see Fig. 10.7
and recall that Symlets 12 has 6 vanishing moments). Nonetheless, the are some small
artifacts in the transformed signal. This is due to the fact that the transform is indeed
not entirely stable. The condition number of the condition matrices is approximately 10
which does cause some minor instability, as is seen in Fig. 10.8(d).

10.8 Conclusion

It is pointed out in Depczynski et al. [29] that the idea of using an existing wavelets basis,
where the interior functions are maintained while the edge functions are altered involves
a “complicated reorthogonalization process, with an impact on the organization and the
‘complexity’ of fast wavelet algorithms”. They suggest a construction where the original
wavelet basis is constructed especially for bounded intervals. While this author tends to
disagree with the first observation (this chapter does present the filter taps needed in a
fast implementation, and so does the original paper by Cohen et al.) the idea of specially
constructed wavelets seems appealing. An example of this is given in Depczynski [28].

Still, the edge filters constructed in this chapter have a series of useful properties
which are worth fighting for. This is evidenced by the fact that more than 150 papers
from all sorts of proceeding and journals have cited the paper by Cohen et al. [22] (result
of search on ISI Web of Science). However, browsing through these papers did not reveal
a single one pointing out the numerical instability reported in this chapter.

A couple of suggestions for handling the instability problem was given. However, the
constructive ones do not seem to be particularly useful, and the more theoretical approach
is still just a sketchy idea. It should be noted, though, that if one is satisfied with the length
12 or 16 Symlets filters the instability is at a reasonable level according to Fig. 10.6. MAT-
LAB code for generating the edge filters and conditioning matrices is given in Appendix C.
This code reproduces exactly the derivations in Section 10.3 and 10.4.

There exists two alternatives to the orthogonal filter bank implementation of the wavelet
transform which is the basis for all the edge handling methods presented in this and the
previous chapter. The most obvious, perhaps, is relaxing the orthogonality constraint
and use biorthogonal wavelets. While the energy preserving property is lost a number of
useful properties are gained. Among those is more freedom to design methods for the
edges of the signal. This is the approach that Cohen has suggested to the author. Another
alternative is to use the lifting technique for designing the wavelet transform and thus
the action taken in the end of the signal. A description of this is found in Jensen and la
Cour-Harbo [45].
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Section 10.8: Conclusion

Despite the numerical stability issue it is possible to apply the moment preserving edge
filters successfully. This was demonstrate in Section 10.7. The Symlets 12 tap filter was
used because it produces relatively stable edge filters and conditioning matrices. The
result is a more accurate estimate of the CGM when high power low frequency noise is
present in the signal.
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The Rudin-Shapiro
Transform 11
This chapter presents the Rudin-Shapiro transform in a mathematical and historical con-
text. This linear transform was originally conceived as a series of coefficient sequences
from a set of trigonometric polynomials, but it now exists in is own right. The transform
has a series of nice properties among which the spread spectrum property of the basis
elements is the most noticeable one. The transform proves useful for designing signals in
low-cost hardware, not least due to the existence of a fast and numerically robust imple-
mentation.

The aforementioned polynomials are often categorized as flat polynomials. This refers
to the fact that the amplitude of the polynomials are bounded by a constant times the
energy of the polynomial. There exists many other types of flat polynomial than just
the Rudin-Shapiro polynomials, and the history of the development in the field of flat
polynomials is quite interesting (at least to the author of this thesis). This is in no small
part due to the fact that a number of seemingly simple questions within the field have
remained unanswered for several decades.

It was demonstrated in the chapters in Part I that spread spectrum transforms have a
role to play in the attempt to increase the robustness of active sensors. The aim of this
chapter is therefore also to introduce the signal processing aspects of the Rudin-Shapiro
transform. In particular, in is interesting to identify a series properties which are useful in
the design of transmission signals.

11.1 Search for Flat Polynomials

The construction of flat polynomials dates back to the beginning of 20th century. Of
course, at that time the purpose was not to design signals for use in digital transmission
systems. The incitement was rather a mathematical interest in certain ‘nice’ trigonometric
series. In 1916 Hardy and Littlewood discovered a series, which they investigated as part
of a study of so-called elliptic Theta-functions. One of their results was a series which has
a property that today is referred to as (semi-)flatness. Since then many other polynomials
with various similar properties were discovered.

The interest in flat polynomials still exists today, though the interest is now in general
fueled by the need for pseudo random sequences suitable for application in fields such
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as transmission and encryption. It is therefore research in information theory rather than
pure mathematics that produces new results in the field of flat polynomials, and although
many interesting results have emerged this thesis is focused on the use of one particular
type of flat polynomials, namely the Rudin-Shapiro polynomials.

11.1.1 Introduction

To fully appreciate the theory presented in this chapter some basic concepts and notation
is necessary. They are introduced in the following two subsections. A brief overview
of the history of flat polynomials is then given in Section 11.1.4. This provides view of
the various, positive and negative, results obtained in the area of flat polynomials. The
authors fascination of the history of flat polynomials aside this provides a perspective
view on the RS polynomials. That is, the historical overview gives an idea of what type
of improvements are possible. It also demonstrates why this field of research has a gain
to pain ratio close to zero.

The Rudin-Shapiro polynomials are one of many possible sets of flat polynomials.
The historical overview includes all kinds of flat polynomials, some of which are rather
useful in real applications.

A construction of Coifman et al. [23] is based on the idea of generating sequences
which are uncompressible by a Haar-Walsh wavelet packet transform, i.e. the transform
coefficients exhibits no decay. The result is sequences of±1 and±i which have the same
type of flatness as Rudin-Shapiro sequences.

In applications it is often very useful to have spread spectrum sequences with a good
autocorrelation, i.e. where only the zero lag is significantly different from zero. Such
sequences have been systematically constructed by No et al. [60, 61, 62].

11.1.2 Notation

Before venturing into a search for flat polynomials it is convenient to fix the notation.
First unimodular sequences are defined. They will become the coefficients in the flat
polynomials.

Definition 11.1 (Unimodular sequences)
Define the sets of unimodular sequences as

�
p
N = {

β ∈ � N
∣∣ βk ∈ {ei2πm/p}m=0,...,p−1

}
for p = 2, 3, . . . ,

which means the set of N dimensional vectors with entries in a set of equidistantly sam-
pled points on the unit circle in � . Define also the natural extension

�
∞
N = {

β ∈ � N
∣∣ βk ∈ {ei2παk }αk∈[0;1)

}

for p = ∞.
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The polynomials are defined on the unit circle in the complex plane, and takes coefficients
from the set of unimodular sequences. Note how the defined polynomials are the Fourier
transform of the unimodular sequences.

Definition 11.2 (Trigonometric Polynomials)
Define the sets of complex trigonometric polynomials

�
p
N =

{
fN : � �→ �

∣∣∣∣ fN =
N−1∑

k=0

βkei2πkξ , β ∈� p
N , ξ ∈ [0; 1)

}

for p = 2, 3, . . . ,∞. Define also

�
p =

∞⋃

n=1

�
p
n .

Remark 11.2.1
• In most literature, including the conjectures of Littlewood [54], only the two sets� 2

and� ∞ are mentioned, and they are typically referred to as� and � .
• The set� 2 differs from the rest in being the only one with exclusively real coefficients

(±1’s). This makes it by far the most interesting set from an applicational point of view.
• The Rudin-Shapiro polynomials are examples of� 2 functions.
• It is only a matter of taste whether the lower and upper bound on the sum should be

0 and n − 1, respectively, 0 and n, or 1 and n. There seems to be no preference in
the existing literature, and here the bounds are chosen to correspond with the general
notion that, as default, the first index in a vector is 0, and that dimension of the sequence
spaces (to which β belongs) should correspond to “dimension” of the function spaces
�

p .

It is surprising that the set� p , which is simply a collection of Fourier transformed se-
quences taken from the unit circle, has been subject to extensive investigations throughout
the past 50 years, and that some seemingly simple questions still remains unanswered.
The Fourier transform is arguable the best understood and most popular tool in har-
monic analysis, and thus one is inclined to believe that a set such as � p would be
well-described by now.

11.1.3 Flatness of Polynomials

The search for flat polynomials is basically a search for an answer to the question: How
close can a function f N ∈� p come to satisfying | f N | =

√
N for arbitrarily large N?

The question is quite intriguing because on the one hand the equality is never reached
for finite N . This can be seen by first regarding the following lemma.
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Lemma 11.3
Let P ∈� p

n , p > 1. Then ‖P‖∞ ≥ √
N . The equality holds iff |P(ξ)| = √

N .

Proof
The lemma follows immediately from ‖P‖2 = ‖c‖2 =

√
N , c being the Fourier coeffi-

cients of P, and the fact that ‖P‖2 ≤ ‖P‖∞ on the unit interval. �

Assuming now that |P(ξ)| = √
N then, for |βk| = 1,

N = |P(ξ)|2 =
∣∣∣
N−1∑

m=0

βmei2πmξ
∣∣∣
2 =

N−1∑

m=−N+1

(β ∗ β)meimξ ⇒

(β ∗ β)m = δ[m] ⇒ β0βN−1 = 0,

which is a contradiction. On the other hand, the Rudin-Shapiro polynomials introduced
in Section 11.2 demonstrate that for � 2 (and indeed for � 2p and � ∞) there is a
uniform upper bound for the deviation of | f N | from

√
N . From (11.8) it is seen that this

bound is
√

2, since |Pn(ξ)| ≤
√

2
√

2n .
The question of how close a function f N ∈� p can come to

√
N might also involve

a lower bound. Moreover, there may even exist polynomials such that f N (ξ)/
√

N → 1
uniformly in ξ for N →∞. The latter would certainly qualify as a flat polynomial. In the
course of this chapter it becomes necessary to distinguish between four different types of
flatness.

Definition 11.4 (Flat Polynomials)
Define for a function fn ∈� p the following terms associated with the given inequalities.

Flatness Condition

Semi-flat | fN | ≤ B
√

N

Near-flat 0 < | f N | < B
√

N

Flat A
√

N ≤ | fN | ≤ B
√

N

Ultra-flat (1− |o(1)|)√N ≤ | fN | ≤ (1+ |o(1)|)
√

N

The constants A and B are independent of N .

In many scenarios, particularly in real applications, this distinction is less important as
even the semi-flat polynomials exhibits spread spectrum properties (at least for reasonably
small B). The discussion of the properties of the trigonometric polynomials in � p in
respect to different types of flatness is thus of a more academical nature.

To aid in the analysis of sequences it is necessary to have a measure of the flatness
of a sequence. Typically, the design of a sequence takes place in the time domain, while
the flatness is measured in the frequency domain. An obvious choice for flatness of a
function is the ratio of maximum modulo and the size of the area under the function, that
is the sup norm over the L 1 norm. However, the function f N in this context is given as
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the continuous Fourier transform of a finite sequence, and this sequence thus becomes
the coefficients two a linear combination of elements in an orthogonal set. Hence a more
apparent choice would be to use the L∞ norm divided by the L 2 norm. While the L2

norm as opposed to the L∞ norm is dependent on the length of the interval on which the
function to be measured is defined, a further requirement to the flatness measure is that
the function is defined on a unit interval (or, alternatively, that the measure is normalized
with respect the length of the interval). This leads to the crest factor, in some literature
known as peak-to-mean ratio or peak-to-mean power envelope ratio.

Definition 11.5 (The Crest Factor)
For any sequence c ∈ � N define the polynomial

P(ξ) =
N−1∑

n=0

cnei2πnξ , ξ ∈ [0; 1).

The crest factor C for any sequence c ∈ � N is defined as

C(c) ≡ ‖P‖∞
‖P‖2

.

Note that since

‖P‖2
2 =

∥∥∥
N+k−1∑

n=k

cnei2πnξ
∥∥∥

2

2
=
∫ 1

0

N+k−1∑

n=k

|cnei2πnξ |2dξ =
N+k−1∑

n=k

|cn|2 = ‖c‖2
2 (11.1)

the crest factor is also given as C(c) = ‖P‖∞/‖c‖2. Since the crest factor quantifies the
amplitude of the Fourier transform of c it is an indicator for the ‘frequency flatness’ or
‘frequency spreading’ of the sequence c.

Before turning to the applicational aspects of flat polynomials, which in this thesis
means the Rudin-Shapiro polynomials and sequences, the author would like to give a
short historical presentation of the quest for flat polynomials.

11.1.4 A Brief Review of the History of Flat Polynomials

Many people have contributed to the development of flat polynomials, and many papers
have been written on the subject. Some publications are hard to come by, either because
their date back many decades, or because they are local journals of university, academies,
and the like. Consequently, this presentation is not exhaustive and serves only as back-
ground information for interested readers. A summary is found in Table 11.1. Thanks
are due to the library at Department of Mathematics at KTH, Stockholm, for assistance in
locating some of the papers referred in here.

The fundamental question which is the incitement for virtually all of the people in the
field of flat polynomials are: How close can a function f N ∈ � p come to satisfying
| fN | =

√
N for arbitrarily large N?
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Chapter 11: The Rudin-Shapiro Transform

One of the first clues was given in 1916 by Hardy and Littlewood [38], who studied the
series ∞∑

n=1

eikn log n einξ

n1/2+α , c, α �= 0. (11.2)

When α = −1/2 the partial sum |sN (ξ)| is uniformly bounded by C
√

N on [0; 2π]
with C depending only on k (Zygmund [85]) making the series a semi-flat polynomial.
No explicit bound is given in the book, but a few numerical experiments reveals that
C > 3

√
2π for k = 1. This means that 3 is a the lower bound for the crest factor of

the sequence cn = ein log n . The polynomials is shown in Fig. 11.1, which incidentally it
below 3. This is due to the resolution of the calculations and the graph. Zooming in on
the third top reveals that it, with sufficiently many terms of the sum, does reach above 3.

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

2.5

3

Figure 11.1: The polynomial (11.2) with α = −1/2 and k = 1, here
shown with the first 1000 terms of the sum. The coefficients are normalized
to have norm 1.

In 1957 Paul Erdös gave presented at a symposium at Assumption University of Wind-
sor a list of 28 so far unsolved problems [31]. Number 22 reads: If f N ∈ � ∞, does
there exist a universal constant c > 0 such that ‖ f N‖∞ > (1 + c)

√
N? This is the op-

posite of conjecturing than there exists ultra-flat polynomials f N ∈� ∞. The existence
of such polynomials was confirmed in 1980 by Kahane [46]. And in 1989 Fredman et
al. [32] proved that ‖ f N ‖4 > 1.10481/4

√
N when β = β̄. Erdös claimed that he had an

unpublished proof that

∥∥∥
N∑

k=0

βk cos kθ
∥∥∥∞ > (1+ c)

√
N/2 ,

which is a variation on the theme. He did not reveal the value of the constant c, though.
He also mentioned, as problem number 26, the question of whether there exists a flat
fN ∈� 2.
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Section 11.1: Search for Flat Polynomials

Prior to this Golay had in 1949 in a paper titled ‘Multislit spectrometry’ [33] intro-
duced the notion of pairs of complementary series. Although the definition from then
does not immediately reveal it, complementary series are coefficients in flat polynomials.
The theory was further develop in 1962 [34]. Since then others have further refined the
theory to include whole classes of complementary series and to include multiphase series
instead of just ±1’s.

In the mean time, the same idea was discovered by mathematicians and formed a inde-
pendent line of investigation. Harold Shapiro had studied extremal problems of trigono-
metric series in his Master’s thesis from 1951 [70], and from this derived examples of
complementary series (although he obviously does not refer to them by this name). On
page 39 the definition of Rudin-Shapiro polynomials (11.3), (11.4) is given, and the crest
factors

√
2 for length 2n and 2+√

2 for arbitrary length are deduced. These results were
rediscovered in 1959 by Rudin who, with the accept of Shapiro published the paper ‘Some
theorems on Fourier coefficients’ which introduced the construction as it is shown in the
next section.

While the engineers who took an interest in flat polynomials were looking for bi-
nary sequences with nice autocorrelation properties, the interest on the mathematicians
part was in peak values of polynomials defined with a set of restrictions. These typically
included unimodular coefficients and restriction to the unit circle in � . Many other re-
strictions have been applied, probably due to the difficulty in achieving any significant
results.

In 1965 Newman [59] investigated the problem of creating a truly flat polynomial in
L1 norm. He presents a certain construction which yields flat polynomials in L 1 as well
as in L4. The same challenge was also taken up by Littlewood in 1962 [53], though he
attempted the construction in L 2 norm. He showed that the function

N−1∑

m=0

exp
(1

2
m(m + 1)θπ i/N

)

tends to 1 uniformly for N →∞ on N−1/2+δ ≤ |θ | ≤ π (but fails outside this interval).
Littlewood states explicitly that he has made extensive attempts to modify the construction
to achieve uniform convergence for all θ .

The extremal problems in L p , p > 2, is investigated in 1971 by Beller [5], and
certain polynomials are shown to converge to 1. However, the sup norm is asymptotic to
1.1716 . . ., and thus does not qualify the polynomials are truly flat.

In 1980 Körner [50], using a construction by Byrnes [12], proved that there exists flat
polynomials f N ∈ � ∞. Soon after Kahane significantly improved this by disproving
problem number 22 by Erdös and thus showing the existence of ultra-flat polynomials.
This is one of the major result in the field of flat polynomials.

The existence of ultra-flat polynomials with real, unimodular coefficients have been
very difficult to settle. A number of mathematicians have actually published works prov-
ing as well as disproving the existence. The author of this thesis have not been able to
determine whether the question has indeed been settle definitively.
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Chapter 11: The Rudin-Shapiro Transform

11.2 Classical Rudin-Shapiro Polynomials

The first discovery of systematic construction of sequences which is somewhat flat in
the frequency domain was done by Golay in 1949 [33]. He introduced the notion of
complementary series. A set of complementary series is defined as a pair of equally long,
finite sequences of +1’s and −1’s such that the sum of the autocorrelation coefficients
of the two sequences is zero for even shifts except for the zero shift. Later he further
developed the theory of such pairs, see Golay [34], showing the one set of series could
produce several others.

The idea of complementary series was discovered independently by Shapiro in his
1951 Master’s thesis [70]. According to Shapiro, he ‘accidentally’ made the discovery
as he was working on extremal problems for polynomials. He thus had a mathematical
approach to the subject whereas Golay took a more engineering approach. The Shapiro
result was rediscovered by Rudin and published in 1959 [66], and is now known as the
Rudin-Shapiro polynomials. The construction is recursive and generates a pair of (semi-
)flat polynomials for each power of 2 Actually, the coefficients in these polynomials is
the very same as the binary Golay complementary series. This is easily verified once the
Rudin-Shapiro polynomials have been defined, see Section 11.2.2.

11.2.1 Rudin-Shapiro Polynomials

The Rudin-Shapiro polynomials are defined recursively as

Pn+1(ξ) = Pn(ξ)+ ei2π2nξ Qn(ξ), P0 = 1, (11.3)

Qn+1(ξ) = Pn(ξ)− ei2π2nξ Qn(ξ), Q0 = 1, (11.4)

for ξ ∈ [0; 1). The coefficients of the first few polynomials are

P0 : 1
Q0 : 1
P1 : 1 1
Q1 : 1 −1
P2 : 1 1 1 −1
Q2 : 1 1 −1 1
P3 : 1 1 1 −1 1 1 −1 1
Q3 : 1 1 1 −1 −1 −1 1 −1

(11.5)

It is obvious that the sequences are generated by a simple ‘append’ rule. We will refer to
the coefficients of the RS polynomials as RS sequences. The ingenuity of these polyno-
mials is the combination of fixed sized coefficients and the alternating sign in the recursive
construction of P and Q. The former property gives

‖Pn‖2
2 =

2n−1∑

k=0

(±1)2 = 2n, (11.6)
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Section 11.2: Classical Rudin-Shapiro Polynomials

while the latter property gives

|Pn+1(ξ)|2 + |Qn+1(ξ)|2 = 2|Pn(ξ)|2 + 2|Qn(ξ)|2 = 2n+2, (11.7)

since |ei2π2nξ | = 1. This leads to

|Pn(ξ)| ≤
√

2 · 2n/2, ∀ξ ∈ [0; 1) ,

a uniform upper bound for Pn . Now, combining (11.6) and (11.7) yields the squared crest
factor

‖Pn‖2∞
‖Pn‖2

2

≤ 2 . (11.8)

This means that |Pn(ξ)|2, ξ ∈ [0; 1), is a function that lies within the rectangle [0; 1] ×
[0; 2n+1], and at the same time ‘covers’ exactly half of its area. This guarantees the
polynomial to be somewhat flat. Two examples of |Pn | are shown in Fig. 11.2. At this
point it is important to realize that the term ‘flat’ used throughout this chapter should be
understood as ‘not excessively far from a constant function’, but not necessarily ‘close
to a constant function’. This was also hinted in Definition 11.4. To demonstrate the
importance of this concept the two lower most graphs in Fig. 11.2 show that neither the
well-known (an often used in applications) square wave nor a random ±1 sequence can
be considered flat.

11.2.2 Properties of Rudin-Shapiro Polynomials

The construction of the RS polynomial is such that the parallelogram law

|a + b|2 + |a − b|2 = 2|a|2 + 2|b|2

is the only means needed for achieving the
√

2 crest factor. This property is in fact essen-
tial for the relation between RS sequence and Golay complementary series. In terms of
RS polynomials the law gives (11.7), i.e. that

Pn(ξ)Pn(ξ)+ Qn(ξ)Qn(ξ) = 2n+1 .

Applying the inverse Fourier transform yields

(p ∗ p)[k] + (q ∗ q)[k] = 2n+1δ[k], k = −2n + 1, . . . , 2n − 1 . (11.9)

where p and q are the coefficients sequences of P and Q, respectively, and p means the
time reversed of p. Notice that (11.9) is exactly the definition of a set of complementary
series.

While the crest factor of
√

2 was easily derived the computations leading to that result
did not show whether in fact a lower bound is possible. The following lemma demon-
strates that for at least some RS polynomials the crest factor is correct, i.e. the upper
bound on the peak-to-mean ratio cannot be smaller.
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Figure 11.2: The coefficients (left) and modulo squared (right) of the
Rudin-Shapiro polynomials P4 and P5. Below the coefficients and modulo
of the Fourier transform of a square wave and a random sequence. The
horizontal dashed line is the energy of the signal.
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Lemma 11.6
Let P and Q be defined by (11.3) and (11.4). Then

P2m(0) = 2m, P2m(1/2) = 2m, P2m+1(0) = 2m+1, P2m+1(1/2) = 0

Q2m(0) = 2m, Q2m(1/2) = −2m, Q2m+1(0) = 0, Q2m+1(1/2) = 2m+1.

Proof
First note that

Pn+2(ξ) = Pn+1(ξ)+ ei2π2n+1ξ Qn+1(ξ)

= Pn(ξ)+ ei2π2nξ Qn(ξ)+ ei2π2n+1ξ
(
Pn(ξ)− ei2π2nξ Qn(ξ)

)

= (1+ ei2π2n+1ξ )Pn(ξ)+ ei2π2nξ (1− ei2n+1ξ )Qn(ξ). (11.10)

Then for n = 2m − 2 we have

P2m(0) = (1+ 1)P2m−2(0)+ 0 = · · · = 2m P0(0) = 2m,

P2m(1/2) = 2P2m−2(1/2) = · · · = 2m P0(1/2) = 2m,

and for n = 2m − 1

P2m+1(0) = 2P2m−1(0) = · · · = 2m P1(0) = 2m+1,

P2m+1(1/2) = 2P2m−1(1/2) = · · · = 2m P1(1/2) = 0.

Equivalent calculations yields the results for the Q polynomials. �

The idea to these calculation is from Brillhart [8]. The P and Q polynomials are anti-
symmetric around 1/4.

Lemma 11.7
Let p,q be two Rudin-Shapiro sequences. Then

|Pn(ξ)|2 = 2n+1 − |Pn(1/2− ξ)|2
|Qn(ξ)|2 = 2n+1 − |Qn(1/2− ξ)|2.

Proof
The lemma obviously holds for n = 0. Then the result follows from an induction argu-
ment.

|Pn+1(ξ)|2 = |Pn(ξ)|2 + |Qn(ξ)|2 + ei2π2nξ Pn(ξ)Qn(ξ)+ e−i2π2nξ Pn(ξ)Qn(ξ)

= 2n+1 − |Pn(1/2− ξ)|2 + 2n+1 − |Qn(1/2− ξ)|2
+ 2 Re

{
ei2π2nξ Pn(ξ)Qn(ξ)

}

= 2n+2 − |Pn(1/2− ξ)|2 − |Qn(1/2− ξ)|2
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− 2 Re
{
ei2π2n (1/2−ξ)Pn(1/2− ξ)Qn(1/2− ξ)

}

= 2n+2 − |Pn+1(1/2− ξ)|2.
Since P and Q are trigonometric polynomials the third equality is given by a calculation
that involves the cosine equality cos(ξ) = − cos(π − t). �

The following lemma shows that the append rule presented for the Rudin-Shapiro se-
quences which is used to produce longer sequences, actually apply to all complementary
sequences.

Lemma 11.8
Let p,q ∈ � n be two vectors with the properties

〈τ2kp,q〉 = 0, 〈τ2kp,p〉 = 〈τ2kq,q〉 = Cδ[k],
where τm means a shift of index by +m. Define

p̃ =
[
p
q

]
and q̃ =

[
p

−q

]
.

Then 〈
τ2k p̃, q̃

〉 = 0,
〈
τ2k p̃, p̃

〉 = 〈
τ2k q̃, q̃

〉 = 2Cδ[k].
Note that 〈τ2kp,q〉 = (p ∗ p̄[−2k].
Proof
From the definitions of p̃ and q̃ it follows that

〈
τ2k p̃, q̃

〉
〈
τ2k p̃, p̃

〉
〈
τ2k q̃, q̃

〉





=






±〈τ2k+N p,q〉 for k = −N + 1, . . . ,−N/2,

〈τ2kp,p〉 ± 〈τ2kq,q〉 ± 〈τ2k+N p,q〉 for k = −N/2+ 1, . . . ,−1,

〈τ2kp,p〉 ± 〈τ2kq,q〉 ± 〈τ2k−N p,q〉 for k = 1, . . . , N/2 − 1,

±〈τ2k−N p,q〉 for k = N/2, . . . , N − 1.

All four expressions equal zero independently of the signs. For the zero shift

〈
p̃, q̃

〉 = 〈p,p〉 − 〈q,q〉 = 0 ,

and 〈
p̃, p̃

〉 = 〈
q̃, q̃

〉 = 〈p,p〉 + 〈q,q〉 = 2C .

�

An obvious consequence of this lemma is

Corollary 11.8.1
Any Rudin-Shapiro sequence set p,q have the property 〈τ2kp,q〉 = 0.

273



Section 11.3: The Rudin-Shapiro Transform

A more general statement about the autocorrelation of RS sequences is given in Taghavi [76]
and [75]. The results are presented in the following lemma.

Lemma 11.9
Let p be a RS sequence of length 2N . Then

∣∣〈τkp,p〉∣∣ ≤ 3.2134 · 20.7303N

for k = −N + 1, . . . , N − 1. Further there exists C such that
∣∣〈τkp,p〉∣∣ > C20.73N .

Finally, the following theorem provides a lower bound to the ratio between the cardinality
of {c ∈� 2

N |C(c) ≤
√

2} and� 2
N itself.

Theorem 11.10
There are at least (2 − δK + o(1))n functions fn ∈� 2

n with ‖ f ‖∞ ≤ K‖ f ‖2. The δk

is defined for all K ≥ K0, K0 being an absolute constant. For these K , 0 < δK < 1.
Furthermore limK→∞ δK = 0. Here o(1) is a function approaching 0 as n →∞ for fixed
K .

This theorem is due to Spencer [72], who presents it as a corollary to a theorem on a two-
coloring problem. He also conjectures that the number of Rudin-Shapiro like functions
are bounded from above by (2− ϕ K + o(1))n , for some ϕK > 0.

11.3 The Rudin-Shapiro Transform

An interesting property of the RS sequences generated according to the appending rule
in (11.3) and (11.4) is that they are orthogonal. This is immediately evident from the
appending example shown. It is also worth noting that interchanging the+ and− in (11.3)
and (11.4) would still produce sequences with all the previously presented properties.
In fact, arbitrarily interchanges of the signs in each recursive step does not affect the
properties of the constructed sequences.

An elegant construction achieving all combinations of sign changes is found in Benke [6]
(Byrnes [11, 13] gives a similar construction). In short,

[
Pn+1,ε (ξ)

Qn+1,ε (ξ)

]
=
[

0 1
1 0

]εn
[

1 1
1 −1

] [
1 0
0 ei2π2nξ

] [
Pn,ε(ξ)

Qn,ε(ξ)

]
, (11.11)

where εn ∈ {0, 1} is chosen in each step. A total of 2n different P polynomials are
possible after n steps. Thus, two P polynomials with each two coefficients are obtained
after one steps, four P polynomials with each four coefficients are obtained after two
steps, and so on. The two and four polynomials have coefficients

[
1 1
1 −1

]
,
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1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1




 ,

and the eight P polynomials after the third step have coefficients





1 1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 1 1 −1
1 1 −1 1 −1 −1 −1 1
1 −1 1 1 1 −1 −1 −1
1 −1 1 1 −1 1 1 1
1 −1 −1 −1 1 −1 1 1
1 −1 −1 −1 −1 1 −1 −1






Note that all rows in the matrices are orthogonal. Thus, the RS sequences of length
2J constitutes an orthogonal basis of �2J

. Consequently, the matrices are called the
Rudin-Shapiro transform (RST). It is shown in Benke [6] that this construction can be
generalized in various ways.

An interesting property derived by the author is the following. The individual entries
in the Rudin-Shapiro transform can be found by the following equation, where P (N) ≡
[p(N)m,n] is the 2N × 2N RST matrix.

p(N)m,n =
N∏

k=1

(−1)nk(mN−k+1+nk−1), n0 ≡ 0.

where nk and mk is the k’th binary digit of n and m respectively, with k = 1 as LSB. This
property is not proved at this points as a very similar equation is given and proved in the
next section.

Applying the RST decomposes a signal into a basis of elements with a spread spec-
trum property. This is in some sense the opposite of a Fourier transform which is a
decomposition into a narrow spectrum basis. The transform is orthogonal and thus en-
ergy preserving, and the equal amplitude of all the entries makes the transform numerical
stable. In general, it is an appealing transform for design and analysis of spread spectrum
signals. However, at this point a fast implementation is still missing. Matrix multipli-
cation is a O(N2) operation, and in general it is preferable, if not desirable, to have an
O(N log N) implementation, especially for real time applications.

Note also that while the rows of the presented matrices do have a low crest factor, this
is not the case for the columns which exhibits a Walsh-like structure rather than spread
spectrum structure.

The problems mentioned here are addressed in the following section, where a slight
change of the recursive definition of the RS polynomials yields a symmetric RS transform.
At the same time a fast implementation, actually O(N log N) with a small constant, is also
given.
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11.4 The Symmetric Rudin-Shapiro Transform

The Rudin-Shapiro transform can be made symmetric. The idea for this is communi-
cated in Byrnes et al. [13]. There the polynomials are defined by a modification of the
previously presented definition in (11.3) and (11.4). The following equations have been
slightly rewritten compared to [13], to comply with the notation in this chapter (most sig-
nificantly, Byrnes have discarded the Q polynomials in favor of a more advanced indexing
of the P polynomials). The symmetric RST is derived from the following equations.

Pj+1,4m(ξ) = Pj,2m(ξ) + ei2π2 j ξ Q j,2m+1(ξ),

Pj+1,4m+1(ξ) = Pj,2m(ξ) − ei2π2 j ξ Q j,2m(ξ),

Pj+1,4m+2(ξ) = Pj,2m+1(ξ)+ ei2π2 j ξ Q j,2m+1(ξ),

Pj+1,4m+3(ξ) = −Pj,2m+1(ξ)+ ei2π2 j ξ Q j,2m+1(ξ),

Q j+1,4m(ξ) = Pj,2m(ξ) − ei2π2 j ξ Q j,2m(ξ),

Q j+1,4m+1(ξ) = Pj,2m(ξ) + ei2π2 j ξ Q j,2m(ξ),

Q j+1,4m+2(ξ) = −Pj,2m+1(ξ)+ ei2π2 j ξ Q j,2m+1(ξ),

Q j+1,4m+3(ξ) = Pj,2m+1(ξ)+ ei2π2 j ξ Q j,2m+1(ξ),

(11.12)

with
P1,0 = Q1,1 = 1+ ei2πξ and P1,1 = Q1,0 = 1− ei2πξ ,

and for j ≥ 1 and m = 0, . . . , 2 j−1 − 1. Note that P and Q in (11.12) are equal to the
previous definition in (11.3) and (11.4) except for some changes of signs. The properties
derived in the previous sections therefore still applies.

It is not proven in [13] that this definition leads to a symmetric transform. Neither
does it contain a clear description of how to apply the transform to a signal. This section is
therefore dedicated to a rigorous proof of the symmetry (and the other desirable properties
of the symmetric RST). The proof is ‘constructive’ in that it provides a simple way of
applying the transform, namely by means of the Haar wavelet packet transform scheme.

11.4.1 Deriving the Symmetric Transform

The equations (11.12) can be written more compactly as

Pj+1,m(ξ) = (−1)m1m2 Pj,�m/2�(ξ)+ (−1)m1(m2+1)ei2π2 j ξ Q j,�m/2�(ξ), (11.13)

Q j+1,m(ξ) = (−1)(m1+1)m2 Pj,�m/2�(ξ)+ (−1)(m1+1)(m2+1)ei2π2 j ξ Q j,�m/2�(ξ),
(11.14)

where m1 and m2 are the two least significant digits of the binary representation of m, and
�m/2� means the biggest integer less or equal to m/2. Rewriting to the obvious matrix
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form yields

[
Pj+1,m(ξ)

Q j+1,m(ξ)

]
=
[
(−1)m1m2 (−1)m1(m2+1)

(−1)(m1+1)m2 (−1)(m1+1)(m2+1)

][
Pj,�m/2�(ξ)

ei2π2 j ξ Q j,�m/2�(ξ)

]

. (11.15)

This latter form of the RS equations shows the core of the transform; the 2 × 2 matrix.
Incidentally, this is also the ‘secret’ of the easy implementation.

To have a solid basis for the derivation of the RST properties, the first thing to do is
define exactly what the RST is.

Definition 11.11 (The Symmetric Rudin-Shapiro Transform)
Define the mapping P j,m : �2 j �→ �2 j

, j ≥ 1, as

[
yk

yk+2 j−1

]
= (−1)mk

√
2

[
1 (−1)k

(−1)m −(−1)k+m

] [
x2k

x2k+1

]
(11.16)

for k = 0, . . . , 2 j−1 − 1 when mapping x to y. Define

P(J )j ≡





P j,0 0
. . .

0 P j,2J− j−1




 , (11.17)

and finally defined the Rudin-Shapiro transform (RST) P (J ) and the auxiliary transform
Q(J ) as

P(J ) ≡
J∏

j=1

P(J )j , and Q(J ) ≡
J−1∏

j=1

P(J )j PJ,1. (11.18)

Note that (11.16) is the inverse of the transform proposed in (11.15). The 2× 2 matrix in
(11.16) aside, it is not immediately obvious neither how this definition is linked to (11.12),
nor that it defines a symmetric transform. However, the following theorem establishes that
this definition does indeed provide the desired transform.

Theorem 11.12 (Properties of the Rudin-Shapiro Transform)
The Rudin-Shapiro transform P(J ) : �2J �→ �2J

and the corresponding polynomials

P(J )m (ξ) =
2J−1∑

n=0

p(J )m,nei2πnξ .

has the following properties:

(I) The rows of P(J ) are the coefficients of the polynomials defined
in (11.12).
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(II) The entries of P(J ) = [
p(J )m,n

]
are given by

p(J )m,n = 2−J/2
J∏

j=1

(−1)(m j+n J− j+2)(m j+1+n J− j+1), (11.19)

for m, n = 0, . . . , 2 J −1, where m j are the j ’th digit in the binary
representation of m, with m 1 LSB.

(III) It is a unitary and symmetric Hadamard matrix.
(IV) It satisfies∗

0 < |P(J )m (ξ)| < √
2, m = 0, . . . , 2J − 1, (11.20)

on (0; 1/2). Moreover,

P2 j (0) = P2 j (1/2) = 1, (11.21)

and
P2 j+1(0) =

√
2, P2 j+1(1/2) = 0, (11.22)

and finally
Pj (1/4) = 1 . (11.23)

Proof
To prove (I) first note

P( j) = (
P j,0

)�
[
P( j−1)

Q( j−1)

]
, (11.24)

Q( j) = (
P j,1

)�
[
P( j−1)

Q( j−1)

]
.

This follows from

(
P j,0

)�
[
P( j−1)

Q( j−1)

]

= (
P j,0

)�
[
P j−1,0

P j−1,1

]�





P( j−2)

Q( j−2)

P(J−2)

Q( j−2)






...

∗Only semi-flatness, and not near-flatness of the polynomials is actual proven in this thesis.
However, the author feels sufficiently confident about the validity of the statement to include it in
the theorem.
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=
1∏

k= j

(
P( j)

k

)�

= P( j).

Note also that
(
P j,0

)� is the transform given as
[

x2k

x2k+1

]
= 1√

2

[
1 1

(−1)k −(−1)k

] [
yk

yk+2 j−1

]

for k = 0, . . . , 2 j−1 − 1 when mapping y to x. So

(
P j,0

)� = 1√
2











1 0
1 0
0 1
0 −1











1 0
−1 0

0 1
0 1






. . .
. . .




1 0
1 0
0 1
0 −1











1 0
−1 0

0 1
0 1











2 j×2 j

Letting p( j)
m denote the m’th row of P( j), and likewise with Q( j), it follows that

P( j) = (
P j,0

)�
[
P( j−1)

Q( j−1)

]
= 1√

2






p( j)
0 q( j)

0

p( j)
0 −q( j)

0
p( j)

1 q( j)
1

−p( j)
1 q( j)

1
...

...

p( j)
2 j−2

q( j)
2 j−2

p( j)
2 j−2

−q( j)
2 j−2

p( j)
2 j−1

q( j)
2 j−1

−p( j)
2J−1

q( j)
2 j−1






, (11.25)

which demonstrates the appending rule defined in the first four equations of (11.12). A
similar calculation will show the last four equations.

The proof of (II) goes by induction on (11.19). In the following the scaling 2 −J/2 is
ignored. For J = 1

P(1) =
[

p(1)0,0 p(1)0,1

p(1)1,0 p(1)1,1

]

=
[
(−1)(0+0)(0+0) (−1)(0+0)(0+1)

(−1)(1+0)(0+0) (−1)(1+0)(0+1)

]
=
[

1 1
1 −1

]
,
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which is correct according to (11.16). Assume that (11.19) is true for j . From (11.25) it
is seen that

p( j+1)
m,n =

{
(−1)m2m1 p( j)

�m/2�,n n = 0, . . . , 2 j − 1

(−1)(m2+1)m1q( j)
�m/2�,n−2 j n = 2 j , . . . , 2 j+1 − 1.

(11.26)

The first case can be rewritten

(−1)m2m1 p( j)�m/2�,n = (−1)m2m1

j∏

k=1

(−1)(mk+1+n j−k+2)(mk+2+n j−k+1)

= (−1)(m1+n j+2)(m2+n j+1)

j+1∏

k=2

(−1)(mk+n j+1−k+2)(mk+1+n j+1−k+1)

=
j+1∏

k=1

(−1)(mk+n j+1−k+2)(mk+1+n j+1−k+1), n = 0, . . .2 j − 1.

To rewrite the second case, the connection between p ( j)
m,n and q ( j)

m,n are derived. From
(11.12) it is seen that

Q j+1,4k(ξ) = Pj+1,4k+1(ξ),

Q j+1,4k+1(ξ) = Pj+1,4k(ξ),

Q j+1,4k+2(ξ) = Pj+1,4k+3(ξ),

Q j+1,4k+3(ξ) = Pj+1,4k+2(ξ)

(11.27)

Changing the sign in this manner can be accomplished by adding 1 to the LSB of the row
counter variable, that is to m 1. Thus,

q( j)
m,n = (−1)(m1+1)(m2+n j )

j∏

k=2

(−1)(mk+n j−k+2)(mk+1+n j−k+1),

and the second case of (11.26) can be rewritten

(−1)(m2+1)m1q( j)
�m/2�,n−2 j

= (−1)(m2+1)m1(−1)(m2+1)(m3+n j )

j∏

k=2

(−1)(mk+1+n j−k+2)(mk+2+n j−k+1)

= (−1)(m1+n j+2)(m2+n j+1)(−1)(m2+n j+1)(m3+n j )

×
j+1∏

k=3

(−1)(mk+n j+1−k+2)(mk+1+n j+1−k+1)
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=
j+1∏

k=1

(−1)(mk+n j+1−k+2)(mk+1+n j+1−k+1), n = 2 j , . . . 2 j+1 − 1.

The second last equality is due to n j+1 = 1 and n j+2 = 0. This proves (11.19).
The unitarity of P(J ) stated in (III) follows immediately from unitarity of P j,m , and

according to (II) P(J ) is a Hadamard matrix. Only the symmetry remains to be established.
By interchanging m and n in the power of (−1) in (11.19), and substituting k = J − j+1

p(J )n,m = 2−J/2
J∏

j=1

(−1)(n j+m J− j+2)(n j+1+m J− j+1)

= 2−J/2
1∏

k=J

(−1)(n J−k+1+mk+1)(n J−k+2+mk )

= p(J )m,n

so interchanging m and n in (11.19) is equivalent to reversing the order of multiplication.
It follows that the matrix P(N) is symmetric.

The near-flat polynomial property in (IV) has already been demonstrated for as far as
semi-flatness goes. However, despite a significant effort the attempt of the author to find
a proof of near-flatness of the polynomials on (0; 1/2) have been fruitless.

The equations (11.21) and (11.22) follows from a series of calculations equivalent to
Lemma 11.6. A rewriting of (11.13) in the same fashion as (11.10) yields

Pj+2,m(ξ)

Q j+2,m(ξ)

}
= (±1± ei2π2 j+1ξ

)
Pj,u(ξ)+ ei2π2 j ξ (±1± ei2π2 j+1ξ )Q j,u(ξ)

where the two signs inside each of the parentheses will be the same in the one and opposite
in the other parenthesis. Thus,

Pj+2,m(1/4)
Q j+2,m(1/4)

}
= (±1± ei2π2 j−1)

Pj,u(1/4)+ ei2π2 j−2
(±1± ei2π2 j−1

)Q j,u(1/4)

=
{
±2Pj,u(1/4) for some m

±2Q j,u(1/4) for the other m .

Then
P2n,m (1/4)| = |Q2n,m (1/4)| = 2n−1|P2,u | = 2n−1|Q2,u | = 2n

and

P2n−1,m (1/4)| = |Q2n−1,m(1/4)| = 2n−1|P1,u| = 2n−1|Q1,u| =
√

2 · 2n−1 .

This proves (11.23). �
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11.4.2 Fast Implementation

The definition of the RST given in Definition 11.11 is based on the recursive construction
process of RS polynomials. When writing this process in matrix form the 2× 2 matrix in
(11.16) emerges along with the 2 J × 2J matrix in (11.17). The combination of these two
matrices is actually the key to a fast implementation. The large matrix is a factorization
of the RST matrix, and the small matrix gives a simple and easy implementation of the
large matrix.

The factorization means that the RST can be applied in J steps by multiplying a
signal with all of the P(J )j matrices (in the right order). Each multiplication is an O(N 2)

operation, but the mapping given in (11.16) shows how to reduce the multiplication to
an O(N) filtering process. For any choice of m and k the 2 × 2 matrix contains 3 times
+1 and one −1. Consequently, the output of the mapping is merely a series of sums and
differences of sample pairs. A division by

√
2 should be applied to every sum/difference,

but since the mapping is linear this scaling can be applied as division by 2 for every other
step in the transform. Note that division by 2 is equivalent to a binary shift of 1.

[
1 −1
1 1

][
1 1
1 −1

][
1 −1
1 1

][
1 1
1 −1

]

k = 0 k = 1 k = 2 k = 3
m = 0

[
1 −1
1 1

][
1 1
1 −1

] [−1 1
1 1

]

[
1 1

−1 1

][
1 1

−1 1

] [
1 1
1 −1

][
1 1
1 −1

]

k = 0 k = 1 k = 1k = 0

[
1 1

−1 1

]

k = 0 k = 0 k = 0k = 0

m
=

0

m
=

1

m
=

2

m
=

3

m = 0 m = 1

Figure 11.3: This figure shows how the value of the variables change in
the fast implementation of a symmetric RST. Here applied to a vector in
�8 .
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When implementing the RST according to this scheme it is obviously important to get
the 2 × 2 matrix correct. The m and k change constantly as the transform is applied. In
Fig. 11.3 these changes are shown along with the 2 × 2 matrix for each sample pair in
each step of the transform.

It is not apparent from this visualization of the fast implementation that it is its own
inverse, i.e. if the resulting signal at the bottom is placed at the top, the new output is
actually the original signal. But as it as been shown previously this is indeed the case
since the transform is symmetric.

Suppose that the same matrix is used throughout, i.e. suppose that m and k equal
zero in all cases. The result is the a full decomposition wavelet packet Haar transform.
The Haar transform is also its own inverse. If only m equals zero the result is the non-
symmetric RST presented in (11.11). This is easily seen as

[
0 1
1 0

]εn
[

1 1
1 −1

]
=
[

1 (−1)εn

1 −(−1)εn

]
.

The relation to the Haar transform can also provide an explanation for the spread spectrum
property without involving the RS polynomials. The Haar transform is a decomposition
into a frequency localizing basis since the Haar filters are low and high pass filters (with
two filter taps). This means that each element in the output from the (full decomposition)
Haar transform represents the energy in a certain frequency range of the original signal.
The RST does in some sense the exact opposite of the this. Instead of applying the same
filter to all samples pairs (and thereby creating a output localized in frequency) the RST
applies the low and high pass filters alternately to sample pairs. The result is an output
where the samples are the same as in the Haar transform case, but where they are mixed
such that there are no frequency localization at all.

11.4.3 Other Properties of Rudin-Shapiro Polynomials

The work with RS polynomials and sequence have led the author to believe in some other
properties for which no proof have yet been devised. These results are presented here
as conjectures, and without any further explanations. So far, these results have found no
practical use.

The first conjecture states that although the individual RS polynomials are (suppos-
edly) near-flat on (0; 1/2) they are not flat on (0; 1/2).

Conjecture 11.13
Let Pj,m(ξ) be one of the polynomials defined in (11.12). Then

lim
j→∞ 2− j/2 max

ξ∈(0;1/2)
|Pj,m(ξ)| =

√
2

and the convergence is of order O(e− j ).
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It seems that polynomials are equal in equidistant points with a finer resolution for longer
polynomials

Conjecture 11.14
Let Pj,k(ξ) be one of the polynomials defined in (11.12). Then

2|Pj,k
(
m2− j )| = |Pj+2,k

(
m2− j)|, k,m = 0, . . . , 2 j − 1 .

In the limit this ‘result’ becomes

Conjecture 11.15
The limits

lim
j→∞ 2− j P2 j,k(ξ) and lim

j→∞ 2− j P2 j+1,k(ξ)

converge pointwise on the dense subset
{
m2−n;m = 0, . . . , 2n

}
n∈� of the unit interval.

The recursive construction of the polynomials means that there are many different rela-
tions between the various polynomials. A few has been conjectured upon here, and others
can easily be discovered by experiments. The next chapter is dedicated to an investigation
of the self-similarity of the RST which is inherited from the original definition of the RS
polynomials.
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Linear Transform of
the Rudin-Shapiro
Matrix 12
With an invertible transform a signal can be decomposed into a set of coefficients, and
subsequently reconstructed completely using those same coefficients. However, if the
coefficients are subject to some alteration, not only is this property in general lost, but the
‘reconstruction’ might produce a completely different signal. If the nature of the alteration
is a priori known it is possible to predict the impact of the alteration, and in some cases
the prediction is quite easy to make, and the alteration can perhaps be undone.

The RST behaves in a simple and predictable way for alterations which are made
when a block diagonal linear transform is applied to the transformed signal. Constructing
and understanding the structure of this prediction not as easy, though.

The first section presents an example which illustrates the principle of and motivation
for the subject of this chapter. Although the point of the example has to some extent
already been delivered by the test signals in the third setup, see Section 5.4, and although
a brief discussion of the usefulness of the main result was given in Section 4.8.2, the
author feels that further motivation would not come amiss. Especially, since this example
is focuses on the subject of this chapter.

The second and final section of this chapter shows how the self-similarity properties
of the RST are used to predict the impact of applying block diagonal linear transforms to
RS transformed signals.

12.1 Motivation

Consider a discrete signal consisting of 512 samples with all but sample 351 vanishing.
The RST of this signal is shown in Fig. 12.1(a), and the power spectrum is shown in (b).
This clearly demonstrates that the RS sequence in (a) is coefficients of a flat polynomial.
The RS sequence is now used for modulating an LED according to the scheme described
in Section 4.1.1. Some distance away a photo diode is located which converts the light
into an electric signal. In Chapter 5 a number of detailed examples are given on test setups
for recording this type of signals. The received signal is shown in Fig. 12.1(c). The task
is now to determine the CGM, i.e. the intensity of the received RS sequence. Since this
signal is recorded in a room with artificial lighting (which is much more intensive that
the LED), most of the energy does not come from the LED. Actually, the RS sequence

285



Section 12.1: Motivation

is not visible with the current scaling of the Y-axis in (c). Even the tiny ripples is not
the RS sequence, but different types of noise. Consequently, computing the (inverse)
RST reveals no trace of the RS sequence, as shown in (d): Sample 351 should have been
clearly distinguishable.

The major disturbance in (c) is the sinusoid-like shape of the signal, which originates
in the 100 Hz artificial lighting. There are several ways of removing this disturbance from
the recorded signal. One possibility is to consider (c) as a sinusoid, track the phase and
amplitude, and subsequently remove that particular sine component. This approach was
discussed in Section 4.7.1. However, this will reveal, see (e), that the dominant structure
of (c) is not a pure sinusoid. This is due to physical and electrical phenomenon in the
receiving electronic circuit.

Two other approaches are a high pass filtering and removal of low-degree polynomial
content. Both operations are linear, and it would be nice to be able to predict what effect
such operations have on the RS sequence, which is hidden in (c). In (f) the signal in (c) has
been denoised by dividing it into 16 consecutive parts of 32 samples. Each part has been
projected onto a space spanned by sampled Legendre polynomials of degree 4 through
15 (thus removing all polynomial content of degree 0 to 3). The 16 resulting pieces have
then been concatenated to create the signal in (f). An RST of this signal is shown in (g),
and sample 351 is now clearly visible. If one further wants to know the amplitude of the
RS sequence and an estimated uncertainty of the amplitude, it is vital to realize what the
previously applied linear transform, call it L, does to the RS sequence.

In this case L has altered the RS sequence x such that P(9)Lx has exactly 64 non-
vanishing entries (and in general there are 2 J−s+1 non-vanishing entries, where 2 J is the
size of the RST and 2s is the number of signal parts), where P(9)x has just one, namely
entry 351. An interesting point to notice is that there are 448 entries which are unaffected
by the denoising. The position of the 64 affected entries are shown with small dots in
Fig. 12.1(g). The unaffected samples provide information on the uncertainty of the ac-
tual value of entry 351. Methods for using this information for validating the CGM was
discussed in Section 4.9. Moreover,

P(9)Lx[351]
P(9)x[351] = 0.8795 ,

so to obtain the correct measure of the intensity of the received RS sequence, sample 351
in signal (g) should be divided by this value to compensate for the effect of the linear
transform.

In this chapter a general result on applying linear transforms to RS sequences is pre-
sented. The above example demonstrates a special case of this result. To get an impression
on the motivation for believing in the existence of a relatively simple description of the
phenomenon seen in Fig. 12.1(g), i.e. the seemingly well-ordered location of the possi-
ble affected samples, the result of applying the polynomial denoising to not just a single
RS sequence, but to the entire RST is shown in Fig. B.1, B.2 and B.3 in Appendix B
on page 317–319. The matrices shown are on the form P (N)LP(N) where L is a block
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64 128 192 256 320 384 448 512

−1

0

1

64 128 192 256 320 384 448 512
0

1

2

64 128 192 256 320 384 448 512
−100

0

100

200

64 128 192 256 320 384 448 512

−100

0

100

64 128 192 256 320 384 448 512

20

30

40

50

64 128 192 256 320 384 448 512
−5

0

5

64 128 192 256 320 384 448 512

0

10

20

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 12.1: From top to bottom: (a) is the RST of a 512 sample signal
with all but sample number 351 vanishing. (b) is the power spectrum of
the RS sequence. (c) shows the unprocessed, received signal. (d) is the
RST of (c). (e) shows the received signal with the most dominant sinusoid
removed. (f) is the received signal subjected to a low-degree polynomial
removal procedure. (g) is the RST of (f). The dots in (g) show the location
of non-vanishing entries in P(9)Lx.
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diagonal matrix with 2n blocks that remove polynomial content of degree m. The small
black squares show where the matrix in non-vanishing. The gray checkerboard pattern in
the matrices helps to identify the pattern. Note that the size of the gray checkers equals
the number of blocks in the diagonal transform. The same matrix is shown in Fig. B.4
and B.5 where the blocks in the L is the periodized WT matrix with the Symlets 8 filter.
The latter figure actually shows the matrix itself rather than where it is non-vanishing.

12.2 Self-Similarity Properties of the RST

The Rudin-Shapiro transform has an inherited dyadic structure which is evident by in-
spection of the definition laid out in (11.16), (11.17), and (11.18). Some consequences of
this structure was also discussed in Section 11.4.3. The following definition describes how
the linear transform in general is applied in a manner that complies with this structure.

Definition 12.1 (Dyadic Linear Transform)
Let k, J ∈ �, k < J . Let L(k) : �2k �→ �2k

be a linear transforms and define

L(J,k) = I(J−k) ⊗L(k) ,

where I(J−k) is the unity matrix of dimensions 2 J−k × 2J−k.

Note that⊗means Kronecker product. This definition shows that L (J,k) applies the same
linear transform L(k) to various parts of a 2 J × 2J matrix in such a way that the entire
matrix is subjected to L(k). Note that both dimensions and first entry of the submatrices
are powers of 2. This in turn means that the result of applying the linear transform is to
some extend governed by the self-similarity of the RST.

The appending rule in (11.5) as well as the product in (11.18) reveals that an RST
matrix P(J ) is constructed by means of the one step smaller RST matrix P (J−1). The
logical extreme of this observation is that P(J ) depends on P(s) for any s < J . The exact
nature of this dependency is described in this section.

But first a few word on notation: The mth row of a matrix A is denoted a m , and the
(m, n) entry is denoted A[m, n]. The row and column count starts at zero. The m× n and
m × m matrices of all 1’s is denoted by 1m×n and 1m , respectively. The symbols ( and
⊗ means entry-by-entry multiplication and Kronecker product, respectively.

The self-similar structure of the RST is essentially due to the recursiveness of the
original definition. This recursiveness is basically described by a starting point and the
recursive rule. The following definition pinpoints these two elements in the RST matrix.
The ‘starting point’ is given by �0 and �1, while the recursive rule is given by �̂. This
is confirmed in Lemma 12.3.
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Definition 12.2
Let 2−J/2P(N) be an RST matrix, and let s ∈ � be such that J ≥ s + 1, and let K = 2s .
Define the two 2J × 2s matrices

�0 =
[
p(N)0 · · · p(N)K−1

]
( (

p(N)0 ⊗ 11×K
)

�1 =
[
p(N)K · · · p(N)2K−1

]
( (

p(N)K ⊗ 11×K
)
.

Define also the 2J × 2J−s matrix

�̂ =
[
p(N)0 p(N)K p(N)2K · · · p(N)

(2J−s−1)K

]
.

Define further for J ≥ s + 2 four square matrices �̂0 through �̂3 such that

[
�̂
�
0 �̂

�
1 �̂

�
2 �̂

�
3

]�

equals the first 2J−s+2 rows of �̂.

Note that the P(N) in the above definition has entries of unit size.
The matrix �̂ is probably the most interesting matrix presented in this chapter. It is

namely this matrix which indicates what samples in the denoised, transformed signals is
affected by the denoising, and which are not. However, at this point it is no obvious how
this can be, but it will be demonstrated later, once the proper frame has been established.

In this definition �0 is the first 2s columns of P(N), and �1 the subsequent 2s columns
of P(N). A change of sign is applied on all rows of �0 and �1 such that the first column
of both matrices are all 1’s. Because of the self-similar structure of the RST matrix these
columns can now be regarded as building blocks from which the entire RST matrix can
be constructed. This is stated in the following lemma.

Lemma 12.3
Let 2−J/2P(N) be an RST matrix, and let s, �0, �1, and �̂ be as in Definition 12.2. Then

P(N) =
(
11×2J−s−1 ⊗ [

�0 �1
])( (

�̂⊗ 11×2s
)

Proof
The lemma follows immediately from the appending rule demonstrated in (11.5) used to
construct the P(N) matrix. �

The main interest in this chapter is examining the consequences of applying a block di-
agonal linear transform to an RS sequence prior to transforming it. All RS sequences can
be included by regarding the matrix P (N)L(J,s)P(N). The remaining part of this chapter
is dedicated to investigating how the block diagonal structure interferes with the RST on
both sides. Since the inference has a block structure with blocks of size 2 k and the RST
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can be regarded as constructed of size 2k submatrices (which are really RSTs put together
as described by Lemma 12.3) an important tool in the investigation is four permutation
matrices which defines the relation between all the various size 2k submatrices of the size
2J RST.

The believe that such a relation exists is supported by the matrices shown in Sec-
tion B.1 through B.5. Evidently, a number of permutation matrices arises when some
linear transforms are applied in the block diagonal way explained in the beginning of this
chapter. These matrices can be composed of the four different matrices shown in the first
four rows in Fig. B.6. It is also obvious from Fig. B.5 that the exact (quantitatively) nature
of relation is a priori not easily identifiable.

Before investigating this further the permutation matrices must be defined.

Definition 12.4 (Permutation Matrices)
Define I(N) as the unity matrix of size 2 J × 2J , and Î(N) as the anti-identity matrix of the
same size. Define then

Ĩ(J ) = Î(J−1) ⊗
[

0 (−1)J+1

(−1)J 0

]
,

T(J ) = T(J−1) ⊗
[

0 1
1 0

]J−1

, T(0) = 1 ,

ϒ(J ) = T(J−1) ⊗
([ 0 1
(−1)J 0

] [
0 1
1 0

]J)

ϒ̃(J ) = −Ĩ(J )ϒ(J ) .

Note that T is just an auxiliary matrix used to construct ϒ. These matrices have a very
simple structure. In particular, they are permutation matrices, i.e. they interchange rows
(or columns) when applied to another matrix. Examples for size 2 5 and 26 are given in
Fig. 12.2. A more detailed examples which includes the intermediate matrices in the con-
struction is given in Fig. B.6 in Appendix B. These four matrices grasps the differences
between the submatrices of the RST. The nature of these difference are directly respon-
sible for the fact that some samples are altered by the block diagonal linear transform,
and others are not. The evidence of the importance of these matrices are given by the
following theorem. It states that by combining the four permutation matrices with the
first quarter of �̂, which is in itself an RST, the matrix �̂ can be reconstructed.

The intimate relation between the possible impact of the block diagonal linear trans-
form and the four permutation matrices means that, effectively, Theorem 12.5 states that
applying a block diagonal linear transform to an RST transformed signal prior to inverse
RST is essentially described by the two matrices I and ϒ.

Theorem 12.5
Let 2−s/2P(s) and 2−J/2P(N) be two RST matrices, and let s and �̂ be as in Defini-
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T(J−1) ϒ(N) ϒ̃(N) Ĩ(N)

Figure 12.2: Examples of the T, ϒ, ϒ̃, and Ĩ matrices for J = 5 and
J = 6. (Black = 1, grey= 0, white = −1.)

tion 12.2. Let K = 2 J−s. Then �̂0 =
√

K P(J−s), and

�̂ =
(
12s−2×1 ⊗

(






I(J−s)

ϒ(J−s)

ϒ̃(J−s)

Ĩ(J−s)




 �̂0

))( (
p(s)0 ⊗ 1K

)
. (12.1)

Proof
The entries of �̂ are given by (11.19), where m = 0, . . . , 2 J − 1 and n = 0, 2s, 2 ·
2s, . . . , (K − 1)2s , that is nr = 0 for r < s. Therefore �̂[m, n] = f (m)g(m, n) with

f (m) =
J−1∏

j=J−s+1

(−1)m j m j+1

and

g(m, n) =
J−s∏

j=0

(−1)(m j+n J−s− j+1)(m j+1+n J−s− j−1) ,

where n has been reset to n = 0, . . . , 2 J−s − 1. Since f does not depend on the J − s
LSBs of the binary representation of m, it is constant for m = r K , . . . , (r + 1)K − 1, for
each r = 0, . . . , 2s − 1. Since g does not depend on the s − 2 MSBs of m if follows that

g(m, n) = g(m + 4K , n), m = 0, . . . , 2 J − 4K − 1 .

Consequently, the matrix consisting of the first K rows of �̂ (in Definition 12.2 denoted
�̂0) equals the 2s−2 matrices consisting of the rows 4r K through (4r + 1)K , for r =
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0, . . . , 2s−2 − 1, except for a possible change of sign determined by f (m). The same
applies to �̂1, �̂2, and �̂3. Now, since �̂0 is the first 2J−s rows of �̂ its entries are given
by �̂0[m, n] = g(m, n) which is a scaled RST matrix of size K ×K , where the numerical
value of the entries is 1. It now remains to show that

�̂1 = ϒ(J−s)�̂0, �̂2 = ϒ̃(J−s)�̂0, �̂3 = Ĩ(J−s)�̂0 .

The RST matrix is constructed recursively in such a manner that the �̂0, which originates
in P(N), depends solely on every 2s elements of the first 2 J−s−1 rows of P(J−1), which in
turn depends solely on every 2s elements of the first first 2J−s−2 rows of P(J−2), and so
on. Ultimately, �̂0 depends solely on

�̂0 :
[
P(s+1)[0, 0] P(s+1)[0, 2s]
P(s+1)[1, 0] P(s+1)[1, 2s]

]
=
[

1 1
1 −1

]
,

where the equality follows directly from (11.19). The same back tracing shows that �̂1,
�̂2, and �̂3 depends solely on

�̂1 :
[
P(s+1)[2, 0] P(s+1)[2, 2s]
P(s+1)[3, 0] P(s+1)[3, 2s]

]
=
[

1 1
−1 1

]
,

�̂2 :
[
P(s+1)[4, 0] P(s+1)[4, 2s]
P(s+1)[5, 0] P(s+1)[5, 2s]

]
=
[

1 −1
1 1

]
,

�̂3 :
[
P(s+1)[6, 0] P(s+1)[6, 2s]
P(s+1)[7, 0] P(s+1)[7, 2s]

]
=
[−1 1

1 1

]
.

Consequently, the four matrices �̂1, �̂2, and �̂3 can be constructed by following the
appending rule laid out in (11.12) but with varying start conditions

�̂1 : P1,0 = Q1,1 = 1+ ei2πξ P1,1 = Q1,0 = −1+ ei2πξ ,

�̂2 : P1,0 = Q1,1 = 1− ei2πξ P1,1 = Q1,0 = 1+ ei2πξ ,

�̂3 : P1,0 = Q1,1 = −1+ ei2πξ P1,1 = Q1,0 = 1+ ei2πξ .

The difference between the starting conditions of �̂0 and �̂1 is sign of P1,1. Examining
(p is now rows of the RST matrix)

P(2) =






p(2)0
p(2)1
p(2)2
p(2)3





=






p0
p1
p2
p3






(2)

=






p0 p1
p0 −p1
p1 p0

−p1 p0






(1)

it is obvious that changing the sign of p(1)1 is equivalent to exchange the first and second
rows, and the third and fourth rows of P (2). (The second equality shows how the size
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indicator is moved outside the matrix for convenience, and applies to all entries of the
matrix.) Consequently, the 4× 4 version of the matrix �̂1 equals B�̂0, where

B =






0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




 = ϒ(2) .

The next step is the 8× 8 RST matrix

P(3) =






p0 p1
p0 −p1
p1 p0

−p1 p0
p2 p3
p2 −p3
p3 p2

−p3 p2






(2)

=






p0 p1 p0 −p1
p0 p1 −p0 p1
p0 −p1 p0 p1

−p0 p1 p0 p1
p1 p0 −p1 p0
p1 p0 p1 −p0

−p1 p0 p1 p0
p1 −p0 p1 p0






(1)

(12.2)

Exchanging p(2)0 and p(2)1 (the consequence of changing the sign of p (1)1 ) is equivalent to
exchanging the first and the second rows with the third and the fourth rows of P (2) and
changing the sign of the second and fourth rows. Likewise the fifth and the sixth rows
is exchanged with the seventh and the eighth rows. This is not incidental but a direct
consequence of (11.12). Interchanging one pair of rows with another pair in this fashion
and changing signs of the even rows is accomplished by exchanging every non-vanishing
and every vanishing entry in ϒ (2) with

[
1 0
0 −1

]
and

[
0 0
0 0

]
,

respectively. Thus the 8× 8 matrix �̂1 equals B�̂0, where

B =






0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0






= ϒ(3) .

Now, when constructing P(4) in exactly the same fashion as (12.2), the changing of the
sign of p(3)1 (and the other odd-indexed p (3)) will result in the same considerations as the
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ones leading to interchanging consecutive rows in P (2). Thus, by replacing non-vanishing
and vanishing entries in ϒ (3) with

[
0 1
1 0

]
and

[
0 0
0 0

]
,

respectively, the 16 × 16 permutation matrix for transforming �̂0 to �̂1 is constructed.
That, of course, is ϒ (4).

Similar arguments leads to �̂0 = ϒ̃(J )�̂2 and �̂0 = Ĩ(J )�̂3. �

Having established the applicability of the permutation matrices the following corollary
shows how to apply the previous result to obtain a qualitative description of the impact of
applying the block diagonal linear transform.

Corollary 12.5.1
For a given J let s and �̂ be as in Definition 12.2. Let

A = (
I(2) ⊗ I(J−s))+ (

ϒ(2) ⊗ϒ(J−s))+ (
ϒ̃(2) ⊗ ϒ̃(J−s))+ (

Ĩ(2) ⊗ Ĩ(J−s)).

Then
�̂�̂

� = (
12s−2 ⊗ A

)( (
p(s)0 (p(s)0 )� ⊗ 12J−s

)
. (12.3)

Proof
Except for A all matrices in this proof have size 2 J−s × 2J−s . First note that

A =






I ϒ ϒ̃ −Ĩ
ϒ I Ĩ −ϒ̃

ϒ̃ −Ĩ I ϒ

Ĩ −ϒ̃ ϒ I




 =






�̂0

�̂1

�̂2

�̂3





[
�̂
�
0 �̂

�
1 �̂

�
2 �̂

�
3

]

The first equality follows immediately from Definition 12.4. The second equality follows
from the facts that ϒ and ϒ̃ are orthogonal and symmetric, that Ĩ are orthogonal, and that

Ĩ
� = −Ĩ. For instance

�̂2�̂
�
3 = ϒ̃�̂0(Ĩ �̂0)

� = ϒ̃ Ĩ
� = (−Ĩϒ

)�Ĩ
� = ϒ

and
�̂3�̂

�
1 = Ĩ �̂0�̂0ϒ = Ĩϒ = −ϒ̃ .

Now (12.3) follows from (12.1). �

It was stated earlier in this chapter that �̂ was an interesting matrix from an applicational
point of view. In (12.3) it is seen that the ‘outer product’ of the matrix can be constructed
by concatenating A matrices vertically and horizontally. Note that

(
p(s)0 (p(s)0 )� ⊗ 12J−s

)

is just appropriate changes of signs of submatrices of
(
12s−2 ⊗ A

)
. The A matrix is
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constructed as a mix of the four matrices that describes the relation between the various
submatrices of size 2 J−s of the RST matrix, and is thus a ‘worst case’ of what can hap-
pen when a block diagonal linear transform is applied. The linear transform itself is not
involved in A and therefore it only qualifies which entries in the RST can be affected, but
obviously does not quantify the effect as this depends on the choice of linear transform.

In short, the non-vanishing entries of
(
12s−2 ⊗ A

)
, and thus also of �̂�̂

�
, are the

entries of P(N)L(J,s)P(N) which are potentially non-vanishing. In most cases the latter
matrix will indeed have entries which are vanishing although the corresponding entries in

the former matrices are not. The �̂�̂
�

for the eight times eight polynomial denoising in
Chapter 5 is shown in Fig. 4.9 on page 72. The corresponding P (N)L(J,s)P(N) is shown
in the same figure.

In order to present the final theorem of this chapter one more matrix is needed. Define
the 2s × 2s+1 diagonal matrices

Su[m, n] =
{
(−1)uns+um1+∑s−1

k=1 mk mk+1 for m = n mod 2s

0 otherwise ,

where mx is the binary representation of m, with m 1 being the LSB.

Theorem 12.6
For a given J let s and �0 be as in Definition 12.2, and let L(J,s) be a linear trans-
formation as in Definition 12.1. Then

P(N)L(J,s)P(N) = K(s−1)
0 ⊗ (I+ϒ)+K(s−1)

1 ⊗ (I−ϒ)

+ K̃(s−1)
0 ⊗ (Ĩ− ϒ̃)+ K̃(s−1)

1 ⊗ (Ĩ+ ϒ̃) ,

where I, ϒ, ϒ̃, and Ĩ all have size 2J−s+1, and with

K(s−1)
0 = S0L

′(s)S�0
K(s−1)

1 = S1L
′(s)S�1

K̃(s−1)
0 = S1L

′(s)S�0
K̃(s−1)

1 = S0L
′(s)S�1

where

L′(s) =
[
A 0
0 Aϒ(s−1)

]
L(s)

[
A 0
0 Aϒ(s−1)

]�
.

The following proof is rather sketchy as a number of details is still not properly described.
Hopefully, the following description gives an idea of how the full proof might go.

Proof
First note that there exists an 2s × 2s matrix V such that

P(N)(K⊗ U)P(N) = V⊗ I(J−s)
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for a fixed choice of

K ∈ {K(s−1)
0 ,K(s−1)

1 , K̃(s−1)
0 , K̃(s−1)

1 },
and U ∈ {I(J−s+1),ϒ(J−s+1), ϒ̃(J−s+1), Ĩ(J−s+1)}.

Writing K as
2s−1−1∑

m=0

2s−1−1∑

n=0

Em,n

where Em,n is the canonical matrix with 1 at the (m, n) entry and 0 otherwise. Then

P(N)(K⊗U)P(N) =
2s−1−1∑

m=0

2s−1−1∑

n=0

[
P(N)(Em,n ⊗ U)P(N)

]
.

The matrix P(N)(Em,n⊗U)P(N) is equal to the outer product of the submatrix 
0 consist-
ing of rows m2 J−s+1 through (m + 1)2 J−s+1 − 1 and submatrix 
1 consisting of rows
n2J−s+1 through (n+ 1)2 J−s+1− 1 of P(N), the latter permuted in order according to U.
That is,

P(N)(Em,n ⊗U)P(N) = 
0U
�
1

with


0 =
[
p(J )

m2J−s+1 · · · p(J )
(m+1)2J−s+1−1

]


1 =
[
p(J )

n2J−s+1 · · · p(J )
(n+1)2J−s+1−1

]
,

and according to (11.19) the rows k2 s−1 through (k + 1)2s−1 of 
0 and U
1, for fixed
k = 0, 1, . . . , 2J−s+1, are identical up to change of sign.

The appending rule laid out in (11.12) shows that the RST can at any dyadic level be
regarded as a matrix consisting of rows of alternating and concatenated p and q vectors.
Choosing the level at which these vectors have length 2 J−s+1 the 
0 is either a “p-matrix”
or a “q-matrix”. The same goes for 
1.

Define now 
̃0 as the matrix consisting of every 2s−1th row of 
0, and define 
̃1 in
the same way. Then 
̃0 is unitary and 
̃0 = (Wm+n ⊗ I(J−s))
̃1 where

Wx =






[
1 0
0 1

]
for x mod 4 = 0

[
0 1
1 0

]
for x mod 4 = 1

[
1 0
0 −1

]
for x mod 4 = 2

[
0 1

−1 0

]
for x mod 4 = 3 .
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The first matrix corresponds to 
0 and 
1 being both p or q, and likewise for the third
matrix. Now, note the relation between p and q shown in (11.27). It follows that the
second matrix corresponds to 
0 begin a p-matrix and 
1 a q-matrix, or vice versa.
Likewise for the fourth matrix. The change of sign in the third and fourth matrix follows
from (11.19). �
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Discussions and
Future Work 13
13.1 Robust Channel Gain Measurements (Part I)

The first part of the thesis presented a signal processing algorithm for improving on a
number of parameters in active sensors. A list of interesting parameters was given in
Section 3.5, and it was discussed which of these are most important in relation to common
problems in existing sensors. It was argued that robustness and low-cost are two key
parameters, and the presented algorithm thus aimed at providing robustness without using
anything but simple and stable signal processing methods capable of real-time execution
in low-cost hardware. The basic idea was to use invertible transforms and to exploit
the full potential of multiplexing given by these transforms to obtain estimates of the
transmission conditions.

The entire algorithm was presented in Chapter 4 in considerable details. The presen-
tation was of mixed mathematical and engineering nature in the sense that mathematically
founded solutions were applied to specific problems that were either a priori identified or
had arisen in the test setups.

No alternatives to the suggested algorithm has been discussed in the thesis. Obviously,
there exists a number of different analog implementation of active sensors, but these are
not considered to be alternatives to a digital implementation (see Section 3.3). The list
of digital alternatives is rather short as the author has not been able to find any previous
research result in the area of signal processing in low-cost active sensors. Admittedly, the
fact that the presented algorithm has fulfilled the criteria given in the beginning of Part
I has not encouraged the author to a vigorous and extensive search through literature for
alternatives.

13.1.1 Experiments

To test the algorithm it was applied to four different test setups. These were all based on
infrared technology, but with different implementations of the electrical circuits. Two of
the setups were based on existing products while the two others were made from scratch.
The software implementation of the algorithm demonstrated the necessity and stability of
the individual steps in the algorithm.
The estimation of channel gain is the ultimate purpose of the algorithm, and in Chapter 5
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it was demonstrated that the algorithm is capable of providing such an estimate. This
was the case not only case in low-noise conditions, but also when more severe noise was
present. The estimate was based on correlation between the emitted and received signal
(with a transform/inverse transform in between) because it is an easy signal processor op-
eration and because it is mathematically the optimal operation in a random noise scenario.

The algorithm also demonstrated that when the noise condition are such that it is
either time-consuming, computational expensive, or downright impossible to acquire a
reasonable estimate it is possible to provide an alternative to the traditional sensor output
‘detection/no detection’. This is due to the validation methods which based on relatively
few computations are quite effective in deciding whether a given measurement fulfills an
accuracy requirement or not. While it is possible to imagine other ways of exploiting
the information from the noise-channels (like joint validation in system with multiple
emitters, i.e. validating the three transmission channels in the second test setup by a set
of linked hypotheses rather than three separate hypotheses) no other validation methods
has been discussed. Partly because the presented methods works quite well, partly due to
lack of time.

Some of the steps in the algorithm was dedicated to denoising. The need for such
steps was clearly demonstrated with the recorded test signals. To that end Chapter 4 and 5
presented some denoising methods adapted to comply with the structure of the algorithm
and the limited availability of computational power. While the presented methods were
indeed successful in denoising the signal, other methods might easily be useful or indeed
necessary in case of other types of noise. In particular, in a given environment some
particular noise structure might be predominant in which case the presented methods
would most likely fail. In this thesis only infrared technology has been tested, and it
is reasonable to expect other technologies such as High-Frequency or acoustic waves will
require somewhat different means in respect to denoising. However, the author do believe
that the time and frequency-localized noise as well as random noise is predominant in
most sensors systems, independently of type.

13.1.2 Algorithms or Hardware?

Throughout Part I of the thesis the main theme has been ‘robustness by means of signal
processing’. A large effort has been put into describing an algorithm with this property,
and the functionality of the algorithm has been demonstrated by applying it to a series
of test signals. There has been only brief comments and mentioning of the point of view
that many of the problems addressed by the algorithm can be solved by means of simple
hardware, i.e. that robustness can be achieve without the need for a signal processor.
For instance, it can be argued that the sinusoid originating from the artificial laboratory
lighting in the third test setup, see for example Fig. 5.17 on page 116, can be removed
simple by added a plastic screening which is transparent only to infrared light combined
with a proper transfer function of the amplifier, perhaps even with an analog high pass
filter. The infrared transparent plastic screening is used in the BeoSound Ouverture to
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create the effect of black side panels, compare Fig. 3.3, page 23, and Fig. 5.1, page 93.
Transients can be also be handled in hardware, for instance by proper low pass filtering.

It has been stated a number of times in the thesis that the sensor market is huge, and
that a majority of the existing sensors employ analog solutions. This obviously means
that there exists quite a few sensors that work well, i.e. that do not experience failure or
respond to occurrences they were designed to not respond to.

With these arguments in mind one might raise the question of whether it is indeed
necessary to employ signal processing and on-chip computers in the strive for increased
robustness. The author believes this to be the case, for the following reasons.

Time and frequency-localized noise can occur in all sensors While hardware of vari-
ous kind can reduce the amplitude of noise it is rarely possible to completely elimi-
nate it. A sufficiently powerful disturbance will ‘penetrate’ whatever filters have been
used (such as optical and electrical), so while the SNR of the internal signal is much
better than the external signal there might still be room for improving it further. And
this is exactly what the algorithm presented in first part of the thesis is designed to do.
Therefore, signal processing does not have to be an alternative to hardware denois-
ing. The two methods might just as well supplement each other. In fact, hardware
denoising is often necessary to avoid saturation of the ADC.

The test signals presented in this thesis might not have been generated under con-
ditions which resemble those of commercial sensors, but as argued this does not mean
that the presented noise-types does not occur in commercial sensors. The results in
Chapter 5 of applying the algorithm to the test signals is therefore to be regarded as
a demonstration of to what extent the algorithm can handle different types of noise,
i.e. what improvement can be made of the SNR in given scenarios. It is not to be
regarded as a demonstration of the algorithm handling noise generated by artificial
lighting or a remote control. These disturbances have been used simply because they
are readily available and the author does not have access to more sophisticated means
of replicating disturbances as they appear in commercial sensors.

Frequency multiplexing sensors are sensitive to harmonic noise One of the more com-
mon types of signals in active sensors is harmonic signals. These are easily generated
and processed by analog hardware. A sensor based on a particular frequency is ob-
viously quite sensitive to any disturbance at that frequency. In this case no filtering
can prevent the disturbance from reaching the processing part of the sensor. Since
harmonic signals are quite common in the human environment such a sensor is a
priori more sensitive than a sensor based on signals localized in some other domain
which are less common in the environment. Such signals are more easily generated
by signal processing means than by analog means.

Increased robustness is responding properly in bad-case scenarios The argument that
states that most sensors work well throughout there life time misses the point of this
thesis. The author acknowledges that analog sensors designed to operate in a specific
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environment will work fine in this environment. For instance, when a sensor is ex-
pected to experience white noise of a certain amplitude it is not necessary to employ
signal processing to construct a sensor with an error rate of, say, 10−7. And the sensor
will work according to specification as long as no unforeseen events occur. However,
increased robustness is not about reducing the error rate in a best-case scenario, but in
a bad-case scenario. For many sensors that bad-case scenario rarely occurs, but when
it does, an ‘unprepared’ sensor will have a much higher risk of given a misleading
output.

Sensors do fail The methods presented in the first part of this thesis are not (just) given
because the author finds the field of signal processing in active sensors interesting.
They are included because the author believes that they are capable of solving some
problems which have indeed occurred in commercial sensors. The author is aware of
a number of cases where sensors have failed because of lack of robustness, i.e. the
failure is due to inability to handle particular disturbances. And the author believes
that the presented algorithm would have been able to avoid such failures.

Hardware is a variable cost Solving noise problems by applying hardware might not
always be the most cost-efficient solution. While hardware is a variable cost, i.e.
the cost depends on the total volume, the designing of an algorithm is a one-time
expense. For a sufficiently large volume of products the algorithmic solutions is
cheaper. Obviously, the signal processor must be included in this equation, but the
point is that it is not a priori given that hardware denoising is the best solution. It is
also important to remember that less hardware makes the entire design process easier,
and thus cheaper.

13.2 Spatial Position (Part II)

The concept of sensor using several CGMs to determine the position of an object in three
dimensions were presented in Part II. The idea is to have a set of emitter/receiver pairs
at different positions such that light emitted from a number of position is reflect onto the
same variety of positions. This generates a series of CGMs which can be regarded as
relative measures of distance to the object. The challenge is then to map the set of CGMs
into a three dimensional position.

Two mapping methods were presented in Part II. The first method is a neural network
which is trained on real reflection data, and the second method is a geometric modeling
of a emitter/receiver setup. None of the methods have been sufficiently convincing to rule
out the other method, or any other conceivable methods, for that matter. In both methods
it is imperative to have measurements of the real reflection map, and therefore such a data
set was also acquired in Part II.
To facilitate a more complex geometric modeling than the one presented in this thesis
(this is a part of the future work) a model of the reflection map was also made. This was
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evaluated by means of the measured reflection map.
The geometric modeling of a emitter/receiver setup was carried out in 3D, while the

neural network and reflection map modeling was done in 2D. This is partly because the
author believes that if the modeling work in 2D it will also (be possible to make it) work
in 3D, partly because it is cumbersome to acquire a 3D reflection data set (the means for
doing this in an reproducible manner was not available during the Ph.D. study).

13.2.1 Neural Network

The first method has been developed in an ad hoc manner to provide an indication of
whether a neural network is a good solution to the mapping problem. A network has been
created by means of the neural network toolbox in MATLAB and trained on simulated data.
The result of this test is inconclusive in the sense that although it seems possible, under
some conditions, to map CGMs to position by means of a neural network, some factors
are still unknown. This includes computational complexity, stability, and adaptability.
Also, the author is not familiar with the theory of neural networks and does not have the
prerequisites for determining whether other types of networks would perform better. A
more thorough investigation is needed to determine this.

13.2.2 Geometric Solution based on Intersections of Spheroids

The second method is a modeling based on the assumption that the three dimensional
reflection map of an emitter/receiver pair consists of ‘concentric’ prolate spheroids. The
CGMs corresponds to radii in such spheroids and the spatial position can therefore be de-
termined by intersection of the spheroids. The resulting mapping from CGMs to spatial
position is therefore given as the solution to a set of three spheroid equations (as three
spheroids is sufficient to provide an unique spatial position). The analytical solution al-
lows for a series of purely mathematical observations which lead to a description of the
optimal position for the emitters and receivers. It is also possible to provide means for
‘converting’ redundancy in the CGMs to increased accuracy, but this is not documented
in the thesis.

As the derivation of the mapping is completely analytical it does not suffer from the
unwieldiness that often characterizes a ‘numerical’ solution (such as the neural network
solution). However, the stability and applicability of an analytical solution is not a priori
guaranteed, and one should indeed expect to encounter some problems when applying the
analytical solution to real measurements. This testing has not been carried out, but the au-
thor has briefly experimented with adding random noise to true measurements to estimate
the stability of the mapping (not reported in the thesis). This revealed that for mild noise
the mapping behaves nicely, but for medium to severe noise there is a significant stability
issue.
One question that will appear time and again is what the optimal positions of the emitters
and receivers are. In the present model they were allowed to be located anywhere in a
2D plane, and there was therefore a multi-dimensional infinite set of positions to choose
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from. While there is no immediate answer to the question of an best set of positions (as
this depends on the meaning of best) there is indeed a unique set of positions which can
be regarded as being worst. This worst set of positions is, perhaps surprisingly, when
emitters and receivers are located in the corners of a square, as this leads to a singularity
in the mapping.

13.2.3 Modeling Reflection Maps

The reflection map modeling describes a setup where an emitter and a receiver is located
some distance apart and facing in the same direction, and where the object is a ball of a
given radius. By a ray-tracing-like method the reflected intensity of the ball in a given
position is determined. The model includes the directional characteristics of the emitter
and receiver, and the reflection characteristic of the ball. The model is constructed as a
Fredholm integral equation of the first kind, and the model parameters are positions of
emitter and receiver, spatial extension of the receiver, and radius of the ball.

The model of the reflection map was compared to the measured reflection map. Using
angular difference between contour lines an exhaustive search in the parameter space
yielded the optimal choice of parameters. The resulting set of parameters were quite close
to the true values, and the modeled reflection map was in general similar to the measured
reflection map. In particular, the measured map exhibits a characteristic non-symmetric
structure which was recreated by the model. However, to achieve this it was necessary to
(crudely) introduce the third dimension in the model.

13.3 Mathematics for Signal Processing (Part III)

The signal processing methods presented in the first part of the thesis are based on math-
ematical theory. In Part III some theory concerning transformations were presented in
detail. The two subjects addressed are wavelet transformation of finite signals, and the
Rudin-Shapiro transform. Though both subjects are indeed relevant in the design of sig-
nal processing algorithms for low-cost sensors, the presentations in Part III are mainly of
mathematical nature without specific aim for applications, as this is covered in Part I.

13.3.1 Wavelet Transform

The wavelet transformation of finite signals is a matter which cannot be ignored when one
wants to apply the WT. The wavelet theory is based on infinite signals, and some mod-
ification is necessary to handle finite signals. A number of methods have been reported
in the literature, and a brief review of the most common methods were given in Chap-
ter 9. None of these methods are ideal, but they do provide a variety of properties which
are useful in different applications. However, the desire of the author to use a method
capable of mapping low frequency noise in a well-defined and proper manner could not
be fulfilled by any of the traditional methods. Therefore the more sophisticated moment
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preserving wavelet transform suggested by Cohen, Daubechies, and Vial have been in-
vestigated. This transform has be ability to map polynomials into polynomials in the low
pass part and to the zero sequences in the high pass part.

The introduction of this transform takes up quite a few pages as the construction is pre-
sented from scratch. This is done partly because the author felt the need for understanding
the construction in detail, partly because a rather thorough presentation is necessary in or-
der to implement the construction in MATLAB. This code is printed in the appendices.
The software implementation allowed the author to experiment with various filters, and it
turned out that the construction has an inherent stability problem. One of the few filters
which do result in a relatively stable transform is the ones (Symlets) used in the origi-
nal paper. Unfortunately, the author has not been able to provide a useful suggestion for
handling this instability.

13.3.2 Rudin-Shapiro Transform

Compared to the wavelet transform, on which their exists a huge number of publications,
the Rudin-Shapiro transform is almost unknown. The primary reason for using the RST
in this thesis is its spread spectrum property. The concept of spread spectrum is well-
established in the signal processing society, but apparently the idea of systematizing the
construction of pseudo-random binary sequences by means of a transform with a fast
implementation is not wide-spread. Therefore, the RST is presented in some detail in
this thesis. A number of useful properties are demonstrated, including some which are
important in applications.

The use of spread spectrum sequences in active sensors is most likely not a new idea,
although the author has not been able to find any references to existing sensors employing
this technique. It should be noted that SS sequences can be generated in a number of
different ways. The transform approach suggested in this thesis is highly structured and
allows for easy adjustment of various parameters depending on the given sensor imple-
mentation. This freedom is not that easily achieved in solutions where more ad hoc-like
methods are used. This is not to say that the RST is useful in all spread spectrum systems.
I many cases properties not provided by the RST are important, such as a certain structure
of the cross-correlations and the possibility for any SS sequence length.

13.4 Future Work

Throughout the thesis a number of subjects have been brought up. Not all of these have
been investigated or discussed to an extent which allows the author to consider them
exhausted. This section provides a list of these subjects with a brief comment on what
further work could be done. A somewhat more detailed discussion of possible future work
on spatial position sensors is given in Section 6.4. Note that the subjects listed here only
includes specific problems encountered in the thesis.

Validation on several channels jointly The validation methods presented in this thesis
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are focused on validating each channel separately. However, since in some systems
a number of ‘simultaneous’ channels need to validated, it is obvious to consider
whether it would an advantages to validate the channels jointly. It is expected, how-
ever, that the benefits of doing this are minimal.

Better statistical model for validation The statistical model presented in Section 4.9
can be improve in a number of ways. For instance, the current model assumes y 0
to be a deterministic signal, and that σ is fairly accurately known.

A more thorough investigation of neural networks The neural network approach pre-
sented in Chapter 6 was not investigated sufficiently for any conclusions to be drawn.
While the method does present some interesting prospects it is still to be determined
how to parameterized such an approach, how to keep complexity sufficiently low,
whether a radial basis function network is the way to go. Many other questions re-
main, too.

Modeling of 3D sub-manifold for denoising It was suggested that denoising of CGM
data could be accomplished by projection onto a 3D sub-manifold. It (probably)
requires a significant effort to determine the feasibility of this suggestion. That is,
whether the method would work, and whether it can be implemented within reason-
able time and programming limits.

Geometrical modeling with a more accurate reflection model The geometrical mod-
eling in Chapter 7 provided a mapping from CGMs to spatial position. However,
the model was based on a series of assumptions that are arguably not sufficiently re-
alistic. The development of a really useful model is therefore still to be accomplished.
In particular, the reflection model presented in Chapter 8 must somehow by included.

Better modeling of the ‘emitter, receiver, reflecting object’ setup The reflection map
model was not too bad at generating a realistic reflection map. However, there were
indications (such as the result of the inverse problem considerations) that the model
might not be sufficiently accurate for predicting the reflected intensity in the entire
space in front of the emitter and receiver. One obvious extension of the model is to
include the third dimension.

Making the moment preserving wavelet transform stable The thesis has not provided
any really useful suggestion for restoring the numerical stability in the moment pre-
serving edge filter construction. It was mentioned that including more interior scaling
functions might be a way to solve the problem, but this requires an update of the con-
struction, and this has not been accomplished in this thesis.

Proving the near-flatness of the Rudin-Shapiro polynomials on (0; 1/2) Despite sev-
eral attempts the author has not been able to verify the conjecture that Rudin-Shapiro
polynomials are near-flat on (0; 1/2). One might think this indicates that the con-
jecture is false, but it is common in the field of flat polynomials that even simple
conjectures can be quite difficult to prove.

Proving a number of conjectures Throughout the thesis a few propositions of various
kind has been conjectured. These are still open for validation (or rejection).
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Basic Properties of the
Wavelet Transform A
The construction of orthonormal wavelet bases and of pairs of dual, biorthogonal wavelet
bases for L2(�) is now well understood. For the construction of orthonormal bases of
compactly supported wavelets for L 2(�), in particular, one starts with a trigonometric
polynomial m0(ξ) = ∑

n cne−inξ satisfying m0(0) = 1 and |m0(ξ)|2 + |m0(ξ + π)|2 =
1 as well as some mild technical conditions. A sufficient but not necessary condition,
always satisfied in practice, is |m0(ξ)| �= 0 for all |ξ | ≤ π/2 (see for instance Mallat [55]).
The corresponding scaling function φ and wavelet ψ is then defined by

φ̂(ξ) = 1√
2π

∞∏

j=1

m0(2− jξ) and ψ̂(ξ) = e−iξ/2m0(ξ/2+ π)φ̂(ξ/2). (A.1)

Here ˆ denote the Fourier transform normalized as f̂ (ξ) = (2π)−1/2
∫

f (t)e−iξ t dt . The
functions

ψ j,k(t) = 2− j/2ψ(2− j t − k), j, k ∈ �,
constitutes an orthonormal basis for L 2(�). For fixed j , the

φ j,k(t) = 2− j/2φ(2− j t − k), k ∈ �
are an orthonormal basis for a subspace V j ⊂ L2(�), and the spaces V j constitute a
multiresolution analysis, meaning that

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ,
with ⋂

j∈�
Vj = 0,

⋃

j∈�
Vj = L2(�)

and
ProjVj−1

f = ProjVj
f +

∑

k∈�

〈
f, ψ j,k

〉
ψ j,k .

A consequence of the first equation in (A.1) is φ̂(ξ) = m0(ξ/2)φ̂(ξ/2), and the inverse
Fourier transform of this is

φ(t) = √
2
∑

n

hnφ(2t − n).
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The filter taps h (and the corresponding g originating from the second equation in (A.1))
is used for the time domain discrete wavelet transform of the vector x as

y0
k =

∑

n

h2k−n xn =
∑

n

hn x2k−n, (A.2)

y1
k =

∑

n

g2k−n xn =
∑

n

gnx2k−n . (A.3)
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Lemma B.1
Define the N × N matrix � as

γm,n =






1 m = n,m ≤ 1
γm−1,n−1 − (m − 1)γm−1,n

m
1 ≤ n ≤ m − 1,m ≥ 2

0 otherwise,

(B.1)

for m, n = 0, . . . , N − 1. Then � is invertible and

yk =
k∑

n=0

(
y

n

)
γ̃k,n, k = 0, . . . , N − 1 (B.2)

where �̃ = �−1.

Proof
First note that

k∑

n=1

γk,n yn =
(

y

k

)
, k ≥ 1. (B.3)

This is seen by induction. Assume (B.3) holds for k. Applying (B.1) to (B.3) yields

k+1∑

n=1

γk+1,n yn = 1

k + 1

k+1∑

n=1

(γk,n−1 − kγk,n)y
n

= 1

k + 1

( k∑

n=1

γk,n yn+1 −
k∑

n=1

kγk,n yn
)
= y − k

k + 1

(
y

k

)
=
(

y

k + 1

)
.

Together with
(y

1

) = y this demonstrates that (B.3) also holds for k + 1. Because � is
lower triangular and γm,m = m!−1, the matrix is invertible. The equation (B.2) follows
immediately from (B.3) and the matrix inversion. �
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Lemma B.2
The polynomial f (x) ≥ 0 iff f (x) = h 2(x)+ g2(x), where h and g are polynomials.

Proof
When f (x) ≥ 0 the solutions to f (x) = 0 are N real (and therefore double) roots r n , and
M complex roots am ± ibm . Hence

f (x) = k2
N∏

n=1

(x − rn)
2

M∏

m=1

[x − (am + ibm)][x − (am − ibm)]

= k2
N∏

n=1

(x − rn)
2

M∏

m=1

(x − am)
2 + b2

m

= k2(p2
a(x)+ p2

b(x))
N∏

n=1

(x − rn)
2 (∗)

=
[
kpa(x)

N∏

n=1

(x − rn)
]2 +

[
kpb(x)

N∏

n=1

(x − rn)
]2
,

where (∗) follows from

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad − bc)2.

The other way is trivial. �

Lemma B.3
The function

p(x, y) = x2 y2(x2 + y2 − 1)+ 1 (B.4)

is bounded below by 26/27 and there does not exist polynomials q n(x, y), n = 1, . . . , N
such that

p(x, y) =
N∑

n=1

q2
n (x, y). (B.5)

Proof
Solving

∂

∂x
p(x, y) = ∂

∂y
p(x, y) = 0 (B.6)

leads to y4 − x4 = 0, and therefore a necessary condition for p(x, y) to be minimal is
x = y. Since the solutions to

∂

∂z
z2(2z − 1)+ 1 = 0
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is 0 and 1/3 it follows that p(x, y) is bounded below by p(1/
√

3, 1/
√

3) = 26/27.
The fact that there does not exist polynomial fulfilling (B.5) is proven by contradic-

tion. Therefore, assume that the polynomials qn do exist. Since p(x, 0) = p(0, y) = 1
we get that qn(x, 0) and qn(0, y) must be constant for n = 1, . . . , N . Therefore each q n

can be written
qn(x, y) = an + xyhn(x, y),

where an is a constant and hn is of degree at most 1 (there may be x and y terms in h n ,
but no xy term, since this would violate the degree of p(x, y)). By comparing terms of
the same degree we find

N∑

n=1

a2
n = 1, 2xy

N∑

n=1

anhn(x, y) = 0

and therefore

x2 y2(x2 + y2 − 1) = x2y2
N∑

n=1

h2
n(x, y).

Then

x2 + y2 − 1 =
N∑

n=1

h2
n(x, y)

which is a contradiction. �

The proof was found (with slightly fewer details) in [7, p. 190-191]
The extended proof of Lemma 7.6 is given here. The expressions have been generated

in Maple V R6 and rewritten to shorter form by hand.

Proof of Lemma 7.6
Expanding the three spheroids (7.6), (7.7), and (7.8) yields

(
(d1 − d2)

2 −w2
1r2)x2 + 2

(
(y − 1+ d2

1 − d2
2 )(d2 − d1)+ (d1 + d2)w

2
1r2)x

+w4
1r4 + (

2y − 2− y2 − z2 − 2(d2
1 + d2

2 )
)
w2

1r2

+ 2(d2
1 − d2

2 )(y − 1)+ (y − 1)2 + (d2
1 − d2

2 )
2 = 0 , (B.7)

(d2
2 −w2

2r2)x2 + 2d2(y +w2
2r2 − d2

2 − 1)x + w4
2r4+

(2y − 2d2
2 − z2 − y2 − 2)w2

2r2 + (d2
2 + 2− 2y)d2

2 + (y − 1)2 = 0 , (B.8)

(w2
3r2 − d2

1 )x
2 + 2d1(d

2
1 −w2

3r2)x − d4
1 + (z2 + y2 + 2d2

1 −w2
3r2)w2

3r2 = 0 . (B.9)

Modify (B.8) by the ratio of the z 2 coefficients in (B.9) and (B.8), and subtract (B.8).
Solving this yields

x1 = −w2
3w2r2 + (y − 1− d2

2 +w2
2r2)w3 +w2d2

1

w2d1 −w3d2
(B.10)
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x2 = −w
2
3w2r2 + (y − 1− d2

2 +w2
2r2)w3 −w2d2

1

w2d1 + w3d2
(B.11)

Now, insert x1 in (B.7) and (B.8), and modify (B.7) by the ratio of the z 2 coefficients, and
subtract (B.8). Solving this yields

y11 = 1+ d2
2 − d1d2 + (w3 −w1)w2r2 + (w1 −w2)w3d2r2

d1

y12 = 1+ d2
2 − d1d2 + (w1 +w3)w2r2 − (w1 +w2)w3d2r2

d1

and

x11 = (w2 −w1)w3r2

d1
+ d1

x12 = (w2 +w1)w3r2

d1
+ d1

The same procedure applied to x 2 yields

y21 = d1d2 − 1− d2
2 + (w3 +w1)w2r2 + (w2 −w1)d2w3r2

d1

y22 = d1d2 − 1− d2
2 + (w3 −w1)w2r2 + (w2 +w1)d2w3r2

d1

x21 = − (w2 +w1)w3r2

d1
+ d1

x22 = − (w2 −w1)w3r2

d1
+ d1

Inserting the four solution sets in (B.8) yields eight z’s of which only four are positive (as
required). Inserting a w corresponding to an arbitrary (x, y, z) ∈ � 2 ⊗ �+ in each of the
four solution sets reveals that only x11, y11 with the corresponding z belongs to �3+ . �
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The three expressions for p1, p2, and p3 in (7.17) are

p1 = d1w3
[
(−2d2

2w1w
2
3w2 +w2

1w
2
3d2

2 + d2
2w

2
3w

2
2 − 2w2

3w2w1

+ d2
1w

2
3w

2
2 +w2

2w
2
1d2

1 + 2d2w1w
2
3d1w2 − 2w2d2w

2
1d1w3 + 2d2w3w

2
2w1d1

+w2
3w

2
1 +w2

3w
2
2 − 2w1d2

1w
2
2w3 − 2d1d2w

2
3w

2
2)/((w1 −w2)

2w2
3)
]1/2

× (w1w
2
3 +w3

1 − w2
3w2 −w3

2 − 3w2
1w2 + 3w1w

2
2 − 2w3w

2
1 − 2w2

2w3 + 4w3w2w1)

= d1(w1 − w3 −w2)
2
√
(d1w2w13 − d2w3w12)2 + w2

3w
2
12 ,

p2 = d2
1w

3
1w2 −w2

3w
2
2 − 2w2

1w
2
3d2

2 − 2d2
2w

2
3w

2
2 + 2w2

3w2w1 − 2d2
1w

2
3w

2
2

− 4d2w1w
2
3d1w2 + 3w2d2w

2
1d1w3 − 3d2w3w

2
2w1d1 − 2w2

2w
2
1d2

1 − w2
3w

2
1

+ 4d2
2w1w

2
3w2 + 5w1d2

1w
2
2w3 + 2d1d2w

2
3w

2
2 + d2

1w
3
1w3 + d2

1w1w
3
2

+ d2
1w1w

3
3 −w2

2w
2
3d4

2 − 2d2
1w

3
2w3 − d4

2w
2
1w

2
3 − 2w3

3d2
1w2 − 2d2

1w
2
3w

2
1

− d4
1w

2
3w

2
2 −w2

2w
2
1d4

1 +w3
2w3d2d1 +w2w

3
3d2d1 − 2w2

2w
2
3d2

2 d2
1

+ 2w2w
2
3d4

2w1 + 2w2
2w

2
3d3

2 d1 + 2d1d3
2w

2
1w

2
3 + d2

1 d2
2w1w

3
3

+ d2
1 d2

2w
3
1w3 − d3

1 d2w1w
3
2 − d3

1 d2w
3
1w2 + d1w

3
2d3

2w3 + d3
1w

3
2d2w3

+ d2
1w

3
2d2

2w1 − 2d2
1w

3
2d2

2w3 − d2w1w
3
3d1 − d2w

3
1w3d1 + 2w2

3d3
1w

2
2d2

− 4w3d2
1w2w

2
1 + d1w

3
3w2d3

2 + d3
1w

3
3w2d2 − d1w

3
3d3

2w1 − 2d2
1w

3
3d2

2w2

+ d2
1 d2

2w
3
1w2 − 4w2w

2
3d3

2 d1w1 + 5w2
2w3d2

2 d2
1w1 − 3w2

2w3d3
2 d1w1

+ 5d2
1 d2

2w1w
2
3w2 − 4d2

1 d2
2w

2
1w2w3 − 4d3

1 d2w1w
2
2w3 − 3d3

1 d2w1w2w
2
3

+ 3d3
2w

2
1w3d1w2 + 3w2d3

1 d2w3w
2
1 − d3

2w
3
1w3d1 − 2w2

1w
2
3d2

2 d2
1

+ 5w2
3w2w1d2

1 − 2w2
2w

2
1d2

1 d2
2 + 2w2

2w
2
1d3

1 d2 + 2w2
3w

2
1d1d2 + 2w1d4

1w
2
2w3

= d2
1 (d

2
2 + 1)

(
(w1 − 2w3)w

3
2 + (w1 − 2w2)w

3
3 + (w3 + w2)w

3
1

)

− d1d2(w1 − w3 −w2)
2(w2w13d2

1 +w3w12(d
2
2 + 1)

)

− (d2
2w12w3 +w2w13d2

1 )
2 −w2

12w
2
3(1+ 2d2

2 )

− d2
1

(
w1(w3 +w2)− 2w3w2

)(
2w1(w3 + w2)−w3w2

)

− d2
1 d2

2w1
(
w3w2(2w1 − 3w2 − 3w3)+ 2w1(w

2
3 +w2

2)
)
,

p3 = −2d2
2w1w

2
3w2 +w2

1w
2
3d2

2 + d2
2w

2
3w

2
2 − 2w2

3w2w1 + d2
1w

2
3w

2
2 +w2

2w
2
1d2

1

+ 2d2w1w
2
3d1w2 − 2w2d2w

2
1d1w3 + 2d2w3w

2
2w1d1 + w2

3w
2
1 +w2

3w
2
2

− 2w1d2
1w

2
2w3 − 2d1d2w

2
3w

2
2

= (
w2

12 + d2
12w

2
2 + d2w1(w1d2 + 2w2d12)

)
w2

3 − (d2w12 + d1w2)2d1w1w2w3

+ (d1w1w2)
2 .
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The expanded versions of p1, p2, and p3 have been obtained in Maple, while the more
compact versions have been derived manually from the expanded versions.
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N = 6, n = 4, m = 0 N = 6, n = 5, m = 0
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Figure B.1: Result of applying polynomial denoising in a block diagonal
structure to an entire RST. The matrix has size 2 N , the number of signal
parts is 2n , the polynomial has degree m.
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N = 7, n = 4, m = 0 N = 7, n = 5, m = 0
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N = 7, n = 4, m = 2 N = 7, n = 5, m = 2
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Figure B.2: Result of applying polynomial denoising in a block diagonal
structure to an entire RST. The matrix has size 2 N , the number of signal
parts is 2n , the polynomial has degree m.
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N = 9, n = 6, m = 2
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Figure B.3: Result of applying polynomial denoising in a block diagonal
structure to an entire RST. The matrix has size 2 N , the number of signal
parts is 2n , the polynomial has degree m.
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Figure B.4: Result of applying the WT in a block diagonal structure to
an entire RST. The matrix has size 29 and the number of signal parts/WT
blocks is 26.
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Figure B.5: Result of applying the WT in a block diagonal structure to
an entire RST. The matrix has size 29 and the number of signal parts/WT
blocks is 26.
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Figure B.6: Each column shows the set of the seven different structures
of the ϒ and I related matrices for a particular N .
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Moment Preserving
Edge Filters in Matlab C
Function 1 Generation of All Edge Filter Coefficients

function [Ledge,Redge,Aleft,Aright] = edgecoef(h);

% EDGECOEF Calculate edge coefs for polynomial recontruction
%
% Syntax: [Ledge, Redge, AL, AR] = EDGECOEF(H)
%
% The low and high pass left and right edge coefficients
% used for wavelet transform on the interval where polynomial
% regeneration is desired. AL and AR are the preconditioning
% matrices.
%
% Reference: Cohen, Daubechies, Vial: Wavelets on the interval.
% Appl. and Comp. Harm. Anal. vol 1, no. 1,
% december 1993.

[Hleft,Gleft,Aleft] = EdgeFilterCoefs(h);
Hleft = round(Hleft*1e13)/1e13;
Gleft = round(Gleft*1e13)/1e13;
Aleft = fliplr(flipud(Aleft));

[Hright,Gright,Aright] = EdgeFilterCoefs(fliplr(h));
Hright = round(flipud(fliplr(Hright))*1e13)/1e13;
Gright = round(flipud(fliplr(Gright))*1e13)/1e13;

Ledge = [Hleft; Gleft];
Redge = [Hright; Gright];

Function 2 Edge Filter Coefficients

function [Hedge, Gedge, Aedge] = EdgeFilterCoefs(h)

N = length(h)/2;

[A,B,E,Et] = EdgeABE(h);
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% Calculate the H_{m,s}
Hedge = zeros(N,2*N);
for m = 0:N-1

for s = N:N+2*m
Acc = 0;
for k = N-1-m:N-1

Acc = Acc + E(N-1-m+1,k+1)*B(k+1,s+1-N);
end
Hedge(m+1,s+1) = Acc/sqrt(2);

end
end

% Calculate the h_{m,s}
for m = 0:N-1

for s = 0:N-1
Acc = 0;
for n = 0:N-1

for k = n:N-1
Acc = Acc + Et(n+1,N-1-s+1)*E(N-1-m+1,k+1)*A(k+1,n+1);

end
end
Hedge(m+1,s+1) = Acc/sqrt(2);

end
end

% Calculate the Gedge
Gedge = eye(3*N-1) - Hedge’*Hedge;
Gedge = Gedge(1:N,:);

% Gaussian elimination from the bottom up
for k = N-1:-1:1

for n = k:-1:1
r = (Gedge(n,2*k+N)/D(k+1,2*k+N));
Gedge(n,:) = Gedge(n,:) - Gedge(k+1,:)*r;

end
end

% Orthonormalization
for k = 1:N

for n = 1:k-1
Gedge(k,:) = Gedge(k,:) - Gedge(n,:)*Gedge(k,:)’*Gedge(n,:);

end
Gedge(k,:) = Gedge(k,:) / norm(Gedge(k,:));

end

% Calculate the preconditioning matrix
V = zeros(N);
for m=1:N

for n=1:m
V(n,m) = nchoosek(m-1,n-1);
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end
end
Aedge = inv(V) * Et;

Function 3 Sampled Continuous Edge Functions

function [SL,SR,WL,WR,T] = edgefunc(h,j);

% EDGEFUNC Calculate the continuous edge functions
%
% Syntax: [SL,SR,WL,WR,T] = EDGEFUNC(H [,J])
%
% Calculate the continuous edge functions in 2ˆJ points
% per unit. S is scaling function, and W wavelets
% at repsectively the left and right end.
% T is the proper time scale.
%
% This function requires the Uvi_Wave Toolbox to be installed.

if nargin == 1 j = 6; end

N = length(h)/2;

for i=1:length(h)
g(i) = -(-1)ˆi*h(2*N-i+1);

end

% Left edge scaling functions
[A,B,E,Et] = EdgeABE(h);
s = wavelet(h,g,j)*sqrt(2);
s = [s zeros(1, (2*N-1)*2ˆj-length(s))];

BN = zeros(N,2*N-1);
for k=1:N

for n=k:2*N-1
BN(k,n) = nchoosek(n-1,k-1);

end
end

M = zeros(2*N-1,(2*N-1)*2ˆj);
for k=1:2*N-1

M(2*N-k,1:2ˆj*k) = s(end-k*2ˆj+1:end);
end
SL = flipud(E * BN * M);

% Left edge wavelets
[Ledge,Redge] = edgecoef(h);
Hleft = Ledge(1:N,:);
Gleft = Ledge(N+1:2*N,:);
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Hright = Redge(1:N,:);
Gright = Redge(N+1:2*N,:);

WL = zeros(N,(2*N-1)*2ˆj);
for k=1:N

WL(k,1:(2*N-1)*2ˆ(j-1)) = Gleft(k,1:N) * SL(:,1:2:end);
for m=N:N+2*(k-1)
WL(k,1+(m-N+1)*2ˆ(j-1):(N+m)*2ˆ(j-1)) = ...

WL(k,1+(m-N+1)*2ˆ(j-1):(N+m)*2ˆ(j-1)) ...
+ Gleft(k,m+1)*s(1:2:end);

end
end
WL = WL * sqrt(2);

% Right edge scaling functions
[A,B,E,Et] = EdgeABE(fliplr(h));
s = wavelet(fliplr(h),fliplr(g),j)*sqrt(2);
s = [s zeros(1, (2*N-1)*2ˆj-length(s))];

M = zeros(2*N-1,(2*N-1)*2ˆj);
for k=1:2*N-1

M(2*N-k,1:2ˆj*k) = s(end-k*2ˆj+1:end);
end
SR = fliplr(E * BN * M);

% Right edge wavelets
WR = zeros(N,(2*N-1)*2ˆj);
for k=1:N

WR(k,(2*N-1)*2ˆ(j-1)+1:end) = ...
Gright(k,end-N+1:end) * SR(:,1:2:end);

for m=N:N+2*(N-k)
St = 1+(m-N+2*k-2)*2ˆ(j-1);
En = (N+m-1+2*k-2)*2ˆ(j-1);
WR(k,St:En) = WR(k,St:En) ...

+ Gright(k,m-N+1+2*k-2)*fliplr(s(1:2:end));
end

end
WR = WR * sqrt(2);

T = linspace(0,2*N-1,2ˆj*(2*N-1));

Function 4 Auxilary Edge Filter Matrices

function [A,B,E,Et] = EdgeABE(h);

N = length(h)/2;

% Calculate the gamma matrix
gamma = zeros(N);
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gamma(1,1) = 1;
gamma(2,2) = 1;
for n = 3:N

gamma(n,2:n) = (gamma(n-1,1:n-1) - (n-2)*gamma(n-1,2:n))/(n-1);
end
gammat = inv(gamma);

bin = zeros(N);
for m = 0:N-1

for n = 0:m
bin(m+1,n+1) = nchoosek(m,n);

end
end
bin2 = bin.*fliplr(vander((N-1)*ones(1,N)));

% Calculate the alpha matrix
A = zeros(N);
hpow = h*fliplr(vander([-N+1:N]));
for k = 0:N-1

for n = 0:k
Acc = 0;
for q = n:k

for r = n:q
Acc = Acc + 2ˆ(-q)*gamma(k+1,q+1)*gammat(r+1,n+1)...

*nchoosek(q,r)*(bin2(q-r+1,1:q-r+1)...
*(hpow(:,q-r+1:-1:1))’);

end
end
A(k+1,n+1) = Acc/sqrt(2);

end
end

% Calculate the beta matrix
B = zeros(N,3*N-2);
for k=0:N-1

for n=N:3*N-2
b = 0;
for m=0:k

c = 0;
for s=-N+1:N-1

if 2*s+n > -N & 2*s+n < N+1
c = c + (s+N-1)ˆm*h(2*s+n+N);

end
end
b = b + c*gamma(k+1,m+1);

end
B(k+1,n+1) = b*sqrt(2);

end
end
B = B(:,N+1:end);
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% Calculate the eta matrix
Eta = zeros(N);
for s = 0:N-1

for k = 0:s
Acc = 0;
for m = 0:k-1

for n = 0:s
Acc = Acc + A(k+1,m+1)*A(s+1,n+1)*Eta(m+1,n+1);

end
end
for n = 0:s-1

Acc = Acc + 1/2ˆk*A(s+1,n+1)*Eta(k+1,n+1);
end
for m = N:3*N-2-2*min(k,s)

Acc = Acc + B(k+1,m+1-N)*B(s+1,m+1-N);
end
Eta(k+1,s+1) = Acc/(2-2ˆ(-k-s));
Eta(s+1,k+1) = Eta(k+1,s+1);

end
end

% Calculate the eta tilde matrix
Etat = zeros(N);
for n = N-1:-1:0

for k = n:-1:0
Acc = 0;
for s = n+1:N-1

Acc = Acc + Etat(n+1,s+1)*Etat(k+1,s+1)/Etat(s+1,s+1);
end
Etat(k+1,n+1) = Eta(k+1,n+1) - Acc;

end
end

% Calculate the E matrix
E = eye(N);
for m = N-2:-1:0

Tmp = eye(N);
Tmp(m+1,m+2:N) = -Etat(m+1,m+2:N)./(diag(Etat(m+2:N,m+2:N)))’;
E = Tmp*E;

end
E = diag(1./diag(sqrt(Etat))) * E;
Et = inv(E);
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Glossary

ADC Analog to digital converter.

CGM Channel gain measurement.

Cross talk
A disturbance caused by electric, magnetic, optic, acoustic
or other means and originating from within the system itself.

DAC digital to analog converter.

DWT Discrete wavelet transform.

EUR Euro.

Hadamard A N ×N matrix H is a Hadamard matrix if all entries are±1
and 1√

N
H is orthogonal.

IR Acronym for ‘infrared’ and ‘impulse response’.

JTF Joint time-frequency.

LED Light emitting diode.

LTT Local trigonometric transform.

MSE Mean square error.

Obtuse angle An angle of between π/2 and π .

PCB Printed circuit board.

Prolate A spheroid which is given as revolution of an ellipse around
its semimajor axis.

RST Rudin-Shapiro transform.

Spheroid The revolution of an ellipse around one of its semi-axes.

SS Spread spectrum.

st Steradian. The unit solid angle which cuts unit area from the
surface of a sphere of unit radius centered at the vertex of the
solid angle.

Unitary A matrix is unitary if the adjoint equals the inverse. A real,
unitary matrix is an orthogonal matrix.

WT Wavelet transform.

WP Wavelet packet.

WPT Wavelet packet transform.
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