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. . . 0

0 0 0 Am

�����
�

Notation

Consider a matrix X � � m � n. The operator Vec :
� m � n � � mn stacks the columns of X on top

of each other, that is

Vec 	 X 
 ∆
� Vec � � xi j

��� ∆
�

����������������
�

x11

x21
...

xm1

x12
...

xn2
...

xnn

�����������������
�

� (0.1)

The Vec-operator is a bijective map, when the number of rows and columns are fixed, and there-
fore it has an inverse operator Vec :

� mn � � m � n, with the properties,

X � Vec � 1 	 Vec 	 X 
�
�� X � � m � n

x � Vec 	 Vec � 1 	 x 
�
 � x � � mn
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We define the set of symmetric matrices S n, as

S n ∆
�

�
X : X � � n � n � X � XT �

�

We will often need an operator that takes a symmetric matrix in S n, and produces a vector
consisting of the entries in the lower triangular part. For X � X T � � n � n define the operator

SVec 	 X 
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��������������
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xnn
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(0.2)

where SVec 	 X 
 � � n
�
n � 1 �
2 . We note that SVec : S n � � n

�
n � 1 �
2 is a bijective map, and therefore it

has an inverse. We denote this inverse operator by SVec � 1, and note that

X � SVec � 1 	 SVec 	 X 
 
�� X � S n

x � SVec 	 SVec � 1 	 x 
�
�� x � � n
�
n � 1 �
2

The operator y � SVec 	 Y 
 takes a symmetric matrix and gives a vector y � ��� n � 1 � n � 2, which gives
a parameterization of Y � S n as SVec � 1 	 y 
�� y � � � n � 1 � n � 2. A basis � Yi � for the set of symmetric
matrices can therefore be constructed as Yi

� SVec � 1 		� yi
� 1 � 
�� i � 1 � ����� � 	 n 
 1 
 n � 2.

A left annihilator of a matrix B � � m � n with deficient row rank m � m is a matrix B � � � m � m

with full row rank and im B � kerB � . The left annihilator is not unique, since if B � is a left
annihilator to B, then so is 2B � .
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Chapter 1

Introduction

1.1 Overview

In this thesis we deal with some problems arising in control and the associated optimization
techniques customized to solve these problems. The systems in control we consider are all linear
and can be written in state-space form. We search for a controller such that given specifications
are fulfilled. As specifications on the system itself we consider stabilization and performance.
We also consider constraints on the controller, especially we consider controllers with a specific
number of states (control order). We seek to find these controllers by using different types of
algorithms exploiting recent advanges in linear matrix inequalities.

1.1.1 Linear matrix inequalities

In recent years linear matrix inequalities (LMIs) have gained significant interest in the control
society. There are two reasons for this; First of all, LMIs can due to new optimization techniques
be solved efficiently. Secondly, LMIs offers a general framework for the formulation of problems
arising in control.

The interest from the control community the optimization problem associated with LMIs
has helped to push semidefinite programming (SDP) to become a major research topic in the
optimization society. A synergy between control and optimization researchers is building up.
The better semidefinite programming problems can be solved, the more problems in control can
be solved using SDP, which induce more need for research in optimization of SDP’s and so forth.

Today SDP software is only reliable for small1, and medium size problems2. However, SDP
has many similarities with linear programming (LP) that because of its application in operational
research has received extensive interest during the last 30 years. For linear programming there is
very efficient software on the market that can solve problems with ten thousands of variables and
thousands of constraints. Connections between SDP and LP give hope for more efficient solvers
for SDP problems in the near future.

The main reason for the efficiency of modern SDP algorithms is in the convexity of the
problem. In optimization it is more important whether a problem is convex or non-convex than
linear or not linear. Many problems in control can be formulated as SDP problems, thus being
convex. However, just a small change in the control requirements and the problem becomes non-

1Small problems: 5-10 variables with 1-5 simple (5 by 5 matrices) LMI constraints
2medium problems: 10-100 variables with 5-10 medium (10 by 10 matrices) LMI constraints

1



2 CHAPTER 1. INTRODUCTION

convex. In this context we shall consider some of these non-convex problems and derive solvers
that use SDP among other techniques.

1.1.2 Control design and matrix inequalities

The number of problems arising in control that can be formulated in terms of LMIs are today very
extensive. A large number of results have been published over the last 5 years. An overview is
given in the book by Boyd et al on “Linear matrix inequalities in systems and control”, [BGFB94],
and the book by Skelton, Iwasaki and Grigoriadis on “A unified algebraic approach to Control
Design”, [SIG97].

The typical problem in control that can be formulated in terms of LMIs have the following
form. Let a plant Σ and a controller Σc be given on state-space form where both the plant and
controller is uniquely defined by a set of systems matrices.

Σ

Σc

The controller measure the output from the plant and uses the measurement plus additional
information to compute an actuator input for the plant. The connected system consisting of
the plant and controller is called the closed loop system, see figure 1.1.2, where under mild
conditions, the closed loop system matrices can be formulated as an affine combination of the
plant matrices and the controller matrices.

The goal is now to design a controller such that the closed loop system has a desired behavior.
Certain specifications for the behavior of the closed loop system can be formulated as an LMI
condition on the closed loop matrices.

Combining the LMI condition on the closed loop system with the affine combination of the
plant and controller matrices, conditions for the existence of a controller can be given in terms
of a bilinear matrix inequality (BMI). The BMI is not a convex constraint, but it offers a very
general framework.

The BMI formulation of the problem can be convexified to an LMI by relaxing restrictions on
the number of states in the controller, also called the control order. The control problem can now
be written as a set of coupled linear matrix inequalities. The control order appears as the rank of
a matrix, which, if constrainend, renders the problem non convex.

We are in this context generally interested in developing algorithms for solving fixed-order
control problems. Both the rank formulation and the BMI formulation offer a framework for fixed
order control design.

1.1.3 Fixed order design algorithms

It has been shown that certain problems related to the fixed-order control problems are NP hard,
see [FL97, BT95]. That is the computational time grows faster than any polymonial in the number
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of variables. Even though it has not been proven that the fixed-order control problems are NP
hard, the above results indicate that the problems might be NP hard. In spite of this compressing
the control order might be possible in some cases.

Algorithms have been developed by several researchers for compressing the control order
exploiting the rank formulation in connections with LMIs. The alternating projection algorithm
[GS94, GS96] formulates the LMI conditions and the rank constraint as feasibility sets and seek
by alternating projections on these sets a solution in the intersection of these sets. The balanc-
ing algorithm [GOA95] introduces an attracting function that can be used to minimize the rank
and consequently the control order. Mesbahi and Papavassilopoulos have, under some condition,
shown that rank-minimization problems can be solved to global optimality [MP97a], however
in terms of the fixed-order control problems these condition are not fulfilled but can be approx-
imated. Other methods have been presented to reduce the control order, but are not based on
the rank formulation [IS95, Iwa97b], but rather on a various other formulations. In [IS95] an
approach called the X-Y centering algorithm tries to solve the fixed order control problem by
finding a matrix belonging to one set and its inverse to another. An algorithm can also be devised
by using two dual formulations of the fixed order control problems [Iwa97b].

In this thesis we especially present a method based on the alternating projection scheme,
which exploits the efficiency of semidefinite programming. However, the theoretical background
for the algorithms [IS95, Iwa97b] will also be given.

1.1.4 Global optimization of bilinear matrix inequalities

The bilinear matrix inequality (BMI) was introduced in control design by Safonov and his re-
search group, see [SGL94]. Since then several algorithms for solving BMIs have been proposed.
Some methods have been based on branch and bound techniques [LW66] and these include a
global optimization approach by Goh, Safonov and Papavassilopoulos [GSP95], and a difference
convex (D.C.) method by Tuan, Hosoe and Tuy [THT96]. Cone programming techniques have
been applied by Mesbahi and Papavassilopoulos [MP96] to the BMI feasibility problems.

It has been shown by Toker and Ozbay, that a known NP hard problem, can be reduced to a
bilinear matrix inequality problem, [TO95] and thus indicating that the BMI problems are very
hard to solve. However, the general framework that the bilinear matrix inequalities offer justify
extensive research in solving these problems.

A family of algorithms is presented here to solve the BMI problem to global optimality. The
family is based on Benders decomposition [Ben62, Geo72], branch and bound techniques, and
Lagrangian duality [Ber95].

1.2 Outline

The setup in this thesis is the following. In the first chapter we formulate specifications for
control design that can be reformulated in terms of linear matrix inequalities. In the next chapter
we derive convex and non convex results for the existence of controllers of free or fixed order.
In chapter 4 we present a method based on alternating projection techniques, which tries to sole
the rank minimization problem. In the next chapter we present methods that solves the BMI
optimization problem globally.
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Chapter 2

Specifications for control design

The goal in control design is to construct a controller Σc that connected to a system Σ provides
a desired behavior of the connected system (called closed loop), see the setup in figure 2.1. In
this chapter we will discuss a set of specifications for the behavior of the closed loop system, and
we will examine the effect of constraints on the controller. Combining the system, constraints on
the controller, and specifications for the closed loop, we arrive at a problem which we will call a
control problem.

Σ

Σc

Figure 2.1: Closed loop system.

As possible specifications for the closed loop system we will examine stability and perfor-
mance. This is a narrow selection from a wide variety of specifications. Our goal is not to provide
a complete library of specifications, but merely to use the selected control problems to explain the
main approach. In fact the solution to the problem with stability specification turns out to have
the same form as the solution to a problem with a performance objective. Our main emphasis is
to study the complexity of control problems when constraints on the controller are added. Espe-
cially we will consider the number of necessary states (order) of the controller, but we will also
consider a bound on the gains of the controller.

The control problems presented here are formulated with general specifications, which are
then reformulated in terms of linear matrix inequalities (LMIs). The term LMI was introduced
by Willems in 1971 [Wil71]. A historical overview can be found in a book by Boyd et al. on
linear matrix inequalities in systems and control [BGFB94]. In this chapter we exploit mainly the
second method of Lyapunov [Lya47], that applied to our problems lead to an LMI formulation.

The approach is the following. First we develop analysis result in terms of LMIs. Next we
take a look at the open loop system and the controller. It is shown that the closed loop system is

7
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an affine function of a certain controller parameter. A discussion of the possible constraints on
the controller is done, and in the end of the chapter follows the selected control problems.

2.1 Control objectives

In this section we will consider two specifications for controller design, namely stability and
performance. These two types of specification are only meant as examples. A broader class
of specifications can be formulated in a similar fashion, see for instance [BGFB94] or [SIG97].
However these simple specifications do lead to control problems that feature the same kind of
structure as the broader class. Later we want to study elements of the formulation that lead to
efficient computation.

We emphasize that we only consider linear time-invariant systems that can be written in state-
space form: �

ẋ
z � �

�
A Bw

Cz Dzw � �
x
w � � x 	 0 
 � 0

where A � Bw � Cz � Dzw are fixed matrices of appropriate sizes. The vector x is a function of time and
consists of the states of the system.

2.1.1 Stability

For a system to be stable we will require that without external input the states x decays to zero
when time goes to infinity, or in other words the system returns to an equilibrium (state of balance)
after any disturbance. To study this we consider the autonomous system

ẋ � Ax � x 	 0 
 � x0 � (2.1)

where A � � n � n is given data, and x � � n are the states of the system.
We will say that the system 2.1 is stable if all possible trajectories of the system are bounded

and decay to zero as time goes to infinity, that is

x 	 t 
 � 0 as t � ∞ �

Or more precisely � ε � 0 ��� K : � x 	 t 
�� � ε ��� t � K � Often this kind of stability is called asymptotic
stability.

In order to investigate the stability of the system, the following lemma is useful, see for
instance definition 3.2 and section 3.8 in [ZDG95, Lya47, KB60],

Lemma 2.1 (Lyapunov stability) The following is equivalent

i) The system (2.1) is stable.

ii) All eigenvalues of A are in the open left half plane of the complex plane, i.e. Re λ 	 A 
 � 0.

iii) There exists a symmetric positive definite matrix Y such that ATY 
 YA is negative definite.

In lemma 2.1 the third condition is stated as a linear matrix inequality (abbreviated LMI).
A linear matrix inequality has the general form

F 	 x 
 � F0 

m

∑
i � 1

xiFi 	 0 � (2.2)



2.1. CONTROL OBJECTIVES 9

where x � � m is the variable and Fi
� S n � i � 0 � ����� � mx are known data. S n � � n � n denotes

the set of symmetric matrices of size n by n. Note that the map F from the variables x into the
set of symmetric matrices S n, F :

� m � S n, is an affine function. The inequality sign in (2.2)
is with respect to positive semidefinite matrices, or equivalently we require F 	 x 
 to be positive
semidefinite. A matrix M � S n is said to be positive semidefinite, if

vT Mv 	 0 � � v � � n � (2.3)

which is equivalent to saying that all eigenvalues of M are non-negative. Recall that a real sym-
metric matrix has all its eigenvalues on the real axis. If the inequality sign in equation (2.3) is
strict we say the matrix M is positive definite and (2.2) is called a strict linear matrix inequality.

A very important property of linear matrix inequalities is that they define a convex constraint,
that is, the set of x that fulfills the constraint is convex. A set C is convex if the line between any
two points in the set is fully contained in the set, i.e. x1 � x2

� C ��� αx1 
 	 1 � α 
 x2
� C � � α ��

0;1 � . To see that the LMI is convex in x, consider x1 � x2 with vT F 	 x1 
 v 	 0 � vT F 	 x2 
 v 	 0 for all
v � � n. Then due to the affine structure of F ,

vT 	 F 	 αx1 
 	 1 � α 
 x2 
�
 v � αvT F 	 x1 
 v 
 	 1 � α 
 vT F 	 x2 
 v 	 0 � (2.4)

for α � �
0;1� and for all v � � n.

Example 2.1 (Formulation of Lyapunov inequality as an LMI) The third condition of lemma 2.1
can with the above introduction of positive definite be written as, Y � 0, AT Y 
 YA � 0, which is
indeed and LMI. To transform this LMI into the general form (2.2), we need a basis for Y � S n,
that is a basis for the set of symmetric matrices. Let � Yi � � i � 1 ����� � � 	 n 
 1 
 n � 2 be such a basis.
The LMI Y � 0, AT Y 
 YA � 0 can now be transformed into the form (2.2) by introducing

Fi
�

�
Yi 0
0 AT Yi 
 YiA � and F0

�

�
0 0
0 0 � �

The block diagonal structure in the above LMI is typical, when considering multiple constraint.

A solution to the system (2.1) is in general composed of a set of trajectories on the form
x 	 t 
 � tqe

� � α � ω j � t , where � α 
 ω j is an eigenvalue of A. α is the decay rate of the trajectory and
ω � 2π is the frequency of the oscillations in the trajectory. In a simple stability specification we
do not specify how well the states should be damped, or how fast the oscillations may be. The
behavior of the system in terms of decay rate and oscillations are determined by the poles of the
system, or in state space form the eigenvalues of A. To control the behavior of the trajectories
the designer want to place the poles of the system in specific regions. As a simple example we
consider α-stability, i.e. all states decays to zero faster than e � αt , or more precisely: there � K � 0
such that � t � 0 � � x 	 t 
�� 2 � Ke � αt . The notation ��� � 2 denotes the standard Euclidean vector
norm. The α-stability is equivalent to the real parts of the eigenvalues of A being left of � α. From
lemma 2.1 it follows that α stability holds if and only if � Y � 0 � 	 A 
 αI 
 T Y 
 Y 	 A 
 αI 
 � 0.
For α fixed the constraint 	 A 
 αI 
 T Y 
 Y 	 A 
 αI 
 � 0 is an LMI, but we are usually interested
in the optimal α. That is we want to solve the problem:

Maximize
Y � α α

subject to Y � 0	 A 
 αI 
 T Y 
 Y 	 A 
 αI 
 � 0 �

(2.5)
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This is a so called generalized eigenvalue problem (GEVP) , that is a problem on the form:

Minimize
y� λ λ

subject to λB 	 y 
 � A 	 y 
 � 0
B 	 y 
 � 0 � C 	 y 
 � 0

(2.6)

where A, B and C are symmetric matrices that are affine functions in y. The problem (2.5) is of
the form (2.6), which can be seen by writing it as:

Minimize
Y � α 	 � α 


subject to 	 � α 
 	 2Y 
 � � ATY 
 YA � � 0	 2Y 
 � 0 �

(2.7)

As stated earlier α stability means that all poles are left of a line going through � α and
parallel to the imaginary axis. A general result for pole placement in specific convex regions
using LMIs can be found in [CG96].

2.1.2 Performance

In the previous subsection we discussed stability. Stability basically relates to the internal be-
havior of a system. However, the reaction on disturbances coming from the outside is also very
interesting and important. The part of the system where the reaction is of interest is measured by
an error output. Consider the setup in figure 2.2 in state-space form

Σ :

�
ẋ
e � �

�
A Bd

Ce Ded � �
x
d � � (2.8)

That is the system has one vector input and one vector output, see figure 2.2. The input d :� � � nd is used to model disturbances, whereas the error signal e :
� � � ne is used to pick

out the essential parts of the system. Both the disturbance signal d and the error signal e are
mappings from time into a space of real vectors of appropriate dimension. Internally the system
is characterized by the states x, which again is a mapping from time into the space of real vectors� n.

Σ ed

Figure 2.2: The setup for performance analysis.

Both the disturbance and the error are considered to be signals. The mapping from distur-
bances to errors can be characterized by the convolution operator with kernel Ked 	 t 
 � CeeAt Bd 

Ded, and we will denote this mapping by Ted.

For the system (2.8) we want to specify how well disturbances are damped when seen at
the error signal. To formally describe this specification we first take a look at how signals are
measured, and then use these measures to formulate different performance measures.

Therefore consider a general signal of the form

h :
� � � n �
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where we throughout this text will assume that any signal is a piece-wise continuous function,
implying that the function is measurable. To construct different norms on signals we will first
take the vector norm at each time instant, and then take another norm on this mapped scalar
signal. We consider the following norms for vectors in

� n

� v � 1
�

n

∑
i � 1

� vi � � � v � 2
�

�
vT v � and � v � ∞

� max
i

� vi � � (2.9)

The norms are refered to as 1-norm, 2-norm or Euclidean norm, and ∞-norm or max-norm, re-
spectively.

Applying a vector norm to each time instants of h we get a signal from time into
� �

. On this
kind of signals we can define an Lp-norm. There are different possibilities, and they are defined
in the following way:

� h � Lp

����� ∞

� ∞
� h 	 t 
�� p dt � 1 � p

for p � 0 � p � �
� h � L∞

� sup
t ��� � h 	 t 
 � (2.10)

We will especially consider the Lp-norms with p � 1 � 2 � ∞. It is fairly standard to refer to � � � L2

as the energy norm. We will also introduce the names resource for � � � L1
and peak for ��� � L∞

.
Combining the different vector norms and Lp-norms we can compose various signal norms.

Suppose we first take the vector r-norm and then the Lp-norm we get the signal norm,� h 	 t 
�� Lp 	 r � � � h 	 � 
�� r � Lp
�

where the notation � h 	 � 
�� r means that we take the vector norm at each time instant. Note the
notation Lp � r refering to the chosen vector r-norm and the outer Lp-norm. For both the vector
norm and the Lp-norm only the numbers one, two and infinity are used here. This leads to 9
possible signal norms. The 5 most commonly used are stated in table 2.1. All the norms have
been given names refering to their physical interpretations.

Resource(R): � h � L1 	 1 � � h � R
��
 ∞� ∞ ∑n

i � 1 � hi 	 t 
 � dt

Euclidean Resource(ER): � h � L1 	 2 � � h � ER
��
 ∞� ∞ � hT 	 t 
 h 	 t 
 dt

Energy(E): � h � L2 	 2 � � h � E
� � 
 ∞� ∞ hT 	 t 
 h 	 t 
 dt � 1 � 2

Euclidean Peak(EP): � h � L∞ 	 2 � � h � EP
� supt ��� � hT 	 t 
 h 	 t 


Peak(P): � h � L∞ 	∞ � � h � P
� supt ��� maxi � hi 	 t 
 �

Table 2.1: Important signal norms and their names.

We have now defined how we measure signals. The next step towards defining performance
is how we will measure the attenuation from disturbances to error. Consider a mapping Ted from
disturbances d :

� � � nd to error output e :
� � � ne. We will measure the disturbances in one

signal norm � d � Lp 	 r and the error in � e � Lq 	 s . A natural question is: how do a set of disturbances
bounded in Lp � r norm influence the error measured in Lq � s. The measure is formally defined in

Definition 2.1 (Induced norm) The Lp � r to Lq � s induced norm is defined as

� Ted � Lp 	 r  Lq 	 s � sup
d � Lp 	 r � e � Lq 	 s� d � Lp 	 r � d �� 0
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If the disturbances are well damped the induced norm is low, while it is high if the damping is
poor. In some cases the induced norm is even infinity. In many cases the induced norm can
be reformulated as a norm on the convolution operator. This is usually derived by showing that
the induced norm is bounded above by some measure on the convolution operator or transfer
function, and then proving that there exists a disturbance that achieves this upper bound. In this
context we are only treat the induced norms, which lead to computable result in terms of the
state-space matrices. We are especially interested in cases where these results are given as linear
matrix inequalities.

As a simple example we will consider the induced norm from Energy to Euclidean Peak.

Example 2.2 (Energy to Euclidean Peak Induced Norm) The Energy to Euclidean Peak in-
duced norm denoted by � � � E  EP . A standard result due to Wilson [Wil89] leads to the following
result: The � Ted � E  EP-norm is less than γ if and only if Ded

� 0 and there exists Y such that

Y � 0

YAT 
 AY 
 BdBT
d � 0

CeYCT
e � γ2I �

Note that if the LMI YAT 
 AY 
 BdBT
d � 0 holds, stability is implied since BdBd 	 0 and

therefore YAT 
 AY � 0.

Similar results can be derived for the Energy to Peak, Resource to Energy, and Euclidean Re-
source to Energy induced norms, see [SGC97, Ber94]. For the Euclidean Resource to Euclidean
Resource and Euclidean Peak to Euclidean Peak induced norms, see [ANP96].

The same analysis could be done by solving a Lyapunov equation, but the strength of the
above formulation is that it defines a convex region of all possible Lyapunov matrices Y , that
guarantees the Energy to Euclidean Peak induced norm to be less than γ.

In table 2.2 is a table over possible induced norms. Some of them can be formulated in terms
of LMIs.

R ER E EP P

R o � o
ER � �
E ∞ ∞ � � �
EP ∞ ∞ ∞ �
P ∞ ∞ ∞ o

Table 2.2: Some known induced norms
The ones marked with � are known and can be computed using the state space representation and
LMIs directly. The three marked with o are known, but the induced norm can not be formulated
in terms of LMIs. The mark ∞ indicates that the induced norm is in general infinity - except for
the zero system. The blanks are currently unknown.

A well examined induced norm is the Energy to Energy induced norm, also known as the H∞
norm. It has connections to robustness via the small gain theorem, see for instance [ZDG95].

For the H∞ norm we have the following lemma (see [Sch90]; the proof is basically an exten-
sion of Lyapunov theory)
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Lemma 2.2 (Bounded real lemma) The following statements are equivalent

i) � Ted � L2 	 2  L2 	 2 � γ and A is stable.

ii) There exists a symmetric X such that

X � 0 and

�� AT X 
 XA XBd CT
e

BT
d X � γI DT

ed
Ce Ded � γI

�� � 0 (2.11)

In (2.11) we have a convex region of Lyapunov matrices which satisfies the performance
specification. This formulation is done for synthesis purposes. However, the result can be used
to compute the H∞ -norm by solving the following problem

Minimize
X � γ γ

subject to X � 0�� AT X 
 XA XBd CT
e

BT
d X � γI DT

ed
Ce Ded � γI

�� � 0

(2.12)

which provides an optimal γ equal to the H∞ -norm, and a Lyapunov matrix that proves stability
and the optimality of the H∞ -norm.

The above problem (2.12) is a semidefinite programming problem (SDP). A general formula-
tion of a semidefinite programming problem is the following: Let c � � n and an LMI constraint
F 	 x 
 	 0 be given. Then a semidefinite programming problem is an optimization problem of the
form:

Minimize
x

cT x

subject to F 	 x 
 � F0 
 ∑m
i � 1 xiFi 	 0 � Fi

� FT
i �

(2.13)

A semidefinite programming problem is a convex problem since the objective is convex (linear),
and the constraint is also convex.

Solution methods fora semidefinite programming problems is subject to intensive research at
the moment, and various methods exist. Interior point methods were matured during the research
by Nemirovskii and Nesterov [NN94], and resulted among others in the projective method by
[NG94], and the primal-dual method by Boyd and Vandenberghe [VB96]. More recent so-called
homogeneous algorithms have been proposed to solve the SDP problems.

Software for formulating and solving SDP’s are numerous. The Projective Method by Ne-
mirovskii and Gahinet have been implemented in the LMI control toolbox for use with MATLAB

, [GNLC95]. The SP package by Boyd and Vandenberghe, [VB94], solves SDP’s, but the prob-
lem has to be formulated in a special way, thus making it difficult to use for common users.
This is alleviated by the user friendly front ends, SDPSOL [BW95] and LMITOOL [GDN95].
A large range of new methods are coming up, pointing out references to them all would be
extensive, and out of date in a short time. Instead a search on the internet would be more
fruitful and up to date. There are several pages dedicated to semidefinite programming, see���������	�
���
��������
���������������
�������
 "!#�

˜ $ �&%�����'�����(
� )*�+��,"-.�/���&0#1
.
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2.1.3 Other control objectives

Other performance objectives can be formulated in terms of LMI. First of all robustness with
respect to unstructured uncertainties is equivalent to the H∞ performance control problem by the
small gain theorem, see for instance [ZDG95] or [Iwa93]. For robust H2 performance analysis
the work by Paganini [Pag96] provides an LMI formulation, see also [Iwa93]. Also objectives in
terms of systems that are linear parameter varying or linear time varying etc. have LMI formula-
tions, but we will not consider these types of systems in the sequal.

2.2 Controllers and closed loop

In the previous section we considered specifications for the behavior of the closed loop system.
The closed loop system consists of the connection between the original system and the controller.
The connection between these two subsystems is established by use of actuators and measure-
ment. The controller uses the measurement, denoted y, to construct a feedback signal u, that
governs the actuators to provide the system with the desired behavior.

In this section we present a general model of the system, which includes the dynamical model
of the system, the disturbance acting on it, the signals of specific interest (the error), and the
available measurement and actuator signals. The set of possible controllers is then given. We
then show a simple way of computing the closed loop matrices from the general model and the
controller.

2.2.1 Open loop system

The general model we consider is the following.�� ẋ
e
y

�� �

�� � �
d

�
u�

e � ed � eu�
y � yd � yu

�� �� x
d
u

�� (2.14)

The system has two inputs and two output, see figure 2.3. These input/outputs are paired, such
that e � d are used to model the influence of disturbances d on a set of interesting signals e, refered
to as the error, and y � u are the signals available for control. Since the system in (2.14) has not

u
Σ

e

y

d

Figure 2.3: The setup for synthesis.

been connected with the controller yet, it is refered to as the open loop system. We denote the
matrices of the open loop system using a sans serif font

� � � � � � � .
We will in the following assume that � yu

� 0. We can do this without loss of generality, see
page 16.
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2.2.2 Controller

To the above system we apply a controller between y and u of the form�
ẋc

u � �

� �
c

�
c�

c � c �� ��� �
G

�
xc

y � � (2.15)

where xc
� � nc are the states of the controller. The number nc of controller states is the order

of the controller. A static controller (nc
� 0) reduces to the simple form u � � cy. We introduce

the notation G as indicated in (2.15). We will refer to G as the controller parameter.

2.2.3 Closed loop system

By applying the controller equation (2.15) to the system equation (2.14) we get the closed loop
system. We will now derive formulation for the closed loop matrices as affine functions of the
openloop matrices. This formulation will come out handy in the derivation of LMI formulation
in the next chapter.

We will denote the closed loop matrices as in equation (2.8). Due to the assumption � yu
� 0 it

is possible to compute the closed loop matrices as an affine combination of the open loop matrices
and the controller matrices. First augment the system equation (2.14) with the controller states.
Next add an extra output namely the controller states xc, and the derivative of the controller states
ẋc as an extra input. We call this augmented open loop system for the augmented system.

The open loop can now be written as

�� ˙̃x
e
ỹ

�� �

�����
�

ẋ
ẋc

e
xc

y

������
� �

�����
�

�
0

�
d 0

�
u

0 0 0 I 0�
e 0 � ed 0 � eu

0 I 0 0 0�
y 0 � yd 0 0

������
�

�����
�

x
xc

d
ẋc

u

������
�

�

�� Ã B̃d B̃u

C̃e D̃ed D̃eu

C̃y D̃yd 0

�� �� x̃
d
ũ

��
(2.16)

where x̃ �

�
xT xT

c � T , ũ �

�
ẋT

c uT � T , and ỹ �

�
xT

c yT � T . The matrices in the augmented system are
denoted with a tilde on the top of letters in a normal slanted font, Ã � B̃ � C̃ � D̃. Since we have
included the controller states in the augmented system the controller law reduces to the simple
algebraic relation ũ � Gỹ.

Combining ũ � Gỹ and (2.16) and eliminating ũ � ỹ the following expression for the closed
loop system can be derived�

˙̃x
e � �

�
Ã B̃d

C̃e D̃ed � �
x̃
d � 
 �

B̃u

D̃eu � ũ

��� �
Ã B̃d

C̃e D̃ed � 
 �
B̃u

D̃eu � G
�

C̃y D̃yd � � �
x̃
d � �

(2.17)

The closed loop matrices can be extracted as an affine combination of the augmented system
matrices and the controller parameter G:�

A Bd

Ce Ded � �

�
Ã B̃d

C̃e D̃ed � 
 �
B̃u

D̃eu � G
�

C̃y D̃yd � (2.18)
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The closed loop matrices are written in a normal font, A � B � C � D. The affine formulation of the
closed loop matrices has two advantages. First it is easy to compute the matrices, and second, it
is extremely useful in synthesis, as we will see in chapter 3.

We now return to treat the case where � yu �� 0. Design the controller as if � yu was zero.
That is introduce a fictitious output ŷ � y � � yuu, and design the controller with this output. The
controller is then given by the following relation�

ẋc

u � �

� �
c

�
c�

c � c � �
xc

ŷ � �

We can eliminate ŷ and get the following controller�
ẋc

u � �

� �
c � �

c � yu 	 I 
 � c � yu 
 � 1 �
c

�
c 	 I � � yu 	 I 
 � c � yu 
 � 1 � c 
	 I 
 � c � yu 
 � 1 �

c 	 I 
 � c � yu 
 � 1 � c � �
xc

y �
(2.19)

assuming that 	 I 
 DcDyu 
 � 1 exists.

2.2.4 Controller constraints

When we restricted the controller in equation (2.15) to be in state-space form, finite-dimensional
and time-invariant, we did so mostly of convenience since we are designing a controller for sys-
tems that have the same form. Normally a controller is implemented using Programmable Logic
Controllers (PLC’s). The PLC unit is used to implement the transfer function of the controller
as a filter on state space form. The output of the PLC unit is then fed into an amplifier that can
supply the desired energy. However, usually such a PLC unit have constraints on the possible
order of the controller, and moreover the unit has finite precision arithmetic. In other words, we
have to constraint the controller in our design.

The constraint on the control order is easily stated by the requirement that nc
�

nc, but it
cannot be formulated in terms of LMIs. In fact the constraint on the orderimposes a non-convex
constraint on the LMI formulations. We will treat this in great detail later.

The limited precision of the arithmetic makes the input/output mapping of the controller very
dependent on the gains in the controller. We will impose constraints on the gain of the controller
by restricting the controller parameter G. This can be done in two ways. First of all each entry
Gkl can be bounded by lkl

�
Gkl

�
ukl, where lkl � ukl are finite. and lkl � ukl. As an alternatively

we can add an upper bound β on the Frobenius norm of the controller parameter:� G � Frob
�

�
Tr GT G � β � (2.20)

Given G it is easy to calculate the Frobenius norm of it using (2.20). If we want to impose the
constraint in a search for controllers fulfilling other specifications, a convex formulation in terms
of LMIs are more adequate. We have the following, see [BGFB94, chap. 2]:

Proposition 2.1 (Frobenius norm as LMI constraint) Given G � � p � q, and 0 � β � ∞, then
the following is equivalent

i) The Frobenius norm of G is less than β, that is
�

TrGT G � β.

ii) There exist symmetric S � S p such that TrS � β2 � � S G
GT I � 	 0 .

The convex constraint on G is constructed by introducing a so called slack variable, S, extending
the number of variables with the number of independent variables in S p. We will also use the
result in the above proposition in chapter 4.
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2.3 Control problems

In this section we will combine the specifications and the closed loop formulation given above
to formulate a couple of interesting problems. Each problem is basically on the form: Given a
set of specifications and an open loop system (2.14) find a controller (2.15), if it exists, such that
the closed loop (2.8) fulfills the given specifications. As specifications we consider objectives in
relation to stability, α-stability, and performance, as defined earlier. Again we stress that these
objectives are only instances of the number of specifications that can be solved in the same way.
We will also include the order of the controller in the problem formulation. When we say fixed-
order ... control problem we are looking for a controller of a order not exceeding a specified
number.

2.3.1 Stability

The most simple control problem is that of finding a controller such that the closed loop system
is stable.

Stabilizing control problem: Given the open loop system equation (2.14) find a controller
equation (2.15) (if it exists) such that the closed loop system ˙̃x � Ax̃ is stable.

The stabilizing control problem seems very simple, but in fact there are many unsolved ques-
tions in relations to the problem. We will later consider an extra constraint in terms of the control
order on the above control problem.

With a constraint on the control order the stabilizing control problem get the following form

Fixed-order Stabilizing control problem: Given the open loop system equation (2.14), and a
desired control order nc find a controller equation (2.15) of order at most nc (if it exists) such that
the closed loop system ˙̃x � Ax̃ is stable.

This control problem contains essentially the same computational difficulties as the problem
we pose in the sequel. In fact when studying the efficiency of a computational method dealing
with fixed order control design it is sufficient to study the fixed-order stabilizing control problem.

Here we return to formalize another simple control problem. In the stabilizing control prob-
lem we just ask for a convergence of the states to zero. We have no constraints on the speed of
convergence, but by considering α-stability we get exponential convergence of the states.

α-stabilizing control problem: Given α � � � α � 0 and the open loop system equation (2.14)
find a controller equation (2.15) (if it exists) such that the closed loop system has α-stability.

This problem can be solved for any 0 � α � ∞ under simple assumptions. In other words the
maximal α is infinity. However, if constraints are added on the controller order the optimal α can
be shown to be finite even for simple problems.

Fixed order Optimal α-stabilizing control problem: Given the open loop system (2.14) and
a desired control order nc find a controller equation (2.15) of order at most nc (if it exists) such
that the closed loop system has maximal possible α-stability.
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Similarly we could have defined control problems which deal with general pole-placement,
see [CG96].

2.3.2 Performance

The issues of stability and α-stability are very important, but another interesting question is how
well disturbances are damped. We refered to this as the performance of the system, and showed
that it had relations to the induced norm. A low induced norm is a sign of good performance. The
induced norm of a system is a positive real number, and one specification could be to constraint
the induced norm of the closed loop system to be less than a specified positive number γ.

For the induced norm we consider to find the controller with a certain guaranteed perfor-
mance:

Performance control problem: Given an induced norm ��� � � , a γ � 0, and the open loop sys-
tem equation (2.14) find a controller equation (2.15) if it exists such that the closed loop system
is stable and has induced norm � Ted � � less than γ.

The possible induced norms in this context are the one indicated with � ’s in table 2.2. Since
the induced norm from energy to energy is of great importance and widely examined in the
literature, we will specifically state the related control problem:

H∞ control problem: Given a γ � 0, and the open loop system equation (2.14) find a con-
troller equation (2.15) if it exists such that the closed loop system is stable and has induced norm� Ted � L2 	 2  L2 	 2 less than γ.

2.3.3 Other control problems

The above given control problems are the ones we will consider explicitly in this presentation,
and we will derive formulations for the existence of controllers for these problems. A lot of other
control problems could be defined using different objectives, but the above given problems, are
sufficient for our purpose. That is, studying optimization algorithms for solving control problems.



Chapter 3

Control problems as optimization
problems

The problems stated in the previous chapter have been studied in the field of control theory during
the last 40 years. We will not try to give a complete overview of the published results, but present
the most important.

For the stabilizing control problem, results derived in the 1970’s provide a complete parame-
terization of all stabilizing controllers. This characterization of all stabilizing controllers is usu-
ally refered to as Youla parameterization, see for instance [ZDG95, chap 12]. Although the result
is nice for the stabilizing control problem it is not easily extended to other control problems.

The H∞ problem was solved in beginning of the 1980’s, see [Sto92] for an historical overview.
The approach based on the solution to two Riccati equation was first presented in [DGKF89], and
gave an elegant result solving the H∞ control problem by use of the Riccati equation. At the same
time the so called H2 control problem was solved using the same technique. The drawback of
this technique is that it always provide controllers of order equal to the plant. The order of the
controller could be reduced using model reduction techniques, but usually at the cost of a worse
performance for the closed loop. Recall that we are interested in minimizing the control order,
since it is usually limited by hardware.

By formulating the problems in terms of matrix inequalities, we can derive results where
it is possible to bound the control order. In a paper by Packard, Zhou, Pandey, and Becker,
[PZPB91], a collection of robust problems leading to LMIs was given, initiating the search for
LMI formulations of a number of control problems. The first milestone was reached in 1992 in
[IS93, GA93], when the H∞ -control problem was solved simultaneously by two research groups.
Skelton and Iwasaki [IS94] provided a complete parameterization of all controllers achieving a
specific bound γ on the H∞ norm. Gahinet and Apkarian [GA94] presented a similar LMI solution
to the H∞ control problem, but omitted the parameterization. However, they presented some
additional properties, that we will point out later in this chapter. In his Ph.D.’s thesis [Iwa93],
Iwasaki provided the solution to a series of other control problems within continuous and discrete
systems,

Since the derivation of the LMI result for the H∞ control problem a series of other control
problem have been solved in a similar fashion. It should be emphasized that a large class of many
other control design problems such as Linear Quadratic control, covariance control, positive-real
control, µ-synthesis with constant scaling, and linear parameter-varying control can be formulated
in a similar mathematical framework via linear matrix inequalities and a coupling matrix rank
constraint; see [SIG97].

19
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In this chapter we will present a brief introduction to the results given in [IS94, GA94]. The
approach is the following. We derive results in terms of bilinear matrix inequalities (BMIs) by
combining the analysis results on the closed loop with the affine parameterization of all possible
closed loop matrices in terms of the open loop matrices and the controller parameter. However,
we will see that the resulting BMI is very difficult to solve in general, although an attempt will
be made in chapter 5. However, the search for a solution to the BMI can be reformulated as a
search for a solution to a set of coupled LMIs, by relaxing the controller order. It turns out that
the control order is the rank of a given matrix.

We will show the derivation of both the BMI result and the LMI result, by studying the
stabilizing and H∞ control problems. It turns out that the major steps are the same, and the
difference can be traced back to the difference between Lyapunov stability result and the bounded
real lemma.

3.1 Bilinear Matrix Inequality formulation

In this section we formulate the control problems defined in last chapter in terms of bilinear
matrix inequalities.

The fixed order stabilizing control problem is to find a controller G of order at most nc, such
that the closed loop ˙̃x � Ax̃, is stable. We will use the Lyapunov result, � Y � 0 � AT Y 
 YA � 0,
to study the stability of the closed loop. Recall from (2.18) the relation

A � Ã 
 B̃uGC̃y

between the closed loop matrix A, the controller parameter G and the augmented matrices Ã � B̃u,
and C̃y. Inserting A � Ã 
 B̃uGC̃y in AT Y 
 YA gives the following formulation of the fixed order
stabilizing control problem:

Find G � Y such that Y � 0 � � Ã 
 B̃uGC̃y
� T

Y 
 Y � Ã 
 B̃uGC̃y
� � 0 � (3.1)

where the augmented matrices are extented to include the controller states of size nc. The last
expression in (3.1) is a bilinear matrix inequality, i.e. an inequality of the form:

F 	 x � y 
 ∆
� F0 


mx

∑
i � 1

xiF
x
i 


my

∑
j � 1

y jF
y
j 


my

∑
j � 1

mx

∑
i � 1

y jxiF
xy

i j 	 0 � (3.2)

where the variables are x � � mx and y � � my, and the matrices Fx
i

� S n � i � 1 � � � � � mx, Fy
j
�

S n � j � 1 � � � � � my, and Fxy
i j

� S n � i � 1 � � � � � mx � j � 1 � � � � � my, are given data. The inequality sign
’ 	 ’ denotes, as usual, positive semidefiniteness. We will refer to the problem of finding feasible	 x � y 
 , i.e. 	 x � y 
 such that F 	 x � y 
 	 0, as the BMI feasibility problem. One of the goals in this
thesis is to derive algorithms that can solve the BMI feasibility problem. In chapter 5 we will
formalize what we exactly mean by “solving”.

The term BMI was introduced by Safonov, Goh and Ly in 1994 in the conference paper
[SGL94]. The BMI is a general framework and can be used to formulate a series of system
synthesis problems. In this chapter we will concentrate on control problems.

The feasibility set of a BMI F 	 x � y 
 	 0, i.e. � 	 x � y 
 : F 	 x � y 
 	 0 � is in general non-convex.
Take for example F 	 x � y 
 � 1 � xy 	 0. Then the feasibility set � 	 x � y 
 : x � y � � � 1 � xy 	 0 � is
non-convex.
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However, a BMI do have one nice property: For fixed y the BMI (3.2) reduces to a linear
matrix inequality (LMI) in the variable x; for fixed x it reduces to an LMI in the variable y. This
property is called biconvexity. The biconvexity can be used to solve the BMI feasibility problem
as described above, see chapter 5.

For the fixed order α stabilizing control problem we can in a similar way derive the following
lemma:

Lemma 3.1 (BMI) Let a scalar α � 0, a desired control order nc and augmented matrices
�

,
�

u

and
�

y with control order nc be given. The matrices Ã, B̃u and C̃y are augmented with the control
order as in (2.16). The following statements are equivalent

(i) There exists a matrix G such that the closed loop A � Ã 
 B̃uGC̃y is α stable.

(ii) There exists Y � S n � nc and G � � � nc
� ny � � � nc

� nu � such that

Y � 0 � � Ã 
 B̃uGC̃y 
 αI � T
Y 
 Y � Ã 
 B̃uGC̃y 
 αI � � 0 � (3.3)

Suppose we want to solve the fixed order optimal α-stabilizing control problem. We then get
the following problem:

Maximize
Y � G � α α

subject to Y � 0 � G � � � nc
� ny � � � nc

� nu �� Ã 
 B̃uGC̃y 
 αI � T
Y 
 Y � Ã 
 B̃uGC̃y 
 αI � � 0 �

(3.4)

The above is what we call a Bilinear matrix inequality optimization problem:

Minimize
x � y cT x 
 dT y

subject to F 	 x � y 
 � F0 
 ∑mx
i � 1 xiFx

i 
 ∑my
j � 1 y jF

y
j 
 ∑my

j � 1 ∑mx
i � 1 y jxiF

xy
i j 	 0 �

(3.5)

where x and y are the variables, and c � � mx,d � � my, and F
�

�
� S n are given data. Since the

BMI is non-convex, the BMI optimization problem is a non-convex optimization problem. We
will in chapter 5 partition the BMI into convex and non-convex constraints, and try to exploit this
partition together with the biconvexity to find an efficient solver.

For the fixed order H∞ control problem we get a formulation in terms of BMIs by inserting
the parameterization of the closed loop matrices equation (2.18) in the bounded real lemma. We
obtain the following BMI feasibility problem:

Find G and X � 0 such that

��
� � Ã 
 B̃uGC̃y

� T
X 
 X � Ã 
 B̃uGC̃y

� X � B̃d 
 B̃uGD̃yd
� � C̃e 
 D̃euGC̃y

� T

� B̃d 
 B̃uGD̃yd
� T X � γI � D̃ed 
 D̃euGD̃yd

� T� C̃e 
 D̃euGC̃y
� � D̃ed 
 D̃euGD̃yd

� � γI

���
� � 0

(3.6)

The optimal H∞ controller can be found by finding the optimum of the BMI optimization
problem:

Minimize
γ � X � G γ

subject to X � 0 � G � � � nc
� ny � � � nc

� nu �
the BMI (3.6)

(3.7)
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In the BMI optimization problems (3.7) and (3.4) the set of variables are in general un-
bounded. This causes problems for any attempt to solve the problem. For the controller parameter
G we can remove this by adding a bound on the Frobenius norm of G in the form of an LMI, cf.
proposition 2.1. A bound on the Lyapunov matrix can be made by adding TrX

� β. This does
introduce some conservatism, but as we will discuss in both chapter 4 and chapter 5 it has some
advantages in terms of numerical computations.

3.2 Convex formulation

In this section we will show how to derive convex results for the solvability of a specific control
problem. The framework is the simple matrix inequality

FGH 
 	 FGH 
 T 
 Q � 0 � (3.8)

Any of the BMIs formulated in the last section can be written in the form (3.8). The convex
results are then obtained by applying the so called elimination lemma to matrix inequalities on
the form (3.8), and showing that a relaxation of the control order is sufficient to derive convex
results.

First we show that all the BMI problems can be reformulated in the form (3.8). The BMI in
(3.3) for the α stabilizing control problem

� Ã 
 B̃uGC̃ 
 αI � T
Y 
 Y � Ã 
 B̃uGC̃ 
 αI � � 0

can be rewritten as

Y B̃u�������
Fα 	 nc

G C̃y�������
Hα 	 nc


 � YB̃uGC̃y
� T 
 ÃT Y 
 Y Ã 
 2αY� ��� �

Qα 	 nc

� 0 � (3.9)

In the above we have Fα � nc , Hα � nc and Qα � nc, defined as

Fα � nc
� Y B̃u

Hα � nc
� C̃y

Qα � nc
� ÃTY 
 Y Ã 
 2αY

where α denotes the relation to the α stabilizing control problem, and nc refers to the augmen-
tation of the matrices B̃u, C̃y and Ã. Since we consider the open loop matrices to be fixed, we
observe that only Fα and Qα are functions of Y , where as Hα is constant. By congrurence trans-
formation with Y � 1 � X we get a dual formulation (denoted with

�

) with

F
�

α � nc
� B̃u

H
�

α � nc
� C̃yX

Q
�

α � nc
� ÃX 
 XÃT 
 2αX
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Similarly we can rewrite the BMI (3.6) as,�� ÃT X 
 XÃ XB̃d C̃T
e

B̃T
d X � γI D̃T

ed
Ce D̃ed � γI

��
� ��� �

QH∞ 	 nc



�� XB̃u

0nd � nu

D̃eu

��
� ��� �

FH∞ 	 nc

G
�

C̃y D̃yd 0ny � ne �� ��� �
HH∞ 	 nc



�� �� XB̃u

0nd � nu

D̃eu

�� G
�

C̃y D̃yd 0ny � ne ���� T

� 0 (3.10)

and we get

FH∞ � nc
GHH∞ � nc


 � FH∞ � nc
GHH∞ � nc

� T 
 QH∞ � nc
� 0 �

where

FH∞ � nc
�

�� XB̃u

0nd � nu

D̃eu

��
HH∞ � nc

�

�
C̃y D̃yd 0ny � ne �

QH∞ � nc
�

�� ÃT X 
 XÃ XB̃d C̃T
e

B̃T
d X � γI D̃T

ed
Ce D̃ed � γI

��
�

(3.11)

In general F � H, and Q are functions of the Lyapunov matrix, so there is a bilinear connection
between the Lyapunov matrix and the controller parameter G. The first step towards removing
the bilinear connection is to eliminate the controller parameter G from the BMI constraint. To
this end we use the following lemma.

Lemma 3.2 (Elimination lemma) Let matrices B � � n � m, C � � k � n and Q � QT � � n � n be
given. Consider a set of matrices

G 	 B � C � Q 
 ∆
��� G � � m � k : BGC 
 	 BGC 
 T 
 Q � 0 � (3.12)

The following statements are equivalent

(i) G 	 B � C � Q 
 �� /0.

(ii) The following statements hold

B � QB � T � 0 or BBT � 0

CT � QCT � T � 0 or CT C � 0 �

Proof:

A rigorous proof of the above lemma can be found in [Iwa93]. Here we will justify the lemma
by some simple observations. To do this we exploit, that if Q � 0 and T has full row rank, then
T QT T � 0. Multiplying BGC 
 	 BGC 
 T 
 Q � 0 from the left with the left annihilator of B,
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denoted B � , (B � has full column rank and B � B � 0), and from the right with its transpose, we
get

0 � B � BGCB � T 
 B � CT GT BT B � T 
 B � QB � T � B � QB � T
�

In a similar way we can get the condition CT � QCT � T � 0, by multiplying from the left with CT �
and from the right with its transpose. Noting that the left annihilator of B only exists if B does
not have full column rank, we get the constraint BBT � 0. �

We now use the elimination lemma to eliminate the controller parameter G from the BMI.
The BMI (3.9) has a solution if and only if

� Y B̃u
� � � ÃTY 
 Y Ã 
 2αY � � YB̃u

� � T � 0 or � Y B̃u
� � Y B̃u

� T � 0 (3.13)

and

C̃T �y � ÃTY 
 Y Ã 
 2αY � C̃T � T
y � 0 or C̃T

y C̃y
� 0 � (3.14)

Since Y � 0 the condition Y B̃uB̃T
u Y � 0 is equivalent to

B̃uB̃T
u

�

�
0

�
u

I 0 � �
0

�
u

I 0 � T � 0

which again is equivalent to
�

u having full row rank. That is the rank of
�

u is equal to the
number of states, considering the relation ẋ �

�
x 
 �

uu, we see that we have full control over
the derivative of the states, if we know the states x. Similarly the condition C̃T

y C̃y
� 0 implies

that
�

y has full column rank, and we can solve the equation
�

x � y for x. Having explained this
implication of Y B̃uB̃T

u Y � 0 and C̃T
y C̃y

� 0, we restrict our attention to

� Y B̃u
� � � ÃT Y 
 Y Ã 
 2αY � � Y B̃u

� � T � 0

C̃T �y � ÃT Y 
 Y Ã 
 2αY � C̃T � T
y � 0 �

(3.15)

By noting that � YB̃u
� � can be chosen as B̃ �u Y � 1, we first get the following formulation of the left

condition in (3.13):

B̃ �u � Y � 1ÃT 
 ÃY � 1 
 2αY � 1 � B̃ � T
u � 0 (3.16)

We introduce the following sets:

Xα � nc

∆
� � X : X � S n � nc � B̃ �u � XÃT 
 ÃX 
 2αX � B̃ � T

u � 0 � �
Yα � nc

∆
��� Y : Y � S n � nc � C̃T �y � ÃTY 
 Y Ã 
 2αY � C̃T � T

y � 0 � �

With this notation we have that there exist a controller of order nc, that solves the α stabilizing
control problem if and only if there exists Y such that

Y � 0 � Y � 1 � Xα � nc and Y � Yα � nc (3.17)

This is a non convex formulation and we would like to find a convex one. We now need to
introduce the following partition of Y and its inverse:

Y �

� �
Y12

Y T
12 Y22 � and Y � 1 �

��� �
� � � (3.18)
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with
� � � � � n � n. This is done to exploit the structure of the augmented matrices, equation (2.16).

The structure of the augmented matrices B̃u and C̃y impose a nice structure on these left annihila-
tors:

B̃ �u �

� � �u 0 � and C̃T �y
�

� � T �y 0 �
A closer look at the left condition in (3.14) yields the following:

0 � C̃T �y � ÃTY 
 Y Ã 
 2αY � C̃T � T
y

�

� � T �y 0 � � � � T 0
0 0 � � �

Y12

Y T
12 Y22 � 
 � �

Y12

Y T
12 Y22 � � �

0
0 0 � 


2α
� �

Y12

Y T
12 Y22 � � � � T � T

y

0 �
�

� T �y � � T � 
 � � 
 2α
� � � T � T

y �

(3.19)

Similarly we can simplify (3.16), by inserting the choice of B̃ �u �

� � �u 0 � given above:

� �u 	 � � 
 � � 
 2α
� 
 � � T

u � 0 � (3.20)

The condition (3.17) can now be written as

� �u 	 � � 
 � � 
 2α
� 
 � � T

u � 0
� T �y � � T � 
 � � 
 2α

� � � T � T
y � 0

Y � 0

Y �

� �
Y12

Y T
12 Y22 �

Y � 1 �

� � �
� � �

(3.21)

The first two conditions above are independent of the control order, where as the size of Y and
therefore the last three conditions are dependent. By relaxing the control order the last three
conditions in (3.21) can be convexified. We summarize this in the following theorem

Theorem 3.1 (Coupling condition) Given
� � � satisfying� �

I
I

� � 	 0 � (3.22)

there exists Y � S n � nc where nc
� RankX � Y � 1 such that

Y �

� �
Y12

Y T
12 Y22 � � 0 (3.23)

Y � 1 �

� � �
� � � (3.24)

On the contrary, let Y fulfill (3.23) and (3.24), then
� � � fulfill (3.22).
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Proof:

The proof for the above was originally given in [PZPB91], see also [Iwa93]. Since the theorem
plays an important rule in the LMI formulation, we give a complete proof here.

First assume that (3.23) and (3.24) holds. We consider two cases, nc
� 0 and nc

� 0. For
nc

� 0 the positive definiteness of Y implies that Y22
� 0 and

� � 0 and
� � 0 and via the

inversion formulae for matrices, see [ZDG95, chap. 2] we have
�

� � � � Y12Y � 1
22 Y T

12
� � 1

which is
equivalent to

� � � � 1 � Y12Y � 1
22 Y T

12 � (3.25)

The right hand side in equation (3.25) is positive semidefinite, because Y22
� 0, and we get� � � � 1 	 0. Using Schur’s complement and the fact that

� � 0 implies equation (3.22).
For nc

� 0 we have 0 � Y �
�

and 0 � Y � 1 �

�
implying that

�
�

� � 1, which relaxed
becomes

� 	 � � 1. Schur’s complement with
� � 0 and Y � X � 1 	 0 implies equation (3.22).

Suppose now that (3.22) holds then we need to show that we can find Y such that (3.23) and
(3.24) hold. The coupling constraint is equivalent to

� � 0 � � 	 � � 1 or
� � 0 � � 	 � � 1. The left

hand side of (3.25) is positive semidefinite because
� 	 � � 1, and we will define the rank of it as

nc
∆

� Rank 	 � � � � 1 
 . The upper left part of Y � 1 is equal to � � � Y12Y � 1
22 Y T

12
� � 1

which we require
to be equal to

�
, that is

� � � Y12Y � 1
22 Y T

12
� � 1

�

� �
which is equivalent to

Y12Y � 1
22 Y T

12
�

� � � � 1
� (3.26)

Choose Y22
� Inc

� 0 then since the right hand side of (3.26) is positive semidefinite we can find
Y12 as the matrix square root of

� � � � 1 � Y12Y T
12. From this it follows that

� � Y12Y T
12

�

� � 1 � 0

and together with
� � 0 that Y � S n � nc and

Y �

�
Y Y12

Y T
12 Inc � � 0 �

By construction Y � 1 has
�

in the upper left corner. �
The condition (3.22) is refered to as the coupling condition. As it can be seen from theo-

rem 3.1 the control order can be found as

nc
� Rank � � � � � 1 �

� (3.27)

Theorem 3.1 states that if
�

and
�

fulfills the coupling constraint then we can always construct a
Lyapunov matrix of appropriate size satisfying (3.21).

We now have the following result for the existence of a α stabilizing controller: Find
�

and
�

such that
� �u 	 � � 
 � � 
 2α

� 
 � � T
u � 0 (3.28)

� T �y � � T � 
 � � 
 2α
� � � T � T

y � 0 (3.29)� �
I

I
� � 	 0 � (3.30)
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The above three LMI constraints each define a convex set. We will define the feasibility set of the
first two LMIs (3.28) and (3.29) as:

Γα
∆

�

� 	 � � � 
 :
� � � � S n � � �u 	 � � 
 � � 
 2α

� 
 � � T
u � 0 �� T �y � � T � 
 � � 
 2α

� � � T � T
y � 0 � (3.31)

Note that Γα
� Xα � 0 � Yα � 0.

We will also define the set of matrices that fulfills the coupling constraint:

Z ∆
�

� 	 � � � 
 :
� � � � S n � � �

I
I

� � 	 0 � �

The derivation given above completely eliminates the controller parameter from the condi-
tions of existence. However, more recent research shows that it possible to skip the elimination,
and in stead use a change of variables. We refer to [MOS95, Sch95, SGC97] for further details.
This formulation is of great interest in multi objective design, but the formulation does not allow
for a control order constraints.

Following the same lines for the H∞ case we can obtain the following conditions for the
existence of a suboptimal H∞ controller: Find

�
and

�
such that

�� � �
u

� eu � � 0

0 I

�� �� � � 
 � � T
� � T

e
�

d�
e
� � γI � ed� T
e � T

ed � γI

�� �� � �
u

� eu � � 0

0 I

�� T

� 0 (3.32)

��
�

� � T
y

� T
yw � � 0

0 I

���
�

�� � T � 
 � � � �
w

� T
z� T

w
� � γI � T

zw�
z � zw � γI

��
��
�

� � T
y

� T
yw � � 0

0 I

���
�

T

� 0 (3.33)

� �
I

I
� � 	 0 � (3.34)

Note the above formulation is convex in both γ � � � and
�

implying that we can find the opti-
mal γ by solving the semidefinite programming problem: Minimize γ subject to equation (3.32),
equation (3.33) and equation (3.34). As with the α stabilizing control problem we will define

ΓH∞

∆
� � 	 � � � 
 :

� � � � S n and fulfills (3.32) and (3.33) �
The derivation done above for the α stabilizing and H∞ control problems, can be extended

to several other control problems. For instance the induced norm performance control problems
for Energy to Peak, Energy to Euclidean Peak, Resource to Energy, and Euclidean Resource
to Energy, see [Iwa93, SIG97], where as Euclidean Peak to Euclidean Peak can be found in
[ANP96]. For an overview of control problems that can be treated in a seminar fashion, see
[Iwa97a]. The work by Shafai, Uddin, Niemann and Stoustrup [SUNS96] gives an LMI approach
to fixed order LTR controller. Instances of the H∞ control problem and the E2EP and ER2ET
control problem have more simple LMI formulations. These includes the model reduction and
filtering problem, see [Gri95, GW96, GLS96]. We will take a look at the H∞ model reduction
problem:
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Example 3.1 (Model reduction [Gri95]) The model reduction problem is to reduce the order of
the model, but such that the error between the reduced and the original model is minimized in
some norm. Given a system Σ with input d and output e:�

ẋ
e � �

�
A B
C D � �

x
d �

we want to find another system Σm with input d and output ê, such that the induced norm from
d to e � ê is minimize for a given order nm of Σm. If we for a minute disregard the model order
we can formulate the model reduction problem as a standard H∞ -control problem: Let Σ have
output y � d and input u � � Iê, that is we get a control setup on the form�� ẋ

e
y

�� �

�� A B 0
C D � I
0 I 0

�� �� x
d
ê

�� (3.35)

The zeros and identities in (3.35) makes the left annihilators in (3.32) and (3.33) fairly simple.
Consider first the left annihilator in (3.32) then�� � �

u

� eu � � 0

0 I

�� �

�� �
0
I � � 0

0 I

��
�

� �
I 0 � 0

0 I �
�

�
I 0 0
0 0 I �

which simplifies (3.32) to �
AX 
 XAT B

BT � γI � � 0 �

Similarly we can simplify (3.33) to �
AT Y 
 YA CT

C � γI � � 0 � (3.36)

If we require the model order to be static nm
� 0 we want Y � X � 1. Imposing this on (3.36) we

can apply a congruence transformation

M �

�
X 0
0 I � � 0

and we get

M

�
AT X � 1 
 X � 1A CT

C � γI � MT �

�
XAT 
 AX XCT

CX � γI � � 0 � (3.37)
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We can now write conditions for the existence of a static model with error less than γ as

X � 0 (3.38)�
XAT 
 AX XCT

CX � γI � � 0 (3.39)�
AX 
 XAT B

BT � γI � � 0 � (3.40)

The optimal static model can be found by solving the following SDP

minimize
γ � X γ

subject to X � 0�
XAT 
 AX XCT

CX � γI � � 0�
AX 
 XAT B

BT � γI � � 0 �

(3.41)

Conditions for the existence of a model of nm’th order can be derived using the results obtained
in next section.

The above formulations for the existence of a controller solving a given control problem
rendered convex on the relaxation of the control order. In the next section we will return to
formulations for fixed order control design.

3.3 Formulations for fixed order control design

In the last section we saw how we can reformulate the free order control problem as a convex
optimization problem. The existence of a controller could be verified by finding a solution

� � �
to an LMI in

�
and an LMI in

�
, plus a coupling constraint.

In this section we will summarize a number of formulations of the fixed-order control prob-
lems, that lead to heuristic algorithms for the design. Some have the origin in the above deriva-
tions, but we will also present one extra approach, that recently has proven successful.

We will assume for simplification that B̃uB̃T
u �� 0 and C̃T

y C̃y �� 0. We will look at the α stabi-
lizing control problem only.

The first formulation we present is derived directly from the elimination lemma. The second
exploits that the control order is related to the rank of the coupling constraint. The third uses
mutual existence of a state feedback gain, and a output injection gain.

Y , inverse Y problem

The formulation of the fixed order α stabilizing control problem given in (3.17) states that we
need to find a matrix Y , such that it is positive definite, and belongs to a convex set, and its
inverse belongs to a convex set. We state this in the following:

Lemma 3.3 (Y , inverse Y problem) Let a scalar α, a desired control order nc and matrices
�

,�
u and

�
y. The matrices Ã, B̃u and C̃y are augmented with the control order as in (2.16). The

following statements are equivalent
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(i) There exists a matrix G � � ny
� nc � ny

� nc such that the closed loop A � Ã 
 B̃uGC̃y is α stable.

(ii) There exist Y � S n � nc such that

Y � 0 � Y � 1 � Xα � nc and Y � Yα � nc (3.42)

(iii) There exist X � Y � S n � nc such that

X � 0 � X � Xα � nc � Y � 0 � Y � Yα � nc and XY � I (3.43)

Rank constraint

We will now formulate the fixed order control problem as an LMI problem plus an additional
rank constraint.

Consider the rank of the coupling constraint

Rank

� �
I

I
� � � Rank

�
I 0

� � � 1 I � � �
I

I
� � �

I
� � 1

0 I �
� Rank

� �
0

0
� � � � 1 �

�
Rank 	 � � � � 1 
 
 Rank 	 � 


Suppose we are looking for a controller of order less than or equal to nc, then we want to
restrict the possible

�
and

�
with

Rank � � � � � 1 � �
nc (3.44)

which is equivalent to

Rank

� �
I

I
� � �

n 
 nc

Combining this with the convex results from last section we get the following lemma:

Lemma 3.4 (Rank constraint) Let a scalar α, a desired control order nc and matrices
�

,
�

u and�
y. The matrices Ã, B̃u and C̃y are augmented with the control order as in (2.16). The following

statements are equivalent

(i) There exists a matrix G � � ny
� nc � ny

� nc such that the closed loop A � Ã 
 B̃uGC̃y is α stable.

(ii) There exists
� � � � S n such that

� �u 	 � � 
 � � 
 2α
� 
 � � T

u � 0
� T �y � � T � 
 � � 
 2α

� � � T � T
y � 0� �

I
I

� � 	 0

Rank

� �
I

I
� � �

n 
 nc �

(3.45)

The rank constraint in lemma 3.4 is however non-convex, which the following example shows:
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Example 3.2 Consider
�

1
�

�
2 1
1 1 � � � 1

�

�
1 1
1 1 �

then the corresponding control order via equation (3.27) is 1, the same with

�
2

�

�
1 1
1 1 � � � 2

�

�
2 1
1 1 � �

If the set was convex the midpoint between
�

1 � � 1 and
�

2 � � 2 should also correspond to a con-
troller of order 1, but instead it yields a controller of order 2.

Define the in general non convex set

Znc

∆
�

� 	 � � � 
 :
� � � � S n � � �

I
I

� � 	 0 � Rank

� �
I

I
� � �

n 
 nc � �

Since Znc is more restrictive than Z then Znc

� Z. The set Znc is convex if and only if nc
� n,

and in this case Zn
� Z. If nc � n then Znc lies in the boundary of Z, and in fact Zn � 1

� ∂Zn. If
we can find

� � � on the boundary of Zn, we are guaranteed to have a controller of order one less
than the plant. This can in many cases be done by minimizing Tr 	 � 
 � 
 subject to the normal
constraints, since the coupling constraint is usually the strongest. That is solving the problem:

Minimize� � �
Tr 	 � 
 � 


subject to
� �u 	 � � 
 � � 
 2α

� 
 � � T
u � 0� T �y � � T � 
 � � 
 2α

� � � T � T
y � 0� �

I
I

� � 	 0 �

(3.46)

We will return to a deeper study of this formulation in chapter 4.

Dual formulation

The formulations presented above relates the existence of a controller obtaining the α stability
with the existence of a Lyapunov matrix. However a preliminary step could be to relate the
existence of a output feedback controller with the existence of a state feedback gain and output
injection gain achieving the desired goal. First we will see that X � Xα � nc � X � 0 is equivalent of
the existence of a state feedback gain that achieves α stability for the closed loop. The constraint
that X � Xα � nc is by definition that X fulfills

B̃ �u � XÃT 
 ÃX 
 2αX � B̃ � T
u � 0 � X � 0

which via the elimination lemma with F � B̃u and H � X is equivalent to the existence of a K
such that

	 Ã 
 B̃uK 
 X 
 X 	 Ã 
 B̃uK 
 T � � 2αX � X � 0

Similarly we can get an equivalence between Y � Yα � nc � Y � 0 and the existence of an output
injection gain F such that

Y 	 Ã 
 FC̃y 
 
 	 Ã 
 FC̃y 
 TY � � 2αY � Y � 0

We now have the following (see [Iwa93]):
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Lemma 3.5 (Dual formulation) Let a scalar α, a desired control order nc and matrices
�

,
�

u

and
�

y be given. The matrices Ã, B̃u and C̃y are augmented with the control order as in (2.16).
The following statements are equivalent

(i) There exists a matrix G such that the closed loop A � Ã 
 B̃uGC̃y is α stable.

(ii) There exist K � � nu � � n � nc � � F � � � n � nc � � ny and 0 � X � S n � nc

	 Ã 
 B̃uK 
 X 
 X 	 Ã 
 B̃uK 
 T � � 2αX	 Ã 
 FC̃y 
 X 
 X 	 Ã 
 FC̃y 
 T � � 2αX

(iii) There exist K � � nu � � n � nc � and 0 � X � S n � nc

B̃ �u 	 ÃX 
 XÃ 
 2αX 
 B̃ � T
u � 0	 Ã 
 FC̃y 
 X 
 X 	 Ã 
 FC̃y 
 T � � 2αX

(iv) There exist K � � nu � � n � nc � , F � � � n � nc � � ny and 0 � Y � S n � nc

Y 	 Ã 
 B̃uK 
 
 	 Ã 
 B̃uK 
 TY � � 2αY

Y 	 Ã 
 FC̃y 
 
 	 Ã 
 FC̃y 
 TY � � 2αY

(v) There exist K � � nu � � n � nc � and 0 � Y � S n � nc

Y 	 Ã 
 B̃uK 
 
 	 Ã 
 B̃uK 
 TY � � 2αY

C̃T �y � ÃTY 
 Y Ã 
 2αY � C̃T � T
y � 0

Matrix X fulfilling (ii) or (iii) in the above lemma is the Lyapunov matrix for the closed loop,
and by using the dual formulation of (3.4) we can find the controller parameter G. Similarly we
can use Y fulfilling (iv) or (v) inserted in (3.4) to find the controller parameter.

3.4 Implementation issues

In this section we will discuss some issues related to implementation of the above LMI formula-
tions of the above control problem. Several steps in the process of computing a controller from
the state space matrices and design specifications to final controller requires careful numerical
considerations. For control problems in general a collection of articles on numerical linear alge-
bra for systems and control is given in [PLD94]. We will especially consider numerical issues
related to the determination of the right control order and computation of a “good” Lyapunov
function.

Computing the Lyapunov matrix

Finding
�

and
�

in the intersection of Γα and Z is equivalent to the existence of a controller
solving the α stabilizing control problem. The control order was according to theorem 3.1 equal
to the rank of

� � � � 1. However, the construction of Y � S n � nc as it was used in the proof, is not
very adequate for numerical implementation. The Lyapunov function is related to the state space
realization of the system and the controller. Choosing Y22

� Inc as suggested in the proof fixes the
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state space representation in the controller, with out relations to the representation in the system.
If for instance the norm of

�
is big, then the condition number Y will be worse than � � � , and

thus making the computation of the controller parameter difficult.
Instead the following procedure should be used.
Compute the singular value decomposition of I � XY as

I � � �
� UΣV T

�

Since I � � �
by definition has rank nc, and since Rank 	 � � � � 1 
 � Rank 	 � � � I 
 choosing the

first nc columns of U and V , and the first nc rows and columns of Σ, denoted Unc � Vnc � Σnc , is
sufficient for

I � � �
� UncΣncV

T
nc

The following choice of N � M � � n � nc, as

M � UncΣ
1 � 2
nc

N � VncΣ
1 � 2
nc

fulfills MNT � I � XY . One candidate for the Lyapunov matrix Y can now be computed from the
relation � �

I
NT 0 � � Y

�
I

�

0 MT � � (3.47)

which provides

Y �

� �
N

NT Y22 � and Y � 1 �

� �
M

MT
� � � (3.48)

To see this do the following partition of Y as

Y �

�
Y11 Y12

Y T
12 Y22 �

then the right hand side of (3.47) becomes�
Y11 Y12

Y T
12 Y22 � �

I
�

0 MT � �

�
Y11 Y11

� 
 Y12MT

Y T
12 Y T

12

� 
 Y22MT �
which gives the following four equations

Y11
�

�

Y T
12

� NT

I � Y11
� 
 Y12MT

0 � Y T
12

� 
 Y22MT
�

Inserting the result of the first two equations in the third we get I �
� � 
 NMT , which holds by	 I � XY 
 T � NMT . We can now find Y22 by solving the fourth equation:

0 � NT
� 
 Y22MT

� NT � 
 Y22Σ1 � 2
nc Unc
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which gives

Y22
� Σ1 � 2V T

nc

�
UT

nc
Σ � 1 � 2

It can be shown that Y22 is positive definite, implying that Y � 0. Similarly it can be shown that
Y � 1 by (3.47) has

�
in the upper left corner.

Removing small parts of
�

The upper procedure gave directions for a sound computation of Y . However, there is still one
hatch, numerically the rank of a matrix is computed as the number of singular values above a
certain threshold. Due to this it is difficult to determine the rank. For our purposes the rank of
the coupling constraint is not so important, what is more important is if the Lyapunov matrix
we construct do in fact make the associated BMI feasible, that is lemma 3.3 holds. In fact it is
possible that we can remove some parts of

�
and still make the new ˆ

�
be in Xα � 0, and such that	 ˆ

� � Ŷ 
 � Znc.
We formalize this in the following theorem

Theorem 3.2 Let
� � � fulfill � �

I
I

� � 	 0

then for any nc, 0
�

nc
�

Rank � X � Y � 1 � there exists L � S n, Y � S n � nc such that

L 	 0� � � L I
I

� � 	 0 �
nc

� Rank � � � L � � � 1 � �
Y �

� � �
� � � � 0 �

Y � 1 �

� � � L
�

� � �
Proof:

Suppose the coupling constraint holds, then X � Y � 1 is symmetric and positive semidefinite.
Since X � Y � 1 is symmetric, we can consider its eigenvalue decomposition:

X � Y � 1 � VΛV T

where Λ � Diagλ1 � λ2 ������� � λn with λ1 	 λ2 	 ��� ��� � λn. Note that Λ 	 0. Partition Λ in the nc

biggest eigenvalues and the rest:

� � � � 1 � VΛV T �

�
VncV nc �

�
Λnc 0
0 Λnc � �

VncV nc � T

� VncΛncV
T
nc

 V ncΛncV

T
nc� ��� �

L
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where Vnc are the first nc columns of V . The diagonal matrix Σnc contains the nc largest eigenval-
ues. We have defined

L
∆

� V ncΛncV
T
nc

�

It follows that L is positive definite and that

	 � � L 
 � � � 1 � VncΛncV
T
nc 	 0 �

with

Rank � � � L � � � 1 � � RankΣnc
� nc �

Since
� � 0 we have � � � L I

I
� � 	 0 � (3.49)

Using theorem 3.1 we know that

Y �

� � �
� � � � 0 �

Y � 1 �

� � � L
�

� � �
holds. This proves the theorem. �

The above theorem states that we can remove parts L from
�

with ˆ
�

�

� � L, and still we
can construct a positive definite Lyapunov matrix Y , that has

�
in the upper left part, and ˆ

�
in the

upper left part of its inverse.

Computation of a controller

Suppose we think a controller of order nc is sufficient and 	 � � � 
 � Γα
� Z, then we use the-

orem 3.2 to remove an appropriate part of
�

, and the relation 3.47 provides an equation for
computing the Lyapunov matrix Y . We have now solved the nc fixed order α stabilizing control
problem if 	 ˆ

� � � 
 � Γα
� Znc. The construction of ˆ

�
guarantees that 	 ˆ

� � � 
 Znc, and 	 � � � 
 � Γα
reduces to examine if

ˆ
� � Xα � 0 � (3.50)

If (3.50) holds then a controller can now be computed by inserting the Lyapunov matrix Y in
the BMI equation (3.9), and solving for G. This is a LMI feasibility problem, and can be solved
as such. However algebraic solutions can be derived [GA94, Iwa93], but are in numerical imple-
mentation usually ill conditioned, as pointed out in [GA94]. Also due to numerical problems the
LMI in G, equation (3.9), might even be infeasible. However, this problem can be circumvented
by solving the following SDP problem:

minimize
G � l l

subject to Fα � ncGFα � nc 
 	 Fα � ncGFα � nc 
 T 
 Qα � nc � lI � 0 �
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If l
�

0 then G solves the problem, but even though l � 0 then the problem might be solved
anyway. The G might be a solution to the problem, but with a different Lyapunov matrix. We
will not go into deeper numerical technicalities.

The above described procedure for designing controllers have been implemented in [BG97]
as a top on the software by Boyd and Vandenberghe [BV94]. The MATLAB LMI control toolbox
[GNLC95] offers similarly design procedure. New LMI formulations can be tested in [GDN95,
GNLC95, WB96].
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Chapter 4

Control order reduction

In this chapter we will consider a heuristic algorithm for design of controllers of low order. The
algorithm uses what is called alternating projections, and we will explain this in great detail. This
is not the only way of solving the low-order control problem. Several researchers have consider
the same problem over the last three decades. We stress that it is still an open problem of finding
necessary and sufficient conditions for the existence of a static output feedback stabilizer with out
using heavy mathematics like algebraic. In fact this problem was mentioned as one of the major
open problems in the survey [BGL95].

In chapter 3 we presented a series of matrix inequality formulations for the existence of a
fixed order α stabilizing controller. In lemma 3.1 we presented an approach based on a BMI in
the controller parameter and the Lyapunov matrix. Applying the elimination lemma to the BMI
result we obtained the result presented in lemma 3.3. Exploiting that the control order is the
rank of the coupling constraint we get lemma 3.4. It was possible to reformulate the constraints
from the existence of a free order controller to be constraints on the existence of a state feedback
gain/output injection gain, and we got lemma 3.5.

It has been shown by Blondel and Tsitsiklis, that the problem of finding a controller of low-
order is NP hard, if one constrains the controller in a prescribed area, see [BT95].

Our main goal in this chapter is to develop heuristic algorithms, that will compress the con-
trol order and obtain optimal α stability. Several methods have achieved attention over the last
years. The formulation lemma 3.3 has been used by Iwasaki and Skelton, see [IS95], to derive an
algorithm that could search for controllers of fixed order. The approach used the analytical center
approach to make X � Y � 1. Note, that recently Fu and Luo have showed that the formulation
lemma 3.3(iii) leads to an NP hard problem, see [FL97].

Another method based on lemma 3.5 was also presented by Iwasaki, see [Iwa97b]. This
method was based on solving generalized eigenvalue problems.

The rank formulation lemma 3.4 has been studied by a series of authors. First approach was
made by Grigoriadis in his ph.d. thesis, and presented in [GS94, GS96]. His approach was based
on alternating projections, and we will study this approach in greater details in this chapter. El
Ghaoui, Outstry and Aitrami developed a linearization algorithm [GOA95], where the rank of
the coupling was reduced using an attracting function. The approach seem to work very well in
practice, see [Kri97]. The rank problem can in some cases be reduced exactly, as it was shown
by Mesbahi and Papavassilopoulos in [MP97a, MP97b].
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4.1 Problem statement

In this chapter we will consider an algorithm that tries to solve the following problem

Minimize
X �Y rank

�
X I
I Y �

subject to X � Y � Γconvex
� Z

(4.1)

where Γconvex is dependent on the control problem considered. See the definitions in last chapter.

As described in last chapter the rank of a matrix is not a convex constraint, and the problem
(4.1) is supposely difficult to solve. We will however try to solve the problem by using a tech-
nique called alternating projection, presented in the next section. The alternating projection can
be implemented effectively using semidefinite programming as we shall see in the subsequent
section. We then proceed with a description of adequate divergence and convergence criteria. In
the end we give a few essential examples.

4.2 Alternating Projecting Schemes

Based on the formulation provided in Section 2, the fixed-order control design problem reduces
to a feasibility problem of obtaining a matrix pair that satisfies a family of LMIs and a coupling
matrix rank constraint. In this section, alternating projection methods are presented for the solu-
tion of this type of feasibility problems. These method exploit the geometry of the design space
to find feasible solutions and they have been used successfully to address image restoration and
statistical estimation problems in signal processing [CT90, YW82, WA86]. Both the standard
alternating projection method and the directional alternating projection method are presented
[BD86, Han88, GPR67].

4.2.1 The Standard Alternating Projection Method

Consider a family C1 � C2 � � � � � Cm of closed, convex sets in the space of symmetric matrices. We
suppose that the sets have a nonempty intersection and we seek to solve the feasibility problem
of finding a matrix in the intersection C1

�
C2

�
� � �

�
Cm. Let PCi denote the orthogonal projection

operator onto the set Ci, where i � 1 � � � � � m. Hence, for any n � n symmetric matrix X , the
matrix PCi 	 X 
 denotes the orthogonal projection of X onto Ci, that is the matrix in Ci which has
minimum distance from the matrix X . The orthogonal projection theorem [Lue68] guarantees that
this projection is unique. The question we would like to answer is the following: Is it possible
to provide a solution to the feasibility problem by making use of the orthogonal projections onto
each constraint set? The answer is yes, and is provided by the following result which we call the
Standard Alternating Projection Theorem [CG59, GPR67].

Theorem 4.1 Let X0 be any n � n symmetric matrix and C1 � C2 � � � � � Cm be a family of closed,
convex sets in the space of symmetric matrices. Then, if there exists an intersection, the sequence
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of alternating projections

X1
� PC1 X0

X2
� PC2 X1

...

Xm
� PCm Xm � 1

...

X2m
� PC1 X2m � 1 (4.2)

X2m � 1
� PC2 X2m

...

X3m
� PCm X3m � 1

...

converges to a point in the intersection of the sets, i.e. Xi
� X where X � C1

�
C2

�
� � �

�
Cm. If

no intersection exists, the sequence does not converge.

Hence, starting from any symmetric matrix, the sequence of alternating projections onto the
constraint sets converges to a solution of the feasibility problem, if one exists. The case of no
intersection can be detected by examining the convergence of the even and odd subsequences
of the above sequence of alternating projections. A schematic representation of the Standard
Alternating Projection Method is shown in Fig. 4.1. It can be easily verified that the limit X of
the alternating projection sequence depends on the starting point X0, as well as the order of the
projections. Hence, by rearranging the sequence of projections we can obtain a different feasible
point.

C1

C 2

XX

X

X

X

X0 1

2

3

4

Figure 4.1: Standard Alternating Convex Projection Algorithm

An important feature of the standard alternating projection algorithms (4.2) is that the algo-
rithms can be implemented very easily and usually the amount of calculations in one iteration
is very small. However, in some cases the algorithms may suffer from slow convergence. For
example, consider the case of two planes intersecting with a small angle. In this case the stan-
dard alternating projection algorithm (4.2) might oscillate for many iterations between the two
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sets before it converges to a point in the intersection. An effective remedy is often obtained by
Directional Alternating Convex Projection Algorithm, described below [GPR67].

4.2.2 The Directional Alternating Projection Method

The directional alternating projection method uses information about the geometry of the con-
straint sets to provide an algorithm with accelerated convergence to solve the matrix feasibility
problem. The basic idea behind this approach is to utilize in each iteration the tangent plane of
one of the constraint sets, so that the sequence of points we obtain approaches the intersection
of the sets more rapidly (see Fig. 4.2). For simplicity, we will consider the case of two closed
and convex constraint sets C1 and C2. The Directional Alternating Convex Projection algorithm
is described next, where


X � Y � denotes the inner product of two matrices X and Y .

C1

C 2

XX
0 X

1

X2

X3
X
4

Figure 4.2: Directional Alternating Projection Algorithm

Theorem 4.2 Let X0 be any n � n symmetric matrix. Then the sequence of matrices � Xi � , i �

1 � 2 � � � � � ∞ given by

X1
� PC1 X0 � X2

� PC2 X1 � X3
� PC1 X2

X4
� X1 
 λ1 	 X3 � X1 
�� λ1

�
� X1 � X2 � F

2
X1 � X3 � X1 � X2 �

(4.3)

X5
� PC1 X4 � X6

� PC2 X5 � X7
� PC1 X6

X8
� X5 
 λ2 	 X7 � X5 
�� λ2

�
� X5 � X6 � F

2
X5 � X7 � X5 � X6 �

...

converges to a point in the intersection of the sets C1 and C2.

Hence, starting from any symmetric matrix, the sequence of directional alternating projec-
tions (4.3) provides an accelerated numerical algorithm to obtain a feasible matrix in the intersec-
tion of the constraint sets C1

�
C2. In fact, it can be easily verified that when the two sets C1 and

C2 are hyper planes in the space of symmetric matrices then the alternating projection algorithm
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converges to a feasible point in one cycle, independently of the angle between the two hyper
planes.

4.3 Mixed AP/SDP Design for Low-order Control.

In this section we describe how to solve low-order control problems by exploiting the alternating
projection technique described in the previous section and efficient semidefinite programming
(SDP) algorithms.

Recall that the fixed-order control design problem has a solution if and only if there exist a
matrix pair 	 X � Y 
 in the intersection of a family of LMI constraint sets and a rank constraint set.

Lets denote by Γconvex the LMI constraint that the matrices X and Y need to satisfy and
define the following constraint set Znc presented in last chapter. Hence, a necessary and sufficient
condition for the existence of a controller for fixed order nc is that there exists 	 X � Y 
 � Γconvex

�

Znc. The set Znc that restricts the controller order is a non-convex constraint set. Also, notice that,
depending on the specific control design problem, the set Γconvex corresponds to the set Γα or
the set ΓH∞ defined in chapter 3.

The alternating projection scheme presented in the last section can now be used to find a
matrix pair 	 X � Y 
 in the intersection of the convex constraint set Γconvex and the non-convex
rank constraint set Znc. Our first task is to compute the projections onto the convex constraint set
Γα or ΓH∞ . One approach is to decompose the LMI constraints as intersections of sets of simpler
geometry and to find analytical expressions for the projection operators onto these simpler sets.
This approach was followed in [GS96]. However, the iterative projections onto these multiple
sets require a large number of iterations for convergence resulting in computationally expensive
algorithms. Alternatively, the projection onto the set Γα or ΓH∞ can be computed using SDP for
convex optimization. Hence, the multiple projections required in [GS96] onto the set Γconvex
are eliminated and faster convergence can be achieved.

The following result, see [BGFB94], provides the projection onto a general LMI constraint
set Γ as the solution to an SDP problem

Proposition 4.1 Let Γ be a convex set described by an LMI. Then the projection X
�

� PΓX can
be computed as the unique solution Y to the following SDP problem

minimize
S � X � Y trace S

subject to

�
S Y � X

Y � X I � 	 0 �
Y � Γ and
S � S n

In our problem our objective is to compute the projection onto the joint set Γconvex
� S n � S n

of matrix pairs 	 X � Y 
 . This projection can be found by solving the following SDP problem, where	 X0 � Y0 
 are the given matrices that we seek the projection and X � Y � S � T � S n are the free variables

minimize
S � T � X � Y Trace 	 T 
 S 


subject to

�
T 	 X � X0 
	 X � X0 
 I � 	 0�
S 	 Y � Y0 
	 Y � Y0 
 I � 	 0	 X � Y 
 � Γconvex � T � S � S n

(4.4)
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We denote the minimizing solutions by 	 X � � Y � 
 , that is the projection onto Γconvex is written as

	 X � � Y � 
 � PΓconvex 	 X0 � Y0 
 �

In addition to the above LMI constraints sets, we seek to compute the orthogonal projection
onto the nonconvex constraint set Znc. To this end, define the following sets in the space of
symmetric matrices

D ∆
�

�
Z � S 2n : Z �

�
X 0
0 Y � � X � Y � S n � (4.5)

P ∆
� � Z � S 2n : Z 	 � J � (4.6)

Rk
∆

� � Z � S 2n : rank 	 Z 
 J 
 �
k � (4.7)

where k � n 
 nc and

J �

�
0 In

In 0 � � S 2n
� (4.8)

Then, the connection between Znc and D, P , and Rk is the following

	 X � Y 
 � Znc

�

�
X 0
0 Y � � D � P � Rn � nc

Notice that the sets D and P are closed convex sets, where as Rk is the only non-convex set.
The expressions for the orthogonal projections onto these sets are provided next.

Theorem 4.3 Let

Z �

�
Z11 Z12

ZT
12 Z22 � � S 2n

� (4.9)

The orthogonal projection, Z
�

� PD Z, of Z onto the set D is given by

Z
�

�

�
Z11 0
0 Z22 � � S 2n

� (4.10)

The orthogonal projection onto the set P is provided by the following result which follows
from [Hig88].

Theorem 4.4 Let Z � S n and let Z 
 J � LΛLT be the eigenvalue-eigenvector decomposition of
Z 
 J where Λ is the diagonal matrix of the eigenvalues and L is the orthogonal matrix of the
normalized eigenvectors. The orthogonal projection, Z

�
� PP Z, of Z onto the set P is given by

Z
�

� LΛ � LT � J (4.11)

where Λ � is the diagonal matrix obtained by replacing the negative eigenvalues in Λ by zero.



4.3. MIXED AP/SDP DESIGN FOR LOW-ORDER CONTROL. 45

Hence, this projection requires an eigenvalue-eigenvector decomposition of the 2n � 2n sym-
metric matrix Z 
 J.

We note that the rank constraint set Rk, defined by (4.7), is a closed set, but it is not convex.
Therefore, given a matrix Z in S 2n, there might be several matrices in Rk which minimize the
distance from Z. We will call any such matrix a projection of Z on Rk. The following result
provides a projection onto the set Rk [HJ91].

Theorem 4.5 Let Z � S n and let Z 
 J � UΣV T be a singular value decomposition of Z 
 J. The
orthogonal projection, Z

�
� PRk

Z, of Z onto the set Rk is given by

Z
�

� UΣkV
T � J (4.12)

where Σk is the diagonal matrix obtained by replacing the smallest 2n � k � n � nc singular values
in Z 
 J by zero.

Notice that the sequence of the projections onto the two sets P and Rk can be computed in one
step via the eigenvalue-eigenvector decomposition of Z 
 J followed by zeroing the appropriate
number of the smallest eigenvalues. If we denote this sequence of projections by PPRk

Z then
the directional alternating projection can be used to find the projection onto the set Znc via the
following sequence of iterations

Za
i

� PPRk
Zi � 1

Zb
i

� PD Za

Zc
i

� PPRk
Zb

Zi
� Za

i 
 λi 	 Zc
i � Za

i 
�� λi
�

� Za
i � Zb

i � F
2

Za
i � Zc

i � Za
i � Zb

i �
(4.13)

We will call each step of the above procedure for an inner iteration, as oppose to the outer
iterations given below. Hence, the above running a series of inner iteration provides the projection
PZnc

	 X � Y 
 of 	 X � Y 
 onto Znc.
The alternating projection algorithm for the fixed order control problem can now be pro-

grammed utilizing SDP for the projection onto Γconvex and the above inner iteration scheme
for the projection onto Znc. The proposed procedure is the following: First find a solution that
corresponds to a full-order controller. This is simply done by solving an LMI feasibility problem
for the constraint set Γconvex. Next, obtain a solution that corresponds to a controller of order at
most nc � 1. This can be done via the SDP problem

minimize
X �Y Tr 	 X 
 Y 


subject to 	 X � Y 
 � Γconvex
� Z

(4.14)

The obtained solution will be the starting point for our alternating projection algorithm. The
steps of this alternating projection algorithm are as follows. Notice that in order to have fast
convergence the directional alternating projection algorithm is used as mentioned in Section 4.2.2.

Step 1 Solve the SDP problem (4.14) that corresponds to a controller of order at most nc
� n � 1.

The solution 	 X0 � Y0 
 will be our starting point.
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Step 2 Consider the problem where the controller order is reduced by one, i.e. set nc
� nc � 1.

Compute the following iterative sequence of projections

	 Xa
i � Y a

i 
 � PZnc
	 Xi � 1 � Yi � 1 
	 Xb

i � Y b
i 
 � PΓconvex

�
Xa

i � Y b
i �

	 Xc
i � Y c

i 
 � PZnc

�
Xb

i � Y b
i �

Xi
� Xa

i 
 λX
i 	 Xc

i � Xa
i 
�� λX

i
�

� Xa
i � Xb

i � F
2

Xa
i � Xc

i � Xa
i � Xb

i �
Yi

� Y a
i 
 λY

i 	 Y c
i � Y a

i 
�� λY
i

�
� Y a

i � Y b
i � F

2
Y a

i � Y c
i � Y a

i � Y b
i �

(4.15)

Step 3 Return to step 2, until the controller order nc is the desired one, or infeasibility has been
detected.

We will call each sequence of iterations in Step 2 an outer iteration, as oppose to the inner
iterations used to project onto Znc.

The APSP algorithm is heuristic, and it is not possible to show that it always converges to the
global optimum. Since the algorithm is heuristic conditions for convergence and divergence are
a little difficult to devise. We will however give some suggestions in the following section.

4.4 Convergence and divergence

In last section we devised an algorithm that heuristically tries to compress the control order. This
was done by restricting the rank of the coupling matrix. However, we only mentioned briefly
criteria for convergence, and a criteria for divergence was not mentioned at all. In this section we
will consider this more deeply.

4.4.1 Convergence

Suppose we want to test if
� � � can be used for constructing a controller of order nc we go ahead

and use the following procedure:

(i) Use theorem 3.2 to compute ˆ
�

�

� � L with�
ˆ
�

I
I

� � 	 0

(ii) Compute the eigenvalues λi 	 MX 
 of

MX
� B̃ �u � XÃT 
 ÃX 
 2αX � B̃ � T

u

Denote the smallest eigenvalue by λ, and the largest by λ.

(iii) If the smallest of the eigenvalues λ � � ε, ε � 0 then we assume that we have proven the
existence of a controller of desired order. If λ � � ε increase nc and goto (i).
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(iv) Compute the Lyapunov matrix Y from ˆ
�

and
�

, and solve the following SDP problem

minimize
G � l l

subject to Fα � ncGFα � nc 
 	 Fα � nc GFα � nc 
 T 
 Qα � nc � lI � 0

If l � δ then the controller is probably fine, otherwise increase nc and goto (i).

The only thing that remains is to choose ε � δ. An appropriate choice for ε is to be determined
by numerical experiments. ε � 10 � 3n2 has been used in the examples. Note that typically MX is
close to zero, because all constraints in Xα � 0, Yα � 0 and Z are active. δ is also difficult to choose,
has been used in the examples below.

4.4.2 Divergence

As a criteria for divergence we will consider the length of the projection onto Γconvex, that is we
consider

φ 	 i 
 �

�
� Xb

i � Xa
i

�
� 
 �

� Y b
i � Y a

i

�
� � 0 �

It turns out that φi in average go exponentially to zero, if the algorithms converges. Therefore
consider f 	 i 
 � logφ 	 i 
 . At iteration N we find the least squares line ai 
 b fitting the last K
values of f 	 i 
 . If a � 0 then the algorithm is diverging, and if a � 0 we cannot say anything.

One might infer that a criteria like φ 	 i 
 less than a small number is adequate for determining
convergence, but this number will be dependent of the problem data.

4.5 Examples

The above mentioned algorithm, which we will call the APSP algorithm1, has been implemented
in MATLAB under the so called Induced Norm Control Toolbox. In appendix a description of the
calls for this toolbox is described, see chapter A.

We now consider a very simple example, later we shall solve this problem to global optimum
with BMI techniques.

Example 4.1 (A simple α stabilizing control problem) We consider the α stability of the fol-
lowing system �

A Bu

Cy 0 � �

�� 0 1 1
1 � 1 0
1 1 0

��
� (4.16)

with a zero’th order controller. A root locus plot of the above system is given in figure 4.3.
The optimal controller has gain � 5 and places bot the closed loop poles at � 3. A total of 21
problems have been solved using INCT for different decay rates between 1 and 3. The APSP
algorithm could find a zeroth order controller up to 2 � 95. In figure 4.4 a plot of the condition
number of the Lyapunov function and the number of necessary iterations are plotted. As it can be
seen the condition number grows with the α stability. In fact we cannot find a Lyapunov function
that proves that Acl 	 � 5 
 � A 
 Bu 	 � 5 
 Cy has an α stability of � 3, since Acl 	 � 5 
 
 3I is singular.
The number of iterations gets also higher, when α get closed to the optimal values.

1For historical reasons the algorithm is called the APSP algorithm and not APSDP
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Figure 4.3: Root locus plot of simple control problem
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Figure 4.4: Condition number of Lyapunov function and iterations as a function .α

We will consider one example that can show the divergence and convergence criteria.

Example 4.2 (Two wagon example I) Consider the following state-space representation of a
two mass-spring system �

ẋ
y � �

� � �
u�

y 0 � �
x
u �

�

�����
�

0 0 1 0 0
0 0 0 1 0
� 1 1 0 0 1
1 � 1 0 0 0
0 1 0 0 0

������
�

�
x
u � (4.17)

We seek to find the lowest order stabilizing controller with the best decay rate α. First note that
the system (4.17) is controllable and observable, which means that we can place the poles freely
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with a full order controller. For a reduced-order controller nc � n � 1 we can not expect to be
able to place the poles freely.

We have used the APSP algorithm on the above wagon example for different control orders
and decay rates. In table 4.1 the results are presented. We have given number of iterations, and
norm of the controller parameter G. First note that 0 iterations means that the we have solve the
problem (4.14). For a lot of the cases this is sufficient to obtain the required order for the specific
decay rate. For controllers of order nc

� n � 1 � 3 we can find a controller that obtain the decay
rate. Note that the norm of the controller parameter increases with the decay rate.

For controllers of order 2 the maximum achieved with APSP seems to be � 42. However
Iwasaki have in [Iwa97b] reported .72 as an achievable decay rate with a controller of order 2.
Iwasaki obtained this result by transforming the system to discrete time and then computing the
controller in that framework.

Effort α
nc req. 0.01 0.15 0.2 0.3 0.43 1.0

3 Iter. as as 0 0 0 0� G � nc
� 2 nc

� 2 4.67 13.6 34.1 490

2 Iter. 0 0 2 4 18 NC� G � 1.96 2.71 3.01 4.01 6.6

Table 4.1: Results of the combined Alternating Projection and Semidefinite Programming Algo-
rithm.

Decay rate α ��� 43

A controller of order 3 was found using (4.14). The Lyapunov matrix obtained was

Y �

���������
�

4 � 1837 � 0 � 9429 � 2 � 1687 � 3 � 9770 5 � 5845 � 2 � 0547 1 � 4909
� 0 � 9429 15 � 3083 1 � 6362 � 3 � 0636 4 � 8844 9 � 0320 � 1 � 3588
� 2 � 1687 1 � 6362 5 � 0176 2 � 7083 � 5 � 0084 6 � 0431 2 � 6004
� 3 � 9770 � 3 � 0636 2 � 7083 7 � 0885 � 8 � 4411 0 � 2814 � 1 � 3429
5 � 5845 4 � 8844 � 5 � 0084 � 8 � 4411 12 � 1681 � 1 � 9891 � 0 � 3157
� 2 � 0547 9 � 0320 6 � 0431 0 � 2814 � 1 � 9891 11 � 0280 2 � 9417
1 � 4909 � 1 � 3588 2 � 6004 � 1 � 3429 � 0 � 3157 2 � 9417 4 � 5415

����������
�

with Frobenius norm 36 � 02 and condition number 636. The obtained controller was�
ẋc

u � �

���
�
� 3 � 2543 � 2 � 4695 2 � 9917 � 8 � 0230
2 � 4697 2 � 6591 � 5 � 0253 8 � 9036
2 � 9914 5 � 0249 � 2 � 4472 9 � 5606
� 8 � 0231 � 8 � 9032 9 � 5615 � 24 � 2401

����
� �

xc

y �
with closed loop poles at

λi 	 A 
 �

���
�
� 0 � 4389

�
3 � 2659 j

� 0 � 4331
�

1 � 4204 j
� 0 � 4324

�
0 � 7440 j

� 0 � 4336

����
�
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Searching for a controller of order 2, we show the development of φ 	 i 
 and λ in figure 4.5.

0 2 4 6 8 10 12 14 16 18
−2.5

−2

−1.5

−1

−0.5

0
M

in
im

um
 e

ig
en

va
lu

es
 o

f M
x

Iterations
0 2 4 6 8 10 12 14 16 18

10
−2

10
−1

10
0

10
1

10
2

ph
i(i

)

Iterations

Figure 4.5: Convergence for wagon example.
To the left a plot of the minimum eigenvalue of Mx as a function of the iterations. To the right a
logarithmic plot of φ 	 i 
 as a function of the iterations. On top of this a linear approximation of
the log 	 phi 	 i 
�
 .

After 18 iterations a controller of order 2 was obtained, that solves the problem. The matrices� � � were

�
�

���
�

37 � 1341 22 � 9670 � 17 � 8133 � 24 � 4235
22 � 9670 32 � 8450 5 � 9549 � 14 � 4488
� 17 � 8133 5 � 9549 26 � 4639 9 � 1680
� 24 � 4235 � 14 � 4488 9 � 1680 21 � 5018

����
�

�
�

���
�

21 � 4823 8 � 9704 � 14 � 4544 � 24 � 4131
8 � 9704 26 � 5530 5 � 9548 � 17 � 8372

� 14 � 4544 5 � 9548 32 � 7799 22 � 9354
� 24 � 4131 � 17 � 8372 22 � 9354 37 � 2378

����
�

The closed loop Lyapunov matrix was

Y �

�������
�

21 � 4823 8 � 9704 � 14 � 4544 � 24 � 4131 36 � 1777 � 0 � 3680
8 � 9704 26 � 5530 5 � 9548 � 17 � 8372 25 � 5281 25 � 4431

� 14 � 4544 5 � 9548 32 � 7799 22 � 9354 � 29 � 4073 24 � 2979
� 24 � 4131 � 17 � 8372 22 � 9354 37 � 2378 � 51 � 3922 � 1 � 5242
36 � 1777 25 � 5281 � 29 � 4073 � 51 � 3922 72 � 4195 4 � 4211
� 0 � 3680 25 � 4431 24 � 2979 � 1 � 5242 4 � 4211 35 � 4631

��������
�

with Frobenius norm 164 � 7 and condition number 2 � 20 � 104. We note that the Lyapunov function
necessary to prove the existence of a controller of second order has a higher norm than the one
for a controller of third order. Seen in the light that the controller of order three was found solving
4.14 this is not so strange. However, that the condition number grows indicates that the Lyapunov
function, is getting more and more stretch out.
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The found controller was�
ẋc

u � �

�� 0 � 0498 1 � 8640 1 � 0353
� 1 � 8624 � 2 � 9322 � 3 � 1473
1 � 0354 3 � 1533 2 � 4692

�� �
xc

y �
with closed loop matrices placed at

λi 	 A 
 �

�� � 0 � 4795
�

1 � 0583 j
� 0 � 5060

�
0 � 8490 j

� 0 � 4556
�

0 � 1554 j

�� (4.18)

For α �

� 5 we get the behavior given in figure 4.6. The algorithm determines divergence after
64 iterations (it checks every 8), as it can be seen Mx reaches a level at around � 0 � 42.
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Figure 4.6: Divergence for wagon example.
To the left a plot of the minimum eigenvalue of Mx as a function of the iterations. To the right a
logarithmic plot of φ 	 i 
 as a function of the iterations. On top of this a linear approximation of
the log 	 phi 	 i 
�
 .

As a final example of the algorithm’s behavior on the present example, we show the number
of iterations and the maximum Mx as a function of α

α iter. max Mx

0 � 4 18 � 0 � 016
0 � 45 16 � 0 � 25
0 � 5 64 � 0 � 43
0 � 55 24 � 0 � 55
0 � 6 8 � 0 � 53
0 � 65 8 � 0 � 49
0 � 7 8 � 0 � 47
0 � 8 8 � 0 � 43

Table 4.2: Convergence criteria as a function of α
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The optimal decay rate was � 456. If the algorithm is run with this decay rate it does not
converge, as it can be see in table 4.2. In [Iwa97b] Iwasaki obtained a decay rate of � 4453 using
his dual iteration algorithm. Using a discrete time approach he can get a decay rate of � 72 which
is much better.

In appendix we present more experimental results. XXX summarize the results.



Chapter 5

Bilinear Matrix Inequalities

This chapter is devoted to computational methods for solving bilinear matrix inequalities (BMIs).
The BMI was introduced by Safonov and his group in 1994 in the conference paper [SGL94]
(journal version [GSL95]). It was shown how a µ � Km synthesis problem could be formulated as a
BMI feasibility problems. In this context we will use the BMI formulation to design a controller
of fixed structure or/and order, see chapter 2 and chapter 3.

First we give a historical overview of previous work on optimization of BMIs. The work can
be divided in two main parts - local and global methods.

A couple of local methods have been applied to the BMI problem. In [GTS
�

94] a number
of computational methods for BMI feasibility problems was considered. First it was proposed to
solve the BMI as a double LMI feasibility problem, but immediately thereafter it was stated that
this approach would not lead to the global optimum, and in fact not even a local optimum. Next a
subgradient method was suggested, but it was problematic in implementation. Finally the method
of centers was employed to solve the BMI feasibility problem. Method of centers had a couple
of years earlier been use by Boyd and El Ghaoui to solve generalized eigenvalue problem, see
[BE93].

We now proceed by summarizing work in the global optimization of BMIs problems. As
pointed out earlier the BMI optimization problem is not convex - in fact the problem is highly
non-convex. The feasibility region can be non-convex, and more over the feasibility region can be
disconnected. For convex problems a local optimum is also a global optimum. To solve the BMI
problem globally we have to examine all local minima. This problem turns out to be very hard in
general. The hardness of a problem or the problems complexity has been studied in the literature,
see [Vav95]. Convex problems are known to be solvable in polynomial time, that is the required
time is bounded above by polynomial in the number of variables. For the global optimization of
BMIs Toker and Özbay have showed in [TO95] that the problem is NP-hard. This means that
computational time in general grows non-polynomial with the number of parameters. This does
not omit the possibility of efficient computational methods for specific subclasses of the BMI
problem.

The computational methods studied in the literature can be divided in two subparts - Branch
and Bound algorithms, and cone programming techniques.

Branch and Bound (BB) algorithms have been studied extensively in the optimization liter-
ature, see [LW66] for an early survey. BB algorithms have been used in the beginning of the
1990’s to find the minimum stability degree of parameter dependent systems [BBB91a, BBB91b]
Balakrishnan and Boyd has the following explanation, see [BB92]: Branch and bound algorithms
derive their name from the way the proceed: They break up the parameter region into subregions

53
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(“branching”) to derive bounds for the global optimum over the original region (“bounding”).
The BB techniques used on the minimum stability degree was relative efficient and problems of
interesting sizes could be solved.

The earliest work on global optimization for BMIs using BB algorithms appeared in 1994
in the conference paper [GSP94] by Goh, Safonov, and Papavassilopoulos. Goh et al. used
the BB algorithm by restricting the variables to be in a hyper rectangle, and then derived lower
bounds using relaxation of the bilinear connection and upper bound using method of centers.
Their approach was described further in [GSP95], and in deeper details in Goh’s Ph.D. thesis, see
[Goh95]. A number of control problems have been crunched using the techniques, but the com-
putational time needed to be measured in days, see [KYS96, Van97]. The problem seemed to be
that the partition was done in the entire parameter space, and thus not exploiting the biconvexity
of the BMI problem.

Recently D.C. (difference of convex sets/function) optimization techniques [Tuy95] have
been used by Horsoe, Tuy and Tuan on the BMI feasibility problem, see [THT96]. This technique
exploits the biconvexity by partition in one set of the variables instead of both sets. The lower
bound is still derived using relaxation of the bilinear connection, but the solution of the relaxed
problem is utilized in the computation of the upper bound.

Cone programming techniques have been proposed by Mesbahi and Papavassilopoulos in the
paper [MP96]. The approach reformulate the BMI problem as a linear complementarity problem
over cones. Unfortunately no numerical implementation has been done yet.

We now proceed by giving the background for the technique we will apply to the BMI prob-
lem.

In [Ben62] Benders introduced an approach that exploits the structure of the problem. First
Benders noted that many problems becomes much simpler, when fixing some of the variables -
called complicating variables. The class of problems that Benders considered reduced to a linear
programming problem parameterized by the values of the complicating variables. The optimum
of the LP problem for each complicating variable renders a new function. Finding the optimum
of this function over the set of complicating variables is equivalent to solving the original prob-
lem. Benders proposed to solve this problem by building a family of cuts that represent the new
function. The cut was found by invoking the dual of the LP problem, and then the relaxed version
provided a tangent if the problem was feasible for the fixed variable, otherwise a half space could
be cut away. Finding the minimum over the family of cuts is also a linear program, we refer to it
as a subproblem. The solution of the subproblem provides approximate solution to the original
problem. The subproblem can be refined by adding more cuts, until the solution has a required
accuracy.

Geoffrion extended the work of Bender to a more general case [Geo72], where the subprob-
lem did not need to be a linear program. Geoffrion especially considered the following problem:

max
x � y f 	 x � y 
 subject to G 	 x � y 
 	 0 � x � X � y � Y � (5.1)

where y is the vector of complicating variables. G is an m-vector of constraint functions, defined
on X � Y � � mx � � mx. G was required to have special structure, and we will especially con-
sider the situation, where G 	 x � y 
 is rendered convex, when y is fixed. Geoffrion then solved the
problem in the same fashion as Benders.

However, as pointed out by Sahinidis and Grossman in [SG91] this approach do not guarantee
global convergence. It was pointed out that just using the tangent to a function that is non convex
does not provide a valid cut. It can be shown that the obtained solution is not necessarily a local
optimum.
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This problem can be alleviated by deriving valid piecewise lower bounds. This solution was
suggested by Floudas and Visweswaran in [FV93]. They considered problems equivalent to (5.1).
However, they considered X to be rectangular and exploited this to partition Y in 2mx regions over
which linear lower bounds could be derived. They showed that a series of problems of medium
size could be solved in a fair amount of time. The strength of the method was the ability to exploit
the bilinear structure. The work of Floudas and Visweswaran have since then been studied and
described to great detail in a series of papers following [FV93], see [VF96a] and reference therein.
The algorithm is refered to as the GOP algorithm. Software has been developed especially the so
called cGOP package is of interest, see [VF96b].

In control the approach by Floudas and Visweswaran has been exploited to solve specific
control problems. Psarris and Floudas suggested to solve robust stability analysis problems un-
der parametric uncertainties by using the GOP algorithm [PF95]. Similar work was done in
[BFHT95].

In this chapter we will devise a family of branch and bound algorithms for the BMI optimiza-
tion problem. We first state the exact problem we want to solve. Next we decompose the problem
as in the Benders/Geoffrion approach. A simple branch and bound algorithm is described. Differ-
ent approaches for obtaining upper and lower bounds are presented. The different lower bounds
poses various properties, where the BB algorithm has to be tailored in different ways. We then
present three customized algorithms for each lower bound, and discuss convergence issues re-
lated to the three algorithms. An examination on how to formulate BMI formulation arising in
control the best way is done thereafter. We proceed with a series of small examples to compare
the different methods.

5.1 Problem statement

We will consider a formulation of the BMI optimization problem, where the convex and non-
convex constraints have been separated. As our objective we only consider a linear function over
the parameter space. The problem looks as follows:

minimize f 	 x � y 
 � cT x 
 dT y

subject to F 	 x � y 
 ∆
� F0 
 ∑mx

i � 1 xiFx
i 
 ∑my

j � 1 y jF
y
j 
 ∑my

j � 1 ∑mx
i � 1 y jxiF

xy
i j 	 0

G 	 x � y 
 ∆
� G0 
 ∑mx

i � 1 xiGx
i 
 ∑my

j � 1 y jG
y
j 	 0 �

(5.2)

The variables are x � � mx and y � � my. The symmetric matrices F
�

� and G
�

� are given data. We
call this problem for the BMI optimization problem, or just the main problem. If there exist x and
y such that F 	 x � y 
 	 0 and G 	 x � y 
 	 0 we say that the problem is feasible.

We want to solve this problem to ε optimality, but before we look at a precise statement, we
want to restrict our attention to a smaller class of problems. We will impose two assumption. The
first relates to the feasibility and size of G 	 x � y 
 	 0:

Assumption 5.1 The set � 	 x � y 
 � G 	 x � y 
 	 0 � is bounded and non-empty.

Since our objective function is linear assumption 5.1 implies that if equation (5.2) is feasible then
the optimal solution is finite. The second assumption is more restrictive, but for the algorithms
we will consider later it is very essential:

Assumption 5.2 � y : � x such that G 	 x � y 
 	 0 � � � y : � x such that F 	 x � y 
 	 0 � �
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This assumption might seem very restrictive, but we can still formulate a problem that solves the
main problem to a given approximation. Introduce a slack variable t, with bounds 0

�
t

�
M, add

t times identity to the BMI and ρ times t to the objective,

minimize f 	 x � y 
 � cT x 
 dT y 
 ρt
subject to F 	 x � y 
 
 t I 	 0

G 	 x � y 
 	 0 �

(5.3)

The biggest problem is to choose ρ. It should be big enough so it does not influence the optimum
significantly and small enough not to destroy the scaling of the system.

The two assumptions, 5.1 and assumption 5.2 are the only ones we will impose on our prob-
lem. These assumptions are sufficient to prove that the optimum is finite and exists. The non-
emptiness in 5.1 together with assumption 5.2 implies the existence, where as the boundedness in
assumption 5.1 implies that the optimum is finite. We will denote this optimum by f

�

. We now
give a formal definition of our goal:

Problem 5.1 (ε-optimal BMI problem) Given an ε � 0 and a problem on the form (5.2) under
assumption 5.1 and assumption 5.2. Let f

�

be the optimum of (5.2) then find a pair 	 x � � y � 
 , s.t.
F 	 x � � y � 
 	 0, G 	 x � � y � 
 	 0 and

f 	 x � � y � 
 � f
� � ε � (5.4)

We will call such a solution 	 x � � y � 
 for ε-optimal.

The above problem 5.1 is a global optimization problem. Since the problem is non-convex in
general a local optimum is not necessarily global.

For ease of notation and discussion we will define a couple of sets which relates to the BMI
and LMI constraint in equation (5.2). First three sets that relate to F 	 x � y 
 	 0:

F ∆
� � 	 x � y 
 : F 	 x � y 
 	 0 � � � mx � my

XF
∆

� � x : � y such that F 	 x � y 
 	 0 � � � mx

YF
∆

� � y : � x such that F 	 x � y 
 	 0 � � � my
�

(5.5)

Note that F in general is non-convex, however its projection XF onto x-space can be convex, and
also the projection YF onto y-space might be convex. Just consider the BMI constraint 0

�
xy

�
1,

x � y � �
, then F is not convex, where as YF

�
�

and XF
�

�
are both convex.

The next three sets relate to G 	 x � y 
 	 0:

G ∆
� � 	 x � y 
 : G 	 x � y 
 	 0 � � � mx � my

XG
∆

� � x : � y such that G 	 x � y 
 	 0 � � � mx

YG
∆

� � y : � x such that G 	 x � y 
 	 0 � � � my

(5.6)

Since G is described by an LMI it is convex, and both projections XG onto x-space and YG onto
y-space are convex.

Assumption 5.2 can now be written as YG should be a subset of YF .
With the definition of these sets, we note the simple description of the general BMI optimiza-

tion problem as

minimize
x � y f 	 x � y 


subject to 	 x � y 
 � F � G �

(5.7)
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In other words we want to minimize a linear functional over a non-convex region. The com-
plication is the bilinear connection between the x and y variables in the constraint F 	 x � y 
 	 0.
We will try to conquer this by projecting the problem onto y-space, in which case the problem
is to minimize a non-convex function over a convex region. This approach is called Benders
decomposition.

5.2 Generalized Benders decomposition

The main idea in Bender’s decomposition is the concept of projection. The projection of (5.7)
onto y is the following

minimize
y

v 	 y 
 subject to y � YF
� YG (5.8)

where

v 	 y 
 ∆
� inf

x

�
f 	 x � y 
 subject to F 	 x � y 
 	 0 � G 	 x � y 
 	 0� � (5.9)

We will call this problem (5.8) for the master problem.. The function v 	 y 
 is refered to as the
optimal-value function. The value of v 	 y 
 for any fixed y can be computed as an SDP prob-
lem, which is a tractable convex problem, and for this reason y is refered to as the complicating
variable. .

The sets YF and YG are the projections of the sets F and G onto y respectively. The union
of YF

� YG is by assumption 5.2 equal to YG. By designating y as the complicating variables
evaluating v 	 y 
 at point y is much easier than solving the BMI optimization problem in itself. In
fact evaluating v 	 y 
 in a fixed point ŷ is an SDP problem. In [Geo71] Geoffrion showed that if y

�

solves (5.8) and x
�

solves (5.9) for y � y
�

then 	 x � � y � 
 solves (5.2).
By reformulating the problem in terms of minimizing a non-convex function v 	 y 
 over a re-

gion YG we have formulated the problem as an infinite set of SDP problems parameterized by
the value of the complicating variable y. The difficulty with the master problem is that v 	 y 
 is
only given implicit in terms of (5.9). Geoffrion resolved this problem by invoking the dual rep-
resentation of v as a point-wise supremum of a collection of functions which underestimate it. In
this case it is very important that the functions are in fact global underestimaters. Geoffrion only
used a tangent approximation (called Benders cut) obtained via the Lagrangian dual, but for non-
convex problems the tangent might not even be a local underestimater. In a paper by Sahinidis
and Grossman[SG91] this issue is treated, and it is shown that just using the tangent will lead to
a solution that is not the global optimum. To assure that we always find a global solution we will
only consider global underestimaters. The master problem can then be solved by evaluating the
point-wise supremum of these underestimaters. The supremum of the underestimaters might only
be convex in certain regions. However, by calculating the underestimater, directions for a set of
partitioning rules are usually obtained. These partitioning rules can be used to split the original
region YG into smaller region over which the underestimater is convex. If we can partition YG in
smaller and smaller regions over which we obtain better and better upper and lower bounds, we
can solve the ε-optimal BMI problem, in finite time. To do this we need two basic concepts, first
computable upper/lower bounds and partitioning rules, and second an algorithm that can exploit
this partition and bounding to obtain the major goal. The algorithm we will consider is called
branch and bound, and is described in the next section.
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5.3 Branch and Bound Algorithm

We consider the following problem

min
y

v 	 y 
 subject to y � Y (5.10)

where v is continuous and bounded, and Y is convex, non-empty, closed and bounded. In this
section we drop the subscript on YG. The requirement on v and Y guarantees that the global
optimum exists. We denote the optimum by v

�

. Let ε be a given accuracy then we want to find
y

�

, (and a certificate) such that

v 	 y � 
 � v
� � ε (5.11)

We say that we solve the problem to ε-optimality. The goal in (5.11) implies that we during our
search for y

�

build a set of upper and lower bounds, that guarantees ε-optimality.
To solve this problem we consider a branch and bound scheme. The branch and bound scheme

relies on the existence of computable upper and lower bounds for v. In fact we assume the
existence of a branch and bound-operator (BB-operator). Given a region Q this operator should
supply us with the following

i) An upper bound f Q for v over Q fulfilling

f Q 	 min
y � Q v 	 y 


and a y � Q , that achieves f Q
� v 	 y 
 .

ii) A partition of Q in pQ regions, Qi � i � 1 ����� � � pQ , obeying

pQ�
i � 1

Qi
� Q

IntQi � IntQ j
� /0 � i �� j

and lower bounds f Qi
over each new region Qi with

f Qi

�
min
y � Qi

v 	 y 
�� i � 1 ������� � pQ

Restriction are needed on the branch and bound operator, if we want to prove convergence of the
propose algorithm.

As the main tool to solve the ε-optimality problem, we consider a branch and bound tree.
We will use terms from the graph theory to describe the tree. Each node in the tree corresponds
to a region, and associated with this node is valid upper and lower bounds for the region. The
branches of each node corresponds to a partition of the associated region. The root of the tree is
the original region Y . As the tree grows the leaves of the trees represent a partition of Y . The
minimum lower bound over the leaves provides a global lower bound on the main problem. The
minimum upper bound over all parents gives a global upper bound.

The branch and bound algorithm gives direction how to grow the tree to solve the ε problem.
The tree is grown in the following way. At each iteration k a region is picked (selection rule) and
the BB operator is applied. The selection rule is to picked the leaf with the lowest lower bound.
This provides a more fine partition of Y and a better bounding of the problem.
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Branch and bound algorithm

1. Initialization: Set k � 1, and let Q � 1 � ∆
� Y .

2. Branching and local bounding: Apply the BB operator to Q � k � . Obtain

(a) Upper bound f
� k �

, and y
� k � such that f

� k �
� v 	 y � k � 
 .

(b) Partition Q
� k �

i � i � 1 ������� � p � k � and lower bounds f
� k �
i

.

(c) Insert Q
� k �

i , i � 1 ������� � p � k � in the BB tree as leaves of Q � k � .

3. Global bounding:

(a) Compute best upper bound f
� k �

� min j � 1 � � � � � k u
� j � and let yu be the y achieving it,

f
� k �

� v 	 yu 
 .
(b) Compute the best lower bound f , as

f
� k � � min

l � 1 � � � � � k min
i � 1 � � � � � p � l �

Q
�
l �

i leaf

f
� l �
i

4. Conditioning: If f
� k � � f

� k � � ε then set y
�

� yu and EXIT.

5. Selection: Update k
∆

� k 
 1, and let Q � k � ∆
� Q

� j �
i be one of the regions where f � f

� j �
i .

6. Goto 2.

Conditions for convergence of the above algorithm can be stated. First let R be a rectangle
defined by l � u such that R � � y : l

�
y

�
u � , where the diameter of R is � u � l � 2. The following

conditions from [HJ95] XXX are sufficient for proof of convergence

H1 As the diameter of the minimal rectangle R � Q � 0 then f Q � mini � 1 � � � � � pQ f Qi

� 0.

H2 The diameter of the minimal rectangle R � Q must go to zero when the number of parents
go to infinity.

H3 The subproblem with the lowest lower bound must be selected in at least every K’th itera-
tion.

Condition H3 is fulfilled by the “selection”-rule above, where as H1 and H2 depend on the bound-
ing and partition from the BB operator.

The above description of the branch and bound algorithm is very schematic, and in a practical
implementation the algorithm will have to be customized to exploit the bounding and partition
rules.
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5.4 Upper bound

In this section we will show how to compute an upper bound for the master problem over the
region QF . Fix y � ŷ � YG then v 	 ŷ 
 can be computed as an SDP problem in x:

minimize cT x 
 dT ŷ

subject to F 	 x � ŷ 
 �

�
F0 
 ∑my

j � 1 ŷ jF
y
j � 
 ∑mx

i � 1 xi

�
Fx

i 
 ∑my

j � 1 ŷ jF
xy

i j � 	 0

G 	 x � ŷ 
 �

�
G0 
 ∑my

j � 1 ŷ jG
y
j � 
 ∑mx

i � 1 xiGx
i 	 0 �

(5.12)

Since equation (5.12) is a restriction of YG then

v 	 ŷ 
 	 min
y � YG

v 	 y 
 �

The naturally question how do we choose the y we want to fix. Usually a y is available from the
solution to the lower bound over the region.

Another possibility to obtain or even improve the upper bound is to use method of centers,
see for instance [GSP95].

5.5 Lower bound via relaxation of xiy j

In this section we provide point-wise lower bounds on v 	 y 
 over a region Q . We assume in the
next two sections that Q have been absorbed in G 	 x � y 
 	 0. Apart from giving lower bounds we
also give directions for partitioning the region Q such that the lower bound can be refined. More
over we provide a point where it is good to compute the upper bound. We call such a point a
center point. The relaxation presented here has been examined in [GSP94, THT96], but for the
problem of the form

minimize
x � y λmax 	 F 	 x � y 
 


subject to lx �
x

�
ux

ly �
y

�
uy

(5.13)

which is an instant of the BMI feasibility problem of finding 	 x � y 
 such that F 	 x � y 
 �
0.

In [BV97b] a more general problem is studied, that includes quadratic connections in the
matrix inequality, and connections between all variables. That is the matrix inequality has the
form

D 	 x 
 � D00 

mx

∑
i � 1

xiDi0 

mx

∑
j � 1

mx

∑
i � 1

xiDi jx j � (5.14)

where D �
� S n. The matrix inequality (5.14) is not biconvex, even if we fix some of the variables

the rest of the problem will still render non convex in general.

5.5.1 The Method of Tuan

The complicating part in the BMI F 	 x � y 
 	 0 is is the bilinear connection between xiy j . We can
find a lower bound for v 	 y 
 over a specific region, by region relaxing the bilinear connection xiy j
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by introducing a new variable wi j . The new parameter wi j emulates the bilinear term xiy j. The
BMI constraint is now relaxed to an LMI in x, y and W ( � W � i j

� wi j):

F̃ 	 x � y � W 
 � F0 

mx

∑
i � 1

xiF
x

i 

my

∑
j � 1

y jF
y
j 


my

∑
j � 1

mx

∑
i � 1

wi jF
xy
i j 	 0 �

From the convex bounds on x and y from G 	 x � y 
 	 0 it is possible to derive bounds on wi j .
First relax XG and YG to be rectangular. By a rectangle we mean a set on the form R∞

�

� x : x � � mx � l
�

x
�

u � 1, where l � u are upper and lower bounds on each variable in x. We are
interested in the rectangle with smallest volume surrounding XG. Such a rectangle can be found
by solving 2mx SDP problems. To find the best lower bound for variable xi solve the following
problem: minimize xi subject to x � XG. Denote the two best rectangles relaxing XG and YG by Rx

and Ry respectively, and the lower and upper bound by lx � ux, lx � ux respectively. On the variables
xi and y j we have the bounds

xi � lx
i 	 0 y j � ly

j 	 0

ux
i � xi 	 0 uy

j � y j 	 0

Multiplying the two bounds on xi with the two bounds on y j we get four bounds on xiy j:

	 xi � lx
i 
 �

y j � ly
j � 	 0

	 xi � lx
i 
 �

uy
j � y j � 	 0

	 ux
i � xi 
 �

y j � ly
j � 	 0

	 ux
i � xi 
 �

uy
j � y j � 	 0

(5.15)

By replacing xiy j by wi j we get bounds on wi j. We now present a lemma from [THT96]:

Lemma 5.1 Assume lx
i

�
ux

i and lx
j

�
uy

j then lx
i

�
xi

�
ux

i ,ly
j

�
y j

�
uy

j if and only if there exists
wi j such that

wi j 	 ly
j xi 
 lx

i y j � lil
y
j

wi j
�

uy
jxi 
 lx

i y j � lx
i uy

j

wi j
�

ly
j xi 
 ux

i y j � ux
i ly

j

wi j 	 uy
jxi 
 ux

i y j � ux
i uy

j �

For convenience we will define the set of WRx � Ry 	 x � y 
 fulfilling (5.15) by

WRx � Ry 	 x � y 
 ∆
�

�
W : W � � mx � my �

wi j 	 ly
jxi 
 lx

i y j � lil
y
j

wi j
�

uy
jxi 
 lx

i y j � lx
i uy

j

wi j
�

ly
jxi 
 ux

i y j � ux
i ly

j

wi j 	 uy
jxi 
 ux

i y j � ux
i uy

j

� ������ � i � 1 ��� ��� � mx � j � 1 ��� ��� � my �

The set WRx � Ry 	 x � y 
 defines a polytope in W -space. Given the rectangular sets Rx, and Ry then for
each x � y the variable wi j in W is contained in an interval, i.e.

wi j
� �

max � ly
j xi 
 lx

i y j � lil
y
j � uy

jxi 
 ux
i y j � ux

i uy
j � � min � uy

jxi 
 lx
i y j � lx

i uy
j � ly

j xi 
 ux
i y j � ux

i ly
j � �

(5.16)

1We will later consider different types of hyper rectangles Rp dependent of the vector p- norm
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by W � WRx � Ry 	 x � y 
 . Vice versa, by lemma 5.1 if there exists W � WRx � Ry 	 x � y 
 then x � y � Rx � Ry.
Let us study the behavior of xiy j and the relaxation wi j by a simple example.

Example 5.1 (Bounds on w from x and y) Consider bounds on x and y as

0
�

x
�

6

0
�

y
�

4

The product of x and y in the given regions can be seen in figure 5.1. If w is the relaxation of xy
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Figure 5.1: Bilinear connection and its relaxation
To the left a plot of the bilinear term xy and to the right the allowable region of w if it is an
relaxation of xy.

then we have the following bounds on w:

w 	 0x 
 0y � 0 � 0

w
�

4x 
 0y � 0 � 4x

w
�

0x 
 6y � 0 � 6y

w 	 4x 
 6y � 24 �

which can be seen in figure 5.1. The interval (5.16) is plotted for each x � y in figure 5.2. It should
be evident that the interval (5.16) goes to zero, when x � y approaches the boundary of Rx � Ry.

The example showed, especially figure 5.2, that the difference between the relaxation w and
xy becomes zero at the boundary of Rx and Ry.

We can now find a lower bound for the BMI optimization problem over YG by solving the
following SDP problem

minimize
x � y�W f 	 x � y 


subject to F̃ 	 x � y � W 
 	 0
G 	 x � y 
 	 0
W � WRx � Ry 	 x � y 


(5.17)

Let the optimal variables of the above problem (5.17) be denoted as x̃ � ỹ � W̃ . The above problem
(5.17) is a convexification of original non-convex problem (5.2), by making the non-convex con-
straint convex. This renders the problem (5.17) as a optimization problem with a linear constraint
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Figure 5.2: Absolute difference between xy and its convexification.
The above is a plot of the maximum absolute difference between xy and (5.16) for each x � y.

over a convex region. The optimum over 	 x � W 
 of (5.17) provides a convex function χ

χ 	 y 
 � min
x �W

�
f 	 x � y 
 subject to F̃ 	 x � y � W 
 	 0 � G 	 x � y 
 	 0 � W � WRx � Ry � � for y � YG

(5.18)

that under estimates v 	 y 
 . Basically χ 	 y 
 is the projection of (5.17) onto y, and since (5.17) is
convex then so is χ 	 y 
 . We will call χ a lower bounding function.

We now examine the lower bound by a simple example.

Example 5.2 (Sahinidis and Grossman I) The following example is from [SG91]:

Minimize
x � y � x � y

subject to xy
�

4
0

�
x

�
6

0
�

y
�

4

(5.19)

There are two local minima at points 	 x � y 
 � 	 1 � 4 
 and 	 x � y 
 � 	 6 � 2 � 3 
 with optima � 5 and
� 20 � 3 � � 6 � 67. Sahinidis and Grossman provides the optimal-value function as

v 	 y 
 �

�
� 6 � y if 0

�
y

�
2 � 3

� 4 � y � y if 2 � 3
�

y
�

4
(5.20)

The optimal-value function can be seen in figure 5.3
The relaxation (5.17) becomes the following LP problem:

minimize
x � y � x � y

subject to w
�

4
0

�
x

�
6

0
�

y
�

4
w 	 0x 
 0y � 0 � 0
w

�
4x 
 0y � 0 � 4x

w
�

0x 
 6y � 0 � 6y
w 	 4x 
 6y � 24

(5.21)
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Figure 5.3: Optimal-value function and relaxation for the Sahinidis-Grossman problem
To the left the optimal-value function for the Sahinidis-Grossman problem. To the right the
solution of the relaxation of (5.21) as a function of y, that is the function χ 	 y 
 .
The optimum is � 20 � 3 just as the global optimum of the problem. The optimum is achieved at	 x � y � w 
 � 	 6 � 2 � 3 � 4 
 . In 5.3 we have plotted (5.21) as a function of y. By looking at the figure it
is possible to derive the following from (5.21):

χ 	 y 
 �

�
� 6 � y if 0

�
y

�
2 � 3

� 7 
 1
2 y if 2 � 3

�
y

�
4

(5.22)

with v 	 y 
 	 χ 	 y 
�� 0 �
y

�
4. The optimum of minχ 	 y 
 subject to 0

�
y

�
4 is � 20 � 3. In other

words, by solving the above relaxation we actually solve the original problem. We stress that a
generalization to other problems of this fact cannot be made. In figure 5.3 the solution of the
relaxation (5.21) is plotted together with v 	 y 
 . The relaxation is actually the convexification of
v 	 y 
 .
Partition

We will now examine how we should branch, that is divide the current rectangle Ry in smaller
pieces. A simple approach would be to partition Ry in half along the longest edge. Another
approach is to base the partition Ry on the bilinear connection between x and y related to the
relaxation W . If w̃i j � x̃iỹ j

� 0 for all i � j then x̃ � ỹ is a solution to the BMI, and the lower bound
is equal to the upper bound. Thus, to ensure that we achieve this goal we want to minimize the
maximum difference

�
� ŵi j � x̂i ŷ j

�
� . We do this by finding indices such that	 ĩ � j̃ 
 � argmax

i � j
� �

� w̃i j � x̃iỹ j
�
� : i � 1 � ����� � mx � j � 1 � ����� � my

� (5.23)

then split the rectangle Ry with the plane

ŷ j̃
�

�
1
2

�
ỹ j̃ 
 w̃ĩ j̃

x̃ĩ
� � if x̃ĩ �� 0

ỹ j̃ if x̃ĩ
� 0

(5.24)

We note that ŷ j̃ will usually lye in the middle of Ry, because the constraints on w become tight
when y is close to the boundary of Ry, and thus making

�
� w̃i j � x̃iỹ j

�
� small.
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5.5.2 The method of Goh

The first method used to solve the BMI feasibility problem by Goh et al [GSP95, Goh95] used
the same relaxation technique as explained in the previous subsection, but was different at a few
points.

Instead of restricting W to the set WRx � Ry 	 x � y 
 Goh restricted W to the rectangular relaxation
of WRx � Ry 	 x � y 
 . Each wi j was restricted to the set

�
wi j : wi j

� �
wi j � wi j � � , where

wi j
� min � lxly � lxuy � uxly � uxuy �

wi j
� max � lxly � lxuy � uxly � uxuy � �

This gives only half the constraints on wi j as of (5.16), but the constraints are weaker.

Partition

The partition rule is to split along the longest edge of Rx � Ry, instead of just splitting in Ry by
the hyper-plane (5.24).

5.5.3 Alternative method of Tuan

The following lower bound can be found in [THT96]. For the BMI feasibility problem (5.13) the
relaxation (5.17) gets the following form: Minimize the function

ϕ 	 x � y � W 
 ∆
� λmaxF̃ 	 x � y � W 
 (5.25)

over x � Rx, y � Ry and W � WRx � Ry 	 x � y 
 . Instead of solving this problem an approximation can
be build up using a linearization to ϕ 	 x � y � W 
 at a given point x̂ � ŷ � Ŵ . A linearization of ϕ 	 x � y � W 

at a given point can be found using generalized gradients, see [Cla83]. Let ∂ϕ 	 x̂ � ŷ � Ŵ 
 be the set
of generalized gradients at the point 	 x̂ � ŷ � Ŵ 
 . We then have the linearization of ϕ as have

hx̂ � ŷ � Ŵ 	 x � y � W 
 ∆
�


ζ � � x � x̂ � y � ŷ � W � Ŵ � � 
 ϕ 	 x̂ � ŷ � Ŵ 


where ζ � ∂ϕ 	 x̂ � ŷ � Ŵ 
 . In [THT96] Tuan et al give one generalized gradient. It can be found in the
following way. For simplicity we consider a linear matrix function A 	 x 
 � A0 
 ∑m

i � 1 xiAi, and the
function ϕx 	 x 
 � λmaxA 	 x 
 . Let λ be the maximum eigenvalue of A 	 x̂ 
 and v the corresponding
eigenvector. The eigenvalue λ and the eigenvector v fulfill by definition

	 A 	 x 
 � λI 
 v � 0 (5.26)

at x � x̂. Even though the function ϕx is not even differentiable, we use the derivative rules to
derived a generalized gradient. Using the partial derivative rules for xi on both sides we get the
following

0 �
∂

∂xi
� 	 A 	 x 
 � λI 
 v �

�
∂

∂xi
� A 	 x 
 � λI � v 
 	 A 	 x 
 � λI 
 ∂

∂xi
v

� � Ai � ∂
∂xi

λI � v 
 	 A 	 x 
 � λI 
 ∂
∂xi

v
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Multiplying with vT from the left we get

0 � vT � Ai � ∂
∂xi

λI � v 
 vT 	 A 	 x 
 � λI 
� ��� �� 0 by (5.26)

∂
∂xi

v

� vT Aiv � ∂
∂xi

λIvT v �

which gives

∂
∂xi

λ �
vT Aiv
vT v

It can be shown [THT96] that

ζ � � vT A1v
vT v

� vT A2v
vT v

��� ��� vT Amv
vT v

� � ζ � ∂ϕ 	 x̂ 
 � (5.27)

Since ϕ 	 x � y � W 
 is convex we have

ϕ 	 x � y � W 
 	 hx̂ � ŷ � Ŵ 	 x � y � W 
 � � x � y � W
A collection of points x̂k � ŷk � Ŵk will provide an approximation of ϕ 	 x � y � W 
 by

ϕ 	 x � y � W 
 	 max
k

hx̂k � ŷk � Ŵ k 	 x � y � W 
 �

Partition

The partition rule follows the same as the partition rules given above for the method of Tuan.

5.6 Lower bound via Lagrangian duality

In this section we shall develop lower bounds using Lagrangian duality. The theory behind La-
grangian duality can be found in for instance [Ber95] or [BV97a]. For the general BMI problem
equation (5.2) the Lagrangian looks like the following

L 	 x � y � Γ � ∆ 
 ∆
� cT x 
 dT y � Tr ΓF 	 x � y 
 � Tr ∆G 	 x � y 
 � (5.28)

for F 	 x � y 
 	 0, G 	 x � y 
 	 0, where Γ 	 0, ∆ 	 0. We refer to Γ and ∆ as the Lagrange multipliers
associated with the constraint F 	 x � y 
 	 0, and G 	 x � y 
 	 0 respectively.

Since Γ 	 0 and F 	 x � y 
 	 0 then TrΓF 	 x � y 
 	 0. The same holds for ∆G 	 x � y 
 and we have
the relation

cT x 
 dT y 	 L 	 x � y � Γ � ∆ 
�� � x � y � F � G � (5.29)
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5.6.1 Relaxation of regions

Going back to v 	 y 
 then we have the following lower bound on v 	 y 
 :
v 	 y 
 � inf

x

�
f 	 x � y 
 subject to F 	 x � y 
 	 0 � G 	 x � y 
 	 0�	 inf

x

�
L 	 x � y � Γ � ∆ 
 subject to F 	 x � y 
 	 0 � G 	 x � y 
 	 0 � � � Γ � ∆ 	 0

(5.30)

In the above we have the constraints 	 x � y 
 � F � G . If we relax this to 	 x � y 
 � XG � YG, we still
get a valid lower bound:

v 	 y 
 	 inf
x � XG

L 	 x � y � Γ � ∆ 
�� � y � YG � Γ � ∆ 	 0 (5.31)

In the following the Lagrange variables are fixed in the positive semidefinite cone. With this
in mind we take a closer look at the Lagrangian L 	 x � y � Γ � ∆ 
 . Since we want to find a lower bound
for v 	 y 
 we want to eleminate the variables x. For this reason rewrite the Lagrangian as:

L 	 x � y � Γ � ∆ 
 � cT x 
 dT y � Tr ΓF 	 x � y 
 � Tr ∆G 	 x � y 

� dT y � Tr Γ

�
F0 


my

∑
j � 1

y jF
y
j � � Tr ∆

�
G0 


my

∑
j � 1

y jG
y
j �



mx

∑
i � 1

xi

�
ci � Tr Γ

�
Fx

i 

my

∑
j � 1

y jF
xy
i j � � Tr ∆Gx

i �
(5.32)

Define the following to functions

a 	 y � Γ � ∆ 
 ∆
� dT y � Tr Γ

�
F0 


my

∑
j � 1

y jF
y
j � � Tr ∆

�
G0 


my

∑
j � 1

y jG
y
j � (5.33)

bi 	 y � Γ � ∆ 
 ∆
� ci � Tr Γ

�
Fx

i 

my

∑
j � 1

y jF
xy
i j � � Tr ∆Gx

i � i � 1 ������� � mx � (5.34)

then we can write the Lagrangian in the more simple form

L 	 x � y � Γ � ∆ 
 � a 	 y � Γ � ∆ 
 
 mx

∑
i � 1

xibi 	 y � Γ � ∆ 

Recall that we are interested in the infimum of L 	 x � y � Γ � ∆ 
 over XG, but since the functions a and
b are independent of x we have the following

inf
x � XG

L 	 x � y � Γ � ∆ 
 � inf
x � XG

�
a 	 y � Γ � ∆ 
 
 mx

∑
i � 1

xibi 	 y � Γ � ∆ 
��
� a 	 y � Γ � ∆ 
 
 inf

x � XG

mx

∑
i � 1

xibi 	 y � Γ � ∆ 
 (5.35)

Our goal is to find computable lower bounds on v 	 y 
 for y � G . Since a is an affine function
of y for fixed Lagrange variables Γ, ∆ finding the minimum over y � G is a convex problem and
therefore tractable. However, finding the minimum over y � Q for infx � XG ∑mx

i � 1 xibi 	 y � Γ � ∆ 
 , is not
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a convex problem due to the bilinear connection between x and y. We will resolve this problem
by relaxing the region of XG to be a region of the form

Rp
∆

� � x :
�
� Λ � 1 	 x � x̂ 
 �

�
p

�
1 � � � mx �

where Λ � Diag � � λ1 λ2 � ��� λmx � � � 0 � p � 1 � 2 � ∞ �

(5.36)

We are interested in the region with smallest volume. For p � ∞ this was shown in last subsection.
For p � 1 it can be done approximately by solving the same 2mx SDP problems, as for obtaining
p � ∞ and then using that if

C � �
x :

�
� Λ � 1 	 x � x̂ 
 �

�
∞

�
1 � � C � � x :

�
�
� 	 2Λ 
 � 1 	 x � x̂ 
 �

�
�

1

�
1 � �

By doing this relaxation of XG to Rp we obtain the following

v 	 y 
 	 a 	 y � Γ � ∆ 
 
 inf
x � XG

mx

∑
i � 1

xibi 	 y � Γ � ∆ 

	 a 	 y � Γ � ∆ 
 
 inf

x � Rp

mx

∑
i � 1

xibi 	 y � Γ � ∆ 
�� y � YG � p � 1 � 2 � ∞ � (5.37)

The map x̃ � Λ � 1 	 x � x̂ 
 is bijective since Λ � 0 and have the feature: if x̃ � � x̃ : � x̃ � p
�

1 � then

x � Rp. Using the change of variables x̃ � Λ � 1 	 x � x̂ 
 and introducing

ã 	 y � Γ � ∆ 
 ∆
� a 	 y � Γ � ∆ 
 � mx

∑
i � 1

x̂iλ � 1
i bi 	 y � Γ � ∆ 


b̃i 	 y � Γ � ∆ 
 ∆
� λ � 1

i bi 	 y � Γ � ∆ 
�� i � 1 ������� � mx

(5.38)

we get the following reformulation of the lower bound

v 	 y 
 	 ã 	 y � Γ � ∆ 
 
 inf�
x̃

�
p � 1

mx

∑
i � 1

x̃ib̃i 	 y � Γ � ∆ 
�� y � XG � p � 1 � 2 � ∞ � (5.39)

By this we have justified that we can put the problem on the form 5.39 independently of the
desired norm bound on x. In the following we will simplify our notation to a 	 y 
 � ã 	 y � Γ � ∆ 
 and
each bi 	 y 
 � b̃i 	 y � Γ � ∆ 
 � i � 1 ��� ��� � mx. Stacking bi 	 y 
 in a column vector results in the variable
we will naturally denote b 	 y 
 . We will also remove the tilde on x. We now consider the relation

v 	 y 
 	 a 	 y 
 
 inf�
x

�
� 1

xibi 	 y 
 (5.40)

The next step in our derivation of lower bounds is to rewrite the sum of xibi 	 y 
 , as an inner product
between x and b. We can restrict our self to the infimum over x so we look at

inf�
x̃

�
p � 1

mx

∑
i � 1

x̃ib̃i 	 y 
 � inf�
x̃

�
p � 1


x � b 	 y 
 � � (5.41)

We now have the following relations due to Hölders inequality

inf�
x

�
p � 1


x � b 	 y 
�� 	 � sup�

x
�

p � 1
�  x � b 	 y 
 � �

	 � � b 	 y 
�� q � 1
q

 1

p
� 1 �

(5.42)
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Using the result of equation (5.42) on equation (5.39) we obtain the following

v 	 y 
 	 a 	 y 
 � � b 	 y 
�� q � � y � YG (5.43)

where q relates to the bound on x by 1
q 
 1

p
� 1. To find a valid lower bound over YG we have to

compute the infimum over YG for the right hand side in equation (5.43). We will need different
approaches for each p � q to compute this lower bound using convex problems.

Lower bound for x bounded in max norm

For p � ∞ we have q � 1 and we need to compute the 1-norm of b 	 y 
 . We recall the 1-norm

� b 	 y 
�� 1
�

mx

∑
i � 1

� bi 	 y 
 �
Recall that any norm is a convex function, but we basically want to maximize the norm, or more
precisely minimize � � b 	 y 
�� 1, this is a non-convex problem. The problem is the absolute value� bi 	 y 
 � . If bi 	 y 
 	 0 we do not have to take the absolute value, this restrict our attention to one half
space of

� my. In the opposite half space � bi 	 y 
 	 0 we have the opposite sign of bi in the sum.
For this reason introduce a sign vector s � � � 1 � 1 � mx , and we can write an equivalent formulation
of the 1-norm. Given y find s such that sibi 	 y 
 	 0 � i � 1 � ����� � mx then

� b 	 y 
�� 1
�

mx

∑
i � 1

sibi 	 y 
 � (5.44)

That is we have reformulated the computation of the 1-norm as a computation of a linear sum of
mx elements in one of the corners of the unit cube. Which corner we have to consider depends on
the sign of bi 	 y 
 . Inserting this result in equation (5.43) and taking the infimum over y � YG we
get the following valid lower bound

inf
y � YG

v 	 y 
 	 inf
s � � � 1 � 1 � mx

inf
y � YG

�
ã 	 y � Γ � ∆ 
 � mx

∑
i � 1

sib̃i 	 y � Γ � ∆ 
�� sib̃i 	 y � Γ � ∆ 
 	 0 � i � 1 ��� ��� � mx �
(5.45)

Thus by solving 2mx subproblems we can find a lower bound for f
�

. Each subproblem is an SDP
on the form

minimize ã 	 y � Γ � ∆ 
 � ∑mx
i � 1 sib̃i 	 y � Γ � ∆ 


subject to sib̃i 	 y � Γ � ∆ 
 	 0 � i � 1 ����� � � mx

y � YG

(5.46)

Denote the optimum of each subproblem by φs, and the y achieving it by ys. The lower bound for
v 	 y 
 over YG is the following

f
� 	 min

s

�
φs � subject to s � � � 1 � 1 � mx � (5.47)

The drawback here is the big number of SDP problems we have to solve. The number grows
exponentially with the number of x variables. The same is not true if we choose to bound XG in
the 1-norm instead.
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Lower bound for x bounded in 1-norm

For p � 1 we have q � ∞ and we consider the max-norm:

� b 	 y 
�� ∞
� max

i � 1 � � � � � mx

� bi 	 y 
 �
Since we are only interested in the maximum absolute value of all bi 	 y 
 we can find this by
looking at 2mx situations. This means that we can find a lower bound for f

�

by solving the 2mx

SDP problems. For each entry in b consider the two possible signs. Suppose b̃ 	 y � Γ � ∆ 
 	 0 solve
the following problem

minimize ã 	 y � Γ � ∆ 
 � b̃i 	 y � Γ � ∆ 

subject to b̃i 	 y � Γ � ∆ 
 	 0

y � YG

(5.48)

denote the optimum by ψ
�
i and the optimal y by ŷ

�
i , similarly solve the problem

minimize ã 	 y � Γ � ∆ 
 
 b̃i 	 y � Γ � ∆ 

subject to � b̃i 	 y � Γ � ∆ 
 	 0

y � YG

(5.49)

and denote the optimum by ψ �i and the optimal y by ŷ
�
i . We now have the following simple

relation

f
� 	 min

i
min

�
ψ
�
i � ψ �i � (5.50)

5.6.2 Optimal Lagrange multipliers and partition

In the previous subsection we considered Γ and ∆ to be fixed. Here we will show that a specific
choice lead to a nice structure of a 	 y � Γ � ∆ 
 and bi 	 y � Γ � ∆ 
 , which again lead to a set of nice
properties of the lower bounds.

Consider the problem (5.12) with y � ŷ fixed:

minimize cT x 
 dT ŷ

subject to F 	 x � ŷ 
 �

�
F0 
 ∑my

j � 1 ŷ jF
y
j � 
 ∑mx

i � 1 xi

�
Fx

i 
 ∑my
j � 1 ŷ jF

xy
i j � 	 0

G 	 x � ŷ 
 �

�
G0 
 ∑my

j � 1 ŷ jG
y
j � 
 ∑mx

i � 1 xiGx
i 	 0 �

(5.51)

We will call this problem the primal restricted problem. Note, that due to assumption 5.2 the
above problem is always feasible.

The Lagrangian associated with the primal restricted problem is

L 	 x � ŷ � Γ � ∆ 
 � cT x 
 dT ŷ � Tr ΓF 	 x � ŷ 
 � Tr ∆G 	 x � ŷ 
�� (5.52)

The so called Lagrange dual function

g 	 ŷ � Γ � ∆ 
 � inf
x

�
cT x 
 dT ŷ � Tr ΓF 	 x � ŷ 
 � Tr∆G 	 x � ŷ 
 � � Γ � 0 � ∆ � 0 (5.53)
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provides a lower bound on the primal problem. Looking at (5.32) it is straight forward to rewrite
the Lagrange dual function as

g 	 ŷ � Γ � ∆ 
 � dT y � Tr Γ

�
F0 


my

∑
j � 1

y jF
y
j � � Tr ∆

�
G0 


my

∑
j � 1

y jG
y
j �


 inf
x

mx

∑
i � 1

xi

�
ci � Tr Γ

�
Fx

i 

my

∑
j � 1

y jF
xy
i j � � Tr ∆Gx

i �
� a 	 ŷ � Γ � ∆ 
 
 inf

x

mx

∑
i � 1

xibi 	 ŷ � Γ � ∆ 

(5.54)

where the last equivalence follows from the definition of a and bi in (5.33) and (5.34). Since the
infimum over x in (5.54) is an unconstrained optimization problem the optimum is finite only if
the partial derivatives with respect to x are zero, which lead to

g 	 Γ � ∆ 
 �

�
a 	 ŷ � Γ � ∆ 
 if bi 	 ŷ � Γ � ∆ 
 � 0 � i � 1 � ����� � mx � Γ � 0 � ∆ � 0

� ∞ otherwise
(5.55)

Note that g 	 Γ � ∆ 
 provides a lower bound on the primal restricted problem. It is therefore inter-
esting to find the best lower bound. We can do this using the following problem

maximize a 	 ŷ � Γ � ∆ 

subject to bi 	 ŷ � Γ � ∆ 
 � 0 � i � 1 ��� ��� � mx �

Γ � 0 � ∆ � 0
(5.56)

Denote the optimum Lagrange multipliers in (5.56) by Γ̂ and ∆̂. The optimum is a 	 ŷ � Γ̂ � ∆̂ 
 , which
is a lower bound on v 	 ŷ 
 , that is weak duality holds. Since the XG is bounded, the dual is strictly
feasible, and strong duality holds, and we get v 	 ŷ 
 � a 	 ŷ � Γ̂ � ∆̂ 
 . This particular solution to Γ and
∆ gives a very nice structure in a 	 y � Γ � ∆ 
 and bi 	�	 y � Γ � ∆ 
 First consider a:

a 	 y � Γ̂ � ∆̂ 
 � dT y � Tr Γ̂

�
F0 


my

∑
j � 1

y jF
y
j � � Tr ∆̂

�
G0 


my

∑
j � 1

y jG
y
j � 
 v 	 ŷ 
 � a 	 ŷ � Γ̂ � ∆̂ 


� v 	 ŷ 
 
 dT 	 y � ŷ 
 � my

∑
j � 1

�
Tr Γ̂Fy

j 
 Tr ∆̂Gy
j � 	 y j � ŷ j 
 (5.57)

Introducing the vector p � � my defined by

p j
∆

� d j � Tr Γ̂Fy
j 
 Tr ∆̂Gy

j �
we can write a as

a 	 y � Γ̂ � ∆̂ 
 � v 	 ŷ 
 
 pT 	 y � ŷ 
 � (5.58)

There is a couple of things to say about the function a 	 y � Γ̂ � ∆̂ 
 . First of all it is a hyper plane and
secondly it touches v 	 y 
 at y � ŷ. Note, that p is independent of F0 and G0.

Similarly we can simplify bi as

bi 	 y � Γ � ∆ 
 � qT
i 	 y � ŷ 
�� i � 1 ������� � mx � (5.59)
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where qi is the i’th column in the matrix Q defined by

� Q � ji
∆

� TrΓFxy
i j � (5.60)

Note the indices of Q and Fxy
i j are swapped.

By looking at qi it is possible to detect if there is a bilinear connection between a variable xi

in x and the variables in y. In other words is xi a complicating variable. We will call a variable xi

where qi �� 0 for a connected variable.
Inserting the result of (5.58) and (5.59) in (5.38) we obtain the following

ã 	 y � Γ̂ � ∆̂ 
 � v 	 ŷ 
 
 pT 	 y � ŷ 
 � mx

∑
i � 1

x̂iλ � 1
i qT

i 	 y � ŷ 

b̃i 	 y � Γ̂ � ∆̂ 
 � λ � 1

i qT
i 	 y � ŷ 


Note that ã 	 y � Γ̂ � ∆̂ 
 also is a hyper plane touching v 	 y 
 at v 	 ŷ 
 .
Lower bound for x bounded in max-norm

To obtain a lower bound using the max-norm, it was necessary to check all 2mx corners in the unit
cube. The number of corners can be reduced if the number of connected variables is smaller than
mx. For each corner s the subproblem (5.46) was solved with the constraints sib̃i 	 y � Γ � ∆ 
 	 0 � i �

1 � ����� � mx. If xi is a connected variable bi 	 y � Γ � ∆ 
 � 0 and the sign vector can be chosen arbitrarily.
With the choice of Γ � Γ̂ and ∆ � ∆̂ these constraints define a polytope in

� my. We will define
this polytope as

Qs
∆

�

�
y : siqT

i 	 y � ŷ 
 	 0 � i � 1 ������� � mx
� (5.61)

An example with mx
� 2 can be seen in figure 5.4. Note that IntQs

�
IntQr

� /0 � r �� s, and

Q

q

(1,-1)

q
y

1

2

(1,1)

(-1,1)

(-1,-1)

Q

Q

Q

Figure 5.4: A star-shaped partition.
The partition has four regions, since mx

� 2 and y � � 2.

�
s � � � 1 � 1 � mx Qs

�
� mx, thus the collection � Qs

� YG � fulfills the condition for a partition as re-
quired in the branch and bound algorithm. Note that the partition � Qs � has a star-shaped form,
with ŷ as the center point.

We will now consider a more direct way of finding the lower bounds when x is bounded in
R∞. We consider a formulation of R∞ in terms of lower left l � � mx and upper right l � � mx
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corners, where

li
∆

� x̂i � λi � i � 1 ����� � � mx

ui
∆

� x̂i 
 λi � i � 1 ����� � � mx

(5.62)

and

λi
�

ui � li
2

� i � 1 � ����� � mx

x̂i
�

ui 
 li
2

� i � 1 � ����� � mx

(5.63)

This gives the following formulation:

R∞
� � x : li

�
xi

�
ui � i � 1 ����� � � mx �

If we go back to the objective of finding the minimum over XG of the Lagrangian (5.35), we
can obtain a result more directly. For each corner in R∞ defined by s � � � 1 � 1 � mx as x̂ 
 Λs, we
have to consider the region Qs, and we get the following lower bound valid

inf
x � XG

L 	 x � y � Γ � ∆ 
 	 a 	 y � Γ̂ � ∆̂ 
 
 inf
x � R∞

mx

∑
i � 1

xibi 	 y � Γ̂ � ∆̂ 

� a 	 y � Γ̂ � ∆̂ 
 
 inf

s � � � 1 � 1 � mx

mx

∑
i � 1

� ui 
 li
2


 ui � li
2

si � bi 	 y � Γ̂ � ∆̂ 
 (5.64)

For each sign vector s � � � 1 � 1 � mx we have to solve the following subproblem:

minimize v 	 ŷ 
 
 pT 	 y � ŷ 
 
 ∑mx
i � 1

�
ui � li

2 � ui � li
2 si � qT

i 	 y � ŷ 

subject to siqT

i 	 y � ŷ 
 	 0 � i � 1 ��� ��� � mx

y � YG

(5.65)

Again the optimum is denoted by φs, and the y that achieves it by ys.
For each s � � � 1 � 1 � mx we will define a function φs : Qs

� �
by

φs 	 y 
 ∆
� v 	 ŷ 
 
 pT 	 y � ŷ 
 
 mx

∑
i � 1

� ui 
 li
2

� ui � li
2

si � qT
i 	 y � ŷ 
 � y � Qs �

Putting all φs 	 y 
�� s � � � 1 � 1 � mx together we get a function φ :
� my � �

, that we denote φ 	 y 
 .
Going back to the definition of the 1-norm we can write φ 	 y 
 as

φ 	 y 
 � v 	 ŷ 
 
 pT 	 y � ŷ 
 
 mx

∑
i � 1

ui 
 li
2

qT
i 	 y � ŷ 
 � �

�
�
�

ui � li
2

Q 	 y � ŷ 
 �
�
�
�

1
� y � Q �

(5.66)

Note, that since φs 	 y 
 is linear, then φ 	 y 
 is piecewise linear.
The function φ 	 y 
 consists of two parts, a linear function minus the norm of linear function.

Since the norm is convex a convex function, the norm of a linear function of is convex. Putting a
minus in front of the norm makes it a concave function. Since a linear function is concave, and
the sum of two concave function is also concave we have that φ 	 y 
 is concave. The function φ is
also continuous.
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We summarize the properties of φ as follows

φ

������ �����
is piece-wise linear
is concave
is continuous
touches v at ŷ, i.e. φ 	 ŷ 
 � v 	 ŷ 

is a lower bounding (LB) function φ 	 ŷ 
 �

v 	 y 
�� � y � YG

(5.67)

We will call φ for lower bounding function refering to the fifth property above. In fact one can
think of φ as a pyramid shaped function lying below v 	 y 
 . We will now add a superscript on φ to
reflect the point ŷ and we get the notation φŷ.

Example 5.3 (Simple φ function) Suppose my
� 2, ŷ �

�
0 0� T , p �

�
0 0� T , x bounded in the unit

cube in max norm, and Q �

�
1 0
0 3 � , then

φ 	 y 
 � � � 1y1 � � � 3y2 � �

A plot can be seen in figure 5.5.
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Figure 5.5: A simple LB function

Partition

We have now derived a star-shaped partition of the region YG, with ŷ as the center point. we have
showed how we can derive lower bounding functions in each region of the partition. The lower
bounding functions can be used to find lower bounds, that can be used in the branch and bound
algorithm. One might object to split up the region in the 2mx subregions, the star-shaped partition
suggest. There is one major advantages the function φ 	 y 
 that underestimates v 	 y 
 over all YG is
convex in each subregion Qs. This mean that if we in future iterations should consider to split
Qs again, and calculate upper and lower bounds, we can use φs 	 y 
 that is linear to improve the
lower bound. That is the lower bounding functions for a region Q from previous iterations can be
inherited down to any subpartition of Q . Before we describe this type of inheritance more deeply,
we will study a couple of lower bounding function for a simple BMI problem:
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Example 5.4 (Sahinidis and Grossman II) Again we consider the example from [SG91], see
example 5.2 We now consider the Lagrangian of the above problem. Associated with the lower
bounds x 	 0, y 	 0 we use the Lagrange multiplier µ � � 2, and with the upper bounds ν � � 2.
The multiplier associated with the bilinear constraint is denoted by w � �

. We get the following
Lagrangian:

L 	 x � y � w � µ � ν 
 � � x � y � w 	 4 � xy 
 � �
µ1 µ2 �

�
x
y � � �

ν1 ν2 �
�

6 � x
4 � y �

� � 4w � 6ν1 � 4ν2 
 y 	 � 1 � µ2 
 ν2 


 x 	 � 1 
 wy � µ1 
 ν1 
�� w 	 0 � ν 	 0 � µ 	 0

(5.68)

We consider different ŷ. Due to complementary slackness a number of Lagrange multipliers will
be zero. We get the following values of v 	 ŷ 
 , optimal x̂, and optimal Lagrange multipliers:

ŷ x̂ v 	 ŷ 
 ŵ µ̂1 µ̂2 ν̂1 ν̂2 a 	 y � ŵ � µ̂ � ν̂ 
 b1 	 y � ŵ � µ̂ � ν̂ 

0 6 � 6 0 0 	 0 1 0 � 6 
 	 � 1 � µ̂2 
 	 y � 0 
 0

2 � 3 6 � 20 � 3 3 � 2 0 0 0 0 � 20 � 3 
 	 � 1 
 	 y � 2 � 3 
 	 3 � 2 
 	 y � 2 � 3 

2 2 � 4 1 � 2 0 0 1 0 � 4 
 	 � 2 
 	 y � 2 
 1 � 2 	 y � 2 

4 1 � 5 0 0 0 0 	 0 � 5 
 	 � 1 
 ν̂2 
 	 y � 4 
 1 � 4 	 y � 4 
	 0 indicates that the multiplier was unconstrained.

Using this we can obtain the following lower bounding functions on v 	 y 

φ0 	 y 
 � � 6 
 	 � 1 � µ̂2 
 	 y � 0 
 for y 	 0

φ2 � 3 	 y 
 �

�
� 20 � 3 
 	 � 1 
 	 y � 2 � 3 
 
 0 	 3 � 2 
 	 y � 2 � 3 
 for y � 2 � 3 	 0

� 20 � 3 
 	 � 1 
 	 y � 2 � 3 
 
 6 	 3 � 2 
 	 y � 2 � 3 
 for y � 2 � 3
�

0

φ2 	 y 
 �

�
� 4 
 	 � 1 
 	 y � 2 
 
 0 	 1 � 2 
 	 y � 2 
 for y � 2 	 0

� 4 
 	 � 1 
 	 y � 2 
 
 6 	 1 � 2 
 	 y � 2 
 for y � 2
�

0

φ4 	 y 
 � � � 5 
 	 � 1 
 ν̂2 
 	 y � 4 
 
 6 	 1 � 4 
 	 y � 4 
 for y � 4
�

0

These lower bounding functions are plotted in figure 5.6. From the figures the lower bound on f
�

can be seen. We get the following lower bounds by solving the subproblems

LB f unction φ � 1 φ1

φ0 NC � 10 � φ 	 4 

φ2 � 3 � 12 � φ 	 0 
 � 10 � φ 	 4 

φ2 � 8 � φ 	 0 
 � 6 � φ 	 4 

φ4 � 7 � φ 	 0 
 NC

where NC denotes Not Calculated, since the corresponding region lies outside 0
�

y
�

4.

Inheritance

Suppose we have a collection of k points ŷl � Q � l � 1 ������� � k. By calculating the LB functions
extending from these points, we get a function approximating v 	 y 
 from below. This function
consist of the point-wise infimum of all computed LB functions.

v 	 y 
 	 sup
l � 1 � � � � � k

φŷ
�
l � 	 y 
 ∆

� Φ 	 y 
 � (5.69)
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Figure 5.6: Lower bounding functions for the Sahinidis-Grossman problem.
Lower bounding functions around four different center points are plotted together with the
optimal-value function (solid line).

The infimum of the function Φ 	 y 
 now represent the best lower bound (denoted f ) we can

find over the region. The infimum of v 	 ŷ � l � 
 over l � 1 ������� � k gives an upper bound f on v 	 y 
 over
the region Q . We have the following

f � inf
y � YG

Φ 	 y 
 �
inf

y � YG

v 	 y 
 �
f � (5.70)

The algorithm that we consider for solving the ε-optimal BMI optimization problem basically
builds the function Φ until f � f

� ε.
We now return to the Sahinidis Grossmann example.

Example 5.5 (Sahinidis Grossmann III) Again we consider the example by Sahinidis and Gross-
mann. The following combination of φy provides exact upper and lower bounds for the global
optimum:

f
�

� inf
0 � y � 4

inf
�
φ0 	 y 
 � φ2 	 y 
 � � � 20 � 3

f
�

� inf
0 � y � 4

inf
�
φ0 	 y 
 � φ4 	 y 
 � � � 20 � 3 � (5.71)

see figure 5.6.
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Splitting point

When a new region is considered there should be a splitting point ŷ available, that can be used
both to solve the restricted problem, and to split the region around. Usually the optimal point ys,
from the subproblem over the present region can be used to split around. However, the solution
to the subproblem is likely to lye on the boundary in the first couple of iterations. This will leave
some of the regions in the partition big, and the algorithm might not converge, we will return to
this issue on page 86. However, if we in each iteration use a point in the middle of the region
then we are guaranteed that the volume of the regions in the partition goes to zero, which will
ensure convergence. How do find a point in the middle of the region YG? We shall here give two
possibilities. Let H 	 y 
 be an LMI formulation of the region YG, such that YG

� � y : H 	 y 
 	 0 � .
The following problem will find the most feasible point in the region:

minimize
y� t t

subject to H 	 y 
 
 tI 	 0
(5.72)

Also consider to solve the following maximum determinant problem [VBW96]:

minimize
y

logdetH 	 y 
 � 1

subject to H 	 y 
 	 0
(5.73)

The above problem (5.73) is a convex problem, and the optimal solution is usually refered to
as the analytical center. More over the objective logdetH 	 y 
 � 1 is a barrier function, that is it
goes to infinity when H 	 y 
 approaches the boundary of the positive semidefinite cone. There fore
minimizing the objective logdetH 	 y 
 � 1 centers y in the feasibility region � y : H 	 y 
 	 0 � . Note
however that the analytical center is dependent on the LMI formulation. So for instance given
two constraint multiplying one of the constraints with a factor λ �� 1 will move the analytical
center.

Active variables

The number of subproblems is in general 2mx but can in some cases be reduced significantly. First
of all if not all variables in x are connected with bilinear terms to y, then we only have to consider
those that are. Let A be the set of indices to x where there is a bilinear connection with some
variable in y. By considering Q we get

A
� k � ∆

� � i : qi �� 0 � �
are the variables in x that do not have a bilinear connection with y. In other words Q can tell if
there is a bilinear connection between x and y.

Dead half spaces

The number of subproblems can also be reduced by checking if bi 	 y 
 	 0 or bi 	 y 
 �
0 for the

entire region YG. If for instance the set YG
� � y : qi 	 y � ŷ 
 	 0 � is empty, then all the problems

with siqT
i 	 y � ŷ 
 	 0, si

� 1 are infeasible, and only problems with si
� � 1 can be feasible. This

will cut down the number of subproblems to be solved by a factor of a half, and just by solving one
simple feasibility problem. In other words if mx

� 2 then this might cause a significant reduction
in the number of subproblems to be solved. An example can be seen in the Grossman-Sahinidis
problem, we have two occasions denoted NC, where the corresponding regions lies outside YG.
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Lower bound for x bounded in 1-norm

When x was bounded in 1-norm, we had to calculate the max norm of b 	 y � Γ � ∆ 
 , which could be
done by considering each entry bi 	 y � Γ � ∆ 
 separately. Inserting the optimal formulation derived
above for ã 	 y � Γ � ∆ 
 and b̃i 	 y � Γ � ∆ 
 we get lower bounds, that have some additional properties.

To find the lower bound over YG we have to compute 2mx SDP problems. For each entry
i � 1 � ����� � mx we to compute two problems. First the one corresponding to bi 	 y � Γ � ∆ 
 � qT

i 	 y � ŷ 

being negative definite,

minimize
y

v 	 ŷ 
 
 pT 	 y � ŷ 
 
 qT
i 	 y � ŷ 


subject to � qT
i 	 y � ŷ 
 	 0

y � YG

(5.74)

denote the optimum by ψ
�
i and the optimal y by ŷ

�
i , similarly for bi 	 y � Γ � ∆ 
 solve the problem

minimize
y

v 	 ŷ 
 
 pT 	 y � ŷ 
 � qT
i 	 y � ŷ 


subject to qT
i 	 y � ŷ 
 	 0

y � YG

(5.75)

and denote the optimum by ψ �i and the optimal y by ŷ
�
i .

As with the x bounded in max norm we can define a complete lower bounding function over
YG, here denoted ψ. It gets the form

ψ 	 y 
 ∆
� v 	 ŷ 
 
 pT 	 y � ŷ 
 � � Q 	 y � ŷ 
�� ∞ (5.76)

Again it can be shown, that ψ 	 y 
 for x bounded in 1-norm, has almost the same properties, as φ
for x bounded in max-norm:

ψ

���� ���
is piece-wise linear
is concave
is continuous
touches v at ŷ, i.e. φ 	 ŷ 
 � v 	 ŷ 
 (5.77)

The only property that is lacking in comparison with φ is the partition of the linear parts by
Qs. Even though φ also gets a pyramid shape, the edges of the pyramid are not aligned with
qi 	 y � ŷ 
 � 0, but with the lines given by� Q 	 y � ŷ 
�� ∞

�

�
� qT

j 	 y � ŷ 
 �
� �

�
� qT

i 	 y � ŷ 
 �
� � i �� j � i � j � 1 ��� ��� � mx � (5.78)

We examine this by an example:

Example 5.6 (Simple ψ functions) Suppose my
� 2, ŷ �

�
0 0 � T , p �

�
0 0 � T , x bounded in the

unit cube in 1 norm, and Q �

�
1 0
0 2 � , then

φ 	 y 
 � min
y1 � y2

	 � � 1y1 � � � � 2y2 � 
 �

A plot can be seen in figure 5.7. The corners in the pyramid is aligned with

� 1y1 � � � 2y2 � � min
y1 � y2

	 � � 1y1 � � � � 2y2 � 

which constitutes to the lines y1

� 2y2 and y1
� � 2y2.
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Figure 5.7: A simple ψ function

Partition

In this case the partition should not be defined by the lines qi 	 y � ŷ 
 � 0, since we then get 2mx

new regions. Instead we will give two suggestions for splitting YG in two or four. The suggestions
are heuristic.

The first partition rule is based on the wish to improve the lowest bound fastest: that is
minimize the biggest difference between v 	 ŷ 
 and ψ

� � ψ � .
The second partition rule is based on the corners of the pyramid. Recall the condition (5.78)

then we have the condition � qi 	 y � ŷ 
 � � � qi 	 y � ŷ 
 � . The bounds on y has not form of a rectangle,
so we will assume that y is bounded in a circle, that is the 2-norm. We can now use Cauchy-
Schwartz inequality to get � qi 	 y � ŷ 
 � �

�
�

qT

i � 	 y � ŷ 
 � �
�

� � qi � 2 � y � ŷ � 2. Therefore we conject
that the two columns qi and q j with largest 2-norm constitutes to the smallest lower bound, and
splitting according to these will leave us with the best partition. This partition should now be
performed by qi 	 y � ŷ 
 �

�
qi 	 y � ŷ 
 , which will partition the region in four regions.

We summarize these partition rules in the following list:

1. Let j̃ be one of the entries, which have minimal lower bound:

j̃ � argmin
i � A min � ψ �

i � ψ �i � (5.79)

then use q j 	 y � ŷ 
 � 0 to split the region in two.

2. Let i � j be two entries with largest Euclidean norm of q j, then partition using 	 qi � q j 
 	 y �
ŷ 
 � 0 and 	 qi 
 q j 
 	 y � ŷ 
 � 0. If there is only one entry qi split using q j 	 y � ŷ 
 � 0.

No inheritance

Due to the form of the pyramid inheritance is difficult, and time consuming and therefore ne-
glected

Splitting point

The candidate for a splitting point available from the lower bounding subproblem is not really
adequate, since it most likely will lye on the boundary. Therefore, a point in the center should be
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determined using either (5.72) or (5.73).

5.7 Customized Branch and Bound algorithms

In the above sections we have discussed how we could obtain upper and lower bound, which
could be used together with the Branch and Bound algorithm. Even though the BB algorithm
could be used directly the BB algorithm should be customized to exploit special features of the
upper and lower bounds.

The upper and lower bounds are denoted differently for each proposed algorithm. For the
bilinear connection approach, χ is used, for the socalled pyramid algorithm φ denotes the bounds,
where as ψ is used for the socalled house algorithm.

5.7.1 Relaxation via bilinear connection

We will now give a more extensive description of an algorithm, that can exploit the relaxation of
the bilinear connection. The lower bound over a region could be computed as an SDP problem,
and the solution to this SDP problem also gave directions for the splitting and a could point to
use in the restricted problem (upper bound).

The algorithm graduately builds a branch and bound tree, where each node in the tree corre-
sponds to a region, in the original set YG. We will refer to each node by the corresponding region.
Each node gets superscript to reflect the iteration it is has been split in, such that Q � l � , has been
split in l’th iteration. Subscript s � 1 � 2 are indices for the two regions that was split in a iteration.

f and f are used to denote global upper and lower bound respectively. A tilde denotes that
the result was obtained from the relaxation problem, where as a ŷ denotes the center point, and x̂
is the optimal point in the restricted problem solved at ŷ.

We call the algorithm for the Relaxed Bilinear Connection Branch and Bound algorithm,
abbreviated RBCBB algorithm.

Relaxed Bilinear Connection Branch and bound algorithm

1. Initialization:

Set k � 1.

Compute Rx
� XG and Ry

� YG and let R
�
1 �

y
∆� Q

�
1 � � Ry.

Let Q
�
1 � be the root in the BB tree.

Set the splitting point to x̃
�
1 � ∆��� lx � ux �	� 2, ỹ

�
1 � ∆�
� ly � uy ��� 2, and W̃

�
1 �

i j
� x̃

�
1 �

i ỹ
�
1 �
j , i � 1 ������ mx,

j � 1 ������ my.

2. Branching and local bounding:

(a) Center point

Find indices � ĩ � j̃ ��� argmax
i � j

����� w̃ � k �i j � x̃
�
k �

i ỹ
�
k �
j

��� : x̃i �� 0 � i � 1 ������ mx � j � 1 ������ my � and split

R
�
k �

y in two by the plane ŷ j̃
� 1

2 � ỹ j̃ � w̃ĩ j̃
x̃ j̃ �

(b) Upper bounding
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Solve the restricted problem

minimize
x

f � x � ŷ � k � �
subject to F � x � ŷ � k � � � 0

G � x � ŷ � k � � � 0

Optimum is the upper bound χ
�
k � , and the optimal variable x̂

�
k � .

(c) Branching

Set Q
�
k �

1
∆� Q

�
k ����� y : y � ŷĩ � and Q

�
k �

2
∆� Q

�
k ����� y : y

�
ŷĩ � in the BB tree as children to

Q
�
k � .

(d) Lower bounding Generate

W
�
k �

1
� x � y � � W

Rx �Q � k �1

� x � y � W �
k �

2
� x � y � � W

Rx �Q � k �1

� x � y �
from Rx and Q

�
k �

1 � Q �
k �

2 and solve the two relaxed problems:

minimize
x � y�W f � x � y �

subject to F̃ � x � y � W � � 0
G � x � y � � 0

y � Q
�
k �

1

W � W
�
k �

1
� x � y �

minimize
x � y�W f � x � y �

subject to F̃ � x � y � W � � 0
G � x � y � � 0

y � Q
�
k �

1

W � W
�
k �

2
� x � y �

Denote the optima by χ
�
k �

1 /χ
�
k �

2 respectively, and let x̃
�
k �

1 � ỹ � k �1 � W̃ �
k �

1 / x̃
�
k �

2 � ỹ � k �2 � W̃ �
k �

2 be the opti-
mal variables

3. Global bounding:

(a) Compute the index for the best global upper bound l � argmin j � 1 � 	 	 	 � k χ
�

j � and let x 
 � x̂l � y 
 �
ŷl , and the global bound is f

�
k � � f � x 
	� y 
 � .

(b) Compute the best global lower bound f
�
k � , as

f
�
k � � min

j � 1 � 	 	 	 � k min
s � 1 � 2

Q
�
l �

s leave

χ
�
l �

s

and let p � r belong be one of the sets achieving f � f
�
p �

r
, where Q

�
p �

r is a leave.

4. Conditioning: If f
�
k � � f

�
k � � ε then x 
	� y 
 are ε optimal, EXIT.

5. Selection: Update k
∆� k � 1, and let Q

�
k � ∆� Q

�
p �

q , x
�
k � ∆� x̃

�
p �

q , y
�
k � ∆� ỹ

�
p �

q , W
�
k � ∆� W̃

�
p �

q .

6. Goto 2.

The above algorithm is described such that aspects important for computation are considered.
The description is not adequate for direct implementation in for instance MATLAB , C++ or
Java++. These include what is called pruning, that is removing regions where the lower bound on
a region is above the global upper bound. We discuss these implementation issues in appendix.

These implementation related matters do not affect the number of iterations. However, tricks
can be performed. For instance after some iterations k we know, that the optimum will lye be-

tween f
� k � and f

� k �
so we can add an constraint like

f
� k � �

f 	 x � y 
 �
f
� k �

(5.80)
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to the two relaxed problems. As discussed earlier this will improve the lower bounds, since the
region over which relaxed problem is solved is compressed, and due to this reduce the required
number of iterations.

The constraint (5.80) could also be used to compress the rectangle Rx, if c �� 0, and in this way
improve the lower bound. Recall that a calculation of Rx requires 2mx SDP problems. Although
these SDP problems are simple, the problems might require more computational time, than the
amount that is saved due to the better bounds. This drawback could be solved by only recalcu-
lating Rx, at certain iterations (every tenth) or when the upper and lower bounds have changed
significantly. An improvement can also be obtained by compressing the regions Q

� k � before steb
2.b. The drawback here is even stronger, since the calculations can only be used for the children
of that region, in oppose to Rx that works on all regions.

5.7.2 Relaxation via Lagrangian duality

In this subsection we present two algorithms based on the relaxation using Lagrangian duality
presented above. We first show an algorithm that is customized to exploit the lower bounds
obtained when x is bounded in max norm. We then proceed with the customized algorithm when
x is bounded in 1 norm.

Lagrangian Pyramid Branch and bound algorithm

When x is bounded the lower bounding function φ 	 y 
 we could derive, have a shape like a gen-
eralized pyramid. We will therefore call the algorithm for the Lagrangian Pyramid Branch and
Bound algorithm, abbreviated LPBB algorithm.

Pyramid Branch and bound algorithm

1. Initialization:

Set k � 1.

Compute Rx
� XG and let R

�
1 �

y
∆� Q

�
1 � � Ry.

Let Q
�
1 � be the root in the BB tree.

2. Branching and local bounding:

(a) Upper bounding
Solve the restricted problem

minimize
x

f � x � ŷ � k � �
subject to F � x � ŷ � k � � � 0

G � x � ŷ � k � � � 0

Optimum is the upper bound φ
�
k �

, and the optimal variable x̂
�
k � , and the dual optimal variables

Γ
�
k � � ∆ � k � .

(b) Key constants and active variables
Calculate

p
�
k �
j

∆� d j � Tr Γ̂Fy
j � Tr ∆̂Gy

j ��
Q
�
k � �

ji

∆� TrΓFxy
i j �
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where each row in Q is denoted qi.

Let A
�
k � ∆� � i : qi �� 0 � be the set of indices for the active x-variables.

(c) Inheritance
Q
�
k � is just a subregion of all its parents, and the computed lower bounding functions from

the parents, can be used to refine the information over the current region. Trace the BB tree
for the parents. Let I denote the set of iterations numbers corresponding to the parents of
Q
�
k � . Note that Q

�
k � � �

l � I B
�
l � .

(d) Bounding of the x variables

Find the optimal interval � l � k �i � u � k �i � such that there exists x � y with G � x � y � � 0 and φ � f � x � y � �
φ. This is done by solving

Minimize
x � y xi

subject to f
�
k � 1 � � f � x � y � � φ

�
k �

G � x � y � � 0
y � B

�
l ��� l � I

Minimize
x � y � xi

subject to f
�
k � 1 � � f � x � y � � φ

�
k �

G � x � y � � 0
y � B

�
l ��� l � I

for each i � A . Denote the solution of the left side by l
�
k �

i ,and the right side by u
�
k �

i

(e) Lower bounding
For each

s � � s : s � � � 1 � 1 � mx � si
� 1 for i �� A

�
k � � ∆� T

�
k �

generate

B
�
k �

s
� �

y : y ��� my � siq
�
k �

i
� y � ŷ

�
k � � � 0 � i � A

�
k � �

h
�
k �

s
� y � � φ

�
k � � p

�
k � � y � ŷ

�
k � � � ∑

i � 1
i � A � k �

	
u
�
k �

i � l
�
k �

i

2 � si
u
�
k �

i � l
�
k �

i

2 
 qi
� y � ŷ

�
k � �

and solve the subproblem

minimize
x � y φ

subject to G � x � y � � 0

y � B
�
k �

s

φ �
h
�
k �

s
� y �

y � B
�
l �

φ �
h
�
l � � y ��� l � I

If the above problem is feasible denote the optimum by φ
�
k �

s
, the optimal y as ŷ

�
k �

s , put Q
�
k �

s
�

Q
�
k ��� B

�
k �

s in the BB tree.

3. Global bounding:

(a) Compute the index for the best global upper bound l � argmin j � 1 � 	 	 	 � k φ
�

j �
and let x 
 � x̂l � y 
 �

ŷl , and the global bound is f
�
k � � f � x 
 � y 
 � .

(b) Compute the best global lower bound f
�
k � , as

f
�
k � � min

j � 1 � 	 	 	 � k min
s � T � l �

Q
�
l �

s leave

φ
�
l �

s

and let p � r belong be one of the sets achieving f � ψ
�
p �

r
, where Q

�
p �

r is a leave.
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4. Conditioning: If f
�
k � � f

�
k � � ε then x 
	� y 
 are ε optimal, EXIT.

5. Selection: Update k
∆� k � 1, and let Q

�
k � ∆� Q

�
p �

r , B
�
k � ∆� B

�
p �

r , y
�
k � ∆� ỹ

�
l �

r , h
�
k � � h

�
p �

r .

6. Goto 2.

Lagrangian House Branch and bound algorithm

When x is bounded in 1 norm, we have to solve 2mx subproblems. For each variable xi we get
a house like lower bound, which combined gave a pyramid shape. However to distinguish this
approach with the pyramid algorithm above, we will call this algorithm the Lagrangian House
Branch and Bound (LHBB) algorithm.

Lagrangian House Branch and bound algorithm

1. Initialization:

Set k � 1.

Find some Λ and x̂, such that R x
1
� � x :

�
Λ � x � x̂ � �

1 � 1 � � XG.

Let Q
�
1 � be the root in the BB tree.

2. Branching and local bounding:

(a) Q
�
k � is just a subregion of all its parents, and the computed lower bounding functions from

the parents, can be used to refine the information over the current region. Trace the BB tree
for the parents. Let I be the set of iterations numbers corresponding to the parents of Q

�
k � .

Let q
�
l � � y � ŷ

�
l � � � 0, l � I be the cutting planes with appropriate sign such that

Q
�
k � � �

y : � x � G � x � y � � 0 � q � l � � y � ŷ
�
l � � � 0 � l � I �

Let H � x � y � be the LMI constraint consisting of G � x � y � � 0 and q
�
l � � y � ŷ

�
l � � � 0 � l � I .

(b) Find the analytical center of Q
�
k � , that is solve the problem

minimize
x � y logdetH � x � y � � 1

subject to H � x � y � � 0

and denote the optimal variable by y
�
k � .

(c) Upper bounding
Solve the restricted problem

minimize
x

f � x � ŷ � k � �
subject to F � x � ŷ � k � � � 0

G � x � ŷ � k � � � 0

Optimum is the upper bound ψ
�
k � , and the optimal variable x̂

�
k � , and the dual optimal variables

Γ
�
k � � ∆ � k � .

(d) Key constants and active variables
Calculate

p
�
k �
j

∆� d j � Tr Γ̂Fy
j � Tr ∆̂Gy

j ��
Q
�
k � �

ji

∆� TrΓFxy
i j �

where each row in Q is denoted qi.

Let A
�
k � ∆� � � i : qi �� 0 � be the set of indices for the active x-variables.
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(e) Lower bounding
For each index i in A

�
k � solve the two problems

minimize
x � y ψ

�
k � � p

�
k � � y � ŷ

�
k � � � qi

� y � ŷ
�
k � �

subject to G � x � y � � 0� qi
� y � ŷ

�
k � � � 0

q
�
l � � y � ŷ

�
l � � � 0 � l � I

minimize
x � y ψ

�
k � � p

�
k � � y � ŷ

�
k � � � qi

� y � ŷ
�
k � �

subject to G � x � y � � 0� qi
� y � ŷ

�
k � � � 0

q
�
l � � y � ŷ

�
l � � � 0 � l � I

Denote the optimum of the left problem by ψ
�
i

and the right by ψ �
i

.

(f) partition Compute

j̃ � argmin
i � A �

min � ψ �
i
� ψ �

i ��� (5.81)

partition with the plane q j̃
� y � ŷ

�
k � � � 0. Define q

�
k � � q j̃. Insert the two regions Q1

� Q
�
k � ��

y : q j
� y � ŷ

�
k � � � 0 � , and Q � Q

�
k �

2
� � y : q j

� y � ŷ
�
k � � � 0 � . As lower bound ψ

�
k �

1 � ψ � k �2 to

Q
�
k �

1 � Q �
k �

2 is

ψ
�
k �

1
� min �� ψ �

i
� � min

i � A
i �� j̃

� ψ �
i
� ψ �

i � � � ψ � k ���	
ψ
�
k �

2
� min �� ψ �

i
� � min

i � A
i �� j̃

� ψ �
i
� ψ �

i � � � ψ � k � �	
3. Global bounding:

(a) Compute the index for the best global upper bound l � argmin j � 1 � 	 	 	 � k ψ
�
j � and let x 
 �

x̂
�
l � � y 
 � ŷ

�
l � , and the global bound is f

�
k � � f � x 
 � y 
 � .

(b) Compute the best global lower bound f
�
k � , as

f
�
k � � min

l � 1 � 	 	 	 � k min
s ��
 1 � 2 �

Q
�
l �

s leave

ψ
�
l �

s

and let p � q belong be one of the sets achieving f
�
k � � ψ

�
p �

r
, where Q

�
p �

r is a leave.

4. Conditioning: If f
�
k � � f

�
k � � ε then x 
	� y 
 are ε optimal, EXIT.

5. Selection: Update k
∆� k � 1, and let Q

�
k � ∆� Q

�
r �

q , q
�
k � ∆� q

�
p �

r , y
�
k � ∆� ỹ

�
r �

q , h
�
k � � h

�
p �

s , and ψ
�
k � � ψ

�
p �

r
.

6. Goto 2.

5.8 Convergence properties

XXX needs to be rewritten to be more stringent..
Convergence of the above algorithms is of course an interesting issue. However more impor-

tant is that if the algorithm converges then the solution is indeed the global optimum. In fact most
often a specific time is available for solving a given problem, this could be minutes, hours, days,
or even weeks. If the problem has not been solved to the required accuracy within the available
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time, then we have two possibilities. Either we use the solution, provided by the (so far) optimal
upper bound, or we accept that no solution has been found.

With this in mind we proceed with a discussion of the convergence properties of the above
mentioned algorithms. All algorithms is based on a branch and bound frame work. We have the
following sufficient conditions for proof of convergence (see [HJ95]):

H1 As the diameter of the minimal rectangle R � Q � 0 then f Q � mini � 1 � � � � � pQ f Qi

� 0.

H2 The diameter of the minimal rectangle R � Q must go to zero when the number of parents
go to infinity.

H3 The subproblem with the lowest lower bound must be selected in at least every K’th itera-
tion.

We will now go through these conditions for each algorithm given above.

5.8.1 Relaxation of bilinear connection

For the RBCBB algorithm the first condition H1 is fulfilled, because when the diameter � uy � ly �
of Q � � y : uy � ly � � Q goes to zero, then the bounds on W becomes more and more tight,
and thus forcing wi j

� xiy j yielding that the solution to the lower bound must be equal to the
upper bound. The partition by (5.24) guarantees that the region Q is split in such away that the
constraints on the relaxed variables wi j that are furthest from xiy j are tighten. Exactly beacuse
the maximizer of

�
� wi j � xiy j

�
� is used to split the y-space. Condition H3 is fulfilled by step 3.b and

5 in the description.

5.8.2 Lagrangian relaxation

H1 Condition H1 is fulfilled by the tightness of the φ and ψ functions. Both functions touches
v 	 y 
 at ŷ, and thus when the diameter of the minimal superior rectanlge R for Q goes to zero the
difference between the upper and lower bounds goes to zero.

H2 The second conditon H2 is for the Lagrangian House algorithm easily fulfilled by step 2.b
and 2f.

For the Lagrangian Pyramid algorithm the splitting point ŷ is given from the solution of the
subproblem. This solution ŷ might lye on the boundary of the set Q , thus the partition given
by the planes qi 	 y � ŷ 
 � 0 � i � A might not partition Q at all, see figure 5.8. However, at each
iteration the tightness of the LB function φ guarantees, that around ŷ in a certain area the optimal
value function has been approximated by the required amount ε. Or more precisely there exist a
region (convex in fact) Ω around ŷ, such that

Ω � � y : v 	 y 
 � φ 	 y 
 � ε � �
where ε is the required accuracy. In a region Q � k � , that is a child of the regions Q � l � � l � I ,
there exists a number of regions Ω

� l � , where the optimal function v 	 y 
 has been approximately
sufficiently. However, it remains to be shown that with a limited amount of iterations I , we can
get

Q
� k � � �

l � I Ω
� l �

� (5.82)
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Figure 5.8: A partition on the boundary of Q.

Floudas and Visweswaran [FV93] talk about “accumulation of constraints”, and tend to prove
that the algorithm converges using this. But it is the authors opion, that the proof is not complete.
Even though the union of Ω

� k � and
�

l � I Ω
� l � might be slightly bigger than

�
l � I Ω

� l � , there is no
guarantee that we have uniform convergence. In other words the sequence

Θ
� k � � Ω

� k � � �
l � I Ω

� l � � (5.83)

might approach the /0. There might be a BMI problem, where the sequence of partitions generates,
smaller and smaller regions, but at the same time generates more and more new regions, that have
to be split in a similar fashion. The problem with this can be seen in example 5.9, where a
huge amount of regions, are generated, and the improvement of the lower bound is negligible.
The author stress though, that this is not a contradiction to convergence of the algorithm. The
problem with the partition can be alleviated, by using the techniques given in (5.72) or (5.73).

H3 For both cases x bounded in 1 and max-norm, condition H3 is trivially fulfilled, by step 3.b
and step 5 in both algorithms.

5.9 Solving Control problems with Global Optimization

We conclude this chapter by examine how to formulate control problems such that they can be
solved using the above proposed algorithms. We shall see that is a lot of structure in the control
problems, can be used to reduce the computational time. First of all reducing volume of the set
YG implies that the lower bound will be better.

Let us first consider the BMI formulation of the fixed-order optimal α stabilizing control
problem. It was stated as the BMI problem (3.4). We repeat it here for better readability.

Maximize
Y � G � α α

subject to Y � 0 � G � ��� nc
� ny � � � nc

� nu �� Ã 
 B̃uGC̃y 
 αI � T
Y 
 Y � Ã 
 B̃uGC̃y 
 αI � � 0 �

(5.84)

We assume that the reader knows how to transform the above problem (5.84) to the form (5.2).
Otherwise an example is given in example 2.1. We introduce the variables y � SVecY , g � VecG.
There are three variables y � g � α, where we will combine g and α in the variable x.
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We have the following BMI constraint:

� Ã 
 B̃uGC̃y 
 αI � T
Y 
 Y � Ã 
 B̃uGC̃y 
 αI � � 0

which we denote F 	 x � y 
 and the following LMI constraint

Y � 0

There are no constraints on either g or α, and SVec � 1 y is only constraint to the positive definite
cone, that is unbounded. We therefore have to add constraints on g � α � and y to ensure that
assumption 5.1 hold.

We will add the two constraints TrY
�

n 	 1 
 ε 
 � TrY 	 n 	 1 � ε 
 to Y . This does not introduce
any conservatism, since if Y solves the BMI then so does λY � λ � 0.

However, we can add more constraints on Y . Suppose we know that the optimal α is bigger
than α, then we can restrict our attention to the set of Y ’s, that corresponds to the existence of a
full order controller with stability degree α. Recall that the existence of G solving the above BMI
is guaranteed by Y � 1 � Xα � nc and Y � Yα � nc . The last condition is convex, so we can add this to
the constraints on Y . We can add stronger constraints on Y . Y and Y � 1 was related by (3.18), here
repeated,

Y �

� �
Y12

Y T
12 Y22 � and Y � 1 �

� � �
� � � � (5.85)

We can restrict our search in Y to the the set

� � : � 	 � � � 
 � Xα � 0 � Yα � 0 � Z � �
which guarantees that

�
is the upper left corner of a Lyapunov function that proves the existence

of a full order controller. Combining the constraints on Y we get

Y � 0

TrY
�

n 	 1 
 ε 

TrY 	 n 	 1 � ε 

Y �

� � �
� � �

� T �y � � T � 
 � � 
 2α
� � � T � T

y � 0� �
I

I
� � 	 0

� �u 	 � � 
 � � 
 2α
� 
 � � T

u � 0

(5.86)

The last two constraints requires an introduction of a new variable
�

. However the variable
is not completely bounded we need to add an upper bound, Tr

� �
M will do. The coupling

constraint is equivalent to
� � 0 and

� 	 � � 1, combining this with Y � 0 we get Y � 0 and
� 	 �

I 0 � Y

�
I
0 � , which is equivalent to

�� � �
I 0 ��

I
0 � Y

�� 	 0
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We now write our final suggestion for the constraints on Y , as

Y �

� � �
� � �

� �u 	 � � 
 � � 
 2α
� 
 � � T

u � 0
� T �y � � T � 
 � � 
 2α

� � � T � T
y � 0�� � �

I 0 ��
I
0 � Y

�� 	 0

TrY
�

n 	 1 
 ε 

TrY 	 n 	 1 � ε 


Tr
� �

M

(5.87)

This reduces the volume of YG significantly. Especially we only search over the Lyapunov func-
tions that proves the existence of a full order α stabilizing controller. G � � � nc

� ny � � � nc
� nu �

We also need to put constraints on the controller parameter G. The controller parameter G
has 	 nc 
 ny 
 � 	 nc 
 nu 
 free variables. If nc

� 1 this is more than sufficient for parameterizing
all possible input/output mappings for the controller. Given a controller�

ẋc

u � �

� �
c

�
c�

c � c �� ��� �
G

�
xc

y � � (5.88)

defined by Ac � Bc � Cc � Dc then we want to find a parameterization A such that we can place poles
and zeros of the transfer function from u to y freely. A general approach would be to consider the
Jordan form of A, but this leads to a complicated parameterization. However, if we restrict our
attention to diagonizable Ac then we can get a simple parameterization2. Bc and Cc determines
the zeros... If nc is even we consider blocks on the form

Ac
� Diag 	 J1 � J2 ����� � � Jq 
 (5.89)

where q � nc � 2 and J are two by two blocks on the form

Ji
�

�
αi

1 ωi

ωi αi
2 �

Each block give eigenvalues Ji on the form

λ �

�� � α
�

jω if α ∆
� α1

� α2� α1 � α2
� � � α1

� α2 � 2 � 4 � α1α2
� ω2 �

2 otherwise

This allows us to place the poles freely, but not the eigenvectors. With Bc and Cc we can place
the zeros. Note that with the form of Ac we have 3q � 3nc � 2 free parameters instead fo n2

c.
If nc is odd, we get a similar parameterization. Let q be the biggest integer, such that q

�
nc � 2,

then we get

Ac
� Diag � J1 � J2 ������� � Jq � αq � 1 � (5.90)

2This omit impulse responses on the form y
�
t ��������� tqeλt �����
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5.10 Experimental results with the Pyramid algorithm

The above pyramid algorithm have been implemented in MATLAB . The SP package by Boyd
and Vandenberghe [VB94] was used to solve the SDP problems since it provides the primary as
well as the Lagrange variables. SP is coded in the C language and is therefore very fast, where
as the bookkeeping code for the algorithm is in plain MATLAB and not specially optimized. The
code is does not solve the generalized problem discussed above, but is a more specialized code.
The algorithm solves the following problem

minimize f 	 x � y 
 � cT x
subject to F 	 x � y 
 	 0

A 	 y 
 � A0 

my

∑
j � 1

y jA j 	 0

� li
�

xi
�

ui � i � 1 � � � � � mx �
(5.91)

The above restriction of the general BMI optimization cannot exploit any convex connections
between x and y. At each iteration the superior rectangle R for�

x :
max

�
f � φ� �

cT x
�

max
�
f � φ�

� li
�

xi
�

ui � i � 1 � � � � � mx � (5.92)

is found, and used for the lower bound functions, where f and f are expected upper and lower
bounds. This has only effect if ci �� 0 and Fxy

i j �� 0, for some i � j.
The algorithm also performs pruning, that is it removes regions with lower bound bigger than

upper bound. Also the algorithm finds a feasible point itself before starting the algorithm, so even
a slight chance in A 	 y 
 might cause a complete different initial y. The code is written to see how
well the algorithm performs. Therefore we only give number of iterations and number SDP’s.

5.10.1 A classical example

In the literature the following simple BMI has been a bench-mark example.

Example 5.7 (Goh example) Consider the simple problem from [GSP94]

minimize t
subject to F0 
 xFx

1 
 yFy
1 
 xyF xy

11 
 tI 	 0
� 1

�
t

�
7

� 3
�

x
�

7
� 0 � 5

�
y

�
2

(5.93)

where

F0
�

�� � 10 � 0 � 5 � 2
� 0 � 5 4 � 5 0
� 2 0 0

�� Fx
1

�

�� � 1 � 8 � � 1 � � 4
� � 1 1 � 2 � 1
� � 4 � 1 0

��
Fy

2
�

�� 9 0 � 5 0
0 � 5 0 � 3
0 � 3 � 1

�� Fxy
11

�

�� 0 0 2
0 � 5 � 5 3
2 3 0

��
The above problem have three local minima, with the optimum as f

�
� � 0 � 9565 with an accuracy

of 10 � 4 and is achieved by x
�

� 1 � 049565 and y
�

� 1 � 416605.
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Figure 5.9: Contour plot of the Goh problem

Denote F 	 x � y 
 ∆
� F0 
 xFx

1 
 yFy
1 
 xyFxy

11 , and consider the maximal eigenvalue of F 	 x � y 
 , as
h 	 x � y 
 � λmin 	 F 	 x � y 
�
 . A plot of h 	 x � y 
 for fixed x and y can be seen in figure 5.9. It should be
evident, that h 	 x � y 
 is not convex. If we project the above problem on x-space, we get the function

vx 	 y 
 � min
x

�
h 	 x � y 
 subject to � 3

�
x

�
7�

and semilarly we can get the projection on y-space as

vy 	 x 
 � min
y

�
h 	 x � y 
 subject to � 0 � 5

�
y

�
2 �

These functions are plotted in figure 5.10.
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Figure 5.10: Optimal-value functions for the Goh BMI optimization problem
To the left is the minima of the Goh BMI optimization problem for each x, vx 	 y 
 , and to the right
for each y, vy 	 x 
 . Local minima are indicated with a ’*’.

The pyramid algorithm solves this problem in 16 iterations to an 10 � 3 accuracy, and needs 15
iterations more to get an accuracy of 10 � 4. In figure 5.12 is an evolution of the lower bound for
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Figure 5.11: Goh example - gap and upper/lower bounds.

all y’s over the course of iterations. The upper and lower bounds as a function of the iterations
can be seen in figure 5.11, next to a plot of the logarithm of the gap.

The same problem has been solved by Goh et al [GSP95] and by Tuan et al [THT96]. We
give a comparison in table 5.1. We only give a comparison in terms of the number of iterations
required for obtaining a given accuracy. For all algorithms presented the table the region is split
in half in each iteration. The number of iteration therefore give an indication how well the lower
bound works.

The number of iterations is for a low accuracy smallest with the 3. method of Tuan et al
[THT96], which is equivalent to the RBCBB algorithm presented above. With higher accuracy the
number of iterations is smallest for the pyramid algorithms. In all three algorithms three SDP’s
are solved in each iteration, one for obtaining an upper bound3, and two SDP’s to compute the
lower bound over the two new regions. For both Goh, Tuan 3 and Tuan 4 the SDP’s are bigger
than the pyramid algorithm for the first number of for the lower bound grows with the depth of
the Branch and Bound tree for Tuan 4 and Pyramid.

Accuracy Goh Tuan 3 Tuan 4 Pyramid

0.5 % 24 7 16 12
0.1 % NC 25 19 16
0.01 % NC NC NC 31

Table 5.1: Iterations for different algorithms for the Goh example
NC means not calculated. Tuan gives two algorithms.

3Goh uses method of centers to improve the upper bound.
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Figure 5.12: Evolution of Φ for the Goh Example
The function Φ

� k � 	 y 
 � supl � 1 � � � � � k φŷl 	 y 
 (dashed) for some iterations and v 	 y 
 solid. Φ
� k � slowly

approximates the lowest regions of v 	 y 
 .
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5.10.2 Control problems

Example 5.8 (A simple α stabilizing control problem) We consider the α stability of the fol-
lowing system �

A Bu

Cy 0 � �

�� 0 1 1
1 � 1 0
1 1 0

��
� (5.94)

with a zero’th order controller. A root locus plot of the above system is given in figure 4.3. The
optimal controller has gain � 5 and places bot the closed loop poles at � 3. In fact we cannot find
a Lyapunov function that proves that Acl 	 � 5 
 � A 
 Bu 	 � 5 
 Cy has an α stability of � 3, since
Acl 	 � 5 
 
 3I is singular.

We formulated the problem in the following way:

Minimize
α � G � t �Y � α 
 ρt

subject to 	 � 
 �
uG

�
y 
 αI 
 T Y 
 Y 	 � 
 �

uG
�

y 
 αI 
 � 0� T �y � � T Y 
 Y
� 
 2αY � � T � T

y � 0
Y � 1 � κI
TrY

�
n 	 1 
 δ 


TrY 	 n 	 1 � δ 

0

� α �
3

� 6
�

G
� � 1

0
�

t
�

100

(5.95)

where ρ � 100, δ � 1e � 3, and α has been varied. κ was chosen to 50 which allows the Lyapunov
matrix to have condition number approximately 50n � 100 in this case. Looking at figure 4.4 the
optimal α is expected to be between 2.8 and 3.0. We will solve the problem to accuracy ε � 1e � 2.
We have solved the above problem for different f � f and α to see the influence on a number of key
variables. We will consider the following key variables at each iteration:

1. The best upper bound φ
� k �

and best lower bound φ
� k � .

2. The difference between φ
� k � � φ

� k � .
3. The optimum of the restricted problem.

4. The number of regions.

5. Two of the free variables of the Lyapunov matrix, Y11 and Y12. (Y22
� n � Y11).

We will also consider the lower bounds, on the remaining regions.
We consider the following three examples:

CP I :

α � 0 �
f � 0 �
f � � 3 �

CP II :

α � 2 �
f � 0 �
f � � 3 �

CP III :

α � 2 � 8 �
f � � 2 � 8 �
f � � 2 � 9 �

(5.96)

The number of iterations and SDP calls are given in table 5.2 In figure 5.13 the best upper
and lower bounds can be seen together with the gap. In figure 5.14 the upper bound for the
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# iter. # SDP φ G

CP I 78 378 2.8794 -4.7622
CP II 41 198 2.8803 -4.7618
CP III 47 226 2.8805 -4.7617

Table 5.2: Iterations, SDP calls, upper bound, and optimal G for the simple problem.

restricted problem, can be viewed next to the Lyapunov function and the feasibility region of Y .
In figure 5.15 the number of regions at each iterations is plotted, next to the lower bounds of the
regions remaining when the algorithm terminates.

The algorithm behaves fairly different on the different problems CP I/II/III. The optimum is
approximately the same, but the evolution of the algorithm is different. The most open problem,
namely CPI, requires the highest number of iterations, which was to be expected. Restricting
with α � 2 the required iterations were almost halfed. Supprisingly restricting even further, and
adding more strict bounds for f and f , made the algorithm use more iterations.

XXX discussion.

Example 5.9 (Two wagon example II) We consider the same example as example 4.2 as in
chapter 4. The controller we search for is of order 2. We will limit our search for controllers
to the ones having the parameter:

G �

�� g1 g2 g3

� g2 � g4 � g5

g3 g5 g6

��
gi

� �
0;4 � � i � 1 ������� � 6.

XXX discussion
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Figure 5.13: Upper and lower bounds for CP I/II/III.

First row is CP I, second CP II, and third CPIII. To the left a plot of the best upper bound φ
� l �

and
best lower bound φ

� l � for iterations l � 1 ����� � � k , to the right a logarithmic plot of the difference
between the two.
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Figure 5.14: Upper bound/Lyapunov function for CP I/II/III.
First row is CP I, second CP II, and third CPIII. To the left a plot of the solution of the restricted

problem φ
� k �

. To the right a plot of the Lyapunov function, that is Y11 and Y12, for each itera-
tion. Each iteration is marked with a ’x’, whereas the solid line surrounds the feasibility region
� y : A 	 y 
 	 0 � , which is computed using the MATLAB routine � �������"(+� and therefore slightly
inaccurate.
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Figure 5.15: Number of subregions/lower bounds for regions remaining for CPI/II/III.
First row is CP I, second CP II, and third CPIII. To the left the number of subregions at each
iteration. To the right the lower bounds for the remaining regions at the end of the algorithm.
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To the left a plot of the best upper bound φ
� l �

and best lower bound φ
� l � for iterations l � 1 � ����� � k

, to the right a logarithmic plot of the difference between the two.
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Figure 5.17: Upper bound/Number of subregions for Two Wagon example.

To the left a plot of the solution of the restricted problem φ
� k �

. To the right the number of subre-
gions at each iteration.
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Chapter 6

Discussion and future work

Here we summarize and discuss the results presented in the last two chapters.

6.1 Heuristics algorithms for low-order control design.

The algorithm presented in chapter 4 was developed together with Karolos Grigoriadis. The
algorithm is heurestic and can as such not be expected to perform perfectly or even well in all
cases. The algorithm has however

It seem to work very well in practice for some examples. When it came to random examples
there was still some situations where the

6.2 Global Optimization of BMI problems
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Chapter 7

Conclusion

Everything is nice!!!
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Appendix A

Induced Norm Control Toolbox

The tools in the INCT can be divided into four different types of specifications. One control
problem was given in the previous section with respect to the control objective of making the
induced norm less than γ. In the table below the possible control objectives in the toolbox are
given together with a short description and acronyms:

1) Stability: Poles to the left of � α 
 j
�

. ’Stab’
2) Performance: 8 different induced norms. ’Perf’
3) Robustness: unstructured uncertainties(H∞) ’Robust’
4) Robust Performance: Guaranteed LQ performance under ’RobPerf’

unstructured uncertainties.

Analysis is possible for all of the above specifications. Synthesis is possible for stability,
performance, and robustness. A good algorithm does not exist for the robust performance design.

The toolbox contains a user friendly packing system called ’gstspace’. The main idea is that
complex setups, like equation (2.14), are specified by a fairly big number of matrices when it
comes to writing them down. The package provides a compact form for such system setups.
This makes it easier to write the MATLAB code to specify a control problem when the system is
first packed. Computing closed-loop matrices and extracting vital information becomes easier.
Moreover, the package also provides scaling tools that may improve numerical stability.

The main tools are the functions ’INAnl’, ’INView’ and ’INSynth’. The first tool deals with
analysis of the specifications listed above, whereas the second tool provides an overview of all
the 8 different norms specified in table 2.1. The synthesis tool, the function ’INSynth’, can take
up to six arguments:

1) The system Packed with ’gstspace’.
2) Control objective Specified by acronyms, e.g. ’PerfE2EP’.
3) Objective bound degree, e.g. ’degree opt’ or ’degree 0.2’.
4) Controller order optional, e.g. ’Nclow’ or ’Nc 2’.
5) Debug information optional, e.g. ’1’ print out main loops.

Specifications 2) through 5) are written in one string, e.g. ’PerfEtEP degree 0.2 Ncdown’.
This specifies: find a controller that solves the energy to Euclidean peak control problem with
γ � 0 � 2. Moreover, the controller order is decreased by at least one(see next paragraph). Usually
MATLAB functions take several numeric parameters, each having a special meaning. Using a
string is more user friendly, because the specifications are written in words and not numbers
refering to the specifications.
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For all control problems the controller order can be explicitly considered. This is an advantage
with the LMI approach for controller design that the controller order can be decreased to at least
the system order minus one using a convex optimization approach. Moreover, methods exist, but
are not included in the toolbox, to decrease the controller order more by using some heuristic
method, see for instance[BG96, GS96].

A.1 Example

We will demonstrate some of the features in the toolbox by a simple example. Consider the
two mass-spring benchmark example, see for instance [BG96, GS96]. A schematic figure of the
model is given in figure A.1. The kernel is a system with two wagons connected with a spring,
i.e. a fourth order system with four poles on the imaginary axis. The actuator signal is the
force on the first wagon, and the measurement is the position of the second wagon. The actuator

��� ���� ��� ��� ��� �����

��� 	��� 	



 	 	� �	

	
	

	

	

Two-mass spring
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Figure A.1: Simple example

is disturbed by a Coulomb friction which we, very conservative, will approximate with a low
frequency(ωd

� 0 � 3) energy bounded disturbance with amplitude gd
� 0 � 1. The measurement

signal contains noise d2 that is bounded in energy and with amplitude gn, but may contain all
frequencies. We want to track the position of the second wagon error signal e1. For simplification
we will not introduce a non-zero reference in this model. The second error signal is a low-pass
filtered(ωu � 10) version of the actuator signal. The control objective is to minimize the energy
to peak from the two disturbances to the errors. We will also compute a controller that minimizes
the energy to energy induced norm (H∞). Since the model is of order 6, we expect the controller
to be of order 5. For the energy to peak design we will use the feature in the toolbox that allows
a trade-off between the performance and some internal parameters.

Controller RtE ERtE EtP EtEP EtE BStBP
EtP design 0.181 0.187 0.199 0.205 0.916 0.217
EtE design 1.389 1.389 1.388 1.388 0.159 1.398

Table A.1: Induced norms for controller design

The two controllers were computed using LMITOOL and SP. The MATLAB file used for the
design is presented in figure A.3. We will not give the controllers in this paper, but encourage the
reader to download the toolbox and try the example

0 1�) �
� � 0
. We will however present some of

the results, and compare the two controllers. Both controllers were of order five. The magnitude
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plot of the transfer functions from disturbance to error is presented next to the m-file in figure A.2.
The EtP design is close to the EtE design in low frequencies. Moreover, the EtP design gives a
more sharp magnitude plot against the very flat one of H∞ design. To the right, the different
induced norms of the closed-loop are presented for each of the two controllers. The energy to
peak design gives the best performance in the designated induced norm, but it also drags down
the other induced norms except the energy to energy. For the second design the energy to energy
design gives the lowest performance in terms of energy to energy. The water bed effect should be
evident.
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Figure A.2: Disturbance to error
The solid line is the energy to peak design, and the dash-dot line is the energy to energy design.
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that calls the INCT to design and analyze the results of the design example in section A.1.]
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A.2 Experimental results

In this section extensive numerical experimentation is provided to assess the efficiency and the
complexity of the proposed alternating projection schemes for the solution of LMI problems with
rank constraints. The fixed-order α-stabilization problem for a nth-order spring-mass system, a
helicopter system and the static output feedback stabilization problem for randomly generated
systems are considered. The results were obtained on an HP735 workstation using MATLAB

version 4.2 and the SP package by Boyd and Vandenberghe [BV94].

A.2.1 Randomly Generated Stabilizable Systems

The first numerical experiment considers randomly generated static output-feedback stabilizable
systems. A stabilizable system is obtained by reflecting the eigenvalues of randomly generated
matrices via an eigenvalue-eigenvector decomposition where the positive eigenvalues are replaced
with their negative values. Then, a product of arbitrary input, feedback gain and output matrices
is subtracted from this matrix to guarantee that the result is static-output-feedback stabilizable.
By shifting all eigenvalues by an amount � α � where α is a positive scalar, desired α-degree of
stability can be introduced in the static output feedback problem.

Case
System
Order

n

Number
of inputs

nu

Number
of outputs

ny

a 4 1 1
b 6 2 2
c 8 3 3
d 4 3 2
e 6 4 3
f 8 5 4

Table A.2: Sizes for the random generated experiments.

We seek to obtain the lowest order α-stabilizing controller obtained via the proposed alter-
nating projection methods. We will compare this result with the following Kimura bound kb, that
provides an upper bound on the control order for the stabilizing control problem [Kim75]

kb
� n � nu � ny 
 1 �

This bound is for α � 0. Table A.2 shows the cases we have considered. Notice that the Kimura
bound kb is equal to kb

� 3 for cases a), b) and c), and kb
� 0 for cases d), e) and f). For each one

of the above six cases 200 hundred random experiments were carried out. A degree of stability
α � 0 � 1 has been introduced in the randomly generated systems and the objective is to obtain the
lowest order stabilizing controller that places the closed-loop poles to the left of � α. Tables A.3
and A.4 show the results for each one of the cases considered in Table A.2.

¿From these results it is observed that in the majority of the experiments, the lowest order
achievable controller is obtained in 0 iterations, that is by solving the convex problem (4.14)
as described in Section 4.3. In all the experiments, the lowest order achievable controller is of
order lower or equal to the Kimura bound kb. In 5 experiments for case a), the lowest order
achievable controller was 1, instead of the zeroth order that is guaranteed by the construction of
the experiments.
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Controller Outer Case a Case b Case c
order iterations # Rate # Rate # Rate

0 176 88.00 177 88.50 184 92.00
1 0 0.00 2 1.00 3 1.50
2 3 1.50 7 3.50 7 3.50

0 3 3 1.50 4 2.00 2 1.00
4 4 2.00 3 1.50 1 0.50
5 3 1.50 0 0.00 0 0.00
6 0 0.00 2 1.00 1 0.50

7-38 6 3.00 5 2.50 1 0.50
1 5 2.50 0 0.00 1 0.50

Average CPU time 18.71 s 15.93 s 26.15 s

Table A.3: The results for the random example cases a), b), and c).
All controllers were of order 0 or 1, as expected with the Kimura bound kb

� 3. The CPU time is
the average time used on all examples.

Outer Case d Case e Case f
iterations # Rate # Rate # Rate

0 200 100.00 199 99.50 196 98.00
1 0 0.00 0 0.00 0 0.00
2 0 0.00 0 0.00 3 1.50
3 0 0.00 1 0.50 0 0.00
4 0 0.00 0 0.00 1 0.50

CPU time 1.17s 3.19 s 11.18s

Table A.4: The results for the random example cases d), e), and f)
. All controllers were of order 0, as expected with the Kimura bound kb

� 0.The CPU time is the
average time used on all examples.



114 APPENDIX A. INDUCED NORM CONTROL TOOLBOX

A.2.2 Helicopter Example

The following example is from [KBH88]. The goal is to obtain a static state feedback controller
for the following helicopter model such that the closed-loop poles are located to the left of � α �

� 0 � 1 at the complex plane. The system is of the form (2.14), and the data are the following

�
�

���
�
� 0 � 0366 0 � 0271 0 � 0188 � 0 � 4555
0 � 0482 � 1 � 01 0 � 0024 � 0 � 4555
0 � 1002 0 � 3681 � 0 � 7070 1 � 4200

0 0 1 0

����
� � �

u
�

���
�

0 � 4422 0 � 1761
3 � 5446 � 7 � 5922
� 5 � 5200 4 � 4900

0 0

����
� �

�
y

�

�
0 1 0 0 �

The algorithm converged in zero iterations, that is the solution of the convex minimization
problem (4.14) provides a static controller

u �

� � 0 � 2162
2 � 4942 � y (A.1)

that achieves the desired objective. The closed-loop poles are � 20 � 8379 ��� 0 � 1042 and � 0 � 2572
�

0 � 9738 j � The required CPU time to obtain this controller is 1.27 sec.

A.2.3 Spring-Mass Systems

In this numerical experiment interconnected spring-mass system models were generated. The
order of the system is equal to twice the number of the interconnected masses. We now proceed
to examine higher order spring mass systems. Tables A.5 and A.6 provide the lowest order
achievable controller and the number of iterations needed for α � 0 � 001 and α � 0 � 1 for different
numbers of the system masses.

Number of
masses

Number of
iterations

Lowest order
achievable
controller

2 0 2
3 0 3
4 0 4
5 0 5

Table A.5: Results for degree of stability α � 0 � 001

Hence, either zero or one iteration of the APSP algorithm is enough to provide a static output
feedback controller depending on the desired degree of stability α �
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Number of
masses

Number of
iterations

Lowest order
achievable
controller

2 0 2
3 0 3
4 1 5
5 1 6

Table A.6: Results for degree of stability α � 0 � 1
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Appendix B

BMI optimization algorithms

B.1 Bilinear relaxation BB algorithm

Tree structure

The tree structure used to explain the algorithm can be simulated by making a set V . This set
contains all leaves of the original tree, that is the union of the sets in V constitutes to a partition
of the original region. In the beginning V �

�
Q � 1 � � . In each iteration k the set Q � k � is removed

from V and the two new sets Q
� k �

1 and Q
� k �

2 are added. Together with the definition of the regions
should be added some additional data. From the solutions to the relaxation problems, the center
points ŷ

� k �
s for each new regions should be computed, and added to the list of the current regions.

Pruning The set V should frequently be checked for regions where the computed lower bound
is above the global upper bound, and these regions can be removed. Note that this will not consti-
tute to fewer iterations, since such a region never would have been considered by the algorithm.
However, it do save memory.

For the regions already split it is only important to keep the best solution, that is ν and x
� � y �

.
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