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Abstract

Improvements in cost-effectiveness and reliability of wind turbines is a constant in the
industry. This requires new knowledge and systematic methods for analyzing and de-
signing the interaction of structural dynamics, aerodynamics, and controllers. This thesis
presents novel methods and theoretical control developments, which contributes to the
analysis and design of wind turbines in an integrated aeroservoelastic process.

From a control point of view, a wind turbine is a challenging system since the wind,
which is the energy source driving the machine, is a poorly known disturbance. Addi-
tionally, wind turbines inherently exhibit time-varying nonlinear dynamics along their
nominal operating trajectory, motivating the use of advanced control techniques such as
gain-scheduling, to counteract performance degradation or even instability problems by
continuously adapting to the dynamics of the plant. Robustness and fault-tolerance capa-
bilities are also important properties, which should be considered in the design process.

Novel gain-scheduling and robust control methods that adapt to variations in the op-
erational conditions of the wind turbine are proposed under the linear parameter-varying
(LPV) control framework. The modeling and design procedures allow gain-scheduling
to compensate for plant non-linearities and reconfiguration of the controller in face of
faults on sensors and actuators of the system. Stability and performance in closed-loop
are measured in terms of induced L2-norm. The procedures are appealing to solve some
of the practical wind turbine control problems because the controller structure can be
chosen arbitrarily, and the resulting controllers are simple to implement online, requiring
low data storage and simple math operations. The modeling procedures also allow the
generation of reduced-order LPV models from high-fidelity aeroelastic tools. Structured
controllers, simplicity in the implementation and aeroelastic codes are in line with the
current industrial control practice. Simulation results illustrate the effectiveness of the
proposed methods.

Tuning a model-based multivariable controller for wind turbines can be a tedious task.
This often involves selecting weighting functions in a trial-and-error procedure. Multi-
objective control via linear matrix inequalities (LMI) optimization is exploited to ease
controller tuning. Regional pole constraints (D-stability) facilitate intuitive and physical
specifications for vibration control, such as minimum damping and decay rate of aeroe-
lastic modes. Moreover, the number of weighting functions and consequently the order
of the final controller is reduced.

Inspired by this application, theoretical control developments are presented. New
LMI conditions for some hard, structured control problems are proposed. Necessary
and sufficient conditions for stability and quadratic performance of vector second-order
systems are presented, as well as sufficient conditions for the synthesis of vector second-
order controllers. New sufficient conditions to the static output stabilization problem are
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also presented. A sufficient characterization is given to theH∞ andH2 model reduction
problem. The passive plant design and simultaneous plant-controller design are char-
acterized as sufficient LMI conditions. Due to the linear dependence of the proposed
LMIs in the Lyapunov matrix, problem such as simultaneous stabilization, robust synthe-
sis and LPV control can be treated naturally by defining the Lyapunov matrix as multiple
or parameter-dependent. The effectiveness of the proposed conditions are verified by nu-
merical experiments. Numerical examples also illustrate their application on wind turbine
control.
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Synopsis

Forbedringer i omkostningseffektivitet og pålidelighed af vindmøller nyder konstant bevå-
genhed i branchen. Det kræver ny viden og systematiske metoder til analyse og design af
samspillet mellem strukturelle dynamik, aerodynamik, og regulatorer. Denne afhandling
præsenterer nye metoder og reguleringsteoretiske resultater, som bidrager til analyse og
design af vindmøller i en integreret aeroservoelastic proces.

Fra et reguleringssynspunkt er en vindmølle et udfordrende system, da vinden, hvilket
er den energikilde, som driver maskinen, er en dårligt kendt forstyrrelse. Derudover, da
vindmøller i sagens natur udviser tidsvarierende lineær dynamik langs deres nominelle
driftskurve, motiveres anvendelsen af avancerede teknikker såsom gain-scheduling, for at
modvirke forringelse af ydeevnen eller endda stabilitetsproblemer ved løbende at tilpasse
sig dynamikken i anlægget. Robusthed og fejltolerance er ogsåvigtige egenskaber, som
bør overvejes i designprocessen.

Nye gain-scheduling og robuste reguleringsmetoder, der tilpasser sig variationer i de
operationelle betingelser for vindmøllen foreslås i form af den såkaldte lineære parameter-
varierende (LPV) kontrol. Modellering og design procedurer gør det muligt ved hjælp
af gain-scheduling at kompensere for system-ulineariteter og at foretage rekonfiguration
af regulatoren i lyset af fejl påsensorer og aktuatorer i systemet. Stabilitet og perfor-
mance i lukkede sløjfe måles i form af induceret L2-norm. Procedurerne er velegnede til
at løse nogle af de praktiske vindmøllereguleringsproblemer, fordi reguleringsstrukturen
kan vælges vilkårligt, og de resulterende regulatorer er enkle at implementere online, da
de kræver lav datalagring og simple matematiske operationer. Modelleringsteknikkerne
giver ogsåmulighed for generering af reduceret ordens LPV modeller fra high-fidelity
aeroelastiske værktøjer. Strukturerede regulatorer, enkelhed i gennemførelsen og aeroe-
lastiske koder er i overensstemmelse med den nuværende industrielle reguleringspraksis.
Simuleringsresultater illustrerer effektiviteten af de foreslåede metoder.

Indstilling af en modelbaseret flervariabel regulator til vindmøller kan være en kedelig
opgave. Dette indebærer ofte valg af vægtningsfunktioner i en trial-and-error procedure.
Flerkriterie-regulerign via lineære matrix uligheder (LMI) optimering udnyttes til at lette
regulator-tuningen. Regionale polbegrænsninger (D-stabilitet) muliggør intuitive og fy-
siske specifikationer for vibrationsregulering, såsom minimum dæmpning og indsving-
ingstid for aeroelastiske modes. Desuden er antallet af vægtningsfunktioner og dermed
rækkefølgen af den endelige regulator reduceret.

Inspireret af denne anvendelse, er teoretiske reguleringsmetoder præsenteret. Nye
LMI betingelser for nogle vanskelige, strukturerede reguleringsproblemer foreslås. Nød-
vendige og tilstrækkelige betingelser for stabilitet og kvadratisk ydeevne af vektor an-
den ordens systemer er vist, såvel som tilstrækkelige betingelser for syntesen af vektor
anden ordens regulatorer. Nye tilstrækkelige betingelser til statisk output-stabilisering er
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ogsåpræsenteret. En tilstrækkelig karakterisering er givet tilH∞ ogH2 modelreduktions-
problemet. Passivt systemdesign og samtidig system-regulator design er karakteriseret
som tilstrækkelige LMI betingelser. Pågrund af den lineære afhængighed af de foreslåede
LMI’er i Lyapunov-matricen, kan problemer såsom simultan stabilisering, robust syntese
og LPV kontrol behandles naturligt ved at definere Lyapunov-matricen som multipel eller
parameter-afhængig. Effektiviteten af de foreslåede betingelser verificeres af numeriske
eksperimenter. Numeriske eksempler illustrerer ogsåderes anvendelse påvindmølleregule-
ring.
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1 Introduction

This chapter begins with an introduction to the notation used throughout the thesis. Next,
an exposure of the motivation of the present Ph.D. research is given. Some background
material and literature survey on wind turbine modeling and control as well as control
theory relevant to this work is presented follows. Lastly, the research objectives are stated
and the thesis structure is outlined.

Notation

Due to the wide range of subjects dealt with as well as the ”collection of papers” structure,
it is a hard task to make notation uniform throughout the manuscript. However, expla-
nations about the notation are embedded in the text of each chapter and should be easily
understandable from the context. The symbol (·)T denotes transposition. The space of
square and symmetric real matrices of dimension n is denoted Sn, while Rm×n denotes
the space of real matrices of m rows and n columns. In is the identity matrix with di-
mension n. If the sub-index n is omitted, the dimensions of the identity matrix are taken
from the context. The set of n-dimensional real vectors is denoted by R n. The Kronecker
product is denoted by ⊗. The symbol � (≺), i.e. P � 0 (P ≺ 0) is used to denote
that the symmetric matrix P is positive (negative) definite, and � (�) stands for positive
(negative) semi-definite.

1.1 Motivation

Ongoing improvements in the wind turbine efficiency and reliability led the cost of elec-
tricity (COE) of wind turbines to become economically competitive against conventional
power production. Increase in the annual energy production and lifetime of wind turbines,
and decrease of operation & maintenance costs are among the key factors to reduce the
cost of energy.

The CASED project with the full title ”Concurrent Aero-Servo-Elastic Analysis and
Design of Wind Turbines” is a four year project supported in part by the Danish Coun-
cil for Strategic Research, wherein Aalborg University and the Technical University of
Denmark are collaborating with Vestas Wind Systems A/S on further improving the cost-
effectiveness and reliability of wind turbines through new knowledge and systematic
methods for analyzing and designing the interaction of structural dynamics, aerodynam-
ics, and controllers of a complex aero-servo-elastic system such as a wind turbine. The
present thesis is part of this project and brings contributions towards its objectives.
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Introduction

Figure 1.1: Aero-servo-elastic elements of a wind turbine [HJPN].

Figure 1.2: Wind turbine design methodologies [HJPN].

Aeroservoelasticity of wind turbines describes the interaction of the aerodynamic flow
around the turbine, the servo actions by its controller, and its elastic vibrations. Main
aero-servo-elastic elements of a wind turbine are illustrated in Fig.1.1. Fundamental un-
derstanding of this interaction is required for the development of future wind turbines that
are structurally and aerodynamically optimized. Today, the design of a wind turbine con-
troller is isolated from the structural and aerodynamic design; the controller is considered
as an add-on to a pre-determined and fixed aeroelastic design (Fig.1.2). Novel control the-
ories and aero-servo-elastic methods are developed in this thesis, which contributes to the
analysis and design of a wind turbine in a concurrent aero-servo-elastic process. Other
technical and scientific elements addressed in this thesis are the development of novel
gain-scheduling and adaptive control methods that adapt to variations in the operational
conditions of the turbine.

2



1 Motivation

Figure 1.3: (left) Windmill in Holland, (middle) Poul La Cour test center in Denmark and
(right) American multi-blade model.

Historical Overview of Wind Energy [Joh04, And07]

Conversion of kinetic energy of the wind into useful mechanical energy has been applied
by man since ancient times. Wind energy is, along with hydro power/waterwheels, the
oldest source of energy used by mankind. Utilization of wind energy has its origin in the
eastern civilizations of China, Tibet, India, Afghanistan and Persia, with very uncertain
date. It was reported that the Babylonian emperor Hammurabi planned to use wind tur-
bines for irrigation in the seventeenth century BC. Hero of Alexandria, who lived in the
third century BC, described a horizontal axis wind turbine with four simple sails to trigger
an organ. With more solid evidence, Persians used wind turbines extensively around the
seventh century AD; vertical axis machine with a number of radially mounted sails.

From Asia the use of wind energy has spread across Europe. Windmills were used in
the XI or XII century in England, taking advantage of lift forces. The first record of an
English wind turbine is dated from 1191. The first wind turbine was built for grinding
in the Netherlands in 1439. There were a series of technological developments over the
centuries, and in 1600 the most common wind turbine was the windmill. The word mill
refers to the operation of crushing or grinding grain, so common that all wind turbines
were often called windmills, even when applied to some other function. Interestingly, the
blades of many Dutch windmills are ”twisted” and ”tapered” in the same way as mod-
ern rotors to optimize the parameters necessary for maximum aerodynamic efficiency,
indicating good knowledge of aerodynamics at a much earlier period to present.

By mid-1800, there is a need to develop smaller turbines to pump water. The Ameri-
can West was being populated and there were vast and good grazing areas with no surface
water, but with large reserves of groundwater a few feet beneath the surface. In this con-
text, wind turbines known as American multi-blades were developed with high starting
torque and efficiency suitable for pumping water. It is estimated that 6.5 million units
were built in the United States between 1880 and 1930 by a variety of companies. Many
of them still operates satisfactorily.

With the invention of the steam engine in the eighteenth century the world has grad-
ually changed its demand for energy and machinery based on thermodynamic processes,
especially with the introduction of fossil fuels (coal, oil and gas). Although the impor-
tance of wind power as an energy source declined during the nineteenth century, the
research and construction of wind turbines continued on a larger scale. Theorists and
practitioners have continued to design and build wind turbines for electricity production.

3



Introduction

Figure 1.4: Modern wind turbine (Courtesy of Vestas Wind Systems A/S)

Denmark was the first country to use the wind to generate electricity. In 1890 the Danes
utilized a 23 m diameter wind turbine and, in 1910, several hundreds of units with capac-
ity of 5 to 25 kW were in operation. It is worth to highlight the turbines from the Dane
P. La Cour (around the turn of the century) and J. Juul (After the second world war). In
America, the famous 1250 kW Smith-Putnam also noteworthy.

The development of new materials and technologies marks the beginning of new era of
wind energy in 1970. Composite materials such as fiberglass proved very suitable for the
blades. Wind turbine were now controlled by electronic systems. These advances led to
the modern large wind turbines of nowadays: 3-bladed, variable-speed, pitch controlled.
They also reduced the energy generation costs by approximately 80% over the last 20
years [Cha04]. Notably, in late 2012 the global installed capacity (cumulative) of wind
turbines connected to the network totals 237,699 MW, and grows exponentially every
year [GWE].

1.2 Wind Turbine Control

Control of wind turbines received considerable attention from both academia and industry
during the last decade. A number of survey papers can be found on the topic [LC00a,
LC00b, Bos00, Bos03b, LPW09, PJ11]. A consensus from all the work done so far is that
wind turbine control plays an important role on maximizing the energy generation while
alleviating mechanical loads.

The development of a wind turbine controller pass through the definition of control
objectives, control strategy, plant modeling, and controller setup. The control objective
is a qualitative and quantitative description of the goals which should be achieved by
the controller such as increased energy capture, reduced dynamic mechanical loads and
power quality. The other three subsequent steps are carried out to ensure that the con-
troller objectives are satisfied. The control strategy is a selection of the operating points
that the wind turbine should be regulated around. Plant modeling involves the determi-
nation of a wind turbine dynamical model for control design. In the controller setup,

4



2 Wind Turbine Control

controller structure is determined such as the controlled variables, the performance mea-
sures, the reference signals, the switching/gain scheduling procedure between different
controllers, as well as the controller tuning.

The main purpose of a wind turbine is to generate energy. Therefore, one would
expect a control strategy in which the machine operates at all times at maximum con-
version efficiency. However, economical and practical limitations prevent such strategy.
Generator speed has to be operated within minimum and maximum limits, in order to
comply with centrifugal forces, aerodynamic noise emissions and lubrication of bearings.
Produced power should not exceed nominal power, in order to limit reaction torque on
the drive train and power flowing on the electrical subsystem. In essence, the electrical
power produced by a wind turbine should be maximized for each mean wind speed, but
subject to certain operational constraints. The control strategy can be determined by solv-
ing a static non-linear optimization problem. We illustrate the problem with the following
simplified example

(Ω̄∗
g, β̄

∗) = argmax
(Ω̄∗

g ,β̄
∗)
P̄g

(
Ω̄g, β̄, V̄

)
(1.1a)

subject to

C1 : Ω̄g,min ≤ Ω̄g (1.1b)

C2 : Ω̄g ≤ Ω̄g,max (1.1c)

C3 : P̄g ≤ P̄N (1.1d)

where

P̄g =
1

2
ρπR2V̄ 3CP

(
Ω̄gR

NgV̄ , β̄

)
− Ω̄2

g

(
Br

N2
g

+Bg

)
(1.1e)

In the above, P̄g and P̄N are the generator and nominal electrical power, respectively, Ω̄g

is the generator speed, β̄ is the pitch angle, V̄ is the wind speed, ρ is the air density, R
is the rotor radius, Ng is the gearbox ratio, Br and Bg are speed-dependent losses on the
generator and rotor side, respectively, and CP is the power coefficient. The subscripts (̄·)
and (·)∗ stands for steady-state and optimal values, respectively. Other constraints can
be included in the above optimization problem, e.g. maximum thrust and noise limits.
Instead of the simple equation 1.1e, the generator power P g and other variables can be a
function of a high-complexity aeroelastic model. An implicit dependence of the optimal
operating point on the wind speed exists, e.g. (Ω̄∗

g(V̄ ), β̄∗(V̄ )). In fact, the collection of
operating points can be uniquely parameterized by V̄ as depicted in Fig. 1.5.

A wind turbine dynamic model is required to the task of designing controllers, irre-
spective of whether classical or modern control theories are adopted. Wind turbines are
non-linear systems, with aerodynamics being the main source of non-linearities. Three
distinct and usual modeling approaches can be highlighted. A quite popular approach re-
lies on first-principles modeling, with few structural degrees of freedom and often based
on static aerodynamics. These can also include one or two modes representing unsteady
aerodynamics (e.g. dynamic inflow) [Hen11, Hy11] and actuator dynamics (e.g. pitch
actuator, power converter). Another way to obtain suitable models for control design is
by means of high-fidelity full aeroelastic codes. Linear periodic [Jon] or linear time-
invariant [Han11] models are generated from the original non-linear aeroelastic model

5
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Figure 1.5: Optimal operating points of a 5MW wind turbine.

through numerical differentiation [Jon] or analytical linearization [Han11] around equi-
librium points. Lagrangian mechanics is the mathematical machinery to formulate the
dynamical equations of motion as vector second-order differential equations

Mq̈(t) + Cq̇(t) +Kq(t) = Ff(t) (1.2)

where q(t) is the vector of positions, M , C and K are the mass, damping and stiffness
coefficient matrices, respectively, F is the forcing matrix, f(t) is the force input vector.
Depending on the physics chosen to represent the dynamical behavior of the wind turbine,
the coefficient matrices have different properties that characterizes the nature of the so-
lution q(t). Simplified first-principles modeling may result in symmetric matrices while
full aeroelastic codes usually yields models with non-symmetric matrix coefficients. For
control purposes, system (1.2) is often re-written as first-order differential equations

ẋ(t) = Ax(t) +Bf(t) (1.3a)

commonly referred to as state-space form. The relationship between the physical coordi-
nate description (1.2) and the state-space description (1.3) is simply

x(t) :=

(
q(t)
q̇(t)

)
, A :=

[
0 I

−M−1K −M−1C

]
, B :=

[
0

M−1F

]
(1.4)

where a nonsingular matrix M is assumed. The inversion of the mass matrix may bring
complicating non-linearities whenever it depends on some parameter, e.g. M(θ). For
example, θ may represent variations of rotor mass due to icing conditions. Wind turbine
dynamics change along the range of mean wind speeds V̄ . Figure 1.6 depicts magnitude
plots of a utility-scale wind turbine for mean wind speeds from 14 to 24 m/s obtained with
the aeroelastic tool HAWCStab2 [Han11]. The third approach for modeling is through
system identification techniques. Although not consolidated in either the wind industry
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2 Wind Turbine Control

Figure 1.6: Magnitude plots of a 5MW wind turbine for mean wind speeds from 14 to 24
m/s. Inputs are generator torque, pitch angle and wind speed disturbance. Rotor speed is
the ouput.

nor academia, system identification of wind turbines is receiving considerable attention
of the research community [vW08, vWHFV09].

A classical structure for the control of wind turbines is illustrated in Fig. 1.7. A
couple of control loops with distinct objectives can be noticed. The power and speed
controller loop tracks power and generator speed references generated by the reference
block. The classical, industry-standard structure of the power and speed controller is build
at one controller for partial load and another controller for full load operation. In partial
load operation, an usual scheme is a non-linear feedback taking the generator torque as a
control signal, proportional to the square of generator speed, e.g. Q g,r = KΩ2 [Bos00].
Another structure involves a PI controller to track the generator speed reference, Ω ∗

g,r

with the generator torque, Qg,r, as the controlled input. There can also be a combina-
tion of the non-linear loop with a PI controller. An open-loop optimal pitch reference is
usually supplied to increase energy capture, limit thrust forces and/or avoid stall oper-
ation. In full load operation, another PI controller tracks the generator speed reference
with pitch reference as a control signal, while the generator torque (or power) are kept
at their nominal values. There are systematic methods for tuning the PI gains, including
”classical gain-scheduling” to cope with aerodynamic non-linearities [HB02, PLH05].

Modern wind turbines are lightly damped mechanical structures. Resonances can be
excited not only by the turbulent wind hitting the rotor, but also by the generator speed and
power controllers, increasing fatigue loading of components. Active vibrational control
is usually adopted to overcome this. The tower corresponds to a significant amount of the
wind turbine cost; therefore mitigation of tower oscillations in fore-aft and side-to-side
directions is of major concern. Feedback terms on the tower acceleration in each direc-
tion to pitch angle and generator reaction torque can mitigate loads without significant
performance losses in terms of power quality and pitch wear [LR05, Bos03b]. Torsional
oscillations in the drive-train are also controlled by feedback of generator speed to the
generator reaction torque with a band-pass filter suitably tuned at the first drive-train tor-
sional mode [Bos03b]. The wind field is unevenly distributed over the rotor swept area
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Figure 1.7: Classical structure of a wind turbine control system.

due to wind shear, yaw error or wake from other wind turbines in a wind farm. The re-
sulting asymmetrical loading of the rotor can be mitigated by means of individual pitch
control [Bos03a, Bos05, GC07, LMT05]. The principle lies in a feedback scheme that
generates zero-mean individual pitch demands for each blade which is superposed on the
collective pitch reference from the power and speed controller.

The control scheme can be extended with feed-forward terms from estimates of wind
speed disturbances [VRPS99, vdHvE03, SKv+09, DPW+11]. The usual approach of es-
timating the effective wind speed at hub height is to determine the aerodynamic torque
from the dynamical equations govering the inertial of rotor and drive train. The effective
wind speed is calculated by an inversion of the aerodynamic model [MPB95, OBS07,
OMDJ12]. More sophisticated estimators rely on Kalman filtering techniques assuming
more sophisticated models of the wind and the wind turbine [KBS11, Hen11]. A com-
parison of different wind speed estimators is given in [SKS+12]. Recently, there has
been much attention to advanced sensoring of wind speed disturbances and feed forward
control via laser-based (LIDAR) [WJW11, SBC+11, DSP11] and flow-based instruments
[LMT05].

The control structure depicted in Fig. 1.7 requires the power and speed controller to
operate in parallel with the active tower dampers, drive train damper, individual pitch
controller and possible feed-forward terms. Classical control methods rely on frequency
separation and (weak) decoupling arguments for the design of some of the loops, e.g.
drive-train damper, individual pitch controller. Since there can be significant interaction
between the power and speed controller with the tower dampers, tuning them separately
may not result in optimal performance. Using classical methods, an approach which leads
to satisfactory closed-loop performance is to tune one loop in isolation as a single-input
single-output controller, and augment this loop in the plant model for designing the other
loop [Bos00, Bos03b, BW11]. This process is then iterated until both loops are well
tuned.

A natural approach to handle the multiple-inputs and multiple-outputs of a wind tur-
bine is by the use of multi-variable controllers. While in classical designs the model is
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represented as transfer functions in the Laplace domain, multi-variable control is based
on state-space models in time domain. Pole placement is a popular approach of state-
space control and has applied in [WB02] to generator speed control at full load using the
collective pitch angle as the controlled input. In the single-input case, the pole place-
ment problem has a unique solution [Kai80] facilitating the decision of where to place
the closed-loop eigenvalues. This is no longer true for systems with two inputs or more,
making the selection of the location of the poles a non-trivial task.

Optimal control might help on the selection of controller gains by attributing a per-
formance index (cost function) to the design problem. In a stochastic setting, the per-
formance is measured in terms of the variance of a specified output assuming that the
disturbance input is unit intensity white noise. Such a problem formulation is denoted
H2 control (or LQG control given this interpretation). Several are the applications of this
method for LTI wind turbine control [CLG94, Gri92, PLH05, TNP10]. Another famous
performance index consist of a measure of the system gain in an energy sense. That is,
the disturbance is considered to be an arbitrary l2 signal and we wish to minimize its
worst-case effect on the energy of the performance channel. This problem, denotedH∞
control, is particularly useful for guaranteeing closed-loop performance despite uncer-
tainties of the model to be controlled. H∞ control has been applied to LTI wind turbine
control in several variations [BJC04, BvBD93, CILG92, RF03, RFB05].

LTI design methods can be applied to only a single operating point of the wind tur-
bine. Other techniques should be combined with LTI methods in order to cover the whole
range of operating conditions. Online design of controllers is a way to achieve this. Pre-
dictive control determines the optimal control policy by solving optimization problems
online. The linearized wind turbine prediction model can then be updated according to
the current operating condition [CO04, Hen07, Hen11]. Adaptive control of wind tur-
bines was also proposed to cope with changes along the nominal trajectory of operating
conditions [SDB00] where specific model parameters are estimated online and subse-
quently utilized to update the controller parameters. Improving the energy capture in
partial load had also been addressed by means of adaptive control [JPBF06]. Instead
of an online designing of the controller, the controller gains can be determined offline
as a function of the operating condition. What remains to be done online is choosing
the controller gains according to the current operating condition. This well known and
widely used approach is called gain-scheduling. In classical wind turbine control, gain
scheduling is obtained by varying only a few gains in the controller [vEvdHS03, BW11].
Gain scheduling can also be obtained by concatenating optimal LTI controllers. Switch-
ing, bumpless transfer, interpolation of the state space matrices, and convex combination
of the output of parallel controllers are some of the ways of combining the various con-
trollers [KB93, NES+09, vEvdHS03, BW11].

The above extensions of LTI design methods to nonlinear systems assume variations
in the operating conditions to be so slow that they do not contribute to the dynamics of
the wind turbine. Time varying changes in the operating point can be systematic ad-
dressed by linear parameter varying (LPV) modeling and control methods, in which the
nonlinearities of the model are represented by a set of parameters updating the state space
formulation. A controller that depends on the same parameters can be formulated by
solving a convex optimization problem involving a number of linear matrix inequalities
(LMIs). This approach for the control of wind turbines recently received a considerable
attention [BJC04, BMC05, BBM07, Øs08, OBS09].
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The controller design is isolated from the structural and aerodynamic design. The
controller is considered as an add-on to a pre-determined and fixed aeroelastic design.
However, these two designs are substantially coupled. A clear example is the allevia-
tion of tower base loads using active tower damping, which leads to the re-design of a
lighter tower. The new tower design may have dynamical properties different than the
original design, requiring a verification of the closed-loop performance or a re-design of
the controller. Research on simultaneous design of controller and aeroelastic parameters
of a wind turbine is recent and literature is incipient. The multi-disciplinary optimiza-
tion approach of [BCC11, BCC12] does not consider controller gains as arguments of
the optimization; but for an automation of the aeroelastic design, a gain-scheduled LQR
controller was chosen due to its reasonable performance throughout the operating enve-
lope, without the need of manual tuning at each new aeroelastic design. A systems and
control point of view is given in [SGV12b, SGV12a]; stiffness and damping parameters
of a lumped model and the gains of an LPV controller are simultaneously designed to
improve closed-loop L2-gain performance.

After the exposure of the state-of-the-art and inspired by [BJSB11], a critical analysis
of the research and practice on wind turbine control is appropriate at this point. Optimal
control methods are attractive as the controller is the minimizer of a reasonably meaning-
ful cost function that is chosen a priori. Once the cost function is determined, one would
wonder that controller tuning could be made automatic even for different wind turbines.
Classical methods, on the other hand, requires experience and skill of the designer for
each new tuning. Optimal methods are also natural for MIMO control design, whereas
classical design methods could require an iterative approach of tuning SISO loops. De-
spite these alleged advantages, controllers designed with classical methods still prevails
in commercial wind turbines due to practical considerations.

In practice, building the cost function can be just as difficult as tuning a classical
controller. To begin with, the choice of states or outputs composing the cost is not as
straightforward as it might appear. Due to mathematical convenience, the cost function is
usually defined as a quadratic functional of the states and inputs. The quadratic form may
not be appropriate to represent fatigue loads, as fatigue is a highly non-linear process,
remaining for the designer to try to indirectly control loads by penalizing positions and
velocities of the structural degrees of freedom. Even the variance of stresses on mechani-
cal components is not a precise measure of fatigue, since higher order statistical moments
also contributes to mechanical loading [Pn09]. To achieve asymptotic tracking, it is com-
mon to include a term to penalize the speed error, and another term for the integral of the
speed error. Adjusting the cost weights for these terms is pretty much the same as the
selection of proportional and integral gains in a classical PI design.

Simplicity of implementation is an important aspect of the adoption of classical con-
trollers on commercial wind turbines. Non-linearities can be easily compensated with
ad-hoc techniques such as gain-scheduling of particular loops. Inclusion of notch fil-
ters for small corrections on the controller (e.g. avoid excitation of resonant modes) is
straightforwardly done. Numerical conditioning when implementing classical controllers
in discrete-time is also more easily handled. Implementation of model-based controllers
are often more sophisticated in many aspects. They are usually of full-order (same num-
ber of states as the model) requiring non-trivial numerical conditioning for a reliable im-
plementation. Adjustments on model-based controllers requires a complete recalculation
of the controller gains. Integration with the supervisory control is also challenging. For
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example, a suitable reconfiguration of the controller during a shutdown or faulty scenario
might reduce extreme loads. To achieve, this classical controllers can be easily augmented
with variable schedules or limits, while it is not so trivial to perform the same changes in
model-based controllers.

However, these simple-to-implement but ad-hoc control mechanisms have no theoret-
ical ground on the stability and performance in closed-loop. Such properties are verified
in computer simulations, which also serve as basis for re-tuning the controller parameters
until a desired performance is achieved. To conclude, the comparison of the academic
work with industrial practice highlights the gap and importance of research on model-
based control methods for wind turbines with the following properties:

• Controller structure can be chosen a priori. For example PI controllers, fixed-order,
decentralized, and others;

• Gain-scheduling to compensate for plant non-linearities and/or to reconfigure the
controller in face of system faults. Theoretical aspects of stability and performance
should be taken into account;

• Existing controllers can be expanded with new functionalities;

• Cost functions and constraints with intuitive and meaningful design criteria;

• Controller and aeroelastic parameters can be jointly optimized.

Robust and parameter-varying control are branches of control theory applied to sys-
tems that have high requirements for robustness/adaptation to parameter variations, and
high requirements for disturbance rejection, aligned with what is required on wind tur-
bine control. The controllers that result from these fields are typically of very high order,
complicating their implementation. However, if a structural constraint on the controller
gains is imposed, the synthesis problem is no longer convex and relatively hard to solve.
The term ”structured control” refers to controllers with special structure imposed on the
gain matrix, and related algorithms to compute them.

1.3 Structured Linear Control

In the control literature, the term ”structured control” refers to controllers with special
structure imposed on the gain matrix. Structured controllers includes static and fixed-
order output feedback control, decentralized control, some model reduction problems,
joint plant and control design, and others. Let us introduce some of the problems of our
interest. Consider the linear parameter-dependent system described by the state-space
equations

H(θ) :

⎧⎪⎨
⎪⎩
δx =A(θ)x +Bw(θ)w +Bu(θ)u, x(0) = 0,

z =Cz(θ)x +Dzw(θ)w +Dzu(θ)u

y =Cy(θ)x +Dyw(θ)w

(1.5)

where δ represents the time-derivative operator for continuous-time systems or the unitary
time-shift operator for discrete-time systems. In this model, the state vector x is assumed
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of dimension n, u represents the vector of control inputs, w is a vector of exogenous
disturbances, y is the measured output and z is the controlled output. Dependence of
these vectors on time t for continuous-time systems, and on time t := kT, k ∈ N for
discrete-time systems, is omitted to save notation. We assume that all matrices are real
with dimensions appropriately defined, and continuous functions of some time-varying
vector of real valued parameters θ =

[
θ1, . . . , θnθ

]
. The first contributions dealing with

formal aspects of gain-scheduling appeared in the early 90s [Rug91, SA90, SA91, SA92].
Linear parameter varying (LPV) systems were defined in the seminal work [SA91] and is
still subject of research by the control community. In the LPV framework, θ is measurable
and represent scheduling parameters. The time-varying parameter and its rate of variation
are assumed to be bounded as follows. The parameter θ satisfies

θ(t) ∈ Θ, ∀t ≥ 0 (1.6)

where Θ is a compact set. The rate of variation δθ belongs to the hypercube

V := {|δθ(t)| : |δθi(t)| ≤ νi, i = 1, . . . , nθ, ∀t ≥ 0} . (1.7)

An LPV system is reduced to an LTI system for a constant parameter trajectory θ(t) =
θ0, ∀t ≥ 0. Therefore, the local behavior of the LPV plant can be analyzed from the
underlying LTI systems. On the other hand, time-varying properties of the LPV system
cannot be inferred from the underlying LTI systems, except if strong assumptions about
the evolution of the scheduling parameters (e.g. slowly varying) are done. Consider the
following controller

C(θ) :

{
δxc = Ac(θ)xc +Bc(θ)y

u = Cc(θ)xc +Dc(θ)y
(1.8)

which is also θ-dependent, where the controller state has dimension n c. Control robust
to structured uncertainties on the plant is a particular case of the LPV setup by taking
the controller as parameter independent, and the rate bounds v i = 0, i = 1, . . . , N . An
LTI controller can also be designed robust to the range of parameter variations and rates
Θ × V . To the purpose of analysis and synthesis, the dynamical system (1.5)-(1.8) is
represented as a closed-loop system expression which derivation follows. Defining the
controller matrices in a compact form

K(θ) :=

[
Dc(θ) Cc(θ)
Bc(θ) Ac(θ)

]
(1.9)

and the augmented state vector as x̃ :=
[
xT xTc

]T
, the closed-loop system interconnec-

tion leads to

δx̃ = A(K, θ)x̃+ B(K, θ)w (1.10a)

z = C(K, θ)x̃+D(K, θ)w (1.10b)

where the closed-loop system matrices are [SIG98]

A(K, θ) = A(θ) + B(θ)K(θ)M(θ), B(K, θ) = D(θ) + B(θ)K(θ)E(θ) (1.11a)

C(K, θ) = C(θ) + H(θ)K(θ)M(θ), D(K, θ) = F(θ) + H(θ)K(θ)E(θ) (1.11b)
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Figure 1.8: Gain-scheduled LPV control of an LPV system

A =

[
A(θ) 0
0 0

]
B =

[
Bu(θ) 0

0 I

]
, M =

[
Cy(θ) 0
0 I

]

E =

[
Dyw(θ)

0

]
, H =

[
Dzu(θ) 0

]
, D =

[
Bw(θ)

0

]
C =

[
Cz(θ) 0

]
, F = Dzw(θ)

(1.12)

Let some of the common controller structures be illustrated. This feedback structure
becomes a static output feedback (SOF)

u = Dc(θ)y (1.13)

if nc = 0. The full state feedback (SSF), i.e. u = Dc(θ)x, is a particular case of SOF
in which the output matrix Cy(θ) = I . The full-order dynamic output feedback arises
when n = nc. When nc < n, the resulting structure is the fixed-order dynamic output
feedback. Decentralized controllers of arbitrary order are characterized by K(θ) with
structure

K(θ) :=

[
diag(Dci(θ)) diag(Cci(θ))
diag(Bci(θ)) diag(Aci(θ))

]
(1.14)

In the simultaneous plant / control design problem [GZS96], matricesA(ρ) ,Bw(ρ),Cz(ρ)
and Dzw(ρ) depend on some plant parameters ρ that should be determined. An aug-
mented controllerKρ(θ) := (K(θ), ρ) is structured since Kρ is not a single unstructured
matrix. Optimal model reduction problems seek to provide a reduced-order model that
minimizes the error between the full-order and reduced-order model in some norm sense
(e.g. H∞/H2). Consider K(θ) as a state-space realization of the reduced-order sys-
tem, and (A(θ), Bw(θ), Cz(θ), Dzw(θ)) as a realization of the full-order system. System
(1.10) represent the state-space model of the error system when (1.12) is particularized
with [SIG98]

Bu(θ) = 0 Cy(θ) = 0 Dyw(θ) = I Dzu(θ) = −I. (1.15)

Methods for structured control design can be roughly categorized as based on matrix
inequalities and nonsmooth optimization. Bilinear matrix inequalities (BMI) naturally
arise when Lyapunov stability theory is applied to control problems. Some BMI synthesis
problems can be readily reformulated as linear matrix inequalities (LMI) by the use of
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auxiliary parameterizations. That is, controller data does not appear explicitly in the
optimization formulation, being obtained a posteriori of the solution via some nonlinear
one-to-one transformation of the optimization variables. Examples of problems that can
be turned into LMI are the full-state [BGP89, BGFB94] and full-order [SGC97, OGB02]
output feedback. To illustrate, let P ∈ Rn×n, P � 0 be a Lyapunov variable. The
nonlinear change-of-variables

D̂c := DcP (1.16)

where D̂c ∈ Rn×n is an auxiliary matrix, has linearizing properties and turns BMI
problems related to full-state feedback into LMIs. Since P is non-singular, the original
controller gains can be recovered from the auxiliary ones via the inverse transformation
Dc = D̂cP

−1. The fact thatDc is an unstructured matrix makes this one-to-one transfor-
mation possible. LMI reformulations without loss of generality for many other problems
such as the design of controllers with arbitrary order and static output [SADG97] or de-
centralized [Sil90] remain unsolved, and little hope for finding them remains [MSP00].
Of course, with some degree of conservatism, one can also pursue sufficient LMI con-
ditions. The literature is rich in sufficient conditions for static [OGB02, DY08, Tro09],
reduced-order [Tro09], decentralized [OGB02], to mention a few.

The BMI problem and the LMI problem with rank constraints are found to be equiva-
lent and NP-hard [GN99]. Therefore, many researchers focused on finding efficient sub-
optimal methods to solve this hard problem. The DK-iteration procedure [Doy85] became
a popular method. A similar method proposed in [Iwa99] solves the BMIs by fixing some
variables and optimizing on others in an alternating manner. LMI problems are solved in
each step, but convergence is not guaranteed. Another well known method is the alter-
nating projections algorithm [GB99] that seeks an intersection of the convex LMI set and
the rank constraint. Other algorithms of this time are the min/max algorithm [GdSS98],
XY-centering [IS95], cone complementarity [GOA97], and the convexifying potential
function [OCS00]. Global methods to solve the BMI were also proposed, e.g. branch and
bound algorithms [Ber97, GSP95, VB00], as well as local methods [LM02, KLSH05].

Nonsmooth approaches let the Lyapunov/LMI framework apart and search directly
in the controller parameter space. The nonsmooth algorithms seem more appropriate to
handle systems of high-order when compared to LMI methods. The absence of vari-
ables related to Lyapunov functions contributes to lower the computational burden. The
nonsmooth algorithms for H∞ control in [AN06, ANR07] resulted in the code Hinf-
struct of MATLAB R©Robust Control Toolbox 7.11. At the same time, other approaches
[BLO05, GO08, ADGH11] resulted in the code package HINFOO forH∞ andH2 con-
trol.

Due to the possibility of using parameter-dependent Lyapunov functions [FAG96] to
verify stability in a gain-scheduling context, this thesis uses methods based on matrix
inequalities. To the best of our knowledge, nonsmooth techniques for control design
cannot yet deal with parameter-dependent certificates of stability.

Up to this point of this introduction, the structured control problem focused on con-
straining matrix gains of the controller, and assumed a state-space system description.
However, the way a system is represented has direct relation to the controller structure
and its design. For example, similarity transforms have been used in control theory to
ease state-space control design. Canonical forms and pole placement [Kai80] is perhaps
the most known and used link between plant representation and controller design. Con-
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trol of flexible structures also take advantage of modal state-space realizations to facilitate
damping assignment [Gaw98]. Not only similarity transforms, but also the form of the
differential equations governing the dynamics of the system, influences control design.
Working with differential equations in vector second-order form, instead of first-order
state-space form, clearly impacts on the structure of the controller gains. Let an example
be given to illustrate this. Consider the full-state feedback

f(t) = −Gv q̇(t)−Gpq(t) (1.17a)

u(t) = − [Gv Gp

] (q̇(t)
q(t)

)
(1.17b)

in vector second-order and state-space form, respectively, where G p, Gv ∈ Rn×n. Sup-
pose that only velocities are available for feedback, i.e. Gp = 0. While in (1.17b) the
gain matrix has a structural constraint, that is, is not a full unstructured matrix, the vector
second-order feedback (1.17a) is composed of an unstructured matrix G v . This simple
example suggest that some control structures might benefit from being designed in vec-
tor second-order form, as matrix products between the controller matrix and other matrix
variables could more easily be handled.

1.4 Research Objectives

A general objective of this study is to develop novel modeling and control methods which
enable to analyze and design the dynamics of a wind turbine in a integrated aero-servo-
elastic process. There is no ambition of covering all aspects of such a complex problem,
but rather give punctual contributions to this process. Another general objective of this
research is to pursue theoretical developments on systems and control inspired by the
application. Under this general context, some specific objectives can be mentioned.

The development of methods for structured control of wind turbines is one of the spe-
cific objectives. These methods should be capable of incorporating gain-scheduling to
compensate for plant non-linearities and/or to reconfigure the controller in face of sys-
tem faults. Theoretical aspects of stability and performance should be taken into account.
Aeroservoelastic modeling to achieve these goals is also within the scope of the develop-
ments. These methods are an attempt to bring advanced control closer to current practice
in the wind industry. Another specific objective within the application is to devise optimal
control methods for wind turbines with intuitive and meaningful design criteria.

Theoretical contributions to structured control is also a research goal. We seek LMI
conditions for simultaneous plant-controller design which could be extended to uncertain
and linear parameter-varying systems. How to analyze and synthesize vector second-
order systems under the LMI framework was a late objective of the research.

1.5 Outline of the Thesis

This thesis is written as a collection of the papers, which have been produced during the
course of the PhD project. With the state-of-the-art and background now covered, the
remainder of the thesis will proceed as follows. The next chapter contains an overview
of the content of the papers. Following this, Chapter 3 will provide a conclusion on the
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project and give some suggestions to issues which are interesting to address in the future.
Lastly, the remainder of the thesis consists of the papers themselves. As such, some
repetition of introductory sections should be expected.
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2 Summary of Contributions

A summary of each paper that composes this thesis is presented in this chapter. Firstly,
the contributions are summarized in a couple of paragraphs. A more detailed sample of
each paper follows, concise enough to avoid excessive repetition of the content.

Short Summary

Papers A and B [AS12a, AS12b] proposes an LPV modeling and control framework
that can cope with gain-scheduling towards aerodynamic non-linearities and adaptation
toward faults. Nonlinear simulation results of a gain-scheduled pitch controller tolerant
to collective blade pitch actuator fault corroborates the effectiveness of the approach. The
method is appealing in an industrial context for two main reasons. Firstly, controller
structures typically adopted by the wind industry like Proportional-Integral (PI) can be
chosen. Secondly, implementation of the resulting controller are considered simpler than
other known LPV design techniques. Online matrix inversions and factorizations are
common in LPV controller implementations. In the proposed scheme, only products
between scalar and matrices and sums of matrices are needed to implement the controller.
The drawback of the synthesis procedure is the computational load related to solving
several LMI problems sequentially. The technique can be prohibitive for systems with
many states and varying parameters.

Paper C [AS12a] brings a theoretical contribution to the H2/H∞ model reduction
problem and application to a wind turbine aeroelastic model. We show that model re-
duction of linear system with guaranteed norm bounds on the approximation error can be
formulated as sufficient LMI conditions extended with multipliers. This is achieved by
a proper constraint on the structure of the matrix multiplier and adding ”dummy” modes
with negligible input-to-output induced norms. The norm bound on the approximation
error attained with the sufficient condition may be improved by an algorithm that solves
LMI problems sequentially. Numerical experiments compares the proposed sufficient
condition with other LMI-based criteria available in the literature, showing that similar
or better performance bounds are attained. The iterative LMI algorithm is compared to
the H∞ model reduction via alternating projections, showing significantly better norm
bounds. H2 model reduction is applied to a flexible wind turbine model and compared
with balanced truncation, suggesting a better approximation on low frequencies.

Paper D [ASHS13] presents a procedure to generate reduced-order LPV wind tur-
bine model from a set of high-order LTI models. The reduced-order system depends on
a vector of parameter θ which may represent the current operating point; or deviations
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on aerodynamics and structural properties for the sake of parametric model uncertainties;
or plant parameters to be designed under a simultaneous plant-controller design. Firstly,
the high-order LTI models are locally approximated using modal and balanced truncation
and residualization. Later, an appropriate manipulation of coordinates yields a consis-
tent state-space representation, which allows interpolation of the model matrices between
points of the parameter space. We propose to transform the reduced order LTI systems
into a particular realization based on the companion canonical form. A least-squares
method is applied to compute parameter-dependent system matrices. The proposed pro-
cedure is applied to the NREL 5MW reference wind turbine model. The obtained LPV
model encapsulates the wind turbine dynamics throughout the full load region with good
approximation bounds.

Paper E [Ade13] presents new sufficient LMI conditions to the static output stabi-
lization problem. These are obtained from a state-space dynamical system where the
static feedback controller is not explicitly substituted in the equations of the open-loop
system. Different LMI characterizations emerge depending on whether a primal or dual
representation of the dynamical system is considered. The drawback of the conditions are
two-fold. To reduce conservativeness, a line search in a real scalar is required. Secondly,
whenever the solution of the LMI feasibility problem yields a certain multiplier matrix
singular, the feedback gains cannot be computed. As the Lyapunov matrix can easily be
made parameter-dependent, the proposed LMI is suitable for stabilization of parameter-
dependent systems. Numerical experiments with random systems satisfying the generic
stabilizability results of Kimura show rates of at least one characterization succeed of
over 90%.

Paper F [AS] brings new conditions to the analysis and synthesis of vector-second
order systems. These conditions open new directions to verify robust stability and per-
formance of wind turbines and to design robust controllers. We shown that asymptotic
stability can be formulated as LMI feasibility problems with explicit dependence on the
mass, damping and stiffness matrices. In contrast to other stability results in the liter-
ature, the proposed conditions can be applied to vector second-order systems with ar-
bitrary dynamic loading. Moreover, LMI constraints possess linear dependence on the
system coefficient matrices, being suitable for parameter-dependent systems. This is the
case for standard LMI characterizations in which Lyapunov matrices are decision vari-
ables, as well as extended LMI characterizations where multipliers are included in the
formulation. Quadratic performance (integral quadratic constraints) conditions based on
LMI feasibility problems are also shown to have the same properties. We prove that some
of the Lagrange multipliers can be removed from the formulation without loss of gener-
ality, leading to formulations computationally less demanding and more revealing to the
purpose of synthesis. Synthesis of vector second-order controllers with guaranteed stabil-
ity and quadratic performance are also formulated as LMI problems. Unfortunately, the
synthesis conditions are only sufficient to the existence of controllers. This is the major
drawback when compared to synthesis in state-space first-order form, to which necessary
and sufficient LMI conditions are available in the literature. A numerical example brings
a different perspective to model-based control of wind turbines by considering the design
model in its natural, vector second-order form.

Paper G [Ade] presents new sufficient LMI conditions to the simultaneous plant-
controller design problem. Formulations for plant design (only plant parameters) are also
given. We introduce the notion of linearizing change-of-variables between the plant pa-
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rameters to be optimized and matrix multipliers. Synthesis is subject to integral quadratic
constraints on inputs and outputs, offering the possibility of designing linear systems with
guaranteedL2-norm performance, passivity properties, and sector bounds on input/output
signals. Due to the linear dependence of the proposed LMIs on the Lyapunov matrix, they
can easily be extended to parameter-dependent and linear parameter-varying systems.

Extended Summary

A more detailed exposure of the papers is given now.

Paper A: F.D. Adegas, C.S. Sloth and J. Stoustrup, Structured Linear Parameter
Varying Control of Wind Turbines

This manuscript deals with structured LPV control of wind turbines. It brings a wider
context and content in terms of modeling and controller design when compared to Paper
B. We consider wind turbines with faults on actuators and sensors. The proposed frame-
work allows the inclusion of faults representable as varying-parameters. The controllers
are scheduled on an estimated wind speed to manage the parameter-varying nature of the
model and on information from a fault diagnosis system (Fig. 2.1).

θ̂op(k)

θ̂f(k)

Wind turbine

LPV controller

w(k)

u(k)

Wind speed

y(k)

estimator

system
Fault diagnosis

Figure 2.1: Block diagram of the controller structures. The black boxes are common
to the LPV controllers, while the red dashed box illustrates the fault diagnosis system
required by the AFTC.

An overview of the most common faults that can be modeled as varying parameters
is presented, e.g. bias and proportional error in sensors; offset of the generated torque
due to an offset in the internal power converter control loops; reduction in conversion
efficiency; altered dynamics of pitch system (Pressure drop, pump wear, high air content
in the oil). The dynamics of the pitch actuator can be represented as a second-order
system. A fault changes the dynamics of the pitch system by varying the damping ratio
and natural frequency from their nominal values ζ 0 and ωn,0 to their faulty values ζf and
ωn,f, with the parameters changing according to a convex combination of the vertices of
the parameter sets

ω2
n (θf) = (1− θf)ω

2
n,0 + θfω

2
n,lp (2.1a)

-2ζ(θf)ωn(θf) = -2(1− θf)ζ0ωn,0 − 2θfζlpωn,lp (2.1b)
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where θf ∈ [0, 1] is an indicator function for the fault with θ f = 0 and θf = 1 correspond-
ing to nominal and faulty conditions, respectively.

System and controller matrices are continuous functions of some time-varying pa-
rameter vector θ = [θ1, . . . , θnθ

]. Values of the scheduling parameter θ and its rate of
variation Δθ = θ(k + 1) − θ(k) are assumed bounded and belonging to a hyperrectan-
gle and a hypercube, respectively. The plant is parameterized by scalar functions ρ i(θ)
known as basis functions, that encapsulate possible system’s nonlinearities, and the indi-
cator function for the fault θ f,⎡
⎣ A(θ) Bw(θ) Bu(θ)
Cz(θ) Dzw(θ) Dzu(θ)
Cy(θ) Dyw(θ) Dyu(θ)

⎤
⎦ =

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
0

+
∑
i

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
i

ρi(θ),

+
∑
m

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
m

θf,m, i = 1, . . . , nρ, m = 1, . . . , nθf .

(2.2)
where nρ is the number of basis functions. Wind turbine aerodynamics is the main source
of nonlinearities. A linearization-based LPV model is adopted. Partial derivatives of
aerodynamic torque (Q) and thrust (T ) forces with respect to rotor speed (Ω r), wind
speed (V ) and pitch angle are natural candidates for the basis functions [BBM07]

ρ1 :=
1

Je

∂Q

∂Ω

∣∣∣∣
θop

,

ρ4 :=
1

Mt

∂T

∂Ω

∣∣∣∣
θop

,

ρ2 :=
1

Je

∂Q

∂V

∣∣∣∣
θop

,

ρ5 :=
1

Mt

∂T

∂V

∣∣∣∣
θop

,

ρ3 :=
1

Je

∂Q

∂β

∣∣∣∣
θop

,

ρ6 :=
1

Mt

∂T

∂β

∣∣∣∣
θop

,

(2.3)

where the scheduling variables representing the operating point is the effective wind speed
driving the turbine (i.e. θop := V̄ ). Controller and Lyapunov matrices are also made affine
dependent in the basis functions and in the fault scheduling variable.

P(θ) = P0 +

nρ∑
i=1

ρi(θk)Pi +

nθf∑
i=1

θf,iPnρ+i, (2.4a)

K(θ) = K0 +

nρ∑
i=1

ρi(θ)Ki +

nθf∑
i=1

θf,iKnρ+i. (2.4b)

Controller synthesis is solved by an iterative LMI-based algorithm which minimizes
the L2-gain from disturbances to performance channels. Due to its similarities with the
algorithm proposed in Paper B, details will be omitted here for brevity.

The numerical example addresses the design of a gain-scheduled LPV controller for
a pitch controlled wind turbine operating at full power. Controller structure is a static
output feedback, taking generator speed error, integral of the generator speed error, and
tower velocity as measurements. Collective blade pitch angle (β) is the controlled in-
put. This structure represents a proportional-integral (PI) controller regulating generator
speed (Ωg), while an integral controller increases damping of the tower fore-aft displace-
ment. Controller tuning follows a procedure similar toH∞ mixed sensitivities with loop-
shaping characteristics which tries to enforce a chosen second-order response from wind
disturbances to generator speed as well as increase damping of the tower fore-aft mode.
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Figure 2.2: Proportional, integral and tower feedback gains as functions of the operating
point and fault scheduling variables.

The proportional, integral and tower feedback gains as three-dimensional surfaces of
the scheduling parameters V and θf are illustrated in Fig. 2.2a to 2.2c. The controller
gains capture the dependence of the LPV system on the the wind speed given by the basis
functions. Also notice the slight changes in kp and kq̇ and the changes in ki scheduled by
the fault scheduling variable θf.

The performance of the LPV controllers are accessed in a nonlinear wind turbine
simulation environment. Figures 2.3a to 2.3d depict time series of a few variables of
interest resulted from a 600 s simulation. At time t = 200 s, the pitch system experiences
a fault with θf increasing from 0 to 1 (Fig. 2.3b). At t = 430 s, the pitch system comes to
normality with θf decreasing from 1 to 0. Both variations on the fault scheduling variable
are made with maximum rate of variation. Results of LPV controllers intolerant and
tolerant to pitch actuator faults are compared to support a discussion of the consequences
of the fault on the closed-loop system as well as fault accommodation. The FT-LPV PI
controller successfully accommodates the fault, maintaining rotor speed, generated power
and tower oscillations properly regulated.
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Figure 2.3: Time series of (a) hub height wind speed, (b) fault scheduling variable, (c)
rotor speed and (d) electrical power. Simulation results of a 2MW wind turbine controlled
by a fault-intolerant and a fault-tolerant LPV PI controller.
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Paper B: F.D. Adegas and J. Stoustrup, Structured Control of LPV Systems with
Application to Wind Turbines

This paper presents a method for designing structured linear parameter varying controllers
(LPV) for wind turbines. System and controller matrices are continuous functions of
some time-varying parameter vector θ = [θ1, . . . , θnθ

]. Values of the scheduling parame-
ter θ and its rate of variation Δθ = θ(k + 1)− θ(k) are assumed bounded and belonging
to a hyperrectangle and a hypercube, respectively. Controllers are synthesized via an
LMI-based iterative algorithm, which sequentially solves an extension of the bounded
real lemma (BRL) for parameter-dependent systems [dSBN06].

Lemma 1 (ExtendedL2 Performance). For a given controllerK(θ), if there existP(θ) =
P(θ)T andQ(θ) satisfying (2.5) with r = 1 for all (θ,Δθ) ∈ Θ×V , then the system Scl

is exponentially stabilizable by the controller K(θ) and ‖Tzw(θ)‖L2
< γ.

⎡
⎢⎢⎣
r2P(θ+) A(θ,K(θ))Q(θ) B(θ,K(θ)) 0

� −P(θ) +Q(θ)T +Q(θ) 0 Q(θ)T C(θ,K(θ))T

� � γI D(θ,K(θ))T

� � � γI

⎤
⎥⎥⎦ � 0.

(2.5)
We propose a modification of the BRL condition suitable for finding feasible con-

trollers in an iterative LMI scheme. The term r2 multiplying the Lyapunov matrix at the
(1,1) entry of (2.5) is artificially inserted into the formulation. BRL condition arises when
r = 1. When r > 1 the set of controllers satisfying the matrix inequality is larger; even
systems that are not exponentially stabilizable may satisfy the LMI.

Plant and controller matrices are parameterized by scalar functions ρ i(θ) known as
basis functions, that encapsulate possible system’s nonlinearities. For example, controller
matrices are[

Ac Bc

Cc Dc

]
(θ) =

[
Ac Bc

Cc Dc

]
0

+

nθ∑
i=1

[
Ac Bc

Cc Dc

]
i

ρi(θ), i = 1, . . . , nθ (2.6)

where nρ is the number of basis functions. Open-loop system matrices, multipliers
Q(θ) and the parameter-dependent Lyapunov function P(θ) have similar parametriza-
tion. Wind turbine aerodynamics is the main source of nonlinearities. Similarly to Paper
A, a linearization-based LPV model is adopted, where ρ i(θ) are taken as partial deriva-
tives of aerodynamic torque (Q) and thrust (T ) forces with respect to rotor speed (Ω r),
wind speed (V ) and pitch angle. The scheduling variable is the effective wind speed
driving the turbine (i.e. θ := V̄ ).

The optimization algorithm iterates between LMI problems by fixing the controller
variables and the slack variable alternatively. In order to obtain a finite-dimensional LMI
problem, a gridding procedure of the parameter space is proposed. Algorithms for the
computation of feasible as well as controllers with sub-optimal performance are pre-
sented. The algorithm for optimization of control performance is shown to generate a
sequence of solutions such that the cost is non-increasing, that is, γ (1) ≥ γ(j) ≥ γ(∗).
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Figure 2.4: Magnitude of transfer functions from wind disturbance to rotor speed and
tower velocity.

Controllers resulting from the proposed procedure could be easily implemented in
practice due to low data storage and simple math operations involving products between
scalar and matrix and sums of matrices.

The numerical example addresses the design of a gain-scheduled LPV controller for
a pitch controlled wind turbine operating at full power. The controller structure is com-
posed of two separate loops acting on the collective blade pitch angle (β). A proportional-
integral (PI) controller in series with a filter regulates the generator speed (Ω g), while
an integral controller in series with a filter increases damping of the tower fore-aft dis-
placement by measuring tower acceleration q̈. Controller tunning follows anH∞ mixed-
sensitivity approach.

Magnitude plots of transfer functions from wind disturbance to rotor speed and tower
velocity, for the open-loop and closed-loop systems. The increased damping of the tower
fore-aft motion is noticeable in Fig.2.4d where the magnitude of the open-loop system
(dashed line) is plotted for comparison. A similar response irrespective of the operating
point is noticeable, meaning that the controller is gain-scheduling to adapt to the nonlin-
earities of the plant.

Paper C: F.D. Adegas and J. Stoustrup,H∞/H2 Model Reduction Through Dilated
Linear Matrix Inequalities

This paper proposes sufficient linear matrix inequalities (LMI) conditions to theH∞ and
H2 model reduction. To the best knowledge of the authors, LMI extended with multipliers
had never been used to address this problem. This summary shows the results forH∞ case
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only. Consider a stable MIMO LTI dynamical system of order n in state-space form with
matrices (A,B,C,D). We seek another model (Ar , Br, Cr, Dr) with the same number
of inputs and outputs and of order r < n. The input-output difference between the original
system and the reduced system represented by the following state-space description

ΔS :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ẋ

ẋr

]
=

[
A 0

0 Ar

] [
x

xr

]
+

[
B

Br

]
u(t)

yΔ(t) =
[
C −Cr

] [ x
xr

]
+
(
D −Dr

)
u(t)

(2.7)

should be small in anH∞ orH2-norm sense. That is

‖ΔS‖∞ or 2 ≤ γ (2.8)

where γ represents the upper bound onH∞ orH2, depending on the context. A sufficient
condition to the existence of reduced-order matrices satisfying an H∞ upper bound is
stated next.

Theorem 1. ‖S − Sr‖∞ ≤ γ holds if there exist general auxiliary matrices Qk, k =

1, . . . , s+ 1 andH , symmetric matrix X , general matrices Âr, Br, Ĉr, Dr and a scalar
μ > 0 such that

⎡
⎢⎢⎣

ÂΔ + ÂT
Δ � � �

μ ÂT
Δ −Q+X −μ (Q +QT ) � �

ĈΔ μ ĈΔ −γI �
BT

Δ 0 DT
Δ −γI

⎤
⎥⎥⎦ ≺ 0, (2.9a)

ÂΔ :=

[
AQ1 AQ2 . . . AQs+1

Âr Âr . . . Âr

]
,

BΔ :=

[
B
Br

]
, DΔ := D −Dr

ĈΔ :=
[
CQ1 − Ĉr CQ2 − Ĉr . . . CQs+1 − Ĉr

]
,

(2.9b)

is satisfied. Once a solution is found, the reduced order system matrices can always be
reconstructed according to

Ar = ÂrH
−1, Cr = ĈrH

−1. (2.10)

The condition just presented are trivially extended to cope with model reduction of
parameter-dependent (PD) systems. We consider system matrices with polytopic depen-
dence on the parameter α

A(α) =
∑Nα

i=1 αiAi, B(α) =
∑Nα

i=1 αiBi,

C(α) =
∑Nα

i=1 αiCi, D(α) =
∑Nα

i=1 αiDi,
Λ :=

{
α :

Nα∑
i=1

αi = 1, αi ≥ 0

}
.

(2.11)
The aim is to find a reduced system Sr(α) with order r < n and system matrices similar
to (2.11) such that ‖S(α)− Sr(α)‖ ≤ γ for all α ∈ Λ.
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Theorem 2. ‖S(α)− Sr(α)‖∞ ≤ γ holds if there exist general auxiliary matrices Qk,
k = 1, . . . , s+ 1 and H , symmetric matrices Xi, general matrices Âr,i, Br,i, Ĉr,i, Dr,i

and a scalar μ > 0 such that

⎡
⎢⎢⎣

ÂΔi + ÂT
Δi � � �

μ ÂT
Δi −Q+Xi −μ (Q +QT ) � �

ĈΔi μ ĈΔ,i −γI �
BT

Δi 0 DT
Δi −γI

⎤
⎥⎥⎦ ≺ 0, (2.12a)

ÂΔi :=

[
AiQ1 AiQ2 . . . AiQs+1

Âr,i Âr,i . . . Âr,i

]
,

BΔi :=

[
Bi

Br,i

]
, DΔi := Di −Dr,i

ĈΔi :=
[
CiQ1 − Ĉr,i CiQ2 − Ĉr,i . . . CiQs+1 − Ĉr,i

]
,

i = 1, . . . , Nα,

(2.12b)

is satisfied. Once a solution is found, the reduced order system matrices can always be
reconstructed according to

Ar,i = Âr,iH
−1, Cr,i = Ĉr,iH

−1. (2.13)

The manuscript also proposed an iterative LMI algorithm to improve the result found
by the sufficient conditions. This algorithm will not be described here for brevity.

Numerical experiments benchmark the methods proposed in this manuscript with
other LMI-based methods found in the literature. Norm bounds on the approximation
error obtained with the proposed method were close or better than the ones found with
other methods. The order reduction conditions are also applied to an aeroelastic wind
turbine model. The objective here is to reduce from 20 states to 10 states without com-
promising the quality of the model in anH2 sense. Magnitude plots in frequency domain
of the original and reduced models are depicted in Fig. 2.5a. Another reduced model
were derived based on the well known balanced truncation model reduction scheme. The
comparison with the original model, in this case, is depicted in Fig. 2.5b. When compared
to balanced truncation, the H2 measure seems to be more appropriate in approximating
the low frequency range of the model.

Paper D: F.D. Adegas et al., Reduced-Order LPV Model of Flexible Wind Turbines
from High Fidelity Aeroelastic Codes

This paper presents a procedure to generate reduced-order LPV wind turbine model from
a set of high-order LTI models. We consider Ns stable multiple-input multiple-output
(MIMO) LTI dynamical systems of order n corresponding to parameter values θ (i), i =
1, 2, . . . , Ns,

Si :

{
ẋi(t) = Aixi(t) +Biu(t)

y(t) = Cixi(t) +Diu(t)
, i = 1, . . . , Ns. (2.14)

where Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ Rny×n, Di ∈ Rny×nu . We seek a reduced-order
parameterized model S(θ) of order r < n which approximates S i,
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Figure 2.5: Magnitude diagrams of a flexible wind turbine model with 20 states (gray)
and reduced 10 states (dark).

S(θ) :

{
ẋ = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t)
(2.15)

where A(θ) ∈ Rr×r, B(θ) ∈ Rr×nu , C(θ) ∈ Rny×r, D(θ) ∈ Rny×nu are continuous
functions of a vector of varying parameters θ := [θ1, θ2, . . . , θNθ

]
T . The dynamics of the

original system Si and the approximated system S(θ) are assumed to evolve smoothly
with respect to θ(i) and θ, respectively. The parameter θ may represent the current op-
erating point. It also may describe deviations on aerodynamics and structural properties
for the sake of parametric model uncertainties. Plant parameters to be designed under an
integrated plant-controller synthesis scheme could also be parameterized.

A flowchart containing the steps of the proposed procedure is depicted in Fig. 2.6.
Firstly, the high-order LTI models are locally approximated using modal and balanced
truncation and residualization. Then, an appropriate manipulation of the coordinate sys-
tem is applied to allow interpolation of the model matrices between points of the param-
eter space. A consistent state-space representation should be found before interpolation
methods are applied. We propose to transform the reduced order LTI systems into a rep-
resentation based on the companion canonical form. There exist algorithms which, for a
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system under arbitrary similarity transformation, find a unique companion form [Kai80].
In order to avoid known numerical issues of the companion form, each mode k of the
reduced system in modal coordinates is individually transformed into a companion real-
ization. The system matrices of this particular realization are given by (2.16).

Ac,i = diag(Ac,k,i), Bc,i =

⎡
⎢⎢⎢⎣
Bc,1,i

Bc,2,i

...
Bc,k,i

⎤
⎥⎥⎥⎦ ,

Cc,i =
[
Cc,1,i Cc,2,i . . . Cc,k,i

]
,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,k,i = −ak,i
Bc,k,i =

[
1 b1,k,i . . . bnu−1,k,i

]
for real eigenvalues,

Cc,k,i =

⎡
⎢⎢⎢⎣

c1,k,i

. . .

cny−1,k,i

0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,k,i =

[
0 −ak,i,1
1 −ak,i,2

]
,

Bc,k,i =

[
0 b11,k,i . . . b1nu−1,k,i

1 b21,k,i . . . b2nu,k,i

]
for complex eigen.

Cc,k,i =

⎡
⎢⎢⎣
c11,k,i . . . c1r,k,i

...
. . .

...

cny1,k,i . . . cnyr,k,i

⎤
⎥⎥⎦

i = 1, . . . , Ns, k = 1, . . . , Nm.

(2.16)

The characteristic polynomial of each mode appears in the rightmost column of the
matrix Ac,k,i. With the state-space matrices now at a realization suitable for interpola-
tion, a least-squares method is applied to compute parameter-dependent system matrices.
The proposed procedure is applied to the NREL 5MW reference wind turbine model
[JBMS09] where we aim to find an LPV model encapsulating the wind turbine dynam-
ics operating at the full load region. Large scale MIMO LTI models with 877 states
are computed by the aeroelastic code HAWCStab2 for wind speeds equidistant 1 m/s
(θ(i) ∈ {12, 13, . . . , 25}). The model is parameterized by the mean wind speed θ := V̄ .
A fifth-order polynomial dependence of the LPV system matrices

[
A(θ) B(θ)
C(θ) D(θ)

]
=

[
A0 B0

C0 D0

]
+

5∑
d=1

[
Ad Bd

Cd Dd

]
θd (2.17)

gives a fair trade-off between interpolation accuracy and polynomial order. A comparison
of the minimum and maximum singular values for a wind speed of V̄ = 15 m/s is depicted
in Fig. 2.7 and shows an excellent agreement. The location of the poles of the LPV system
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for a 2Ns grid of equidistant operating points is illustrated in Fig. 2.8. The arrows indicate
how the poles move for increasing mean wind speeds. A smooth evolution of the poles
along the full load region is noticeable.

The relative difference of the Hankel singular values of the interpolated LPV system
and the reduced order system defined as

σrel,r,i =
σint,r,i − σr,i

σr,i
× 100, i = 1, . . . , Ns (2.18)

serves as a measure of the quality of the interpolation. A good fit can be corroborated by
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Figure 2.8: Pole location of the LPV model for frozen values of the varying parameter θ.

some metrics of σrel,r,i given in Tab. 2.1. The mean difference in the Hankel singular
values is only 0.27% and the maximum difference just 2.75%.

Table 2.1: Difference in the Hankel singular values between the LPV and reduced order
system for frozen values of θ.

Max Min Mean Std. dev

2.75 0.001 0.27 0.57

The obtained LPV model is of suitable size for synthesizing modern gain-scheduling
controllers based on the recent advances on LPV control design. Time propagation of the
varying parameter is not explicitly utilized. Therefore, the procedure assumes that the
varying parameter do not vary excessively fast in time, in line with common practices in
gain-scheduling control.

Paper E: F.D. Adegas, New Sufficient LMI Conditions for Static Output
Stabilization

New LMI conditions to the static output feedback stabilization (SOFS) problem are pre-
sented in this paper. We propose to work on enlarged spaces composed by the state x(t)
and its time derivative ẋ(t), the control input u(t) or the measured output y(t). Different
LMI characterizations emerge depending on the considered spaces (x(t), ẋ(t), u(t)) or
(x(t), ẋ(t), y(t)). This summary presents conditions for the former space only. Let the
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dynamical equations be written as

ẋ(t) = Ax(t) +Bu(t) (2.19a)

u(t) = KCx(t). (2.19b)

Stability of the above dynamical system is characterized by the existence of the set

V̇ (x(t), ẋ(t)) < 0, ∀(x(t), ẋ(t), u(t)) = 0 satisfying (2.19). (2.20)

where the quadratic form V̇ : Rn × Rn → R is defined as

V̇ (t) := ẋ(t)TPx(t) + x(t)TP ẋ(t) (2.21)

Let an extended input matrix B̃ ∈ Rn×n be the result of augmenting redundant inputs
to the system, such that the number of inputs are equal to the number of states. That is

B̃ :=
[
Bu1 Bu2 . . . Bunu

Bu1 Bu2 . . .
]

(2.22)

whereBui stands for the i-th column of matrixB related to the i-th input. Let also define
an augmented feedback gain K̃ ∈ Rn×ny partitioned accordingly

K̃ :=
[
KT

1,u1
KT

1,u2
. . . KT

1,unu
KT

2,u1
. . . KT

2,u2
. . .
]T

(2.23)

where Kj,ui ∈ R1×ny are j-th feedback gain from y(t) to the i-th input u i. The contri-
bution of the different gains Kj,ui to a particular input is just their sum

Kui :=
N∑
j=1

Kj,ui (2.24)

The following theorem presents a new sufficient condition for the existence of a static
feedback gain satisfying the set (2.20).

Theorem 3. (Stabilizability) There exists a static output feedback that rendersA+BKC
Hurwitz if ∃ P ∈ Sn, K̂ ∈ Rn×ny , Λ1, Λ2, Γ1 ∈ Rn×n, μ ∈ R :

J +H +HT ≺ 0, P � 0, J :=

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , (2.25a)

H :=

⎡
⎣ Λ1A+ K̂C −Λ1 Λ1B̃ − Λ2

α(Λ1A+ K̂C) −αΛ1 α(Λ1B̃ − Λ2)

Γ1A+ μK̂C −Γ1 Γ1B̃ − μΛ2

⎤
⎦ (2.25b)

for an arbitrary scalar α > 0 and if the solution yields Λ2 non-singular.

Whenever Λ2 is non-singular, the original controller gains can be reconstructed ac-
cording to K̃ = Λ−1

2 K̂ .
Numerical experiments show good success rates in finding a stabilizing controller.

They also suggest that the assumption of a solution rendering a non-singular multiplier
Λ2 is not strong. Controllers were computed for sets of 1.000 random triplices (A,B,C)
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satisfying the generic stabilizability results of Kimura. Table 2.2 summarizes the success
of finding valid solutions for systems with different dimensions (n, nu, ny). The number
of successes related to the primal dynamical system (Theorem presented above), dual
dynamical system (see Paper E), and either one of these two are depicted. The rates of
at least one characterization succeed are over 90%, remarkably high. Out of all valid
solutions, the smallest absolute eigenvalue of the multiplier Λ2 was smaller than 10−3

only at two occasions (0.03%).

(nu, ny) Primal System Dual System Primal or Dual System

n=4
(3,2) 924 (92.4%) 859 (85.9%) 983 (98.3%)
(2,3) 847 (84.7%) 943 (93.4%) 972 (97.2%)

n=6
(3,4) 796 (79.6%) 856 (85.6%) 943 (94.3%)
(4,3) 881 (88.1%) 819 (81.9%) 954 (95.4%)

Table 2.2: Success rate on the SOFS problem.

The proposed conditions can be exploited in the well known simultaneous and robust
stabilization problems. The Lyapunov variable P can be made multiple or parameter-
dependent due to its appearance free from products with system matrices. The simul-
taneous stabilization problem is treated in this summary. Given a family of open-loop
plants,

Gi :=

[
Ai Bi

Ci Di

]
, i = 1, 2, . . . , Np

find a controllerK that simultaneously stabilizes the plants, that is,

Re (λ (Ai +BiKCi)) < 0, i = 1, 2, . . . , Np.

Considering the enlarged space (x(t), ẋ(t), u(t)), this problem can be cast as the suffi-
cient LMI feasibility condition: ∃Pi ∈ Sn, K̂ ∈ Rn×ny , Λ1,i, Λ2, Γ1,i ∈ Rn×n, μ ∈ R :

Ji +Hi +HT
i ≺ 0, Pi � 0, Ji :=

⎡
⎣ 0 Pi 0
Pi 0 0
0 0 0

⎤
⎦ , (2.26a)

H :=

⎡
⎣ Λ1,iAi + K̂Ci −Λ1,i Λ1,iB̃i − Λ2

α(Λ1,iAi + K̂Ci) −αΛ1,i α(Λ1,iB̃i − Λ2)

Γ1,iAi + μK̂Ci −Γ1,i Γ1,iB̃i − μΛ2

⎤
⎦ (2.26b)

for i = 1, . . . , Np where α > 0 is an arbitrary scalar, and if the solution yields Λ2 non-
singular. A single Λ2 is adopted for the family of open-loop plants in order to facilitate
change-of-variables involving the controller gain and multiplier, while multiple Λ 1,i and
Γ1,i help to reduce conservativeness.
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Paper F: F.D. Adegas and J. Stoustrup, Linear Matrix Inequalities for Analysis and
Control of Linear Vector Second-Order Systems

This paper contributes to the analysis and synthesis of systems represented in vector
second-order. In order to limit the content of this summary, we consider the particular
controlled system

Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t) + Fuu(t) (2.27a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) +Dzuu(t) (2.27b)

u(t) = −Gv q̇(t)−Gpq(t) (2.27c)

where q(t) ∈ Rn is the position vector, w(t) ∈ Rnw is the disturbance input, u(t) ∈ Rnu

the controlled input, M, C, K, Fw , Fu, Gv, Gp are real matrices with appropriate di-
mensions. The only assumption on the system matrices is non-singularity of M and K .
Denote Hzw the input-output operator of system (2.27). The novel necessary and suffi-
cient conditions for asymptotic stability and quadratic performance are given in terms of
LMIs with explicit dependence in the system coefficient matrices. The following standard
Lyapunov stability condition is a major contribution of this paper. A linear dependence
on the system coefficient matrices can be noticed, in contrast to many known stability
conditions dependent on inverses of coefficient matrices.

Theorem 4. System (2.27) is asymptotically stable if, and only if, ∃P1 ∈ Sn, W2, W3 ∈
Rn×n : [ −(W2K +KTWT

2 ) P1 −W2C −KTWT
3

P1 −W3K − CTWT
2 P2 + PT

2 − (W3C + CTWT
3 )

]
≺ 0, (2.28a)

[
P1 W2M

MTWT
2 W3M

]
+

[
P1 W2M

MTWT
2 W3M

]T
� 0, (2.28b)

W3M =MTWT
3 (2.28c)

New LMI conditions extended with multipliers are also proposed. Elimination of
multipliers is investigated, to determine in which circumstances multipliers can be re-
moved without loss of generality, leading to LMI with fewer variables and better suited
to synthesis. We illustrate this in the context of integral quadratic constraints on the input
and output signals. Consider the constrained Lyapunov problem

V̇ (q(t), q̇(t), q̈(t)) < −

⎛
⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠

T [
ZTQZ ZT (S +QDzw)

(S +QDzw)
TZ R̄

]⎛⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠ ,

R̄ := R +DT
zwQDzw +DT

zwS + STDzw

(2.29a)

∀(q(t), q̇(t), q̈(t), w(t)) satisfyingMq̈(t) + Cq̇(t) +Kq(t) = Fww(t), (2.29b)

(q(t), q̇(t), q̈(t), w(t)) = 0, (2.29c)

Sufficient conditions with reduced number of multipliers can be derived from the above
Lyapunov problem by applying the Elimination Lemma. They become also necessary if

33



Summary of Contributions

the acceleration vector (or position vector) is absent in the performance vector z(t) i.e.
U = 0.

Theorem 5. The set of solutions of the Lyapunov problem (2.29) with P � 0 is not empty
if ∃ P1, P3 ∈ Sn, P2, Φ, Λ ∈ Rn×n, α ∈ R :

J +H+HT ≺ 0, where (2.30a)

J :=

⎡
⎢⎢⎣

0 P1 P2 0
P1 P2 + PT

2 P3 0
PT
2 P3 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
XTQX XTQV XTQU XT (S +QDzw)

� V TQV V TQU V T (S +QDzw)
� � UTQU UT (S +QDzw)
� � � R̄

⎤
⎥⎥⎦ ,

(2.30b)

H :=

⎡
⎢⎢⎣

ΦK ΦC ΦM −ΦFw

(αΦ + Λ)K (αΦ + Λ)C (αΦ + Λ)M −(αΦ+ Λ)Fw

αΛK αΛC αΛM −αΛFw

0 0 0 0

⎤
⎥⎥⎦ , α > 0,

(2.30c)[
P1 P2

PT
2 P3

]
� 0. (2.30d)

This is necessary and sufficient whenever U = 0 in (2.29).

Regarding synthesis, the manuscript has focused on stabilizing and L 2-gain con-
trollers in vector second-order form. The L2 performance criteria is a particularization of
the above by setting [

Q S
ST R

]
←

[
I 0
0 −γ2I

]
.

The next theorem states the existence of a static controller of the form (2.27c) with guar-
anteed L2 performance.

Theorem 6. There exists a controller of the form (2.27c) such that ‖Hzw‖L2 < γ2 if
∃ P̂1, P̂3 ∈ Sn, P̂2, Γ ∈ Rn, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

⎡
⎢⎢⎢⎢⎣
μ(KΓ + FuĜp) + � P̂1 + μ(CΓ + FuĜv) + (1 + αμ)(KΓ + FuĜp)

T

� P̂2 + (1 + αμ)(CΓ + FuĜv) + �
� �
� �
� �

P̂2 + μMΓ + α(KΓ + FuĜp)
T −μFw ΓTXT − K̂T

p D
T
zu

P̂3 + (1 + αμ)MΓ + α(CΓ + FuĜv)
T −(1 + αμ)Fw ΓTV T − K̂T

v D
T
zu

α(MΓ + ΓTMT ) −αFw ΓTUT

� −γ2I DT
zw

� � −I

⎤
⎥⎥⎥⎥⎦ ≺ 0,

(2.31a)

α > 0, μ > 0,

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0 (2.31b)

.
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If a solution is found, the controller gains can always be reconstructed from the aux-
iliary ones according to Gv = ĜvΓ

−1 andGp = ĜpΓ
−1.

The inherent decoupling of the Lyapunov and system matrices facilitates parameter-
dependent Lyapunov functions as certificates of stability. Assume uncertain system co-
efficient matrices taking values in a domain defined as a polytopic combination of N
given matrices. We consider the robust stability problem as an example. Such system is
robustly stabilizable by a static feedback law of the form (2.27c) if ∃ Λ, P 2,i ∈ Rn×n,
P1,i, P3,i ∈ Sn, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

Ji +Hi +HT
i ≺ 0, Ji :=

⎡
⎣ 0 P1,i P2,i

P1,i P2,i + PT
2,i P3,i

PT
2,i P3,i 0

⎤
⎦ , (2.32a)

Hi :=

⎡
⎣ μ(KiΛ + Fu,iĜp) μ(CiΛ + Fu,iĜv) μ(MiΛ)

(1 + αμ)(KiΛ + Fu,iĜp) (1 + αμ)(CiΛ + Fu,iĜv) (1 + αμ)(MiΛ)

α(KiΛ + Fu,iĜp) α(CiΛ + Fu,iĜv) α(MiΛ)

⎤
⎦

(2.32b)[
P1,i P2,i

PT
2,i P3,i

]
� 0, α > 0, μ > 0, (2.32c)

for i = 1, . . . , N .
Numerical examples illustrate the design of controllers. One of the examples brings a

different perspective to modern control of wind turbines by considering the design model
in its natural, vector second-order form. For clarity, the turbine model contains only the
two structural degrees of freedom with lowest frequency contents: rigid body rotation of
the rotor and fore-aft tower bending described by the axial nacelle displacement. Con-
troller design follows aH∞ model matching criteria, which has an elegant structure when
considered in vector second-order form. The performance of the system in closed-loop
should approximate a given a reference model

Mr q̈r(t) + Cr q̇r(t) +Krq̈r(t) = Fwrw(t) (2.33a)

zr(t) = Ur q̈r(t) + Vr q̇r(t) +Xrq̈r(t) (2.33b)

in an H∞-norm sense. The matrices of the reference model are chosen to enforce a
desired second-order closed-loop sensitivity function from wind speed disturbance v(t)
to rotor speed ψ̇(t). Bode plots of the closed-loop, open-loop and reference systems are
depicted in Fig.2.9a. A good agreement between the closed-loop and reference model is
noticeable. The chosen reference model indirectly impose some damping of the tower
fore-aft displacement by trying to reduce the difference in magnitude between open-loop
and reference model at the tower natural frequency. Step responses of the controlled and
reference systems are compared in Fig.2.9b, showing a good correspondence.
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Figure 2.9: H∞ model matching control of a simplified wind turbine model.
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Paper G: F.D. Adegas, Linear Matrix Inequalities Conditions for Simultaneous
Plant-Controller Design

In this paper, LMI conditions to the simultaneous plant-controller design are derived. We
consider the closed-loop system

ẋ(t) = (A(ρ) +BuK)x(t) +Bw(ρ)w(t) (2.34a)

z(t) = (Cz(ρ) +DzuK)x(t) +Dzw(ρ)w(t) (2.34b)

where x ∈ Rn is the state vector,w(t) ∈ Rnw is the disturbance vector, z(t) ∈ Rnz is the
performance channel, K ∈ Rnu×n is the full-state feedback gain, and systems matrices
are real valued with appropriate dimensions, and defined as

A(ρ) := A0 +Aρρ, Bw(ρ) := Bw0 +Bwρρ,

Cz(ρ) := Cz0 + Czρρ, Dzw(ρ) := Dzw0 +Dzwρρ,

Aρ :=
[
Aρ1 Aρ2 . . . AρN

]
, Bwρ :=

[
Bwρ1 Bwρ2 . . . BwρN

]
,

Czρ :=
[
Czρ1 Czρ2 . . . CzρN

]
, Dzwρ :=

[
Dzwρ1 Dzwρ2 . . . DzwρN

]
,

ρ :=
[
ρ1In ρ2In . . . ρNIn

]T
, ρ

i
≤ ρi ≤ ρi, i = 1, . . . , N.

The above matrices are affine dependent on ρ representing deviations of the plant pa-
rameters from the nominal ones. Matrices Aρ, Bwρ, Czρ, Dzwρ define how parameter
deviations affect the nominal plant matrices A0, Bw0, Cz0, Dzw0. These parameters are
assumed bounded by a hypercube with lower limit ρ

i
and upper limit ρi.

The simultaneous plant-controller design is subject to integral quadratic constraints
(ICQ) on the input and output signals

∫ ∞

0

(
z

′
(t)

w
′
(t)

)T [
Q S
ST R

](
z

′
(t)

w
′
(t)

)
≥ 0 (2.36)

where Q ∈ Snz , R ∈ Snw , S ∈ Rnz×nw , R � 0. Considering the algebraic dual
of system (2.34)-(2.35), and resorting to Lyapunov theory and the S-procedure [OS01],
it can be shown that system (2.34)-(2.35) is asymptotically stable and satisfy the ICQ
constraint (2.36) if, and only if, there exists V (x(t)) > 0, ∀x(t) = 0 such that
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V̇ (x
′
(t), ẋ

′
(t)) < −

⎛
⎜⎜⎝
x

′
(t)

p
′
x(t)

p
′
w(t)

w
′
(t)

⎞
⎟⎟⎠

T

M

⎛
⎜⎜⎝
x

′
(t)

p
′
x(t)

p
′
w(t)

w
′
(t)

⎞
⎟⎟⎠ , (2.37a)

M :=

⎡
⎢⎢⎣
Bw0QB

T
w0 Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� BwρQB
T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � R̄

⎤
⎥⎥⎦ (2.37b)

R̄ := R+Dzw0QD
T
zw0 +Dzw0S + STDT

zw0 (2.37c)

∀(x′
(t), ẋ

′
(t), p

′
x(t), p

′
w(t), w(t)) = 0 satisfying (2.37d)

ẋ
′
(t) = (A0 +BuK)Tx

′
(t) + (Cz0 +DzuK)w

′
(t) + p

′
x(t) + p

′
w(t) (2.37e)

p
′
x(t) := ρTAT

ρ x
′
(t), p

′
w(t) := ρTCT

zρw
′
(t). (2.37f)

where (·)′ represents the dualized system variables. The nonlinear change-of-variables

ρ̂ := ρψIn, ρ̂ =
[
ρ̂1In ρ̂2In . . . ρ̂NIn

]T
(2.38)

involving the plant parameters ρi and a scalar multiplier ψis an original contribution and
facilitates the derivations that follows. Wheneverψ = 0, the original plant parameters can
be reconstructed according to ρi = ρ̂iψ

−1. LMI conditions arises by applying Finsler’s
lemma to (2.37). Let synthesis conditions for the plant design problem (controller gains
K = 0) be presented first.

Theorem 7 (Plant Synthesis). There exists plant parameters ρi, i = 1, . . . , N such that
the set (2.37) is not empty if ∃P ∈ Sn, ρ̂i, i = 1, . . . , N, ψ, α ∈ R, Φ1, Γ1, Λ1, Π1, ∈
Rn×n :

J +HT +H ≺ 0, P � 0, (2.39)

J :=

⎡
⎢⎢⎢⎢⎣
Bw0QB

T
w0 P Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� 0 0 0 0
� � BwρQB

T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � � R̄

⎤
⎥⎥⎥⎥⎦ , (2.40)

H :=

⎡
⎢⎢⎢⎢⎣
A0Φ1 +Aρρ̂ α(A0Φ1 +Aρρ̂) A0Λ1 +Aρρ̂ A0Π1 +Aρρ̂ 0
−Φ1 −αΦ1 −Λ1 −Π1 0

Φ1 − ψIn α(Φ1 − ψIn) Λ1 − ψIn Π1 − ψIn 0
Φ1 − ψIn α(Φ1 − ψIn) Λ1 − ψIn Π1 − ψIn 0

Cz0Φ1 + Czρρ̂ α(Cz0Φ1 + Czρρ̂) Cz0Λ1 + Czρρ̂ Cz0Π1 + Czρρ̂ 0

⎤
⎥⎥⎥⎥⎦ ,

(2.41)

ρ
i
ψ ≥ ρ̂i ≥ ρiψ. (2.42)

and if the solution yields ψ non-singular.
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In this case, the original plant parameters can be recovered from the auxiliary ones
according to ρi = ρ̂iψ

−1. The results from the plant design are extended with the state-
feedback controller yielding the main contribution of this paper.

Theorem 8 (Simultaneous Plant-Controller Synthesis). There exist plant parameters ρ i,
i = 1, . . . , N and a controller gain K such that the set (2.37) is not empty if ∃ P ∈
Sn, ρ̂i, i = 1, . . . , N, ψ, α ∈ R, Φ1, Γ1, Λ1, Π1, ∈ Rn×n :

J +HT +H ≺ 0, P � 0, (2.43)

J :=

⎡
⎢⎢⎢⎢⎣
Bw0QB

T
w0 P Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� 0 0 0 0
� � BwρQB

T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � � R̄

⎤
⎥⎥⎥⎥⎦ , (2.44)

H :=

⎡
⎢⎢⎢⎢⎣

A0Φ+BuK̂ +Aρρ̂ α(A0Φ+BuK̂ +Aρρ̂) A0Φ +BuK̂ +Aρρ̂
−Φ −αΦ −Φ

Φ− ψIn α(Φ− ψIn) Φ− ψIn
Φ− ψIn α(Φ− ψIn) Φ− ψIn

Cz0Φ+DzuK̂ + Czρρ̂ α(Cz0Φ+DzuK̂ + Czρρ̂) Cz0Φ +DzuK̂ + Czρρ̂

A0Φ+BuK̂ +Aρρ̂ 0
−Φ 0

Φ− ψIn 0
Φ− ψIn 0

Cz0Φ+DzuK̂ + Czρρ̂ 0

⎤
⎥⎥⎥⎥⎦ , (2.45)

ρ
i
ψ ≥ ρ̂i ≥ ρiψ. (2.46)

The linear dependence of the LMIs on the Lyapunov matrix facilitates the usage
of parameter-dependent Lyapunov functions as certificates of stability of uncertain and
time-varying systems. Results on simultaneous plant-controller design for uncertain and
linear-parameter varying systems have already been derived and will be presented in a
future manuscript. Results for plants with polynomial dependence on the parameters to
be designed were also developed and will be published shortly.

Report H: F.D. Adegas, D-Stability Control of Wind Turbines

In this report, multiobjective output-feedback control via LMI optimization is explored
for wind turbine control design. In particular, we use D-stability constraints to increase
damping and decay rate of resonant structural modes. In this way, the number of weight-
ing functions and consequently the order of the final controller is reduced, and the control
design process is physically more intuitive and meaningful.

Our interest lies in the design of a full-order dynamic output feedback controller for
a wind turbine, such that satisfactory generator speed (and power) regulation as well
as mitigation of mechanical vibrations are attained. We denote input-output operators
(transfer matrices) of the augmented system for controller synthesis as Tw→z. We adopt
time and frequency domain specifications to the closed-loop system including induced
norms such as
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Summary of Contributions

• L2-norm (‖Tw→z‖2i,2 < γ): ”energy gain” of a system to a worst-case disturbance,
e.g. a constant relating the energy of the worst-case wind (wind gust) to the energy
on the gen. speed;

• Generalized H2-norm (‖Tw→z‖g < �): energy-to-peak gain of a system, e.g. a
constant relating wind gust with maximum pitch angle rates;

and regional pole placement constraints, such as the ones illustrated in Fig. 2.10.

• Conic region: minimum damping for all modes;

• Decay region: minimum decay rate for all modes;

• Circle region: a circle with radius r and center −c.

Figure 2.10: Regions of the complex plane for pole placement constraints.

The numerical example brings a generic utility-scale wind turbine model with 9-states
composed of the following modes/states:two-mass flexible drive-train, tower fore-aft dis-
placement, second-order pitch actuator, first-order generator lag and integral of generator
speed. The chosen design criteria is to minimize the performance level γ subject to

• ‖Tv→z‖2i,2 < γ, z(t) = [Ωi(t) Qg(t) β(t)]T ;

•
∥∥∥Tv→β̇

∥∥∥
g
< 8 deg/s;

• arg(λ(A)) < φ, Re(λ(A)) < α.

where Ωi is the integral of speed error,Qg is the generator torque and β is the pitch angle.
In words, this performance criteria states that the generator speed ”integral square error
(ISE)” should be small with little control effort while respecting the pitch rate limit, for the
worst-case wind disturbance. The augmented system for synthesis purposes is depicted
in Fig. 2.11. The weighting functions were chosen frequency independent on the form
G1(s) := k1 andG2(s) := diag(k2, k3). All modes should be contained in a conic region
with internal angle 2φ and decay rate of at least α. The adopted multiobjective LMI
formulation follows [SGC97]. The LMIs were solved with the semidefinite programming
code SeDuMi [Stu99] and parser YALMIP [L0̈4].

The drive-train torsional mode is the least damped mode in open-loop. Active vibra-
tion control can be obtained by a D-stability constraint on the minimum damping of the
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Figure 2.11: Augmented system for synthesis.
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Figure 2.12: Closed-loop response for a unit step on wind speed disturbance for different
angles of the conic region.

closed-loop system. via the conic region constraint. Figure 2.12 depicts the closed-loop
system response for a unit step on wind speed disturbance, under various internal angles
of the conic region. The location of the closed-loop poles are illustrated in Fig. 2.13. The
effect of the damping constraint on the generator speed Ω g and generator torque Qg sig-
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Figure 2.13: Location of the closed-loop poles for different angles of the conic region.

nals is noticeable. The report also shows how to achieve drive-train and tower damping
simultaneously, as well as the influence of energy-to-peak constraint in the pitch rate in
the system response.

Other Contributed Papers

During the Ph.D. project, four other papers were been written by the author of this the-
sis and published. Two of the papers addressed theoretical developments in the area of
structured control of uncertain and LPV systems,

• Adegas FD, Stoustrup J. Robust structured control design via LMI optimization.
Proceedings of the 18th IFAC World Congress, IFAC: Milan, Italy, 2011.

• Adegas FD, Stoustrup J. Structured control of affine linear parameter varying sys-
tems. Proceedings of the 2011 American Control Conference, San Francisco, CA,
USA, 2011.

and their content are partially related to the iterative LMI algorithm of Paper A. It was
decided to let them out to favor conciseness of the thesis. The other two papers were in
collaboration with M.Sc. students. Although within the field of wind turbine control and
the scope of Project CASED, they have been left out in favor of a more uniform thesis
content around structured control of wind turbines and LMI methods. The following
paper

• J. Friis, E. Nielsen, J. Bonding, F.D. Adegas, J. Stoustrup, P.F. Odgaard, ”Repetitive
model predictive approach to individual pitch control of wind turbines,” IEEE Conf.
on Decision and Control and European Control Conference (CDC-ECC), pp.3664-
3670, 12-15 Dec., 2011.

42



proposes a novel model predictive (MPC) approach for individual pitch control of wind
turbines. A repetitive wind disturbance model is incorporated into the MPC prediction.
As a consequence, individual pitch feed-forward control action is generated by the con-
troller, taking future wind disturbance into account. Information about the estimated wind
spatial distribution one blade experience can be used in the prediction model to better
control the next passing blade. A simulation comparison between the proposed controller
and an industry-standard PID controller shows better mitigation of drive-train, blade and
tower loads.

New analysis tools and an adaptive control law to increase the energy captured by a
wind turbine is proposed in

• L. Diaz-Guerra, F.D. Adegas, J. Stoustrup, M. Monros, ”Adaptive control algo-
rithm for improving power capture of wind turbines in turbulent winds,” American
Control Conference (ACC), pp.5807-5812, 27-29 June 2012.

Due to its simplicity, it can be easily added to existing industry-standard controllers.
The effectiveness of the proposed algorithm is accessed by simulations on a high-fidelity
aeroelastic code.
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3 Conclusion and Future Work

In this chapter, the main conclusions from the work presented in the previous chapters are
drawn. Suggestions to possible future research directions follows.

3.1 Conclusions

Aeroservoelastic LPV Modeling of Wind Turbines

The LPV framework was shown suitable for integrating aeroelastic models of wind tur-
bines and controller models. By the use of simple first-principles modeling, aerodynamic
non-linearities and common faults on sensors and actuators of a control system can be
simultaneously represented in the plant and captured by the gain-scheduled controller.

Wind turbine LPV models are often simple, first-principles based, neglecting dynam-
ics related to aerodynamic phenomena and some structural modes. This in turn restricted
LPV control of wind turbines to the academic environment only. On the other hand, the
high-fidelity aeroelastic models used by the wind industry for controller design are often
linear-time invariant and of high-order. Based on modal and balanced truncation, one of
the proposed methods proved very successful for order reduction of high-fidelity wind tur-
bine models. With the assumption that scheduling parameters varies slowly, the method
is able to encapsulate the varying dynamics over the operating envelope as a reduced-
order LPV system. Modeling methods such as this can motivate the industrial use of LPV
control. Parameter-dependent models can also serve to the purpose of simultaneous plant-
controller design. Instead of performing linearizations of the non-linear aeroservoelastic
model during the course of the optimization, an entire family of designs can be computed
off-line and encapsulated as a reduced-order parameter-dependent system. This system
can later be utilized for aeroservoelastic optimization.

Synthesis of Wind Turbine LPV Controllers

This thesis has demonstrated the factibility of including structure on gain-scheduled con-
trollers for wind turbines. The linear parameter-varying modeling and control framework
using parameter-dependent Lyapunov functions and linear matrix inequalities was shown
appropriate to address some of the control problems commonly faced by the wind indus-
try with theoretical soundness on stability and performance of the system in closed-loop.

The numerics play an important role when implementing LPV methods in practice.
The methods proposed in this thesis sacrifices elegance in the offline synthesis in favor of
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a simple online implementation. Matrix inversions and factorizations are common oper-
ations carried online when the LPV controllers are computed from LMI conditions with
auxiliary variables. Iterative LMI algorithms may be computationally demanding, but
due to the absence of auxiliary variables, the resulting LPV controllers does not demand
online operations as such. Sums of matrices and multiplication between matrix and a
scalar are the only required operations. Ease of implementation can also encourage the
immersion of LPV control of wind turbines in an industrial setting.

Intuitive Performance Specifications

In the design of LPV controllers, theH∞ mixed-sensitivities loop-shaping approach tries
to enforce a second-order behavior from wind disturbances to rotor speed. The desired
second-order behavior is specified in terms of natural frequency and damping ratio, usual
requirements in the design of PI controllers for wind turbines.

D-Stability was shown to be an interesting approach to active vibration control. Pole
placement constraints have direct physical meaning, such as minimum damping and de-
cay rate of the closed-loop poles, which facilitates controller design with high-level spec-
ifications. Specification of these constraints are also independent of the aeroelastic model
being used for control design. An integrated aeroservoelastic optimization can take ad-
vantage of this fact to guarantee a certain level of vibration attenuation despite re-design
of the plant and controller.

Theoretical Developments

The thesis also brought new conditions and perspectives to some of the important control
problems which remains open to date.

The analysis and synthesis conditions of vector second-order systems obtained dur-
ing our studies have the potential to increase the practice of working with systems di-
rectly in vector second-order form. LMI conditions for verifying asymptotic stability and
quadratic performance were shown to be necessary and sufficient, irrespective of the type
of dynamic loading. Due to their linear dependence in the coefficient matrices and the
inclusion of multipliers on the formulation, the conditions are appropriate to robust anal-
ysis of systems with structured uncertainty. Synthesis of vector second-order controllers
with guaranteed stability and quadratic performance are also formulated as LMI prob-
lems. Unfortunately, the synthesis conditions are only sufficient to the existence of full
state-feedbacks. This is the major drawback when compared to synthesis in state-space
first-order form, to which necessary and sufficient LMI conditions are available in the
literature. However, when structural constraints are imposed on the controller gains, the
design in vector second-order form may render less conservative results.

The novel H∞/H2 model reduction conditions and procedures based on LMIs ex-
tended with multipliers shown to be efficient when compared to other works on the litera-
ture. The proposed conditions are particularly useful for reducing the order of parameter-
dependent systems, limited to original models with small to moderate number of states.
These could be readily applied to model reduction of gain-scheduled controllers where
the rate of variation of the scheduling variable is assumed null.

The proposed sufficient static output stabilization conditions based on LMIs extended
with multipliers also shown to be efficient. A success rate of finding stabilizing controllers
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of over 90% were achieved in numerical experiments with randomly generated state-
space models. In a wind turbine context, since PI controllers can be formulated as static
output feedback (by augmenting the integrator on the plant), the proposed simultaneous
stabilization conditions can be useful to design passive fault-tolerant PI controllers.

A different perspective to the simultaneous plant-controller design problem was given
by proposing convex, sufficient LMI conditions to this problem. The extra degrees of
freedom introduced by the matrix multipliers facilitated a novel change-of-variables in-
volving the plant parameters to be designed. The linear dependence of the conditions on
the Lyapunov matrix ease the usage of parameter dependent Lyapunov functions as cer-
tificates of stability to the simultaneous plant-controller design of parameter-dependent
and linear parameter-varying systems. This is a direct contribution to concurrent aeroser-
voelastic design of wind turbines. Suboptimal designs with quadratic performance can be
computed efficiently using modern convex optimization tools.

3.2 Future Work

Suggestions to future work are provided in this section, based on limitations of some of
the presented results, issues that were not addressed due to lack of time, and on more
general impressions gathered during the research.

Aeroservoelastic LPV Modeling of Wind Turbines

Other methods for encapsulating the varying dynamics of the wind turbine as an LPV
system is a subject of further research. Our approach relied on reducing the order of the
collection of original LTI models and subsequent interpolation of the state-space matri-
ces. An alternative approach could fit a high-order LPV model from the original LTI
systems, and later apply model reduction techniques for parameter-varying systems. This
approach would benefit of interpolating the system matrices in the original and consistent
coordinates. The drawback is the large least-squares problem required for interpolation
of the large matrices which can be numerically challenging.

When only LTI models are available, it is usual to resort to the strong assumption that
scheduling variables varies slowly in time. An issue of future research is to find an LPV
representation from a high-fidelity non-linear aeroelastic model which does not assume
slow parameter variations.

Expand the LPV modeling and control framework of wind turbines to deal with de-
rated power operation is of interest. Changes in power reference result in changes of the
operating point of the machine, which in turn leads to varying dynamics. A scheduling
parameter can be add to the LPV formulation allowing the controller to adapt to the
envelope of varying dynamics.

Synthesis of Wind Turbine LPV Controllers

LMI conditions can also be explored to the design of wind turbine LPV controllers. Full-
state and full-order dynamic output feedback can be turned into LMI conditions, with-
out loss of generality, by performing linearizing change-of-variables between parameter-
dependent controller data and parameter-dependent multiplier. Other structures such as
static output feedback can also be handled with some conservatism. Our experience says
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that iterative LMI algorithms are usually less conservative than sufficient LMI conditions
with multipliers. A comparison between sufficient LMI and iterative LMI methods for
LPV control of wind turbines would give an empirical indication of the relative degree of
conservatism of each approach.

Intuitive Performance Specifications

Two research lines on this subject were initiated during the Ph.D. studies. The first one
is to tailor LMI-based optimal control to consider fatigue explicitly in the cost function.
To accomplish this, the formulation should include in the objective function not only
variance, but also higher-order statistical moments of the signals of interest. A state-space
formulation of this problem would be valuable.

During the Ph.D. studies, research on modal control of wind turbines achieved a cer-
tain degree of maturity, and some results are expected to be published soon. Modal control
ease the task of damping assignment to lightly damped structures. To understand the lim-
itations and develop methods of modal control of wind turbines is an interesting subject
of future research.

Theoretical Developments

To seek necessary and sufficient LMI criteria to the synthesis of vector second-order
controllers is of utmost importance. In this thesis, the Lyapunov function was defined
similarly to the first-order state-space case. That is, quadratic function of velocities and
positions. Other formulations of the Lyapunov function might result in necessary and
sufficient or less conservative conditions. H2 performance specifications can be derived
from the presented derivations with little effort. During the Ph.D. studies, an attempt to
find a suitable linearizing change-of-variables in the dynamic output vector second-order
feedback case was not successful. This remains as future work.

A more detailed comparison of the proposed sufficient LMI condition for static out-
put stabilization with others found on the literature is required. Numerical experiments
can give an empirical measure of the conservativeness relative to each of the existing
conditions.

An extension of the proposedH∞/H2 model reduction conditions to cope with LPV
systems is straightforward, and useful to reduce the order of wind turbine LPV controllers.

Results on simultaneous plant-controller design for linear-parameter varying systems
have already been derived and will be presented in a future manuscript. Results for plants
with polynomial dependence on the parameters to be designed were also developed and
will be published shortly.
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1 Introduction

Abstract

High performance and reliability are required for wind turbines to be competi-
tive within the energy market. To capture their nonlinear behavior, wind turbines are
often modeled using parameter-varying models. In this chapter, a framework for mod-
elling and controller design of wind turbines is presented. We specifically consider
variable-speed, variable-pitch wind turbines with faults on actuators and sensors. Lin-
ear parameter-varying (LPV) controllers can be designed by a proposed method that
allows the inclusion of faults in the LPV controller design. Moreover, the controller
structure can be arbitrarily chosen: static output feedback, dynamic (reduced order)
output feedback, decentralized, among others. The controllers are scheduled on an
estimated wind speed to manage the parameter-varying nature of the model and on
information from a fault diagnosis system. The optimization problems involved in
the controller synthesis are solved by an iterative LMI-based algorithm. The result-
ing controllers can also be easily implemented in practice due to low data storage and
simple math operations.

1 Introduction

Motivated by environmental concerns and the depletion of fossil fuels, as well its mature
technological status, wind energy consolidate as a viable sustainable energy source for
the decades to come. Over the past 20 years, the global installed capacity of wind power
increased at an average annual growth of more than 25% from around 2.5 GW in 1992
to just under 200 GW at the end of 2010 [1]. Due to ongoing improvements in the wind
turbine efficiency and reliability, and higher fuel prices, the cost of electricity produced
(COE), which, roughly speaking, takes into account the annual energy production, life-
time of wind turbines, and Operation & Maintenance costs, is becoming economically
competitive with conventional power production.

Automatic control is one of the engineering areas that significantly contributed to
reduce the cost of wind generated electricity. In order to reduce COE, a modern wind
turbine is not only controlled to maximize energy production, but also to minimize me-
chanical loads. The controlled system also has to comply with external requirements,
such as acoustic noise emissions and power quality grid codes. Since many wind turbines
are installed at remote locations, the introduction of fault-tolerant control is considered a
suitable way of improving reliability/availability and lowering costs of repairs. Finally,
the lack of accurate models must be alleviated by robust control strategies capable of
securing stability and satisfactory performance despite model uncertainties [2].

From a control point of view, a wind turbine is a challenging system since the wind,
which is the energy source driving the machine, is a poorly known stochastic disturbance.
Add to that wind turbines inherently exhibit time-varying nonlinear dynamics along their
nominal operating trajectory, motivating the use of advanced control techniques such as
gain-scheduling, to counteract performance degradation or even instability problems by
continuously adapting to the dynamics of the plant. Wind turbine controllers typically
consist of multiple gain-scheduled controllers, which are designed to operate in the prox-
imity of a certain operating point. The gain-scheduling approach for industry-standard
classical controllers can be either based on switching or interpolation of controller gains
[3], [4]. Controller structure may also change by either switching [3] or bumpless trans-
fer [5, 6] according to the wind speed experienced by the wind turbine. The underlying
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assumption for such control schemes is that parameters only change slowly compared to
the system dynamics, which is generally not satisfied in turbulent winds. Additionally,
classical gain-scheduling controllers only ensure performance guarantees and stability at
the operating points where the linear controllers are designed [7].

A systematic way of designing controllers for systems with linearized dynamics that
vary significantly with the operating point is within the framework of linear parameter-
varying (LPV) control. An LPV controller can be synthesized after solving an optimiza-
tion problem subject to linear matrix inequality (LMI) constraints. In control systems for
wind turbines, robustness and fault-tolerance capabilities are important properties, which
should be considered in the design process, calling for a generic and powerful tool to
manage parameter-variations and model uncertainties. In this chapter, design procedures
for nominal controllers for parameter-varying models as well as active/passive fault-
tolerance, are provided. The framework can be trivially extended to design controllers
robust to uncertainties in the model [8], e.g., aerodynamic uncertainties [9]. Indeed, han-
dling known parameter-dependencies, unknown parameter variations, and faults, consti-
tute the main challenges for the application of wind turbine control.

An overview of the proposed control structure is illustrated by the block diagram de-
picted in Fig. 4.1, where u(k) is the control signal and w(k) is the disturbance. The
LPV controllers depend on the measurements y(k) and an estimate of the current operat-
ing point, θ̂op(k), which is used as scheduling parameter. Additionally, a fault diagnosis
system provides the scheduling parameter θ̂f(k) for the active fault-tolerant controller
(AFTC). The extra degree of freedom added by allowing the AFTC to adapt in case of a
fault may introduce less conservatism than for the passive fault-tolerant controller. The
AFTC is a conventional LPV controller scheduled on θop(t) and θf(t); the reason for
denoting it an active fault-tolerant controller arises from the origin of the scheduling pa-
rameters.

θ̂op(k)

θ̂f(k)

Wind turbine

LPV controller

w(k)

u(k)

Wind speed

y(k)

estimator

system
Fault diagnosis

Figure 4.1: Block diagram of the controller structures. The black boxes are common
to the LPV controllers, while the red dashed box illustrates the fault diagnosis system
required by the AFTC.

The list of faults occurring in wind turbines is extensive, reflecting the complexity of
the machines. On system level, faults occur in sensors, actuators, and system components,
ranging from slow gradual faults to abrupt component failures. The occurrence of faults
may change the system behavior dramatically. This motivates us to develop methods for
fault diagnosis and fault-tolerant control, offering several benefits:
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• Prevent catastrophic failures and faults from deteriorating other parts of the wind
turbine, by early fault detection and accommodation.

• Reduce maintenance costs by providing remote diagnostic details and avoiding re-
placement of functional parts, by applying condition-based maintenance instead of
time-based maintenance.

• Increase energy production when a fault has occurred by means of fault-tolerant
control.

This chapter gives an overview of the most common faults that can be modelled as
varying parameters. For a clear exposure, the fault-tolerant controller is designed to cope
with the simple case of a single fault: altered dynamics of the hydraulic pitch system due
to low hydraulic pressure. The fault is a gradual fault affecting the control actions of the
turbine. The method used also applies to fast parameter variations, i.e. abrupt faults in
the extreme case [10].

Realizing advanced gain-scheduled controllers can in practice be difficult and may
lead to numerical challenges [2, 11]. Several plant and controller matrices must be stored
on the controller memory. Moreover, matrix factorizations and inversions are among the
operations that must be done online by the controller at each sampling time [12, 13].

The synthesis procedures presented in this chapter are serious candidates for solving
a majority of practical wind turbine control problems, provided a sufficiently good model
of the wind turbine is available. We believe that the resulting controller can also be easily
implemented in practice due to the following reasons:

1. Structured controller: the controller structure can be chosen arbitrarily. Decen-
tralized of any order, dynamic (full or reduced-order) output feedback, static output,
and full state feedback are among the possible structures. This is in line with the
current control philosophy within wind industry.

2. Low data storage: the required data to be stored in the control computer memory
is only the controller matrices, and scalar functions of the scheduling variables
representing plant nonlinearities (basis functions).

3. Simple math operations: the mathematical operations needed to compute the con-
troller gains at each sampling time are look-up tables with interpolation, products
between a scalar and a matrix, and sums of matrices.

The versatile controller structure and facilitated implementation comes with a price.
Due to the (possible) nonconvex characteristics of the synthesis problem, the controller
design is solved by an iterative LMI optimization algorithm that may be demanding from
a computational point of view. However, the authors consider that it is worth to transfer
the computational burden from the controller implementation to the controller design.

The chapter is organized as follows. Section 2 describes the LPV wind turbine plant
modeling including typical faults and uncertainties. The LPV controller design proce-
dure, based on an iterative LMI optimization algorithm, is presented in Section 3. Sec-
tion 4 contains a design example on how state of the art industrial controllers can be
designed within the LPV framework. A fault-tolerant gain-scheduled PI pitch controller
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for the full load region is designed and compared to a gain-scheduled controller with-
out fault accommodation capabilities. Simulation results presented in the same section
compares the performance of both LPV controllers to show that pitch actuator faults due
to low pressure can be accommodated by the fault-tolerant LPV controller, avoiding the
shutdown of the wind turbine. Section 5 concludes the paper.

2 Wind Turbine LPV model

In this section, an LPV model is derived from a nonlinear time-varying wind turbine
model. The nonlinear model consists of several sub-systems, namely aerodynamics, the
tower, the drive train, the generator, the pitch system, and the converter actuator. The
interconnection of the wind turbine sub-models is illustrated in Fig. 4.3. For simulation
purposes, the wind disturbance input, V (t), is provided by a wind model which includes
both tower shadow and wind shear [14] together with a turbulence model [15]. The a
detailed description of the model is provided in [10]. The sub-models are individually
described in the sequel.

Wind Model

The driving force of a wind turbine is generated by the wind. Therefore, a model of this
external input to the wind turbine, Vw(t), has to be provided.

Generally, the wind speed is influenced by several components, which depend on the
environment where the wind turbine is located; however, we restrict our model to include
only three effects: wind shear, tower shadow, and turbulence. A more thorough wind
model can be found in [10]. We will not provide a detailed description of the wind model,
but only explain its three components briefly.

Wind shear is caused by the ground and other obstacles in the path of the wind, which
cause frictional forces to act on the wind. The frictional forces imply that the mean wind
speed becomes dependent on the height above ground level. Therefore, the mean wind
speed depends on the location of the three blades. When a blade is located in front of
the tower, the lift on that blade decreases because the tower reduces the effective wind
speed. This phenomenon is called tower shadow and implies that the force acting on each
blade decreases every time a blade is located in front of the tower. Finally, the variations
in the wind speed, which are not included in the mean wind speed, are called turbulence
and are caused by multiple factors. The utilized turbulence model is based on the Kaimal
spectrum that describes the turbulence of a point wind. Since the wind model describes
the wind speed averaged over the entire rotor plane, a low-pass filter is applied to smooth
the wind speed signal. Fig. 4.2 shows an output of the wind model Vw(t). Note that a
detailed description of the wind model can be found in [10].

Nonlinear Model

The rotor of a wind turbine converts kinetic energy of the wind into rotational energy
of the rotor blades and shaft. Aerodynamic forces over the rotor blades are often deter-
mined with the assumptions of Blade Element Momentum (BEM) theory [16]. Fig. 4.4
illustrates the forces and velocity vectors on a blade element.
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Figure 4.2: Output of the wind model at a constant rotor speed. The periodic decrease of
the wind speed is caused by tower shadow.
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Figure 4.3: Sub-model-level block diagram of a variable-speed variable-pitch WT.
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Figure 4.4: Forces on a blade element.

Assuming a symmetric aerodynamic rotor driven by a uniform inflow, and neglecting
unsteady aerodynamic effects, the local tangential fQ and axial fT forces along the local
blade radius r are given by,

fQ =
1

2
ρc(r)W 2(r, t)

(
CL(r, α(r, t)) sinϕ(r, t) − CD(r, α(r, t)) cosϕ(r, t)

)
[N]

fT =
1

2
ρc(r)W 2(r, t)

(
CL(r, α(r, t)) sinϕ(r, t) + CD(r, α(r, t)) cosϕ(r, t)

)
[N]
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with the squared local inflow velocity W 2(r, t), local angle of attack α(r, t) and local
inflow angle ϕ(r, t) described as,

W 2(r, t) = (V (t)(1 − a(r)))2 + (rΩr(t)(1 + a′(r)))2 , [m2/s2]

α(r, t) = ϕ(r, t)− φ(r) − β(t), [◦]

ϕ(r, t) = tan−1
(
V (t) (1− a (r)) (rΩr(t)(1 + a′(r)))−1

)
[◦].

In the above expressions, ρ is the air density, c(r) is the local chord length, C L(r, α) and
CD(r, α) are the local steady-state lift and drag coefficients, V (t) is a mean wind speed
over the rotor disk, Ωr(t) is the rotor speed, a(r) and a′(r) are the axial and tangential
flow induction factors, respectively, φ(r) is the local chord twist angle along the blade,
and β(t) is the blade pitch angle.

In the aerodynamic model, we assume that a yawing system exists, which always
keeps the rotor plane perpendicular to the direction of the wind; hence, V (t) is always
perpendicular to the rotor plane. However, as the rotor rotates the resulting wind speed
at a blade, called the inflow velocity W (r, t), has an angle ϕ with respect to the rotor
plane. The drag force given by 1/2ρcW 2CD is defined to point in the opposite direction
as W (r, t) and the lift force given by 1/2ρcW 2CL is perpendicular to drag force. Via
projections of these forces we obtain fQ and fT.

The aerodynamic torqueQa and thrust forceTa produced by the rotor can be expressed
as the summation of the forces over the B number of rotor blades,

Qa(V,Ωr, β, a, a
′) = B

∫ R

0

fQ(r, V,Ωr, β, a(r), a
′(r)) r dr [Nm], (4.1a)

Ta(V,Ωr, β, a, a
′) = B

∫ R

0

fT(r, V,Ωr, β, a(r), a
′(r)) dr [N]. (4.1b)

After integration, the aerodynamic torque and thrust are represented as,

Qa(t) =
1

2Ωr(t)
ρAV 3(t)CP(λ(t), β(t)) [Nm] (4.2a)

Ta(t) =
1

2
ρAV 2(t)CT(λ(t), β(t)) [N] (4.2b)

with the tip-speed ratio denoting the ratio between the blade tip and the mean wind speed,

λ(t) =
Ωr(t)R

V (t)
[·]

where R is the rotor radius and A = πR2 is the rotor swept area. The power coefficient
CP(λ, β) and thrust coefficient CT(λ, β) are smooth surfaces usually given in tabular
form. Fig. 4.5 depicts CP and CT surfaces of a typical 2MW wind turbine.

Aerodynamic torque Qa drives a drive train model consisting of a low-speed shaft
and a high-speed shaft having inertias J r and Jg, and friction coefficients Br and Bg. The
shafts are interconnected by a transmission having gear ratio N g, combined with torsion
stiffnessKdt, and torsion dampingBdt. This results in a torsion angle, θΔ(t), and a torque
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(a) Power coefficient (b) Thrust coefficient

Figure 4.5: Power and thrust coefficients of a typical utility-scale wind turbine.

applied to the generator,Qg(t), at a speed Ωg(t). The model of the drive train is shown in
Fig. 4.6 and given by,

JrΩ̇r(t) =Qa(t) +
Bdt

Ng
Ωg(t)−KdtθΔ(t)− (Bdt +Br)Ωr(t) [Nm] (4.3a)

JgΩ̇g(t) =
Kdt

Ng
θΔ(t) +

Bdt

Ng
Ωr(t)−

(
Bdt

N2
g
+Bg

)
Ωg(t)−Qg(t) [Nm] (4.3b)

θ̇Δ(t) =Ωr(t)− 1

Ng
Ωg(t) [rad/s]. (4.3c)

Qg(t)Ω̇g(t)

Jg

Bg
Qh(t)

NgQl(t)

Kdt

Bdt

Jr

Qa(t) Br
Ω̇r(t)

Figure 4.6: Diagram of the drive train of the wind turbine.

The thrust Ta acting on the rotor introduces fore-aft tower bending described by the
axial nacelle linear translation q(t). Sideward movements are ignored by neglecting yaw-
ing and drive train reaction torque on the tower. The tower translates in the same direction
as the wind, therefore aerodynamic torque and thrust are in fact driven by the relative wind
speed V (t) = Vw(t) − q̇(t). The tower dynamics is modeled as a mass-spring-damper
system,

Mtq̈t(t) = Ta(t)−Btq̇t(t)−Ktqt(t) (4.4)

where Mt is the modal mass of the first fore-aft tower bending mode, B t is structural
damping coefficient, andK t is the modal stiffness for axial nacelle motion due to fore-aft
tower bending.
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Hydraulic pitch systems are satisfactorily modeled as a second order system with a
time delay, td, and reference angle βref(t),

β̈(t) = −2ζωnβ̇(t)− ω2
nβ(t) + ω2

nβref(t− td) (4.5)

where the natural frequency,ωn, and damping ratio, ζ, specify the dynamics of the model.
To represent the limitations of the pitch actuators, for simulation purposes the model
includes constraints on the slew rate and the range of the pitch angle.

Electric power is generated by the generator, while a power converter interfaces the
wind turbine generator output with the utility grid and controls the currents in the gener-
ator. The generator torque in (4.6) is controlled by the reference Q g,ref(t). The converter
dynamics are approximated by a first order system with time constant τ g and time delay
tg,d.

Q̇g(t) = -
1

τg
Qg(t) +

1

τg
Qg,ref(t− tg,d). (4.6)

Just as for the model of the pitch system, the slew rate and the operating range of the
generator torque are both bounded to match the limitations of the real system. The power
produced by the generator can be approximated from the mechanical power calculated in
(4.7), where ηg denotes the efficiency of the generator, which is assumed constant.

Pg(t) = ηgΩg(t)Qg(t). (4.7)

Linear Varying Parameters

From the model description, is clear that a wind turbine is a nonlinear, time-varying sys-
tem. What is not apparent is how to find an LPV description that captures this dynamic
behavior. Wind turbines can be represented as Quasi-LPV models [2, 17] and Linear
Fractional Transformation models [2], but the most common approach relies on the clas-
sical linearization around equilibrium or operating points resulting in a linearized LPV
model [2, 11, 13]. The latter approach is adopted in this chapter.

Aerodynamics

The underlying assumption of a wind turbine LPV model based on linearization is that
wind speed, rotor speed and pitch angle can be described by slow and fast components,

V (t) = V (t) + V̂ (t), Ωr = Ω(t) + Ω̂r(t), β(t) = β(t) + β̂(t).

The collection of operating points (V ,Ω, β) is what defines the control strategy of a wind
turbine, selected to match steady-state requirements such as maximize energy capture,
minimize static loads, and limit noise emissions.

A typical control strategy of a generic 2MW wind turbine is depicted in Fig. 4.7.
A more detailed treatment of different operating strategies for wind turbines [3, 13] is
outside the scope of this chapter. Three subareas on a typical control strategy can be
distinguished:
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Figure 4.7: Operating locus of a typical utility-scale wind turbine.

1. On Region I (Vin to VΩN ) the energy capture is maximized by keeping the aerody-
namic efficiency as high as possible. This can be accomplished by tracking a ro-
tational speed set-point using generator torque as the control input variable. Pitch
actuation is not utilized for tracking purposes; the pitch angle remains at the value
of maximum aerodynamic efficiency. With only one input and one output to be
controlled, a multivariable controller is not necessary on this region. Notice that Ω
is proportional to V as a consequence of optimal aerodynamic efficiency.

2. On Region II (VΩN to VPN ) the wind turbine maintains constant rotational speed
at a nominal value ΩN, by acting on the generator torque. The rotational speed is
limited due to acoustic noise emission limits. Pitch actuation remains unused. A
multivariable controller is still not needed.

3. On Region III (VPN to Vout) rated power PN is reached and the main goal is to min-
imize power fluctuations. Small fluctuations on the generator torque around rated
value add damping to the drive train torsional mode and fine control the electrical
power. Therefore, pitch angle should be gradually increased as wind speed rises to
limit generated power by lowering the rotor aerodynamic efficiency. In some wind
turbines, active tower damping is also implemented on this region.

A linearization-based LPV model is obtained by classical linearization around the
operating points given by the control strategy. The aerodynamic model is exclusively the
source of time-varying nonlinearities. A first order Taylor series expansion of (4.2) leads
to the following linearized representations of torque and thrust,

Qa ≈ Qa(V ,Ω,β) +
∂Qa

∂V

∣∣∣∣
(V ,Ω,β)

V̂ +
∂Qa

∂Ωr

∣∣∣∣
(V ,Ω,β)

Ω̂r +
∂Qa

∂β

∣∣∣∣
(V ,Ω,β)

β̂ (4.8a)

Ta ≈ T a(V ,Ω,β) +
∂Ta

∂V

∣∣∣∣
(V ,Ω,β)

V̂ +
∂Ta

∂Ωr

∣∣∣∣
(V ,Ω,β)

Ω̂r +
∂Ta

∂β

∣∣∣∣
(V ,Ω,β)

β̂ (4.8b)
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where Qa(V ,Ω,β) and T a(V ,Ω,β) are equilibrium components of the aerodynamic torque
and thrust, respectively. The partial derivatives of Q a and Ta are given by,

∂Qa

∂V
=
ρAV 2

2Ωr

(
3CP + V

∂CP

∂λ

∂λ

∂V

)
,

∂Qa

∂Ωr
=
ρAV 3

2Ωr

(
∂CP

∂λ

∂λ

∂Ωr
− CP

Ωr

)
,

∂Qa

∂β
=
ρAV 3

2Ωr

∂CP

∂β
,

∂Ta

∂V
=
ρAV

2

(
2CT + V

∂CT

∂λ

∂λ

∂V

)
,

∂Ta

∂Ωr
=
ρAV 2

2

∂CT

∂λ

∂λ

∂Ωr
,

∂Ta

∂β
=
ρAV 2

2

∂CT

∂β
,

(4.9)

and must be evaluated at the time-varying equilibrium point (V ,Ω, β). The partial deriva-
tives of a typical 2MW wind turbine for the whole operational envelope are depicted in
Fig. 4.8. The aerodynamic partial derivatives given by (4.9), hereafter also referred to as
aerodynamic gains, are varying parameters in an LPV wind turbine model.

With the assumption that the wind turbine is operating on the nominal trajectory spec-
ified in Fig. 4.7, the equilibrium values for pitch angle and rotor/generator speed can be
described uniquely by the wind speed, e.g. Ω

(
V
)
, β
(
V
)
. This means that the wind

turbine can be described by an LPV model scheduled on wind speed only,

θop(t) := V (t). (4.10)

Depending on the region of interest in the control strategy and the model complexity,
the varying parameters can be approximated as an explicit function of the scheduling
variable. An affine representation is always preferable to diminish the computational cost
of solving a LMI constrained optimization. If tower dynamics are omitted and the aim
is to design a controller for Region III, the aerodynamic torque gains can be fairly well
approximated by a linear function of the wind speed. In this case, the parameter variations
in the nominal LPV plant model are approximated using an affine description in the wind
speed [9]. If tower dynamics are taken into account, the aerodynamic gains can be fairly
approximated by polynomial functions in Region III. For the most general case, which is
the design of a single LPV controller covering the full control strategy locus, representing
the aerodynamic gains by polynomials is difficult and one has to resort to grid-based
methods at high computational cost [11, 13].

On most wind turbines, the wind speed is measured by an anemometer on the nacelle,
which only measures the wind speed at a single point in space and is affected by the
presence of the rotor. Therefore, this measurement is not a good estimate of (4.10). To
obtain the wind speed for scheduling purposes, an effective wind speed estimator must
be designed [18]. The effective wind speed is defined as the spatial average of the wind
field over the rotor plane with the wind stream being unaffected by the wind turbine. By
inspecting the output of wind models and real field measurements, we determine the rate
bounds on the effective wind speed θ̂op(t) to be -2 m/s2 and 2 m/s2.

Faults

Faults in a wind turbine have different degrees of severity and accommodation require-
ments. A safe and fast shut down of the wind turbine is necessary to some of them, while
to others the system can be reconfigured to continue power generation. Linear parameter
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Figure 4.8: Aerodynamic parameters of a typical 2MW wind turbine.
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varying control can be applied in the case of failures that gradually change system’s dy-
namics. The most common faults along with their magnitude and the rate at which they
can be introduced are summarized in Tab. 4.1.

Fault Specification

Pitch Sensor
Bias β̇bias(t) ∈ [-1◦/month, 1◦/month]

βbias(t) ∈ [-7◦, 7◦]
Pitch Actuator

High Air Content θ̇ha(t) ∈ [-1/month, 1/month]
θha(t) ∈ [0, 1]

Pump Wear θ̇pw(t) ∈ [0, 1/(20 years)]
θpw(t) ∈ [0, 1]

Hydraulic Leakage θ̇hl(t) ∈ [0, 1/(100 s)]
θhl(t) ∈ [0, 1]

Pressure Drop θ̇pd(t) ∈ [−0.033/s, 0.033/s]
θpd(t) ∈ [0, 1]

Generator Speed Sensor
Proportional Error θ̇pe(t) ∈ [-1/month, 1/month]

θpe(t) ∈ [-0.1, 0.1]

Table 4.1: Specification of ranges and rate limits of gradual faults.

Pitch position and generator speed measurements are the sensors most affected by
failures. Originated by either electrical or mechanical anomalies, they can result in ei-
ther a bias or a gain factor on the measurements. A biased pitch sensor measurement
affects both the pitch system model and the pitch angle measurement. When the bias is
introduced, the pitch actuator model and measurement equation are modified as,

β̈(t) = -2ζωnβ̇(t)− ω2
n (β(t) + βbias(t)) + ω2

nβref(t− td) (4.11a)

βmes(k) = β(k) + βbias(k) + vβ(k) (4.11b)

where vβ(k) is a measurement noise. A bias can either be a result of inaccurate calibration
of the pitch system or be an gradual fault.

A proportional error on the generator speed sensor changes the sensor gain. The
measurement equation,

Ωg,mes(k) = (1 + θpe(k)) Ωg(k) + vΩg(k), (4.12)

is a linear function of the gain deviation θpe, where vΩg(k) is a measurement noise.
The power converter and pitch systems are the actuators most likely to fail. Power

converter faults can result in an offset of the generated torque due to an offset in the
internal converter control loops. An offset in the internal converter control loops modifies
the generator and converter model as follows,

Ṫg(t) = -
1

τg
(Qg(t) +Qg,bias(t)) +

1

τg
Tg,ref(t− tg,d) (4.13)
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where Qg,bias(t) is an offset of the generated torque.
A fault changes the dynamics of the pitch system by varying the damping ratio and

natural frequency from their nominal values ζ0 and ωn,0 to their faulty values ζf and ωn,f.
The dynamics of the pitch system can then be represented as,

β̈(t) = -2ζ(θf)ωn(θf)β̇(t)− ω2
n (θf)β(t) + ω2

n (θf)βref(t− td) [◦/s2] (4.14)

with the parameters changing according to a convex combination of the vertices of the
parameter sets [19],

ω2
n (θf) = (1− θf)ω

2
n,0 + θfω

2
n,lp (4.15a)

-2ζ(θf)ωn(θf) = -2(1− θf)ζ0ωn,0 − 2θfζlpωn,lp (4.15b)

where θf ∈ [0, 1] is an indicator function for the fault with θ f = 0 and θf = 1 corre-
sponding to nominal and faulty conditions, respectively. Pitch system failures are usually
occasioned by the following reasons.

• Pump Wear is introduced very slowly and results in low pump pressure. When
θf(t) = 0 the pump delivers the nominal pressure, but as θ f(t) goes to one the
pressure drops. Notice that θ̇f(t) ≥ 0 for all t, since the wear is irreversible without
replacing the pump. The fault described by θ f = 1, corresponding to a pressure
level of 75%, can emerge after approximately 20 years of operation.

• Hydraulic leakage is introduced considerably faster than pump wear. Again θ̇f(t) ≥
0 for all t, since a leakage cannot be reversed without repair of the system. Notice
that the pressure for θf = 1 corresponds to 50% of the nominal pressure.

• High air content in the oil is a fault that, in contrast to pump wear and hydraulic
leakage, may disappear; hence, θ̇f(t) can be both positive and negative. The ex-
treme values caused by θf = 0 and θf = 1 correspond to air contents of 7% and
15% in the hydraulic oil.

Values for the natural frequency and damping ratio of the pitch system under faults
are desribed in Tab. 4.2. Step responses for the normal and fault conditions in the case of
high air content in the oil are illustrated in Fig. 4.9.

Fault Parameters

No fault ωn = 11.11 rad/s, ζ = 0.6
High Air Content in the Oil ωn,ha = 5.73 rad/s, ζha = 0.45
Pump Wear ωn,pw = 7.27 rad/s, ζpw = 0.75
Hydraulic Leakage ωn,hl = 3.42 rad/s, ζhl = 0.9
Pressure Drop ωn,hl = 3.42 rad/s, ζhl = 0.9

Table 4.2: Parameters for the pitch system under different conditions. The normal air
content in the hydraulic oil is 7%, whereas high air content in the oil corresponds to
15%. Pump wear represents the situation of 75% pressure in the pitch system while the
parameters stated for hydraulic leakage corresponds to a pressure of only 50%.
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Figure 4.9: Step responses of hydraulic pitch model under normal (solid) and fault
(dashed) conditions.

If a number nθf of faults are considered on the modeling, θf denotes a vector of
scheduling parameters,

θf = [θf,1, . . . , θf,m] , m = 1, . . . , nθf .

System Description

The synthesis of LPV controllers are posed similarly to theH∞ control of linear systems.
The first step is to identify the input variable w known as disturbance or exogenous per-
turbation, and the fictitious output variable z called performance output or error. Next,
weighting functions for these inputs and outputs are chosen, usually rational functions
of the Laplace operator s stressing the frequencies of interest. The standard state-space
interconnections of the LPV model of the plant and the weighting functions is called aug-
mented plant, given by the general continuous-time LPV system description shown in
(4.16),

ẋ(t) = A(θ(t))x(t) +Bw(θ(t))w(t) +Bu(θ(t))u(t)

z(t) = Cz(θ(t))x(t) +Dzw(θ(t))w(t) +Dzu(θ(t))u(t)

y(t) = Cy(θ(t))x(t) +Dyw(θ(t))w(t)

(4.16)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rnw is the vector of exogenous perturbation,
u(t) ∈ Rnu is the control input, z(t) ∈ Rnz is the controlled output, and y(t) ∈ Rny is
the measured output. A(·), B(·), C(·), D(·) are continuous functions of the time-varying
parameter vector θ = [θop θf ].

Possible types of dependency of the aerodynamic gains on the scheduling parameters
have already been discussed in the Aerodynamics subsection. The general case where
no restrictions are imposed on the parameter dependence is treated here [12, 13]. It is
necessary to choose scalar functions of the varying parameters such that the LPV model
of the augmented plant (4.16) is affine in these functions. That is,
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⎡
⎣ A(θ) Bw(θ) Bu(θ)
Cz(θ) Dzw(θ) Dzu(θ)
Cy(θ) Dyw(θ) Dyu(θ)

⎤
⎦ =

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
0

+
∑
i

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
i

ρi(θ),

+
∑
m

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
m

θf,m, i = 1, . . . , nρ, m = 1, . . . , nθf .

(4.17)
where ρi(θ) are scalar functions known as basis functions. The aerodynamic partial
derivatives are natural candidates for basis functions related to plant nonlinearities [13],

ρ1(θ) :=
1

Jr

∂Qa

∂Ω

∣∣∣∣
V

,

ρ4(θ) :=
1

Mt

∂Ta

∂Ω

∣∣∣∣
V

,

ρ2(θ) :=
1

Jr

∂Qa

∂V

∣∣∣∣
V

,

ρ5(θ) :=
1

Mt

∂Ta

∂V

∣∣∣∣
V

,

ρ3(θ) :=
1

Jr

∂Qa

∂β

∣∣∣∣
V

,

ρ6(θ) :=
1

Mt

∂Ta

∂β

∣∣∣∣
V

,

where the division by Jr andMt is adopted to improve numerical conditioning.

3 LPV Controller Design Method

In this section an LMI-based optimization procedure for designing structured discrete-
time LPV controllers is presented. Decentralized controllers of any order, fixed-order and
static output feedback are among the possible control structures. Stability is assessed via
a parameter-dependent Lyapunov function with varying parameters having their rates of
variation contained in a compact closed convex set. A parameter-varying nonconvex con-
dition for an upper bound on the induced L 2-norm performance is solved via an iterative
LMI-based algorithm [20, 8].

An open-loop, discrete-time augmented LPV system with state-space realization of
the form,

x(k + 1) = A(θ)x(k) +Bw(θ)w(k) +Bu(θ)u(k)

z(k) = Cz(θ)x(k) +Dzw(θ)w(k) +Dzu(θ)u(k)

y(k) = Cy(θ)x(k) +Dyw(θ)w(k),

(4.18)

is considered for the purpose of synthesis, where x(k) ∈ Rn is the state vector, w(k) ∈
Rnw is the vector of disturbance, u(k) ∈ Rnu is the control input, z(k) ∈ Rnz is the
controlled output, and y(k) ∈ Rny is the measured output. A(θ), B(θ), C(θ), D(θ)are
continuous functions of some time-varying parameter vector θ = [θ 1, . . . , θnθ

]. The same
matrix notation to both the continuous-time augmented plant (4.16) and the discrete-time
counterpart (4.18) have been adopted. Throughout the text, the context makes it clear
when a continuous or discrete system is being referred to.

Assume θ ranges over a hyperrectangle denoted Θ,

Θ =
{
θ : θi ≤ θi ≤ θi, i = 1, . . . , nθ

}
.

The rate of variation Δθ = θ(k + 1)− θ(k) belongs to a hypercube denoted V ,

V = {Δθ : |Δθi| ≤ vi, i = 1, . . . , nθ} .
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The LPV controller has the form,

xc(k + 1) = Ac(θ)xc(k) +Bc(θ)y(k)

u(k) = Cc(θ)xc(k) +Dc(θ)y(k),
(4.19)

where xc(k) ∈ Rnc and the controller matrices are continuous functions of θ. Note that
depending on the controller structure, some of the matrices may be zero. The controller
matrices can be represented in a compact way,

K(θ) :=

[
Dc(θ) Cc(θ)
Bc(θ) Ac(θ)

]
. (4.20)

The interconnection of system (4.18) and controller (4.19) leads to the following closed-
loop LPV system denoted Scl,

Scl :

{
x(k + 1) = A(θ,K(θ))xcl(k) + B(θ,K(θ))w(k)

z(k) = C(θ,K(θ))xcl(k) +D(θ,K(θ))w(k),
(4.21)

where the closed-loop matrices are [21],

A(θ,K(θ)) = A(θ) + B(θ)K(θ)M(θ), B(θ,K(θ)) = D(θ) + B(θ)K(θ)E(θ),

C(θ,K(θ)) = C(θ) + H(θ)K(θ)M(θ), D(θ,K(θ)) = F(θ) + H(θ)K(θ)E(θ),

with,

A(θ) =

[
A(θ) 0
0 0

]
,

C(θ) =
[
Cz(θ) 0

]
,

E(θ) =
[
Dyw(θ)

0

]
,

M(θ) =

[
Cy(θ) 0
0 I

]
,

F(θ) =Dzw(θ),

D(θ) =

[
Bw(θ)

0

]
,

B(θ) =
[
Bu(θ) 0

0 I

]
,

H(θ) =
[
Dzu(θ) 0

]
,

This general system structure can be particularized to some usual control topologies.
If K(θ) is an unconstrained matrix and nc = 0, the problem becomes a static output
feedback (SOF). The static state feedback (SSF) is a particular case of SOF, when the
system output is a full rank linear transformation of the state vector ∀θ. If n = n c, the
full-order dynamic output feedback arises. In a structured control context, more elaborate
control systems can be designed by constraining K(θ). A fixed-order dynamic output
feedback has nc < n. For decentralized controllers of arbitrary order, the structure of
K(θ) is constrained to be,

K(θ) :=

[
diag(Dc(θ)) diag(Cc(θ))
diag(Bc(θ)) diag(Ac(θ))

]

where diag(·) stands that (·) has a block-diagonal structure.
The design of a closed-loop system usually consider performance specifications that

can be characterized in different ways. Define Tzw(θ) as the input-output operator that
represents the forced response of (4.21) to an input signal w(k) ∈ L 2 for zero initial
conditions. The induced L2-norm of a given input-output operator,

‖Tzw‖2 := sup
(θ,Δθ)∈Θ×V

sup
‖w‖2 	=0

‖z‖2
‖w‖2
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is commonly utilized as a measure of performance of LPV systems and allows formulat-
ing the control specification as inH∞ control theory. It is of interest to note that an upper
bound γ > 0 on the induced L2-norm ‖Tzw‖2 can be interpreted in terms of the upper
bound on the system’s energy gain,

lim
h→∞

h−1∑
k=0

z(k)T z(k) < γ2 lim
h→∞

h−1∑
k=0

w(k)Tw(k).

The LPV system (4.21) is said to have performance level γ when it is exponentially stable
and ‖Tzw‖2 < γ holds. An extension of the Bounded Real Lemma (BRL) for parameter-
varying systems provides suficient conditions to analyze the performance level, by solving
a constrained LMI optimization problem [22, 23]. For a given scalar γ and a a given LPV
controllerK(θ), if there exists a θ-dependent matrix function P(θ) = P(θ)T satisfying⎡

⎢⎢⎣
P(θ +Δθ) A(θ,K(θ))P(θ) B(θ,K(θ)) 0

� P(θ) 0 P(θ)C(θ,K(θ))T

� � γI D(θ,K(θ))T

� � � γI

⎤
⎥⎥⎦ � 0 (4.22)

∀(θ,Δθ) ∈ Θ × V , then the system Scl is exponentially stable and ‖Tzw(θ)‖2 < γ. The
symbol � means inferred by symmetry.

The parameter-varying BRL just shown can be also applied to the case where w(k)
is not an energy signal (‖w(k)‖2 not finite) but has a nonzero root mean-square (RMS)
value,

wRMS :=

[
lim
h→∞

1

h

h−1∑
k=0

w(k)Tw(k)

]1/2
= 0.

In this context, L2-norm of a system is given in terms of the RMS values of the signals of
interest, instead of ‖·‖2. Such a situation is more appropriate to interpret control perfor-
mance of a wind turbine, since the turbulent wind is a stochastic disturbance that persists
for long periods of time, thus ‖w(k)‖2 is not a good measure of the signal.

When an LPV controller with performance level γ is not given but should be found
(synthesized), the inequality (4.22) is no longer an LMI in the unknown variables due
to the product between the variables K(θ) and P(θ). Thus, convex optimization algo-
rithms cannot be applied to the condition as it is. Reformulations into sufficient (possibly
conservative) LMI constraints are readily available for particular controller structures and
type of parameter dependencies [24, 23].

We propose to design the controllers via an iterative algorithm, instead of attempting
to reduce the problem to LMIs. The iterative algorithm relies on the following equivalent
non-LMI parametrization that is suitable for iterative design [20]. If there exist K(θ),
P(θ) = P(θ)T , and G(θ) satisfying,⎡
⎢⎢⎣
P(θ +Δθ) A(θ,K(θ)) B(θ,K(θ)) 0

� −G(θ)TP(θ)G(θ) + G(θ)T + G(θ) 0 C(θ,K(θ))T

� � γI D(θ,K(θ))T

� � � γI

⎤
⎥⎥⎦ � 0,

(4.23)
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∀ (θ,Δθ) ∈ Θ× V , then the system Scl is exponentially stable and ‖Tzw(θ)‖2 < γ.
The affine dependence of the reformulated condition on K(θ) allows the controller

matrices to be variables, irrespective of the chosen controller structure. The inequality
remains nonconvex due to the product between P(θ) and the introduced slack variable
G(θ). Furthermore, it involves the satisfaction of infinitely many inequalities, since (4.23)
should hold for all (θ,Δθ) ∈ Θ× V .

In order to make the problem computationally tractable, the iterative algorithm solves
LMI optimization problems with the slack matrix G(θ) constant during an iteration. An
iteration should be understood to be a LMI constrained optimization. The use of G(θ) as
a parameter-dependent slack variable is facilitated by updating its value at each iteration
according to some predefined rule. In particular, the update rule is

G(θ){j+1} =
(
P(θ){j}

)−1

(4.24)

where {·} is the iteration index and j is the current iteration number.
The iterative algorithm for the design of a structured LPV controller with minimum

performance level γ is formulated next.

Algorithm 0. Set j = 0, a convergence tolerance ε, an initial G(θ){0} and start to iterate:

1. For fixed G(θ){j}, find P(θ){j}, P(θ + Δθ){j} , K(θ){j} and γ{j} satisfying the
LMI constrained problem,

Minimize γ subject to (4.23).

2. If
∣∣γ{j} − γ{j−1}∣∣ ≤ ε, stop. Otherwise, G(θ){j+1} =

(P(θ){j})−1
, set j = j +1

and go to step 1.

Initial Slack Matrix G(θ){0}

The initial value of G(θ){0} required to initialize Algorithm 0 can be obtained in different
ways. If a given initial controllerK(θ) satisfies the following optimization problem,

Minimize γ subject to (4.22), ∀(θ,Δθ) ∈ Θ× V ,

then the resultingP(θ) can be utilized to derive G(θ){0} = P(θ)−1. The example section
shows the usage of this approach.

Alternatively, an iterative feasibility algorithm can be created by relaxing the inequal-
ity (4.23). Instead of requiring the inequality to be positive definite (� 0), a variable
term is included to the right hand side (� diag(τI, τGTG, τI, τI)), where τ is a scalar
variable. The algorithm maximizes τ until the value reaches a certain chosen υ > 0.

Algorithm 1. Set j = 0, a convergence tolerance ε, a υ > 0, an initial G(θ){0} = I and
start to iterate:

1. For fixed G(θ){j} , find P(θ){j}, P(θ +Δθ){j}, K(θ){j}, γ{j} and scalar τ satis-
fying the LMI constrained problem,

Maximize τ subject to (4.23) with the right hand side changed from � 0 to
� diag(τI, τGTG, τI, τI), and τ < υ.
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3 LPV Controller Design Method

2. If
∣∣τ{j} − τ{j−1}∣∣ ≤ ε, stop. Otherwise, G(θ){j+1} =

(P(θ){j})−1
, set j = j + 1

and go to step 1.

The resulting G(θ){0} can subsequently be used to initialize Algorithm 0.

From Infinite to Finite Dimensional

The LMI problems of Algorithm 0 involve infinitely many LMIs, as θ and Δθ are defined
in a continuous space. When LMIs depend affinely on θ and Δθ, the synthesis problem
at each iteration is reduced to an optimization problem with a finite number of LMIs
checked at (θ,Δθ) ∈ Vert Θ × Vert V . Note that Vert Θ is the set of all vertices of
Θ. For LMIs polynomially θ-dependent, relaxations based on multiconvexity arguments
also reduce the problem to check LMIs at the vertices of the parameter space [20, 8].
This procedure, based on sufficient conditions, may lead to extra conservatism. In the
general case, where no restrictions on the parameter dependence are imposed, one has
to resort to ad-hoc gridding methods [12]. The gridding procedure consists of defining a
gridded parameter subset denoted Θg ⊂ Θ, designing a controller that satisfies the LMIs
∀θ ∈ Θg, and checking the LMI constraints in a denser grid. If the last step fails, the
process is repeated with a finer grid.

Due to the assumption of general parameter dependence of the open-loop plant on the
scheduling variables (4.17), the gridding approach is used in the controller design. The
Lyapunov and the LPV controller matrices are affine in the basis functions,

P(θ) = P0 +

nρ∑
i=1

ρi(θk)Pi +

nθf∑
i=1

θf,iPnρ+i, (4.25a)

K(θ) = K0 +

nρ∑
i=1

ρi(θ)Ki +

nθf∑
i=1

θf,iKnρ+i. (4.25b)

Due to the bounded parameter rate set V assumed known, the Lyapunov function at
sample k + 1 can be described as,

P(θ +Δθ) = P0 +

nθ∑
i=1

ρi(θ +Δθ)Pi +

nθf∑
i=1

(θf,i +Δθf,i)Pnρ+i. (4.26)

Note the general parameter dependence of (4.26) on Δθ occasioned by ρ i(θ + Δθ).
Conveniently, the basis functions at sample k + 1 are represented as a linear function of
ρ(θ) and Δθ,

ρi(θ +Δθ) := ρi(θ) +
∂ρi(θ)

∂θ
Δθ, (4.27)

thereby turning inequality (4.23) affine dependent on the rate of variation Δθ. Thus, it is
sufficient to verify (4.23) with (4.26)-(4.27) only at Vert V .

The iterative algorithm for a chosen grid Θg ⊂ Θ is presented in the sequel.

Algorithm 2. Set j = 0, a convergence tolerance ε, initialize G(θ){0} ∀θ ∈ Θg, and start
to iterate:
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1. For fixed G(θ){j} , and i = 0, 1, . . . , nρ + nθf , find P {j}
i > 0, K{j}

i , and γ{j}

satisfying the LMI constrained problem,

Minimize γ subject to (4.23), ∀ (θ,Δθ) ∈ Θg × VertV .

2. If
∣∣γ{j} − γ{j−1}∣∣ ≤ ε, stop. Otherwise, G(θ){j+1} = P(θ){j} −1, ∀ θ ∈ Θg. Set

j = j + 1 and go to step 1.

The Lyapunov variable P(θ){j} � 0 may be close to singular at each iteration, mak-
ing the inversion required to compute G(θ) possibly ill-conditioned. To alleviate this
issue, an additional LMI constraint

P(θ){j} � μI,

improves numerical condition of the inversion by imposing a lower bound on the eigen-
values of P(θ){j}, where μ > 0 is a chosen scalar. There exists a tradeoff between the
value of μ and the attained value of γ. Higher values of μ may lead to more conser-
vative controllers, although from our experience, the small value of μ required to better
condition the inversion does not influence significantly on the performance level γ.

The gridding procedure for controller synthesis can be summarized by the following
steps.

1. Define a grid Θg for the compact set Θ.

2. Find initials G(θ){0}, ∀θ ∈ Θg.

3. Solve Algorithm 2.

4. Define a denser grid.

5. Verify the feasibility of the LMI (4.22) with the computed controllerK(θ), in each
point of the new grid. If it is infeasible, choose a denser grid and go to step 2.

Controller Implementation

The iterative LMI optimization algorithm provides the controller matricesA c,i,Bc,i, Cc,i,
Dc,i, for i = 0, 1, . . . , nρ + nθf . These matrices, the basis functions, and the value of the
scheduling variables are the only required information to determine the control signal u.
At each sample time k, the scheduling variable θ is measured (or estimated) and a control
signal is obtained as follows.

1. Compute the value of the basis functions ρ i(θ), for i = 0, 1, . . . , nρ. The basis
functions may be stored in a lookup table that takes θ as an input and outputs an
interpolated value of ρ(θ).
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4 Example: LPV PI Controller Tolerant to Pitch Actuator Faults

2. With the value of the basis functions in hand, determine the controller matrices
Ac(θ), Bc(θ), Cc(θ), Dc(θ) according to,

Ac(θ) = Ac,0 +

nρ∑
i=1

ρi(θ)Ac,i +

nθf∑
i=1

θf,iAc,nρ+i,

Bc(θ) = Bc,0 +

nρ∑
i=1

ρi(θ)Bc,i +

nθf∑
i=1

θf,iBc,nρ+i,

Cc(θ) = Cc,0 +

nρ∑
i=1

ρi(θ)Cc,i +

nθf∑
i=1

θf,iCc,nρ+i,

Dc(θ) = Dc,0 +

nρ∑
i=1

ρi(θ)Dc,i +

nθf∑
i=1

θf,iDc,nρ+i.

3. Once the controller matrices have been found, the control signal u(k) can be ob-
tained by the dynamic equation (4.19) of the LPV controller, which only involves
multiplications and additions.

4 Example: LPV PI Controller Tolerant to Pitch Actuator Faults

The proportional and integral (PI) is the most utilized controller by the wind energy in-
dustry. At low wind speeds, the PI speed control using generator torque as controlled
input can be quite slow, thus tuning is not significantly challenging. However, at high
wind speeds, the PI speed control using pitch angle as controlled input strongly couples
with the tower dynamics, denoting a multivariable problem, and should be properly de-
signed. Inappropriate gain selection can make rotational speed regulation ”loose” around
the set-point or make the system unstable, as well as excite poorly damped structural
modes [3].

The concepts seen throughout this chapter are here applied to the state-of-the-art con-
troller structure of the wind turbine industry [4]. The present example intends to show
that theoretical rigorousness on the design of gain-scheduled controllers may bring ad-
vantages in terms of performance and reliability of wind turbines in closed-loop.

Controller Design

For a clear and didactic exposure, the adopted control structure depicted in Fig. 4.10 is
simpler than a industry standard Region III controller [4], but includes the most common
control loops.

The generator speed is regulated by a PI-controller of the form,

GPI := kp(θ) + ki(θ)
(s+ zI)

s

where s denotes the Laplace operator. Instead of a pure integrator, the PI controller is
composed by an integrator filter,

GI(s) :=
s+ zI

s
,
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k3(s+z3)
s+p3

z

Weighting
Functions

k2

∂Qg
∂Ωg

Ω̂gw = V̂

Q̂g

u = βref ˆ̇q

Gp(s,θ)

LPV Controller

kp(θ)

ki(θ)

kq̇(θ)

y

s2+2ζΩ ωΩ s+ω2
Ω

(s+z1)(s+2ζΩ ωΩ )
s+z1

s

kdt2ξdtωdts(1+sτ)
s2+2ξdtωdts+ω2

dt

Classical Design

Figure 4.10: Schematic block diagram of a controlled wind turbine in Region III.

for reasons to be explained later, where the filter zero z I is a design parameter.
It is possible to provide an extra signal by using an accelerometer mounted in the

nacelle, allowing the controller to better recognize between the effect of wind speed dis-
turbances and tower motion on the measured power or generator speed. With this extra
feedback signal, tower bending moments loads can be reduced without significantly af-
fecting speed or power regulation [3]. Therefore, it is assumed that tower velocity q̇ is
available for measurement, by integrating tower acceleration q̈, and is multiplied by a
parameter-dependent constant k q̇(θ) for feedback.

Additionally, active drive train damping is deployed by adding a signal to the gener-
ator torque to compensate for the oscillations in the drive train. This signal should have
a frequency, ωdt, equal to the eigenfrequency of the drive train, which is obtained by
filtering the measurement of the generator speed using a bandpass filter of the form,

Gdt := Kdt
2ζdtωdts(1 + τdts)

s2 + 2ζdtωdts+ ω2
dt

The time constant, τdt, introduces a zero in the filter, and can be used to compensate for
time lags in the converter system. The filter gain kdt and the damping ratio ζdt are selected
based on classical design techniques.
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A power controller for reducing fast power variations is treated simplistically as a
proportional feedback from generator speed to generator torque. Considering a constant
power control scheme, the generator torque can be represented as a function of the gen-
erator speed. The proportional feedback is nothing but the partial derivative of generator
torque with respect to generator speed,

∂Qg(Ωg)

∂Ωg
= − PN

NgΩ2
g,N

.

In real implementations, a slow integral component is added to the loop to include as-
symptotical power tracking.

Instead of the classical control techniques, the design of PI speed and tower feedback
loops are revisited under the LPV framework. For a didactic and clear exposure, the
interconnection of the drive train with the damper is now considered as a first order low
pass filter from aerodynamic torque to generator speed, and the rotor speed proportional
to the generator speed. The LPV controller can now be designed to trade off the tracking
of generator speed and tower oscillations with control effort (wear on pitch actuator).
The dynamic model of the variable-speed wind turbine can then be expressed as an LPV
model of the form,

G :

{
ẋ = A(θ) x+Bw(θ) û+Bu(θ) βref

y = Cy x

where states, controllable input and measurements are,

x =
[
Ωr q̇ q β̇ β xΩ,i

]T
, u = βref, y =

[
Ωg yΩ,i q̇

]T
.

with open-loop system matrices,

A(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1(θ)− 1

Jr + JgN2
g

∂Qg

∂Ω
−ρ2(θ) 0 0 ρ3(θ) 0

ρ4(θ) − 1

Mt
Bt − ρ5(θ) −Kt

Mt
0 ρ6(θ) 0

0 1 0 0 0 0
0 0 0 a44(θf) −a12(θf) 0
0 0 0 1 0 0
Ng 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bu =
[
ρ2(θ) ρ5(θ) 0 0 0 0

]T
, Bw =

[
0 0 0 b4,1(θf) 0 0

]T
,

Cy =

⎡
⎣Ng 0 0 0 0
zI 0 0 0 1
0 1 0 0 0

⎤
⎦ , a12(θf) = b41(θf) = (1− θf(t))ω

2
n,0 + θf(t)ω

2
n,lp,

a44(θf) = -2(1− θf(t))ζ0ωn,0 − 2θf(t)ζlpωn,lp.

The basis functions ρ1(θ), . . . , ρ6(θ) related to the parameter-varying aerodynamic gains
are selected as,

ρ1 :=
1

Jr + JgN2
g

∂Q

∂Ω

∣∣∣∣
V̂

,

ρ4 :=
1

Mt

∂T

∂Ω

∣∣∣∣
V̂

,

ρ2 :=
1

Jr + JgN2
g

∂Q

∂V

∣∣∣∣
V̂

,

ρ5 :=
1

Mt

∂T

∂V

∣∣∣∣
V̂

,

ρ3 :=
1

Jr + JgN2
g

∂Q

∂β

∣∣∣∣
V̂

,

ρ6 :=
1

Mt

∂T

∂β

∣∣∣∣
V̂

.
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Notice the PI controller integrator filter GI conveniently augmented into the state-space
of G, represented by the state xΩ,i and the output yΩ,i. The plant Gp is defined as the
wind turbine model solely (plantG without the augmentation of G I).

Considering G as the plant for synthesis purposes, the LPV controller structure re-
duces to a parameter-dependent static output feedback of the form,

K(θ) = Dc,0 +

6∑
i=1

ρi(θ)Dc,i + θfDc,7, Dc,n :=
[
Dp,n Di,n Dq̇,n

]
,

n = 0, 1, . . . , 7.

Controller tuning follows a procedure similar to the H∞ design. Notice that, for
fixed values of the varying parameter θ, and initially neglecting the tower velocity feed-
back, the controller design becomes a mixed sensitivities optimization problem intended
to minimize the norm, ∥∥∥∥ Wz1 GI S Gv

Wu GPI S Gv

∥∥∥∥
∞

where S is the sensitivity defined as S := (I +Gp GPI)
−1, Gv is the transfer function

from V̂ to Ω̂g, Wz1 and Wu are weighting fuctions. The weight Wz1 applied to the
generator speed deviations can be used to shape the closed-loop response of rotational
speed in face of wind disturbances, given by Ω̂(t) = S GvV̂ (t). The desired sensitivity
in closed-loop is,

SΩ(s) :=
s2 + 2ξΩωΩs

s2 + 2ξΩωΩs+ ω2
Ω

.

where the natural frequency ωΩ and damping ratio ξΩ are design parameters that select
the desired second-order closed-loop behavior. The desired sensitivity SΩ can be applied
as a loop-shaping weight by definingWz1 as

Wz1(s) :=
1

GI(s)SΩ(s)
=

s2 + 2ξΩωΩs+ ω2
Ω

(s+ zI)(s+ 2ξΩωΩ)
.

Wu is a first order high-pass filter that penalizes high-frequency content on the pitch
angle,

Wu(s) := k3
s+ z3
s+ p3

.

Wz1 andWu governs the tradeoff between rotational speed regulation and pitch wear.
Due to the resonance characteristics of the transfer function from V̂ to q̇, the weighting
functionWz2 is chosen as a scalar k2, that tradeoffs the desired tower damping.

Two LPV controllers are designed, one fault-intolerant and another tolerant to pitch
actuator faults. The only difference on their synthesis is the inclusion of the fault depen-
dent terms P7θf and Dc,7θf of the Lyapunov and controller matrices, respectively. The
parameters for the loop-shaping weight Wz1 are selected as ωΩ = 0.6283 rad/s (0.1 Hz)
and ξΩ = 0.7, with the zero of the integrator filter located at z I = 1.0 rad/s. A special
attention must be devoted to the choice of Wu. Due to the fact that the pitch system has
slower dynamics in the presence of low oil pressure, the bandwidth of this filter must be
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made large enough to allow rotational speed and tower damping control in the occurrence
of faults. Defining Ω3P as three times the nominal rotational speed Ω r,N , in the present
example, k3 = 1, p3 = 1.5Ω3P and z3 = 15Ω3P .

Remember that the iterative LMI algorithm is a synthesis procedure in discrete time.
Therefore, the augmented LPV plant in continuous time is discretized using a bilinear
(Tustin) approximation [25] with sampling time T s = 0.02 s, at each point Θg × VertV .
The rate of variation of the scheduling variables in continuous-time must as well be con-
verted to discrete-time by the relation Δθ(k) = TsΔθ(t).

The initial slack matricesG(θ,Δθ){0}, ∀(θ,Δθ) ∈ Θg ×Vert V required to initialize
the LMI-based algorithm are determined from the solution of the following LMI opti-
mization problem,

Minimize γ subject to (4.22), (4.26), (4.27), ∀(θ,Δθ) ∈ Θ g × Vert V
with a given initial controllerK(θ). The resulting Lyapunov matrix determinesG(θ,Δθ) {0}

= P(θ,Δθ)−1. The proportional and integral gains of the given initial controller can be
computed by placement of the poles of the transfer function from V̂ to Ω̂g. Neglecting
pitch actuator dynamics, and considering a pure integrator, the k p and ki gains can be
described analytically as [26],

kp(θ) =

2ξΩωΩ

(
Jr +N2

g Jg
)−Ng

∂Qg

∂Ωg
+ ρ1(θ)

−Ngρ3(θ)
, ki(θ) =

ω2
Ω

(
1 + ξ2Ω

) (
Jr +N2

g Jg
)

−Ngρ3(θ)

The tower feedback gain of the initial controller is k q̇(θ) = 0, meaning no active tower
damping.

Convergence tolerance of the iterative algorithm is set to ε = 10−3. After 89 itera-
tions, convergence is achieved to a performance level γ = 0.586. The evolution of γ {j}

versus the iteration number is depicted in Fig. 4.11, where the monotonically decreasing
property of the sequence is noticeable. The proportional and integral gains depicted on
the figures are multiplied by the gearbox ratio Ng for better illustration. The controller
gainsK(θ) = [kp(θ), ki(θ), kq̇(θ)] computed at θop = 15 m/s, θf = 0, during the course
of the iterative LMI algorithm, are also shown. The synthesis procedure converge to con-
troller gains different than the gains of the initial controller. The tower feedback gain
kq̇ , null in the initial controller, has converged to a nonzero value, meaning active tower
damping.

The proportional, integral and tower feedback gains as three-dimensional surfaces of
the scheduling parameters V and θf are illustrated in Fig. 4.12a to 4.12c. The controller
gains capture the dependence of the LPV system on the the wind speed given by the basis
functions. Compare the shape of the surfaces with the aerodynamic gains (Fig. 4.8). Also
notice the slight changes in kp and kq̇ and the changes in ki scheduled by θf.

Simulation Results

The performance of the LPV controllers are accessed in a nonlinear wind turbine sim-
ulation environment [10]. The effective wind speed is estimated by an unknown input
observer that uses measurements of generator speed, generator torque and pitch angle
[18]. Figures 4.13a to 4.14d depict time series of the variables of interest resulted from
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Figure 4.11: Evolution of performance level γ and controller gains k p, ki, kq̇ during the
iterative LMI synthesis. Controller gains computed at θop = 15 m/s, θf = 0.

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0.2

0.4

0.6

0.8

1

1.2

V

θf

k
p

(a)

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

V

θf

k
i

(b)

0
0.2

0.4
0.6

0.8
1

10
15

20
25

0.04

0.06

0.08

0.1

0.12

V

θf

k
q

(c)

Figure 4.12: Proportional, integral and tower feedback gains as functions of the operating
point and fault scheduling variables.
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5 Conclusions

a 600 s simulation. A mean speed of 17 m/s with 12 % turbulence intensity and shear
exponent of 0.1 characterizes the wind field (Fig. 4.13a). At time t = 200 s, the pitch
system experiences a fault with θf increasing from 0 to 1 (Fig. 4.13b). At t = 430 s, the
pitch system comes to normality with θf decreasing from 1 to 0. Both variations on the
fault scheduling variable are made with maximum rate of variation.

Results of LPV controllers intolerant and tolerant to pitch actuator faults are compared
to support a discussion of the consequences of the fault on the closed-loop system as well
as fault accommodation. When the wind turbine is controlled by the fault intolerant LPV
PI controller, the rotational speed (Fig. 4.13c) experiences poor and oscillatory regulation
during the occurrence of faults, more pronouncedly while θ f is varying. The threshold
for a shutdown procedure due to overspeed is usually between 10-15% over the nominal
speed [27]; in this particular case, the overspeed would not cause the wind turbine to
shutdown. The FT-LPV PI controller successfully accommodates the fault, maintaining
rotor speed properly regulated. Oscillatory power overshoots of up to 6% of the nominal
power (Fig. 4.13d) degrades power quality; the same does not happen to the FT-LPV
controlled system.

More serious than the effects on rotational speed and power are the consequences
of faults on the pitch system and tower. Excessive pitch angle excursions during faults
(Fig. 4.14a) with the limits on velocity of±8 deg/s being reached (Fig. 4.14b) may cause
severe wear on pitch bearings. The FT-LPV controller maintain pitch excursions and ve-
locities within normal limits. The tower experiences displacements (Fig. 4.14c) of up to
0.48 m, an increase of approximately 60% when compared to the FT-LPV. The displace-
ments comes along with very high tower velocities of almost 0.4 m/s, 260% higher than
the fault accommodated case.

In such a situation, the supervisory controller would shut down the wind turbine due to
excessive vibrational levels measured by the nacelle accelerometer. The same would not
be necessary if the wind turbine is controlled by the FT-LPV. Therefore, fault tolerance
leads to higher energy generation and availability. It also collaborates to a better man-
agement of condition-based maintenance; higher priority of maintenance can be given to
wind turbines with faults that cannot be accommodated by the control system. These are
examples of the benefits that the LPV control design framework presented in this Chapter
can bring to wind turbines in closed-loop with industry-standard as well as more elaborate
controllers.

5 Conclusions

This chapter initially presents the modeling of a wind turbine model as an LPV system,
considering faults on actuators and sensors. Later, an iterative LMI-based algorithm for
the design of structured LPV controllers is described. This constitutes a unified LMI-
based design framework to address gain-scheduling, fault-tolerance and robustness on
the design of wind turbine controllers.

The method is based on parameter-dependent Lyapunov functions, which reduces
conservativeness of control for systems with rate bounds, which is the case in this work.
The iterative algorithm may be computationally expensive depending on the number of
plant states and scheduling variables, but brings desired flexibility in terms of the con-
troller structure: decentralized of any order, dynamic (reduced-order) output feedback,

89



Paper A

10

15

20

25
v h

ub
[m

/s
]

(a)

θ f
[-

]

0

0.2

0.4

0.6

0.8

1

(b)

Ω
r

[r
ad

/s
]

1.85

1.9

1.95

2

2.05

2.1

(c)

P g
[W

]

50 100 150 200 250 300 350 400 450 500 550 600

PI LPV PI LPV (Fault-Tolerant)

1.85

1.9

1.95

2

2.05

Time [s]

2.1 ×106

(d)

Figure 4.13: Time series of (a) hub height wind speed, (b) fault scheduling variable, (c)
rotor speed and (d) electrical power. Simulation results of a 2MW wind turbine controlled
by a fault-intolerant and a fault-tolerant LPV PI controller.
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static output feedback and state feedback are among the possible ones. Moreover, the re-
sulting controller can also be easily implemented in practice due to low data storage and
simple math operations. In fact, the required data to be stored on the controller memory is
only the controller matrices, and scalar functions of the scheduling variables representing
plant nonlinearities. The mathematical operations needed to compute the controller at
each sampling time are look-up tables with interpolation, products between a scalar and
a matrix, and sums of matrices.

A design example of a fault-tolerant controller for the Region III, with a structure
similar to the the state-of-the-art industrial controllers, intends to show that theoretical
rigorousness on the design of gain-scheduled controllers may bring advantages in terms
of performance and reliability of wind turbines in closed-loop. The presented framework
is not limited to the specific example shown. Due to its flexibility, the framework can
be applied to other known wind turbine controller structures or even to explore different
control philosophies.

Simulations indeed confirm that the fault-tolerant LPV controllers have superior per-
formance in the occurrence of faults. The LPV controller designed for the nominal system
start oscillating when the fault is introduced. In a real situation, the supervisory controller
would shut down the wind turbine due to excessive vibrational levels measured by the
nacelle accelerometer. The same would not be necessary if the wind turbine is controlled
by the FT-LPV. Therefore, higher energy generation and availability is achieved. It also
ccontributes to a better management of condition-based maintenance; priority on main-
tenance can be given to wind turbines with faults that cannot be accommodated by the
control system.

References

[1] GWEC, “Annual market update 2010,” Global Wind Energy Council, Tech. Rep.,
2010.

[2] K. Z. Østergaard, “Robust, gain-scheduled control of wind turbines,” Ph.D. disser-
tation, Aalborg University, 2008.

[3] E. A. Bossanyi, “The design of closed loop controllers for wind turbines,” Wind
Energy, vol. 3, no. 3, pp. 149–163, 2000.

[4] E. Bossanyi. and D. Witcher, “Controller for 5MW reference turbine, deliverable
5.1.1, project UPWIND,” Garrad Hassan & Partners, Tech. Rep., 2011.

[5] C. Sloth, T. Esbensen, M. O. K. Niss, J. Stoustrup, and P. F. Odgaard, “Robust LMI-
based control of wind turbines with parametric uncertainties,” in Proceedings of the
3rd IEEE Multi-conference on Systems and Control, Saint Petersburg, Russia, July
2009, pp. 776–781.

[6] M. O. K. Niss, T. Esbensen, C. Sloth, J. Stoustrup, and P. F. Odgaard, “A youla-
kucera approach to gain-scheduling with application to wind turbine control,” in
Proceedings of the 3rd IEEE Multi-Conference on Systems and Control, Saint Pe-
tersburg, Russia, July 2009, pp. 1489–1494.

92



5 Conclusions

[7] W. Rugh and J. Shamma, “Research on gain scheduling,” Automatica, vol. 36,
no. 10, pp. 1401–1425, October 2000.

[8] F. Adegas and J. Stoustrup, “Robust structured control design via LMI optimiza-
tion,” in Proceedings of the 18th IFAC World Congress, Milano, Italy, August 2011,
pp. 7933–7938.

[9] C. Sloth, T. Esbensen, and J. Stoustrup, “Robust and fault-tolerant linear parameter-
varying control of wind turbines,” Mechatronics, vol. 21, no. 4, pp. 645–659, June
2011.

[10] T. Esbensen and C. Sloth, “Fault diagnosis and fault-tolerant control of wind tur-
bines,” Master’s thesis, Aalborg University, 2009.

[11] K. Østergaard, P. Brath, and J. Stoustrup, “Linear parameter varying control of wind
turbines covering both partial load and full load conditions,” International Journal
of Robust and Nonlinear Control, vol. 19, no. 1, pp. 92–116, 2009.

[12] P. Apkarian and R. Adams, “Advanced gain-scheduling techniques for uncertain
systems,” IEEE Transactions on Control Systems Technology, vol. 6, no. 1, pp. 21–
32, January 1998.

[13] F. D. Bianchi, H. D. Battista, and R. J. Mantz, Wind Turbine Control Systems: Prin-
ciples, Modelling and Gain Scheduling Design. Springer, 2007.

[14] D. S. L. Dolan and P. W. Lehn, “Simulation model of wind turbine 3p torque oscil-
lations due to wind shear and tower shadow,” IEEE Transactions on Energy Conver-
sion, vol. 21, no. 3, pp. 717–724, September 2006.

[15] F. Iov, A. Hansen, P. Srensen, and F. Blaabjerg, “Wind turbine blockset in mat-
lab/simulink,” 2004.

[16] M. O. L. Hansen, Aerodynamics of Wind Turbines. Earthscan, 2008.

[17] D. Bianchi, R. J. Mantz, and C. F. Christiansen, “Gain scheduling control of
variable-speed wind energy conversion systems using quasi-LPV models,” Control
Engineering Practice, vol. 13, no. 2, pp. 247–255, February 2005.

[18] K. Østergaard, P. Brath, and J. Stoustrup, “Estimation of effective wind speed,”
Journal of Physics: Conference Series, vol. 75, no. 1, pp. 1–9, 2007.

[19] P. F. Odgaard, J. Stoustrup, and M. Kinnaert, “Fault tolerant control of wind turbines
- a benchmark model,” in Proceedings of the 7th IFAC Symposium on Fault Detec-
tion, Supervision and Safety of Technical Processes, Barcelona, Spain, June 2009,
pp. 155–160.

[20] F. Adegas and J. Stoustrup, “Structured control of affine linear parameter varying
systems,” in Proceedings of the American Control Conference, San Francisco, CA,
USA., 2011, pp. 739 – 744.

[21] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic Approach to
Linear Control Design. Taylor & Francis, 1998.

93



Paper A

[22] C. E. de Souza, K. A. Barbosa, and A. T. Neto, “Robust H∞ filtering for discrete-
time linear systems with uncertain time-varying parameters,” IEEE Transactions on
Signal Processing, vol. 54, no. 6, pp. 2110–2118, 2006.

[23] J. D. Caigny, J. F. Camino, R. C. L. F. Oliveira, P. L. D. Peres, and J. Swevers,
“Gain-scheduled dynamic output feedback control for discrete-time LPV systems,”
International Journal of Robust and Nonlinear Control, vol. DOI 10.1002/rnc.1711,
2011.

[24] ——, “Gain-scheduledH2 andH∞ control of discrete-time polytopic time-varying
systems,” IET Control Theory and Applications, vol. 4, no. 3, pp. 362–380, 2010.

[25] P. Apkarian, “On the discretization of LMI-synthesized linear parameter-varying
controllers,” Automatica, vol. 33, no. 4, pp. 655–661, April 1997.

[26] M. H. Hansen and S. ye, “Effect of dynamic inflow on tuning of a PI pitch con-
troller,” Internal Communication, CASED Project, 2011.

[27] B. Savini and R. Lupto, “Supervisory controller and load calculation with individual
pitch controller for 5mw reference turbine,” GL Garrad Hassan, Tech. Rep., 2011.

94



Paper B

Structured Control of LPV Systems with Application to Wind
Turbines

Fabiano Daher Adegas, Jakob Stoustrup

This paper was published in :
American Control Conference 2012



Copyright c©Institute of Electrical and Electronics Engineers.
The layout has been revised



1 Introduction

Abstract

This paper deals with structured control of linear parameter varying systems
(LPV) with application to wind turbines. Instead of attempting to reduce the prob-
lem to linear matrix inequalities (LMI), we propose to design the controllers via an
LMI-based iterative algorithm. The proposed algorithm can synthesize structured
controllers like decentralized, static output and reduced order output feedback for
discrete-time LPV systems. Based on a coordinate decent, it relies on a sufficient ma-
trix inequality condition extended with slack variables to an upper bound on the in-
duced L2-norm of the closed-loop system. Algorithms for the computation of feasible
as well as optimal controllers are presented. The general case where no restrictions
are imposed on the parameter dependence is treated here due to its suitability for mod-
eling wind turbines. A comprehensive numerical example of a gain-scheduled LPV
controller design with prescribed pattern for wind turbines illustrate the utilization of
the proposed algorithm.

1 Introduction

Practical considerations often dictate structural constraints on the controller. Control
practitioners face the challenge of designing low-order, decentralized, observed-based,
PID control structures, among others. These control problems are naturally formulated
as Bilinear Matrix Inequalities (BMI), and to which equivalent convex reformulations
based on Linear Matrix Inequalities (LMI) are not known to exist. Add to that some sys-
tems inherently exhibit time-varying nonlinear dynamics along their nominal operating
trajectory, motivating the use of advanced control techniques such as gain-scheduling, to
counteract performance degradation or even instability problems by continuously adapt-
ing to the dynamics of the plant. A systematic way of designing controllers for systems
with linearized dynamics that vary significantly with the operating point is within the
framework of linear parameter-varying (LPV) control. Wind turbines are naturally in-
serted in this context. Firstly, because gain-scheduling is an usual approach to deal with
varying dynamics dependent on the operating point [1]. Secondly, the structure of wind
turbine industrial controllers often have a prescribed pattern [2].

In this context, our interest lies in the synthesis of LPV controllers with structural
constraints, more specifically, the L2-norm minimization problem,

minimize ‖Tz→w(θ,K(θ))‖2
K(θ) ∈ K

where Tz→w(·) is an input-output system operator, K(θ) is a linear parameter varying
controller dependent on a vector of time-varying parameters θ, and K represents a struc-
tural constraint in the controller matrices.

The diversification of LPV controller structures is not extensively addressed in the
literature. The static state feedback and full-order dynamic output feedback are by far
the most investigated structures. There are some proposals on the design of static output
feedback controllers [3, 4]. A few works can be found on other controller structures like
decentralized [5], fixed-order dynamic output for single-input single-output polynomial
systems [6]. Synthesis conditions based on Linear Matrix Inequalities (LMI) is a common
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feature to all these papers. Recently, static output [7] and full-order dynamic output [8]
synthesis procedures relies on extended LMI conditions with slack variables [9].

Instead of an attempt to reduce the problem to linear matrix inequalities (LMI), this
paper investigates the design of structured LPV controllers via an LMI-based iterative
algorithm. Iterative LMI algorithms with slack matrices were investigated in the context
of robust [10] and affine LPV [11] control. Decentralized of any order, fixed-order out-
put, static output and simultaneous plant-control design are among the possible control
structures. Based on a coordinate decent, it relies on extended LMI conditions to an upper
bound on the induced L2-norm of the closed-loop system. We propose a relaxation on
the LMI condition useful for computing feasible controllers. After a feasible controller
is found, the objective is cost minimization until the solution converges to a stationary
point. The general case where no restrictions are imposed on the parameter dependence
is treated here due to its suitability for modeling wind turbines.

Realizing advanced gain-scheduled controllers can be difficult in practice and may
lead to numerical challenges [1, 12]. Usually, several plant and controller matrices must
be stored on the controller memory. Moreover, matrix factorizations and inversions are
among the operations that must be done online by the controller at each sampling time
[13]. The proposed synthesis methodology can be of practical relevance because the
resulting controllers have simple implementation.

This paper is organized as follows. Section II describes the system, controller and
some possible controller structures. Section III presents known extended matrix inequali-
ties conditions for the inducedL2 norm and the proposed relaxation. Section IV describes
the iterative LMI algorithm along with convergence and computational considerations.
Section V revisits the design of wind turbine industry-standard controllers under the LPV
framework.

2 System and Controller Description

An open-loop, discrete-time augmented LPV system with state-space realization of the
form,

x(k + 1) = A(θ)x(k) +Bw(θ)w(k) +Bu(θ)u(k)

z(k) = Cz(θ)x(k) +Dzw(θ)w(k) +Dzu(θ)u(k)

y(k) = Cy(θ)x(k) +Dyw(θ)w(k),

(5.1)

is considered for the purpose of synthesis, where x(k) ∈ Rn is the state vector, w(k) ∈
Rnw is the vector of disturbance, u(k) ∈ Rnu is the control input, z(k) ∈ Rnz is the
controlled output, and y(k) ∈ Rny is the measured output. A(θ), B(θ), C(θ), D(θ)are
continuous functions of some time-varying parameter vector θ = [θ 1, . . . , θnθ

]. Assume
θ ranges over a hyperrectangle denoted Θ,

Θ =
{
θ : θi ≤ θi ≤ θi, i = 1, . . . , nθ

}
.

The rate of variation Δθ = θ(k + 1)− θ(k) belongs to a hypercube denoted V ,

V = {Δθ : |Δθi| ≤ vi, i = 1, . . . , nθ} .
The LPV controller has the form,
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xc(k + 1) = Ac(θ)xc(k) +Bc(θ)y(k)

u(k) = Cc(θ)xc(k) +Dc(θ)y(k),
(5.2)

where xc(k) ∈ Rnc and the controller matrices are continuous functions of θ. Note that
depending on the controller structure, some of the matrices may be zero. The controller
matrices can be represented in a compact way,

K(θ) :=

[
Dc(θ) Cc(θ)
Bc(θ) Ac(θ)

]
. (5.3)

The interconnection of system (5.1) and controller (5.2) leads to the following closed-loop
LPV system denoted Scl,

Scl : x(k + 1) = A(θ,K(θ))xcl(k) + B(θ,K(θ))w(k)

z(k) = C(θ,K(θ))xcl(k) +D(θ,K(θ))w(k).
(5.4)

This general system structure can be particularized to some usual control topologies.
In the case K(θ) is an unconstrained matrix, if nc = 0, the problem becomes a static
output feedback. The static state feedback is a particular case of static output, when the
system output is a full rank linear transformation of the state vector ∀θ. If n = n c, the
full-order dynamic output feedback arises. In a structured control context, more elaborate
control systems can be designed by constraining K(θ). A fixed-order dynamic output
feedback has nc < n. For decentralized controllers of arbitrary order, the structure of
K(θ) is constrained to be,

K(θ) :=

[
diag(Dc(θ)) diag(Cc(θ))
diag(Bc(θ)) diag(Ac(θ))

]

where diag(·) stands that (·) has a block-diagonal structure.
In the general parameter dependence case, the open-loop system matrices are depen-

dent on arbitrary functions of the varying parameters,

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦ (θ) =

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
0

+
∑
i

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦
i

ρi(θ),

i = 1, . . . , nρ

(5.5)
where ρi(θ) are scalar functions known as basis functions that encapsulate possible sys-
tem’s nonlinearities and nρ is the number of basis functions. The controller matrices are
continuous functions of θ with similar type of dependence,

[
Ac Bc

Cc Dc

]
(θ) =

[
Ac Bc

Cc Dc

]
0

+

nθ∑
i=1

[
Ac Bc

Cc Dc

]
i

ρi(θ)

i = 1, . . . , nθ

(5.6)
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3 Induced L2-norm Performance

The design of a closed-loop system usually considers performance specifications that
can be characterized in different ways. Define Tzw(θ) as the input-output operator that
represents the forced response of (5.4) to an input signal w(k) ∈ L 2 for zero initial
conditions. The induced L2-norm of a given input-output operator,

‖Tzw‖L2
:= sup

θ∈Θ×V
sup

‖w‖L2
	=0

‖z‖L2

‖w‖L2

is commonly utilized as a measure of performance of LPV systems and allows formulat-
ing the control specification as in H∞ control theory. The LPV system (5.4) is said to
have performance level γ when it is exponentially stable and ‖T zw‖L2

< γ holds. An ex-
tension of the bounded real lemma (BRL) for parameter dependent systems is a sufficient
condition for checking the L2 performance level of system Scl.

Lemma 2 (Extended L2 Performance). [9, 8] For a given controller K(θ), if there exist
P(θ) = P(θ)T and Q(θ) satisfying (5.7) with r = 1 for all (θ,Δθ) ∈ Θ × V , then the
system Scl is exponentially stabilizable by the controller K(θ) and ‖Tzw(θ)‖L2

< γ.

⎡
⎢⎢⎣
r2P(θ+) A(θ,K(θ))Q(θ) B(θ,K(θ)) 0

� −P(θ) +Q(θ)T +Q(θ) 0 Q(θ)T C(θ,K(θ))T

� � γI D(θ,K(θ))T

� � � γI

⎤
⎥⎥⎦ � 0 (5.7)

The term r2 multiplying the Lyapunov matrix at the (1,1) entry of (5.7) is, in the present
paper, artificially inserted into the formulation. For frozen θ (LTI system) r represents
the z-plane circle radius, thus r = 1 in the Schur stability criteria. By imposing r > 1
the z-plane circle would be enlarged, meaning that even unstable closed-loop systems
(eigenvalues lying out of the unit circle) would satisfy Lemma 2. For parameter varying
systems, this notion of enlargement still exists when r > 1, defined by the following
lemma.

Lemma 3 (EnlargedL2 Performance). For a given controllerK(θ), if there exist P(θ) =
P(θ)T andQ(θ) satisfying (5.7) with r = re > 1 for all (θ,Δθ) ∈ Θ×V , then the system
Scl satisfies the enlarged L2 performance with ‖Tzw(θ)‖L2,r=re

< γ.

Even systems that are not exponentially stabilizable may satisfy the enlargedL 2-norm
condition. This fact will be utilized in the proposed algorithms for finding a feasible
controller. The shifted-H∞-norm is a similar concept for continuous-time LTI systems
[14].

The Lyapunov and slack variables mimic the general parameter dependence of the
plant and controller,

P(θ) = P0 +

nθ∑
i=1

ρi(θ)Pi (5.8a)

100



4 Optimization Algorithm

Q(θ) = Q0 +

nθ∑
i=1

ρi(θ)Qi (5.8b)

The Lyapunov function at θ+ := θ +Δθ can be described as,

P(θ+) = P0 + ρi(θ
+)Pi (5.9)

Conveniently, the basis functions at θ+ are approximated by a linear function of ρ(θ)
and Δθ,

ρi(θ
+) := ρi(θ) +

∂ρi(θ)

∂θ
Δθ, (5.10)

thereby turning inequality (5.7) affine dependent on the rate of variation Δθ. This ap-
proximation makes sufficient to verify (5.7) with (5.9)-(5.10) only at Vert V .

4 Optimization Algorithm

The optimization algorithm iterates between LMI problems by fixing the controller vari-
ables and the slack variable alternatively. In this way, the parameter dependent Lyapunov
matrix remains as a variable during the whole optimization process. In the general param-
eter dependence case, the controller is designed in a gridded parameter space. A gridding
procedure consists of defining a gridded parameter subset denoted Θ g ⊂ Θ, designing
a controller that satisfies the matrix inequalities constraints ∀θ ∈ Θg, and checking the
inequalities constraints in a denser grid. If the last step fails, the process is repeated with
a finer grid.

In order to save text during the exposure of the algorithms, denote the inequality
constrains by

ΠQ(x) := (5.7), ∀(Θ,Δθ) ∈ Θg × Vert V
The algorithm for computing a feasible structured LPV controller is described next.

The aim is to create a sequence of r convergent to 1, that is, for a certain tolerance ε,
r(j) ≥ 1− ε, r(j) → 1± ε, as j →∞.

Algorithm 3. (Feasibility) Given initial slack matrix Q(1)(θ) = I , ∀θ ∈ Θg, an initial
radius r(1) > 1, a target radius rtg ≤ 1 and a convergence tolerance ε1. Set j = 1 and
start to iterate:

1. Find P(θ), K(θ), and γ that solves the LMI problem,

Minimize γ subject to ΠQ(x) with r = r(j), and frozenQ(θ) = Q(j)(θ) ∀θ ∈ Θg.

2. If Step 1 is feasible, K (j)(θ) = K(θ). Else, K(j)(θ) = K(j−1)(θ).

3. Find P(θ), Q(θ), and γ that solves the LMI problem,

Minimize γ subject to ΠQ(x) with r = r(j), and frozen K(θ) = K (j)(θ), ∀θ ∈ Θg

4. If Step 3 is feasible,Q(θ)(j+1) = Q(θ). Else, Q(θ)(j+1) = Q(j)(θ)
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5. If Step 1 and step 3 are feasible, r(j+1) = 0.5(r(j)+rtg) andΔr(j+1) = |r(j+1)−
r(j)| (Reduced radius).
Elseif Step 3 is feasible, r(j+1) = r(j) and Δr(j+1) = Δr(j) (Same radius).
Else, r(j+1) = r(j) + 0.5 |r(j−1) − r(j)| and Δr(j+1) = |r(j+1) − r(j)| (Increased
radius).

6. If |r(j+1) − r(j)| < ε1, stop. Else, j = j + 1 and go to step 1.

The initial radius r(1) should be made large enough to make the first iteration feasible.
Our experience shows that r(1) = 2 suffices for most situations. The target radius r tg can
be made slightly smaller than 1. Once the radius reaches the target radius within a certain
tolerance ε1, the objective is only to minimize the performance level γ.

Algorithm 4. (Performance Level) Given initial controller K (j)(θ), ∀θ ∈ Θg, and a
convergence tolerance ε2. Set j = 1 and start to iterate:

1. Find P(θ), K (j)(θ), and γ that solves the LMI problem,

Minimize γ subject to ΠQ(x) with r = 1, and frozen Q(θ) = Q(j)(θ) ∀θ ∈ Θg.

2. Find P(θ), Q(θ), and γ (j) that solves the LMI problem,

Minimize γ subject to ΠQ(x) with r = 1, and frozen K(θ) = K (j)(θ), ∀θ ∈ Θg.

3. If |γ(j) − γ(j−1)| < ε2, stop. Else, j = j + 1 and go to step 1.

Algorithm 2 generates a convergent sequence of solutions such that the cost is non-
increasing, that is, γ(1) ≥ γ(j) ≥ γ(∗). To realize this, notice that taking the slack
variable equal to the Lyapunov variable implies sufficiency of Lemma 2 [9]. Therefore,
P(θ) computed at step 1 is a solution for Q(θ) at step 2, implying feasibility of step 2
with at least the same value of γ of step 1. The controller K(θ) at the iteration j is also
a solution for the step 1 at iteration j + 1, implying feasibility of step 1 with at least the
same performance level as iteration j.

Algorithms 3 and 4 are in fact very similar and can be unified in a single algorithm.

Computational Load

Depending on the system/controller order and number of basis functions, the procedure
may be computationally expensive. Slight modifications on the algorithms alleviate com-
putational load at the expense of some conservatism.

• The step at which the slack matrix is computed can be replaced by an update rule
of the form

Q(j+1)(θ) = P(j)(θ), ∀θ ∈ Θg.

Indeed, taking the slack variable equal to the Lyapunov variable implies sufficiency
of Lemma 2 [9].
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• The slack matrix can be made parameter independent, e.g. Q(θ) = Q.

• Parameter dependent matrix variables may also depend on a fewer number of basis
functions/varying parameters than the plant, thus reducing the number of optimiza-
tion variables. Some basis functions are more representative of system’s nonlinear-
ities than others. For example, the LPV controller can be made dependent of some
basis functions while being designed robust to the reminiscent ones by including
them in the Lyapunov variable.

Controller Implementation

Due to the fact that no linearizing change of variables is involved in the formulation, the
resulting controller can be easily implemented in practice. The iterative LMI optimization
algorithm provides the controller matrices Ac,i, Bc,i, Cc,i, Dc,i, for i = 0, 1, . . . , nρ.
These matrices, the basis functions, and the value of the scheduling variables are the only
required information to determine the control signal u(k). At each sample time k, the
scheduling variable θ(k) is measured (or estimated) and a control signal is obtained as
follows.

1. Compute the value of the basis functions ρ i(θ(k)), for i = 0, 1, . . . , nρ. The basis
functions may be stored in a lookup table that takes θ(k) as an input and outputs an
interpolated value of ρ(θ(k)).

2. With the value of the basis functions in hand, determine the controller matrices
Ac(θ(k)), Bc(θ(k)), Cc(θ(k)), Dc(θ(k)) according to (5.6).

3. Once the controller matrices have been found, the control signal u(k) can be ob-
tained by the dynamic equation (5.2) of the LPV controller, only involving multi-
plications and sums.

5 Wind Turbine LPV Control

At high wind speeds, the power generated by a wind turbine should be maintained at rated
value. A common control strategy is to regulate the generator speed (Ω g) by varying the
blade pitch angles (β) while maintaining a constant generator torque (Q g). The wind
energy industry relies on the proportional and integral (PI) controller to accomplish such
task. The PI speed control using pitch angle as controlled input strongly couples with the
tower dynamics, denoting a multivariable problem, and should be properly designed. The
adopted control structure depicted in Fig. 5.1 includes the most common control loops of
a industry standard Region III controller [2].

The generator speed is regulated by a PI controller of the form,

GPI := kp(θ) + ki(θ)GI(s)

where s denotes the Laplace operator. Instead of a pure integrator, the PI controller is
composed by an integrator filter,

GI(s) :=
s+ zI

s
,
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Figure 5.1: Control loops of generator speed and tower damping.

where the filter zero zI is a design parameter. The PI controller is connected in series
with a parameter independent filter Gf1(s). It is possible to provide an extra signal by
using an accelerometer mounted in the nacelle, allowing the controller to better recog-
nize between the effect of wind speed disturbances and tower motion on the measured
power or generator speed. With this extra feedback signal, tower bending moment loads
can be reduced without significantly affecting speed or power regulation. Therefore, it
is assumed that tower velocity q̇ is available for measurement, by integrating tower ac-
celeration q̈, and is multiplied by a parameter-dependent constant k q̇(θ) for feedback. A
parameter independent filter Gf2(s) completes the tower feedback loop. The order of the
filtersGf1(s) andGf2(s) can be arbitrarily chosen. The choice trades-off closed-loop per-
formance and number of controller states. High order filters leads to better performance
with the expense of higher controller complexity.

The drive train of a wind turbine presents a poorly damped torsional mode when a
constant torque control strategy is adopted. To counteract this, active drive train damp-
ing is deployed by adding a signal to the generator torque (Q g) to compensate for the
oscillations in the drive train. For a didactic and clear exposure, the compensation of the
drive train damper is considered ideal. Therefore, for synthesis purposes, the drive train
torsional mode is neglected and the rotor speed is proportional to the generator speed.
The LPV controller can now be designed to trade off the tracking of generator speed and
tower oscillations with control effort (wear on pitch actuator). Wind turbine aerodynam-
ics is the main source of nonlinearities. A linearization-based LPV model depends on
partial derivatives of aerodynamic torque (Q) and thrust (T ) forces with respect to rotor
speed (Ωr), wind speed (V ) and pitch angle. These partial derivatives, also known as
aerodynamic gains, vary with the operating point. Thus, they are natural candidates for
the basis functions [15],
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5 Wind Turbine LPV Control

ρ1 :=
1

Je

∂Q

∂Ω

∣∣∣∣
θ

,

ρ4 :=
1

Mt

∂T

∂Ω

∣∣∣∣
θ

,

ρ2 :=
1

Je

∂Q

∂V

∣∣∣∣
θ

,

ρ5 :=
1

Mt

∂T

∂V

∣∣∣∣
θ

,

ρ3 :=
1

Je

∂Q

∂β

∣∣∣∣
θ

,

ρ6 :=
1

Mt

∂T

∂β

∣∣∣∣
θ

.

(5.11)

In the above expressions, Jr and Jg is the rotor and generator inertia, which combined
with the gearbox ratio Ng results in the equivalent rotational inertia in the rotor side
Je := Jr + JgN

2
g . Mt is the equivalent modal mass of the first bending moment of the

tower. Basis functions with equivalent inertia and tower mass were chosen to improve
numerical conditioning. The operating point of a wind turbine varies according to the
effective wind speed θ(t) = V̄ (t) driving the rotor. The dynamic model of the variable-
speed wind turbine can then be expressed as an LPV model of the form,

G :

{
ẋ = A(θ) x+Bw(θ) V̂ +Bu(θ) βref

y = Cy x

where states, controllable input and measurements are,

x =
[
Ωr q̇ q β̇ β xΩ,i

]T
, u = βref, y =

[
Ωg yΩ,i q̇

]T
,

with open-loop system matrices,

A(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ1(θ) −ρ2(θ) 0 0 ρ3(θ) 0

ρ4(θ) − 1

Mt
Bt − ρ5(θ) −Kt

Mt
0 ρ6(θ) 0

0 1 0 0 0 0
0 0 0 -2ζωn −ω2

n 0
0 0 0 1 0 0
Ng 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Bw(θ) =
[
ρ2(θ) ρ5(θ) 0 0 0 0

]T
,

Bu =
[
0 0 0 ω2

n 0 0
]T
, Cy =

⎡
⎣Ng 0 0 0 0
zI 0 0 0 1
0 1 0 0 0

⎤
⎦ .

Notice the PI controller integrator filterGI conveniently augmented into the state-space of
G, represented by the state xΩ,i and the output yΩ,i. The plant Gp is defined as the wind
turbine model solely (plant G without the augmentation of G I). A state-space realization
of the control structure depicted in Fig. 5.1 is given by,

Ac :=

[
Af1 0
0 Af2

]
, Bc(θ) :=

[
Bkp(θ) Bki(θ) 0

0 0 Bkq̇ (θ)

]
,

Cc :=
[
Cf1 Cf2

]
, Dc :=

[
Df1 Df2

]
.

105



Paper B

where the size of sub-matrices depends on the chosen orders of the filters. The parameter-
dependent controller matrix has the general dependence form,[
Bkp(θ) Bki(θ) 0

0 0 Bkq̇ (θ)

]
:=

[
Bkp Bki 0
0 0 Bkq̇

]
0

+

nρ∑
m=1

[
Bkp Bki 0
0 0 Bkq̇

]
ρm(θ).

The Lyapunov matrix is chosen dependent on all basis functions (5.11), and the slack
matrix is chosen parameter independent.

Weight Wz1 and Wu governs the tradeoff between rotational speed regulation and
pitch wear. In this example, Wz1 is chosen as a scalar k1, turning the first performance
channel similar to an integral square error measure (z 1 = Wz1GIΩ̂r). Wu is taken as a
first order high-pass filter that penalizes high-frequency content on the pitch angle. Due to
the resonance characteristics of the transfer function from V̂ to q̇, the weighting function
Wz2 is chosen as a scalar k2, that tradeoffs the desired tower damping. Considering the
plant and weighting functions just mentioned, the augmented plant has 7 states. G(s) f1

and G(s)f1 are chosen as first order and second order filters, respectively, therefore the
controller is comprised of 3 states.

Remember that the iterative LMI algorithm is a synthesis procedure in discrete time.
Therefore, the augmented LPV plant in continuous time is discretized using a bilinear
(Tustin) approximation [16] with sampling time T s = 0.02 s, at each point Θg × Vert V .
The effective wind speed ranges θ = V̄ ∈ [12 m/s, 25 m/s] and its rate of variation
ranges Δθ(t) = ΔV̄ (t) ∈ [−2 m/s2, 2 m/s2]. The grid is comprised of seven equidistant
points. The rate of variation of the scheduling variables in continuous-time must as well
be converted to discrete-time by the relation Δθ(k) = TsΔθ(t).

The numerical example is based on data from a typical 2MW utility scale wind tur-
bine. The evolution of radius r (j) and performance level γ (j) during the course of the
optimization is illustrated on Fig. 5.2. During the feasibility phase, as the radius grad-
ually converges to 1, the performance level value increases. The algorithm switches to
optimization phase by maintaining r = 1 during the subsequent iterations, being the cost
monotonically decreasing to a stationary point.

Wind disturbance step responses under different operating points (frozen θ) are de-
picted in Fig. 5.3. The rotor speed is well regulated around the origin. A similar re-
sponse irrespective of the operating point is noticeable, meaning that the controller is
gain-scheduling to adapt to the nonlinearities of the plant. This is corroborated by the
magnitude plots of transfer functions from wind disturbance to rotor speed and tower ve-
locity, for the open-loop and closed-loop systems. The increased damping of the tower
fore-aft motion is noticeable in Fig.5.4d where the magnitude of the open-loop system
(dashed line) is plotted for comparison.
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1 Introduction

Abstract

This paper presents sufficient dilated linear matrix inequalities (LMI) conditions
to the H∞ and H2 model reduction problem. A special structure of the auxiliary
(slack) variables allows the original model of order n to be reduced to an order r =
n/s where n, r, s ∈ N. Arbitrary order of the reduced model can be enforced by
including states in the original system with negligible input-to-output system norms.
The use of dilated LMI conditions facilitates model reduction of parameter-dependent
systems. When a reduced model determined by the sufficient LMI conditions does
not satisfactorily approximates the original system, an iterative algorithm based on
dilated LMIs is proposed to significantly improve the approximation bound. The
effectiveness of the method is accessed by numerical experiments. The method is
also applied to the H2 order reduction of a flexible wind turbine model.

1 Introduction

The model reduction problem consists on the approximation of a given asymptotically
stable system by a reduced order model according to a given minimum norm criteria on
the approximation error. Several techniques and norm measures were investigated, giving
rise to numerically reliable algorithms. A comparison of some of the algorithms for
model reduction can be found in [1]. This problem can be formulated as an optimization
problem with rank constraints [2] or posed as a set of nonlinear matrix equations [3]. Due
to the inherent non-convexity of these problems, they are very difficult to solve.

More recently, model reduction has been investigated under the linear matrix inequali-
ties (LMI) framework, facilitating the use of classical norm criteria for the reduction error
like H∞ [4] and H2. This framework is particularly suitable to address multichannel /
mixed problems as well as uncertain models [5, 6, 7]. Unfortunately, the difficulties of
non-convexity remains when formulating the model reduction problem as an LMI, typi-
cally involving an additional rank constraint [8] or resulting in bilinear matrix inequalities
[9, 10]. In order to circumvent the non-convexity of the problem, some authors reformu-
late the non-convex constraint by a linear constraint presenting a matrix variable that is
fixed a priori [7, 11]. The choice of the fixed variable influences the degree of subopti-
mality.

In this paper, we explore the usage of dilated (or extended) LMIs to the model reduc-
tion problem. See [12] for a survey on the history and different characterizations proposed
in the literature. Dilated LMIs are composed of instrumental (slack) variables which fa-
cilitates a linear dependence of the LMI in the Lyapunov variables. This added flexibility
is valuable for reducing conservatism in robust and multi-objective control. A sufficient
LMI condition with a special structure of the slack variables is here proposed, allowing an
original model of order n to be reduced to an order r = n/s where n, r, s ∈ N. Arbitrary
order of the reduced model can be enforced by including states in the original system
with negligible input-to-output system norms. This slack variable structure is trivially
extended to cope with robust and parameter-dependent model reduction. When a reduced
model determined by the sufficient LMI conditions does not satisfactorily approximates
the original system, an iterative algorithm based on dilated LMIs is proposed to signifi-
cantly improve the approximation bound with the expense of higher computational cost.
The effectiveness of the method is accessed by numerical experiments. The method is
successfully applied to theH2 order reduction of a flexible wind turbine.
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2 Model Reduction Through Dilated LMI

Linear Time-Invariant Systems

We initially consider a stable MIMO LTI dynamical system of order n in state-space form

S :

{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(6.1)

where A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, D ∈ Rny×nu . We seek a model of
order r < n denoted Sr

Sr :

{
ẋr = Arxr(t) +Bru(t)

y(t) = Crxr(t) +Dru(t)
(6.2)

where Ar ∈ Rr×r, Br ∈ Rr×nu , Cr ∈ Rny×r, Dr ∈ Rny×nu such that the input-
output difference between the original system S and the reduced system S r is small in an
H∞ orH2-norm sense. That is

‖S − Sr‖∞ or 2 ≤ γ (6.3)

where γ represents the upper bound on H∞ or H2, depending on the context. The
input-output difference of S and Sr can be represented by the following state-space de-
scription denoted ΔS

ΔS :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ẋ

ẋr

]
=

[
A 0

0 Ar

] [
x

xr

]
+

[
B

Br

]
u(t)

yΔ(t) =
[
C −Cr

] [ x
xr

]
+
(
D −Dr

)
u(t)

(6.4)

Hereafter, the system matrices of ΔS are denotedAΔ,BΔ, CΔ,DΔ. Our results ben-
efit from the dilated LMI conditions for an upper bound on H∞ [13] or H2 [14]. Please
consult [12] and references therein for a throughout exposure of dilated LMIs; we state
them already in the context of our problem.

Lemma 4. ‖S − Sr‖∞ ≤ γ holds if, and only if, there exist a general auxiliary matrix
Q, symmetric matrix X and a scalar μ > 0 such that⎡

⎢⎢⎣
AΔQ +QTAT

Δ � � �
μQTAT −Q+X −μ(Q+QT ) � �

CΔQ μ CΔQ −γI �
BT

Δ 0 DT
Δ −γI

⎤
⎥⎥⎦ ≺ 0, (6.5)

is satisfied.

The multiplication between the scalar μ and matrix variables in (6.5) makes a line
search in μ necessary.
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Lemma 5. ‖S − Sr‖2 ≤ γ holds if, and only if, there exist a general auxiliary matrix Q
and symmetric matrices X , Z such that

⎡
⎣ AΔQ+QTAT

Δ � �
−QTAT

Δ +Q−X −(Q+QT ) �
CΔQ −CΔQ −γI

⎤
⎦ ≺ 0,

[
Z �
BΔ X

]
� 0, trace (Z) < γ

(6.6)

is satisfied.

The previous two lemmas state conditions for analysis of ΔS. In order to derive
conditions to synthesize the reduced order matrices Ar, . . . , Dr, let the general auxiliary
matrix Q be partitioned as

Q :=

[
Q1 Q2 . . . Qs+1

H H . . . H

]
(6.7)

whereQk,∈ Rn×r, k = 1, . . . , s+1,H ∈ Rr×r, and r = n/s, r, n, s ∈ N. Also define
new matrix variables Âr and Ĉr resulting from the nonlinear change of variables

Âr := ArH, Ĉr := CrH. (6.8)

With these definitions at hand, the LMI conditions for synthesis can be stated as fol-
lows.

Theorem 9. ‖S − Sr‖∞ ≤ γ holds if there exist general auxiliary matrices Qk, k =

1, . . . , s+ 1 andH , symmetric matrix X , general matrices Âr, Br, Ĉr, Dr and a scalar
μ > 0 such that

⎡
⎢⎢⎣

ÂΔ + ÂT
Δ � � �

μ ÂT
Δ −Q+X −μ (Q +QT ) � �

ĈΔ μ ĈΔ −γI �
BT

Δ 0 DT
Δ −γI

⎤
⎥⎥⎦ ≺ 0, (6.9a)

ÂΔ :=

[
AQ1 AQ2 . . . AQs+1

Âr Âr . . . Âr

]
,

BΔ :=

[
B
Br

]
, DΔ := D −Dr

ĈΔ :=
[
CQ1 − Ĉr CQ2 − Ĉr . . . CQs+1 − Ĉr

]
,

(6.9b)

is satisfied. Once a solution is found, the reduced order system matrices can always
be reconstructed according to

Ar = ÂrH
−1, Cr = ĈrH

−1. (6.10)
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Proof. The LMIs (6.9) are obtained by trivial manipulations of (6.5), (6.7) and resorting
to the nonlinear change of variables (6.8). To show that Âr and Ĉr can always be re-
constructed according to (6.10), H should be invertible thus nonsingular. The fact that
−μ (Q+QT

) ≺ 0 with μ > 0 implies nonsingularity of Q. Notice that H is the lower-
right block of Q (see (6.7)), thus nonsingularity of H is also guaranteed.

The same rationale can be applied to turn Lemma 5 into synthesis conditions.

Theorem 10. ‖S − Sr‖2 ≤ γ holds if there exist general auxiliary matrices Qk, k =

1, . . . , s+1 andH , symmetric matricesX , Z and general matrices Âr, Br, Ĉr,Dr such
that ⎡

⎣ ÂΔ + ÂT
Δ � �

−ÂT
Δ +Q −X −(Q+QT ) �

ĈΔ −ĈΔ −γI

⎤
⎦ ≺ 0,

[
Z �
BΔ X

]
� 0, trace (Z) < γ, and Eq. (9b),

(6.11)

is satisfied. Once a solution is found, the reduced order system matrices can always be
reconstructed according to (6.10).

The chosen structure (6.7) of the auxiliary variableQ restrains the dimension ofA r to
be r = n/s, or in words, the order of the reduced model is an integer fraction of the order
of the original model. Therefore, the order of the reduced system can be chosen smaller
by redefining the partitioning of Q. For example, in the case of r = n/3

Q :=

[
Q1 Q2 Q3 Q4

H H H H

]
(6.12)

with ÂΔ and ĈΔ changing accordingly

ÂΔ :=

[
AQ1 AQ2 AQ3 AQ4

Âr Âr Âr Âr

]
,

ĈΔ :=
[
CQ1 − Ĉr CQ2 − Ĉr CQ3 − Ĉr CQ4 − Ĉr

]
.

(6.13)

Being n a multiple of r limits the choice of the order of the reduced model. This
fact can be circumvented by adding states on the original system S with negligible input-
to-output norms. A convenient way to do so is by augmenting the system with modes
appearing in the diagonal of A

A→
[
A 0
0 Aa

]
, Aa = diag(Aa,i), B →

[
B
Ba

]
,

Ba =

⎡
⎢⎢⎢⎣
Ba,1

Ba,2

...
Ba,i

⎤
⎥⎥⎥⎦ , C → [C Ca

]
,

Ca =
[
Ca,1 Ca,2 . . . Ca,i

]
, i = 1, . . . , na.
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where ‖C(sI −A)−1B+D‖ >> ‖Ca(sI −Aa)
−1Ba‖. An arbitrary order r can be

chosen by combining both strategies.

Parameter Dependent Systems

The linear time invariant conditions just presented are trivially extended to cope with
model reduction of parameter-dependent (PD) systems. Consider the linear PD system of
order n

S(α) :

{
ẋ(t) = A(α)x(t) +B(α)u(t)

y(t) = C(α)x(t) +D(α)u(t).
(6.14)

System matrices are polytopic with respect to the parameter α

A(α) =
∑Nα

i=1 αiAi, B(α) =
∑Nα

i=1 αiBi,

C(α) =
∑Nα

i=1 αiCi, D(α) =
∑Nα

i=1 αiDi,
, Λ :=

{
α :

Nα∑
i=1

αi = 1, αi ≥ 0

}

(6.15)
as well as the symmetric matrices

X(α) =
∑Nα

i=1 αiXi, Z(α) =
∑Nα

i=1 αiZi, (6.16)

where α ∈ Λ. The aim is to find a reduced system Sr(α) with order r < n and structure
analogous to (6.14), (6.15) such that ‖S(α) − Sr(α)‖ ≤ γ for all α ∈ Λ. The auxiliary
matrices are considered parameter independent defined according to (6.7). New matrix
variables Âr,i and Ĉr,i result from the nonlinear change of variables involving the reduced
order matrices Ar,i and Cr,i

Âr(α) :=

Nα∑
i=1

αiÂr,i, Âr,i = Ar,iH,

Ĉr(α) :=

Nα∑
i=1

αiĈr,i, Ĉr,i = Cr,iH,

i = 1, . . . , Nα.

(6.17)

Theorem 11. ‖S(α)− Sr(α)‖∞ ≤ γ holds if there exist general auxiliary matrices Qk,
k = 1, . . . , s+ 1 and H , symmetric matrices Xi, general matrices Âr,i, Br,i, Ĉr,i, Dr,i

and a scalar μ > 0 such that

⎡
⎢⎢⎣

ÂΔi + ÂT
Δi � � �

μ ÂT
Δi −Q+Xi −μ (Q +QT ) � �

ĈΔi μ ĈΔ,i −γI �
BT

Δi 0 DT
Δi −γI

⎤
⎥⎥⎦ ≺ 0, (6.18a)
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ÂΔi :=

[
AiQ1 AiQ2 . . . AiQs+1

Âr,i Âr,i . . . Âr,i

]
,

BΔi :=

[
Bi

Br,i

]
, DΔi := Di −Dr,i

ĈΔi :=
[
CiQ1 − Ĉr,i CiQ2 − Ĉr,i . . . CiQs+1 − Ĉr,i

]
,

i = 1, . . . , Nα,

(6.18b)

is satisfied. Once a solution is found, the reduced order system matrices can always be
reconstructed according to

Ar,i = Âr,iH
−1, Cr,i = Ĉr,iH

−1. (6.19)

Theorem 12. ‖S − Sr‖2 ≤ γ holds if there exist general auxiliary matrices Qk, k =

1, . . . , s+1 andH , symmetric matricesXi, Zi and general matrices Âr,i, Br,i, Ĉr,i,Dr

such that

⎡
⎣ ÂΔi + ÂT

Δi � �

−ÂT
Δi +Q−Xi −(Q+QT ) �

ĈΔi −ĈΔi −γI

⎤
⎦ ≺ 0,

[
Zi �
BΔi Xi

]
� 0, trace (Zi) < γ, and Eq. (18b),

(6.20)

is satisfied. Once a solution is found, the reduced order system matrices can always be
reconstructed according to (6.19).

Iterative Algorithm

If the reduced system does not satisfactorily approximate the dynamics of the original
system, one can resort to an iterative LMI (ILMI) algorithm based on dilated LMIs to find
a better result. The reduced model resulted from the sufficient conditions just presented
can be used to initialize the ILMI algorithm. The auxiliary (slack) variable Q is now
considered a general matrix without any specific partitioning. The following matrices are
also redefined under the ILMI context.

ÂΔi :=

[
Ai 0
0 0

]
Q+

[
0 0
0 I

] [
Dr,i Cr,i

Br,i Ar,i

] [
0 0
0 I

]
Q

BΔi :=

[
Bi

Br,i

]
, DΔi := Di −Dr,i

ĈΔi :=
[
Ci 0

]
Q+

[−I 0
] [Dr,i Cr,i

Br,i Ar,i

] [
0 0
0 I

]
Q

(6.21)

For a clear exposure, only the ILMI algorithm for the H∞ model reduction is de-
scribed here. The H2 case can be treated similarly. The notation (·){j} stands for the
iteration index. The algorithm solves LMI problems by successively fixing the reduced
order matrices Ar,i, . . . , Dr,i at one step and the slack variableQ at another step.
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Algorithm 5. Consider A{1}
r,i , B{1}

r,i , C{1}
r,i , D{1}

r,i as the solution of Theorem 11. Set a
tolerance ε, j = 1 and start to iterate:

1. Find Q{j} and γ{j} that solves the LMI problem:

Minimize γ{j} subject to (6.18a) and (6.21) with fixed A{j}
r,i , ..., D{j}

r,i ,
i = 1, . . . , Nα.

2. Find A{j}
r,i , ...,D{j}

r,i , i = 1, . . . , Nα and γ{j} that solves the LMI problem:

Minimize γ{j} subject to (6.18a) and (6.21) with fixedQ{j}, i = 1, . . . , Nα.

3. If |γ{j} − γ{j−1}| < ε, stop. Else, set j = j + 1 and go to step 1.

The Lyapunov matrices Xi act as variables during the whole optimization, a benefit
of using dilated LMI conditions in an iterative scheme.

3 Numerical Examples

To solve the LMI problems, we have used the interface YALMIP [15] with semidefinite
programming solver SeDuMi. Because the interest lies in finding reduced order models
with minimalH∞ /H2 norm bounds, the optimization objective Minimize γ are included
in the LMI conditions just presented.

Comparison With Other Results

In this subsection, some results obtained by the proposed conditions are compared with
[7] and references therein.

Example 1

Consider an LTI system with state-space matrices (6.22) [10] from which a first order
model should be approximated in anH2-norm sense. This example gives us a glimpse of
the conservativeness of the proposed condition in face of severe order reduction (1/6 of
the original system) that may occur due to partitioning the slack variable (6.7).

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.007 −0.114 −0.850 −2.800 −4.450 −3.400

⎤
⎥⎥⎥⎥⎥⎥⎦

B =
[
0 0 0 0 0 1

]T
C =

[
0.007 0.014 0 0 0 0

]

(6.22)

We obtain γ2 = 0.0283 by applying Theorem 10 which is considerably close to [7]
(γ2 = 0.0205) and better than the results in [10] (0.0557 ≤ γ 2 ≤ 0.0616). Note that, in
contrast to [7], no matrix involved on the formulation should be chosen a priori.
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Example 2

A second-order reduced model of the uncertain system with state-space representation [6]

A(α) =

⎡
⎢⎢⎣
−2 3 −1 1
0 −1 1 0
0 0 a(α) 12
0 0 0 −4

⎤
⎥⎥⎦ , B(α) =

⎡
⎢⎢⎣
−2.5 b(α) −1.2
1.3 −1 1
1.6 2 0
−3.4 0.1 2

⎤
⎥⎥⎦

C =

⎡
⎣−2.5 1.3 1.6 −3.4

0 −1 2 0.1
−1.2 1 0 2

⎤
⎦ ,

a(α) = −3.5α1 − 2.5α2, b(α) = −0.5α1 + 0.5α2

should be obtained in an H∞ sense. Firstly, a parameter-independent reduced system
is found by applying Theorem 11 with Ar,i = Ar, . . . , Dr,i = Dr, i = 1, . . . , Nα. The
minimum upper bound γ = 6.2139 at μ = 0.22 is more conservative than [7] ( γ = 5.54).
The resulting reduced-order system is

Ar =

[
1.8061 0.2829
−2.5823 −4.7980

]

Br =

[
4.1664 −0.1741 −4.2018
−2.2297 0.3139 2.9823

]

Cr =

⎡
⎣ 0.4039 1.0428

5.6700 8.7890
−5.7262 −5.3496

⎤
⎦

Dr =

⎡
⎣ 1.7012 1.3074 0.9660
−2.0854 2.3911 0.4805
0.7488 1.1724 −2.0965

⎤
⎦

(6.23)

The ILMI Algorithm 1 is initialized with system (6.23) in an attempt to find a re-
duced system that better approximates the original one. Convergence tolerance is set
to 1e-3. Figure 6.1a shows the convergence of γ {j} for three different values of μ =
{0.1, 0.22, 0.3}. For μ = 0.22, the algorithm converges after 18 iteration to γ = 3.995.
This upper bound is considerably better than [7]. For μ = 0.1, the proposed algorithm
finds a parameter-independent reduced model with approximation error γ = 3.578, less
conservative than [6] where a parameter-dependent reduced system is determined by an
alternating projection method.

A reduced model with the same parameter dependence as the original one is now de-
sired. Therefore,Ar(α) andBr(α) depends on the parameterα, whileCr, Dr are param-
eter independent. The sufficient LMI condition results in an upper bound γ = 6.1080 (for
μ = 0.22), slightly better than the parameter-independent reduced system case. When re-
sorting to the ILMI algorithm to find a parameter-dependent reduced system, an H∞
upper bound of γ = 3.506 is reached for μ = 0.1, expectedly less conservative than the
parameter-independent reduced system. The convergence of the algorithm is depicted in
Fig. 6.1b.
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Figure 6.1: Convergence of ILMI model reduction.

Flexible Wind Turbine

In the wind energy industry, wind turbine models are often derived from high fidelity
aeroelastic numerical tools. These large-scale models are not suitable for control anal-
ysis and synthesis. The order reduction conditions here presented will be applied to an
industrial wind turbine reference model generated by the recently developed aeroelastic
code HAWCstab2 [16]. The LTI model contains several hundreds of flexible modes and
aerodynamic delays, out of reach for the current capabilities of LMI-based model order
reduction techniques. Therefore, the model was initially reduced from 880 to 20 states
using aH2 modal truncation method in which modes with natural frequencies higher than
4 Hz were also discarded. The objective here is to reduce from 20 states to 10 states with-
out compromising the quality of the model in anH2 sense. Thus, n = 20, s = 2, r = 10.
Magnitude plots in frequency domain of the original and reduced models are depicted in
Fig. 6.2a.
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(a) H2-norm

10−2 100 102
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
From: In(1)

10−2 100 102

From: In(2)

10−2 100 102

From: In(3)

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B
)

(b) Balanced Truncation

Figure 6.2: Magnitude diagrams of a flexible wind turbine model with 20 states (gray)
and reduced 10 states (dark).

Inputs 1 and 2 are controllable signals of generator torque and pitch angle, respec-
tively, while input 3 is the wind speed disturbance. The output channel is the wind turbine
rotational speed. Another 10 state model were derived based on the well known balanced
truncation model reduction scheme using the MATLAB command balred. The compar-
ison with the original model, in this case, is depicted in Fig. (6.2b). When compared to
balanced truncation, the H2 measure seems to be more appropriate in approximating the
low frequency range of the model.
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1 Introduction

Abstract

Linear aeroelastic models used for stability analysis of wind turbines are com-
monly of very high order. These high-order models are generally not suitable for con-
trol analysis and synthesis. This paper presents a methodology to obtain a reduced-
order linear parameter varying (LPV) model from a set of high-order linear time in-
variant (LTI) models. Firstly, the high-order LTI models are locally approximated
using modal and balanced truncation and residualization. Then, an appropriate coor-
dinate transformation is applied to allow interpolation of the model matrices between
points on the parameter space. The obtained LPV model is of suitable size for de-
signing modern gain-scheduling controllers based on recently developed LPV control
design techniques. Results are thoroughly assessed on a set of industrial wind turbine
models generated by the recently developed aeroelastic code HAWCStab2.

1 Introduction

Linear aeroelastic models used for stability analysis of wind turbines are commonly of
very high order. Multibody dynamics coupled with unsteady aerodynamics (e.g. dy-
namic stall) are among the recently developments in wind turbine aeroelasticity [1]. The
resulting models contains hundreds or even thousands of flexible modes and aerodynamic
delays. In order to synthesize wind turbine controllers, a common practice is to obtain
linear time-invariant (LTI) models from a nonlinear model for different operating points.
Modern control analysis and synthesis tools are inefficient for such high-order dynam-
ical systems; reducing the model size is crucial to analyze and synthesize model-based
controllers.

Model-based control of wind turbines has been extensively researched during the last
decade [2]. The linear parameter varying (LPV) framework shown to be suitable to cope,
in a systematic manner, with the inherent varying dynamics of a wind turbine over the
operating envelope [3, 4, 5]. Wind turbine LPV models are usually simple, first-principles
based, often neglecting dynamics related to aerodynamic phenomena and some structural
modes. This in turn restricted LPV control of wind turbines to the academic environment
only. A procedure to encapsulate high-fidelity dynamics of wind turbines as an LPV
system would be beneficial to facilitate industrial use of LPV control.

This paper presents a procedure to obtain a reduced-order LPV wind turbine model
from a set of high-order LTI models. Firstly, the high-order LTI models are locally ap-
proximated using modal and balanced truncation and residualization. Then, an appropri-
ate manipulation of the coordinate system is applied to allow interpolation of the model
matrices between points of the parameter space. The obtained LPV model is of suitable
size for synthesizing modern gain-scheduling controllers based on the recent advances on
LPV control design. Time propagation of the varying parameter is not explicitly utilized.
Therefore, the procedure assumes that the varying parameter do not vary excessively
fast in time, in line with common practices in gain-scheduling control [6]. Results are
thoroughly assessed on a set of industrial wind turbine models derived by the recently
developed aeroelastic code HAWCStab2.

This paper is organized as follows. The modeling principles of the high-order LTI
wind turbine models are exposed in Section II. Section III is devoted to present the pro-
posed method. Section IV brings a numerical example along with results. Conclusions
and future work are discussed in Section V.
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2 Wind Turbine Model

A nonlinear high-fidelity aeroelastic model is the starting point of the modeling proce-
dure. The wind turbine structure is modeled with nonlinear kinematics based on co-
rotational Timoshenko elements. Aerodynamics are modeled with Blade Element Mo-
mentum (BEM) coupled with unsteady aerodynamics based of shed-vorticity and dy-
namic stall. Linearization is performed analytically around a steady operational state
for a given mean wind speed, rotor speed and collective pitch angle. Hansen [attached]
gives a more complete description of the linear aeroelastic model for an isolated blade.
Two main equations of motion, one related to structural dynamics and another related to
aerodynamics contitutes the LTI model

Mq̈s(t) + (C +G+ Ca) q̇s(t) + (K +Ksf +Ka)us(t)

+Afxa(t) = Fs(t)

ẋa(t) +Adxa(t) + Csaq̇s(t) +Ksaqs(t) = Fa(t)

(7.1)

where qs are the elastic and bearing degrees of freedom, xa are aerodynamic state vari-
ables, M is the structural mass matrix, C the structural damping matrix (Rayleigh), G
the gyroscopic matrix, Ca is the aerodynamic damping matrix, K the elastic stiffness
matrix, Ksf the geometric stiffness matrix, Ka the aerodynamic stiffness matrix, Af is
the coupling of the structure to aerodynamic states, Ad represents aerodynamic time lags,
Csa andKsa are coupling matrices to structural states. Fs and Fa represent forces due to
actuators and wind disturbance. The equations in first order form are

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(7.2a)

x(t) =
[
xa(t) qs(t) q̇s(t)

]T
u(t) =

[
Qg(t) β(t) V (t)

]T
(7.2b)

where the controllable inputs are the generator torque Q g and collective pitch angle β,
and V is the uniform wind speed disturbance input. The model outputs considered here
are the generator angular velocity Ω and tower top lateral displacement q. The first output
is usually measured and feed to a speed controller that manipulates the pitch angle β. The
second output can be utilized for lateral tower load mitigation by generator torque control
[7]. The aeroelastic tool offers the possibility to select other inputs and ouputs, but we
limit to the ones just mentioned to clearly expose the results.

3 Reduced Order LPV Model

ConsiderNs stable multiple-input multiple-output (MIMO) LTI dynamical systems (7.2)
of order n corresponding to parameter values θ (i), i = 1, 2, . . . , Ns,

Si :

{
ẋi(t) = Aixi(t) +Biu(t)

y(t) = Cixi(t) +Diu(t)
, i = 1, . . . , Ns. (7.3)

where Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ Rny×n, Di ∈ Rny×nu . We seek a reduced-order
parameterized model S(θ) of order r < n which approximates S i,
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Figure 7.1: Scheme overview.

S(θ) :

{
ẋ = A(θ)x(t) +B(θ)u(t)

y(t) = C(θ)x(t) +D(θ)u(t)
(7.4)

where A(θ) ∈ Rr×r, B(θ) ∈ Rr×nu , C(θ) ∈ Rny×r, D(θ) ∈ Rny×nu are continuous
functions of a vector of varying parameters θ := [θ1, θ2, . . . , θNθ

]
T . The dynamics of the

original system Si and the approximated system S(θ) are assumed to evolve smoothly
with respect to θ(i) and θ, respectively. The parameter θ may represent the current op-
erating point. It also may describe deviations on aerodynamics and structural properties
for the sake of parametric model uncertainties. Plant parameters to be designed under an
integrated plant-controller synthesis scheme could also be parameterized.

Variation in aerodynamic forces under structural vibration contributes significantly to
changes in natural frequencies and damping of some structural modes. A specific proce-
dure that takes these particularities into account is proposed here. A flowchart containing
the required steps is depicted in Fig. 7.1.

Known methods for model reduction constitutes the proposed scheme and are briefly
explained in the sequel, in the context of our application. Consult the survey of [8] for a
more comprehensive exposure on model reduction.

Model Reduction

A reduced order model is commonly obtained by truncation of appropriate states. Let
the state vector xi be partitioned into xi := [xr,i xt,i]

T where xr,i is the vector of
retained states and xt,i is the vector of truncated states. The original system is partitioned
accordingly
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[
ẋr,i(t)
ẋr,i(t)

]
=

[
Arr,i Art,i

Atr,i Att,i

] [
xr,i(t)
xt,i(t)

]
+

[
Br,i

Bt,i

]
u(t)

y =
[
Cr,i Ct,i

] [xr,i(t)
xt,i(t)

]
+Du(t)

(7.5)

and the reduced model is simply given by the state-space equation of the retained states

ẋr,i = Arr,ixi(t) +Br,iu(t),

y = Cr,ixr,i +Du(t)
(7.6)

If the original model is a stable system so is its truncated counterpart. While trunca-
tion tends to produce a good approximation in the frequency domain, the zero frequency
gains (DC gains) are not guaranteed to match. This can be of particular importance in
a wind turbine model because some aerodynamic states may not influence the transient
behaviour but can contribute significantly to low frequency gains. Matching DC gains can
be enforced by a model residualization method by setting the derivative of x t,i to zero in
(7.5) and solving the resulting equation for x r,i. After trivial manipulations, the reduced
model is given by

ẋr,i =
[
Arr −ArtA

−1
tt Atr

]
i
xr,i +

[
Br −ArtA

−1
tt Bt

]
i
u(t)

y =
[
Cr − CtA

−1
tt Atr

]
i
xr,i +

[
D − CtA

−1
tt Bt

]
i
u(t)

(7.7)

Note that Att,i is assumed invertible for (7.7) to hold. Residualization is performed in
both modal and balanced reduction steps.

Modal Truncation

Due to size and numerical properties associated with large size systems and low damped
dynamics, most model reduction algorithms based on Hankel singular values fail to pro-
duce a good reduced model. In order to start the reduction process, the original model
is truncated to an intermediate size for subsequent reduction in a more accurate way. In
modal form the system is put into a modal realization before states are truncated [9]. The
modal form realization has the state matrix A is in block diagonal form with either 1× 1
or 2 × 2 blocks when the eigenvalue is real or complex, respectively. Let system S i be
represented in modal form,

Sm,i :

{
ẋi(t) = Am,ixm,i(t) +Bm,iu(t)

y(t) = Cm,ixm,i(t) +Dm,iu(t)
(7.8a)
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Am,i = diag(Am,k,i),

Am,k,i = −ek,i for real eigenvalues,

Am,k,i =

[ −ξk,iωk,i ωk,i

√
1− ξ2

ωk,i

√
1− ξ2 −ξk,iωk,i

]
for complex eigen.

Bm,i =

⎡
⎢⎢⎢⎣
Bm,1,i

Bm,2,i

...
Bm,k,i

⎤
⎥⎥⎥⎦ , Cm,i =

[
Cm,1,i Cm,2,i . . . Cm,k,i

]

i = 1, . . . , Ns, k = 1, . . . , Nm.

(7.8b)

where Nm is the number of modes, ξk,i and ωk,i are the damping ratio and natural fre-
quency of mode k and model i. The diagonal blocks are usually arranged in ascending
order according to their eigenvalue magnitudes. The magnitude of a complex eigenvalue
is ωk,i while for a purely real eigenvalue is ek,i. The retained states are then the ones with
magnitudes smaller than a chosen treshhold ω̄. The intermediate model must contain all
modes within the frequencies of interest for control design. A large number of states (300
to 450) is expected at this stage since many modes are of low frequency.

Balanced Truncation

The order of the intermediate system is further reduced by balanced truncation. In bal-
anced truncation [10] the system is transformed to a balanced realization. A MIMO LTI
system of the form (7.3) is said to be balanced if, and only if, its controllability and ob-
servability grammians are equal and diagonal, i.e. P i = Qi = diag (σ1, . . . , σn), where
σ1, . . . , σn denotes the Hankel singular values sorted in decreasing order and matrices P i,
Qi are the controllability and the observability Gramians. The gramians are solutions of
the following Lyapunov equations

AiPi + PiA
T
i +BiB

T
i = 0

AT
i Qi +QiAi + CT

i Ci = 0
(7.9)

If this holds, the balanced system is given by

Sb,i :

{
ẋb,i =WT

i AiVixb,i(t) +WT
i Biui(t)

y(t) = CiVixb,i(t) +Diui(t)

i = 1, . . . , Ns.

(7.10)

where xb ∈ Rn, V = UZΣ−1/2 and W = LYΣ−1/2, together with the factorizations
P = UUT , Q = LLT and the singular value decomposition U TL = ZΣY T [11]. This
state coordinate equalizes the input-to-state and state-to-output energy transfers, making
the Hankel singular values a measure of the contribution of each state to the input/output
behavior.

Denote Vi(r) and Wi(r) the first r columns of Vi and Wi. The reduced-order systems

Ŝi
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Ŝi :

{
˙̂xi = Âix̂i(t) + B̂iui(t)

ŷ(t) = Ĉix̂i(t) + D̂iûi(t)
i = 1, . . . , Ns. (7.11)

are obtained by truncation when the projectors V i(r) andWi(r) are applied to the interme-
diate sized model. In words, the balanced truncation removes the states with low Hankel
singular values, thus not much information about the system will be lost. When applied to
a stable system, balanced truncation preserves stability and guarantes and an upper bound
on the approximation error in an H∞ sense [12]. Expected order of the final reduced
system is 7 to 20 states. The choice of the final order depends on the required model
complexity and admissible error between the full and reduced model.

State-Space Consistency & Interpolation

Consider the balanced reduced models Ŝi and put them in modal form. The first step
towards a consistent state-space representation is to assure that all modes keep their posi-
tions in the state matrix throughout the parameter space. The second step to a consistent
state-space is to ensure that values of the entries of the system matrices change smoothly
between each LTI system. At this point, the system matrices cannot be readily interpo-
lated because the modal and balanced similarity transformations applied to the original
system are not unique. One could think of interpolating the system in modal form. In-
deed, the state matrix A is unique up to a permutation of the location of the modes and
could easily be interpolated, but the similarity transformation that puts the system in
modal form is not unique. Therefore, matrices B̂ and Ĉ may have entries with abrupt
value changes. The balanced realization is unique up to a sign change and consequently
abrubt sign changes in the system matrices may occur from one LTI system to another.
As suggested by [13], these issues can be corrected by properly changing the sign of the
correspondent eigenvectors. Istead of correcting the eigenvectors before similarity trans-
formations, we propose to transform the reduced order LTI systems into a representation
based on the companion canonical form. No unique canonical form for multivariable sys-
tems is known to exist [14]. However, there exist algorithms which, for a system under
arbitrary similarity transformation, find a unique companion form [15]. One algorithm
with such properties is implemented in the function canon of MATLAB. The companion
form is poorly conditioned for most state-space computations [16]. In order to avoid nu-
merical issues, each mode k of the reduced system in modal coordinates is transformed
into a companion realization. The system matrices of this particular realization are
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Ac,i = diag(Ac,k,i), Bc,i =

⎡
⎢⎢⎢⎣
Bc,1,i

Bc,2,i

...
Bc,k,i

⎤
⎥⎥⎥⎦ ,

Cc,i =
[
Cc,1,i Cc,2,i . . . Cc,k,i

]
,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,k,i = −ak,i
Bc,k,i =

[
1 b1,k,i . . . bnu−1,k,i

]
for real eigenvalues,

Cc,k,i =

⎡
⎢⎢⎢⎣

c1,k,i

. . .

cny−1,k,i

0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ac,k,i =

[
0 −ak,i,1
1 −ak,i,2

]
,

Bc,k,i =

[
0 b11,k,i . . . b1nu−1,k,i

1 b21,k,i . . . b2nu,k,i

]
for complex eigen.

Cc,k,i =

⎡
⎢⎢⎣
c11,k,i . . . c1r,k,i

...
. . .

...

cny1,k,i . . . cnyr,k,i

⎤
⎥⎥⎦

i = 1, . . . , Ns, k = 1, . . . , Nm.

(7.12)

The characteristic polynomial of each mode appears in the rightmost column of the matrix
Ac,k,i. The entries of Ac,k,i, Bc,k,i and Cc,k,i may be easily checked for possible incon-
sistencies of a particular mode, by detecting abrupt value changes between LTI systems.
The state-space matrices are now at a realization suitable for interpolation. Let z(θ) be
one matrix entry, function of θ. We focus on the polynomial dependence

z(θ) =

Np∑
k=1

ηkpk(θ) (7.13)

where pk is a set of multivariate polynomials on the parameters θ1, . . . , θNθ
and ηk are

coefficients to be determined. Let zi be the values of a matrix element for i = 1, . . . , Ns.
Define the following matrices

H =

⎡
⎢⎣
p1(θ

(1)) . . . pNp(θ
(1))

...
. . .

...
p1(θ

(Ns)) . . . pNp(θ
(Ns)

⎤
⎥⎦ =

[
P1 . . . Pnp

]

ZT =
[
z1 . . . zNs

]
, ΓT =

[
η1 . . . ηNp

]
.

(7.14)

A linear least squares fit minimizes the quadratic error between z(θ (i)) and zi, i =
1, . . . , Ns
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Γ∗ = arg min
Γ

(Z −HΓ)
T
(Z −HΓ) (7.15)

The optimal Γ∗ is determined by initialy computing a singular value decomposition
of H

ΥΞΨT = svd(H) (7.16)

With the decomposition at hand, the solution to the linear least squares problem is
given by

Γ∗ = ΨΞ+ΥTZ (7.17)

where Ξ+ stands for the Moore-Penrose pseudoinverse of Ξ. Repeating the above proce-
dure for each matrix entry results in the polynomial approximations of the matricesA(θ),
B(θ), C(θ), D(θ) that can be used for subsequent analysis and design of controllers.

4 Numerical Example

In this section, the proposed procedure is applied to the NREL 5MW reference wind
turbine model [17]. The aim is to find an LPV model encapsulating the wind turbine
dynamics operating at the full load region. Large scale MIMO LTI models with 877
states are computed by the aeroelastic code HAWCStab2 for wind speeds equidistant 1
m/s (θ(i) ∈ {12, 13, . . . , 25}). The model is parameterized by the mean wind speed
θ := V̄ . A fifth-order polynomial dependence of the LPV system matrices

[
A(θ) B(θ)
C(θ) D(θ)

]
=

[
A0 B0

C0 D0

]
+

5∑
d=1

[
Ad Bd

Cd Dd

]
θd (7.18)

gives a fair trade-off between interpolation accuracy and polynomial order. Due to the
different units of inputs and outputs, the LTI systems should be suitably normalized before
the order is reduced. Parameter-independent scales are applied to all LTI models such that
expected signal excursions are normalized to 1. The generator torque input was scaled to
5% of the rated torque. The pitch angle input and wind speed input remained unscaled.
The rotor angular velocity is scaled to the maximum excursion desired in closed-loop, 5
% of its nominal value. The lateral tower top displacement was scaled with theH∞-norm
of the inputs to this output channel.

Bode plots of the original, intermediate and final reduced order models for an op-
erating point θ = 15 m/s are depicted in Fig. 7.2. The intermediate model with 410
states resulted from modal truncation and residualization of the original system. A bal-
anced truncation with residualization further reduced the size to 14 states. The magnitude
plots have an excellent agreement in the frequencies of interest. The residualization in
both steps assisted to a better fit of the low frequency content of the tower displacement
output.

The balanced realization ”misses” a low frequency anti-ressonance related to the
transfer function from wind speed input to tower displacement output. Notice the differ-
ences in magnitude and more pronouncedtly phase around 10−2 Hz. However, this anti-
ressonance does not contribute significantly to the input-output behaviour of the MIMO
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Figure 7.2: Bode plots of the original, intermediate and final reduced order models for a
mean wind speed of 15 m/s.
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Figure 7.3: Singular values of the original, intermediate and final reduced order models
for a mean wind speed of 15 m/s.
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Figure 7.4: Step responses of the original, intermediate and final reduced order models
for a mean wind speed of 15 m/s.

system. A comparison of the minimum and maximum singular values is depicted in Fig.
7.3 and shows an excellent agreement.

Step responses of the original, intermediate and final reduced order models for a mean
wind speed of 15 m/s are depicted in Fig. 7.4. Except for some high frequency content in
the signal from generator torque to tower position, the responses are identical.

The location of the poles of the LPV system for a 2Ns grid of equidistant operating
points is illustrated in Fig. 7.5. The arrows indicate how the poles move for increasing
mean wind speeds. A smooth evolution of the poles along the full load region is notice-
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Figure 7.5: Pole location of the LPV model for frozen values of the varying parameter θ.

able.
The relative difference of the Hankel singular values of the interpolated LPV system

and the reduced order system defined as

σrel,r,i =
σint,r,i − σr,i

σr,i
× 100, i = 1, . . . , Ns (7.19)

serves as a measure of the quality of the interpolation. A good fit can be corroborated by
some metrics of σrel,r,i given in Tab. 7.1. The mean difference in the Hankel singular
values is only 0.27% and the maximum difference just 2.75%.

5 Conclusion & Future Work

This paper presents a procedure to obtain a reduced-order LPV model of a wind turbine
from a set of high-order LTI models. Finding ways to encapsulate high-fidelity LTI aeroe-
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Table 7.1: Difference in the Hankel singular values between the LPV and reduced order
system for frozen values of θ.

Max Min Mean Std. dev

2.75 0.001 0.27 0.57

lastic models as an LPV system is an important step to increase the utilization of recent
advances in LPV control by the wind turbine industry. The proposed procedure starts by
model reduction of the high-order LTI systems at different values of the parameter space.
Manipulations of the state-space coordinates follows, in order to arrive at low-order con-
sistent LTI systems for subsequent interpolation. The reduced-order LPV system has a
suitable size for analysis and synthesis of controllers and presents smoothly varying dy-
namics along the scheduling parameter range.

A subject for future work is to initially interpolate the set of high-order LTI models
and later apply an appropriate reduction method to realize a reduced order LPV model.
Preserving structure reduction methods applied directly in the second order vector equa-
tions of motion in an interesting topic to be studied. Model complexity versus required
polynomial degree and a comparison with models obtained by first-principles is also sub-
ject of future work.
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1 Introduction

Abstract

This paper presents new linear matrix inequality (LMI) conditions to the static
output feedback stabilization (SOFS) problem. Although the conditions are only suf-
ficient, numerical experiments show excellent success rates in finding a stabilizing
controller.

1 Introduction

This paper presents new conditions to the static output feedback stabilization (SOFS)
problem: given a linear time-invariant (LTI) system,

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (8.1)

determine if it is stabilizable by a static output feedback,

u(t) = Ky(t), (8.2)

where x(t) ∈ Rn, u(t) ∈ Rnu and y(t) ∈ Rny . The pair (A,B) is stabilizable and
(C,A) is detectable. B and C are both full rank matrices. This is one of the most
fundamental and challenging control problems which remains open up to date. Previous
research efforts resulted in efficient numerical algorithms to solve the SOFS and related
problems; see [1, 2] for a survey. Many of these approaches are based on non-convex
characterizations of the problem accompanied by a numerical optimization procedure
able to compute stationary solutions. A numerical comparison and proposed classification
of some of these algorithms is found in [3]. The iterative algorithms proposed in [4, 5]
involving bilinear matrix inequalities (BMI) extended with slack variables are related to
the present work.

The present work characterizes the SOFS as sufficient linear matrix inequality (LMI)
conditions to which efficient convex programming tools are available. The Lyapunov sta-
bility theory is the basis for converting a wide variety of problems arising in system and
control into LMI characterizations [6]. A drawback of this framework is the natural ap-
pearance of products between the Lyapunov matrix variable, certificate of system stability,
and the system matrices. When the system matrices are functions of controller variables,
the matrix inequality is no longer linear but bilinear (BMI) in the decision variables. For
particular controller structures, the BMI can be reformulated into an LMI without loss
of generality via a change-of-variables involving the Lyapunov and controller matrices.
This notion first appeared in the context of full state feedback [7] and was later extended
to the full order dynamic output feedback [8]. A change-of-variables without loss gen-
erality for the SOFS remains unknown. The imposition of a block diagonal constraint
on both the controller gain and the Lyapunov matrix facilitate change-of-variables that
yields sufficient LMI conditions [9]. An important contribution to reduce the conserva-
tiveness due to the structural constraint on the Lyapunov variable is the introduction of
extended LMI characterizations. Firstly proposed in the context of discrete-time systems
[10, 11] and later to continuous-time systems [12, 13, 14], multipliers (also referred to
as slack variables) are introduced into the formulation with the objective of decoupling
the Lyapunov matrix from other matrix variables. The required constraints to facilitate
change-of-variables are enforced on the multiplier rather than the Lyapunov variable, and
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thus conservativeness is reduced [11]. Recent contributions [15, 16] decrease the conser-
vativeness of this approach by finding more general LMI results for discrete-time systems,
which included the existing ones as particular cases. In all these works, a suitable simi-
larity transformation is applied to the system and the structure of the matrix multiplier is
constrained accordingly.

This paper presents new sufficient stability and stabilizability conditions tailored for
the SOFS problem. The extended LMI are obtained through an approach distinct from
the ones found in the literature. We use the concepts of enlarged spaces combined with
Finsler’s Lemma [17] to derive stability conditions with multipliers. The enlarged spaces
here proposed contains the input vector u(t) or output vector y(t) explicitly, that is, the
feedback law (8.2) is not substituted in the differential equation (8.1). Excessive degrees
of freedom introduced by the multipliers are removed with the aid of the Elimination
Lemma, along the lines of [18]. The LMI conditions with fewer multipliers are more
suitable for synthesis of stabilizing controllers. To facilitate change-of-variables involving
controller data and multiplier, the input (or output) vector is augmented with redundant
inputs (or outputs) such that their dimension equals the dimension of the states. The
dimensions of the controller data is also increased accordingly, but due to the redundancy
of inputs/outputs, a controller with the original dimensions can be easily computed by
summing rows or columns of the augmented controller matrix. The method can cope
with continuous and discrete-time systems; only continuous-time is addressed here due
to space limitations. Although the conditions are only sufficient, numerical experiments
show success rates of over 90% in finding stabilizing controllers.

2 Preliminaries

Let us recall some concepts of Lyapunov stability for autonomous state-space systems.
Consider the dynamics of a continuous-time linear time-invariant (LTI) system governed
by the differential equation

ẋ(t) = Ax(t), x(0) = x0, (8.3)

where x(t) : [0,∞] → Rn and A ∈ Rn×n. Define the quadratic Lyapunov function
V : Rn → R as

V (x) := x(t)TPx(t) (8.4)

where P ∈ Sn and Sn stands for the field of real symmetric matrices. According to Lya-
punov theory, system (8.3) is asymptotically stable if there exists V (x(t)) > 0, ∀x(t) = 0
such that

V̇ (x(t)) < 0, ẋ(t) = Ax(t), ∀x(t) = 0. (8.5)

In words, if there exists P � 0 such that the time derivative of the quadratic Lyapunov
function (8.4) is negative along all trajectories of system (8.3). Conversely, if the linear
system (8.3) is asymptotically stable then there always exists P � 0 that satisfies (8.5).
These two affirmatives imply the well known fact that Lyapunov theory with quadratic
functions is necessary and sufficient to prove stability of LTI systems. A way to obtain an
LMI condition equivalent to the existence of the set characterized by (8.5) is to explicitly
substitute (8.3) into (8.4) [6]

V̇ (x(t)) = x(t)T
(
ATP + PA

)
x(t) < 0, ∀x(t) = 0. (8.6)
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The condition (8.6) is equivalent to the LMI feasibility problem

∃P ∈ S
n : P � 0, ATP + PA ≺ 0. (8.7)

The fact that (8.5) is a set characterized by inequalities subject to dynamic equality
constraints is explored in [17] to propose a constrained optimization point of view to
the stability problem. It is then possible to characterize the set defined by (8.5) without
substituting (8.3) explicitly into V̇ (x(t)) < 0 [17]. The well know Finsler’s Lemma [19]
is the main mathematical tool to transform the constrained optimization problem into a
problem subject to LMI constraints. e

Lemma 6. (Finsler) Let x(t) ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n.
The following statements are equivalent.

i. x(t)TQx(t) < 0, Bx(t) = 0, ∀x(t) = 0.

ii. B⊥TQB⊥ ≺ 0.

iii. ∃μ ∈ R : Q− μBTB ≺ 0.

iv. ∃X ∈ R
n×m : Q+ XB + BTX T ≺ 0.

A similarity between statement i. of the above lemma and (8.5) can be noticed. In
contrast to (8.6), the space of statement i. is an enlarged space [17] composed of x(t) as
well as ẋ(t). Statements iii. and iv. can be seen as equivalent unconstrained quadratic
forms of i. [17]. The equality constraint ẋ(t) = Ax(t) is included in the formulation
weighted by the scalar multiplier μ or matrix multiplier X . The Elimination Lemma
[6, 20] stated next will serve for the purpose of removing excessive multipliers without
adding conservatism into the solution.

Lemma 7. (Elimination) Let Q ∈ Sn, B ∈ Rm×n, C ∈ Rn×k. The following statements
are equivalent.

i. ∃X ∈ R
n×m : Q+ CTXB + BTX TC ≺ 0

ii. B⊥TQB⊥ ≺ 0
(8.8a)

C⊥TQC⊥ ≺ 0
(8.8b)

iii. ∃μ ∈ R : Q− μBTB ≺ 0, Q− μCTC ≺ 0.

The Elimination Lemma reduces to the Finsler’s Lemma when particularized with
C = I . In such a case C⊥ = {0} and (8.8b) is removed from the statement.

3 Static Ouput Stability Conditions

The stability conditions presented here rely on enlarged spaces composed by the state x(t)
and its time derivative ẋ(t), the control input u(t) or the measured output y(t). Different
LMI characterizations emerge depending on the considered spaces (x(t), ẋ(t), u(t)) or
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(x(t), ẋ(t), y(t)). For the former space, let the dynamical equations (8.1)-(8.2) be re-
written in the equivalent form

ẋ(t) = Ax(t) +Bu(t) (8.9a)

u(t) = KCx(t). (8.9b)

Stability of the above dynamical system is characterized by the existence of the set

V̇ (x(t), ẋ(t)) < 0, ∀(x(t), ẋ(t), u(t)) = 0 satisfying (8.9). (8.10)

where the quadratic form V̇ : Rn × Rn → R is defined as

V̇ (t) := ẋ(t)TPx(t) + x(t)TP ẋ(t) (8.11)

The LMI feasibility problem stated in the following theorem is equivalent to the exis-
tence of a non-empty set (8.10) and serves as a certificate of quadratic stability.

Theorem 13. (Quadratic Stability)A+BKC is Hurwitz if, and only if, ∃P ∈ Sn,Λ1,Φ1 ∈
Rn×n, Γ1 ∈ Rnu×n, Λ2, Φ2 ∈ Rn×nu , Γ2 ∈ Rnu×nu ,

J +H+HT ≺ 0, P � 0. (8.12a)

J :=

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , H :=

⎡
⎣Λ1A+ Λ2KC −Λ1 Λ1B − Λ2

Φ1A+Φ2KC −Φ1 Φ1B − Φ2

Γ1A+ Γ2KC −Γ1 Γ1B − Γ2

⎤
⎦ . (8.12b)

Proof. Assign

x(t)←
⎛
⎝x(t)ẋ(t)
u(t)

⎞
⎠ , Q ←

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , BT ←

⎡
⎣AT CTKT

−I 0
BT −I

⎤
⎦ , X ←

⎡
⎣Λ1 Λ2

Φ1 Φ2

Γ1 Γ2

⎤
⎦

and apply Finsler’s lemma to the constrained Lyapunov problem (8.10) with P � 0.

The matrix inequality (8.12) is a function of the multipliers Λ, Φ, Γ. The Elimina-
tion Lemma is here invoked to constraint multipliers without adding conservatism to the
solution.

Lemma 8. The multipliers can be constrained as Φ1 := αΛ1, Φ2 := αΛ2 without loss
of generality, where α > 0 is an arbitrary positive scalar

Proof. Assign

Q ←
⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , BT ←

⎡
⎣AT CTKT

−I 0
BT −I

⎤
⎦ , X ← [Λ1 Λ2

Γ1 Γ2

]

C⊥ ←
⎡
⎣αI−I

0

⎤
⎦ , CT ←

⎡
⎣ I 0
αI 0
0 I

⎤
⎦

and apply the Elimination Lemma with P � 0. The inequality (8.8b) does not bring
conservatism to the solution. To see this, expand C⊥TQC⊥ ≺ 0 and realize that−2αP ≺
0 holds ∀ α > 0.
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In order to obtain a condition suitable for computing stabilizable controllers, let an
extended input matrix B̃ ∈ Rn×n be the result of augmenting redundant inputs to the
system, such that the number of inputs are equal to the number of states. That is

B̃ :=
[
Bu1 Bu2 . . . Bunu

Bu1 Bu2 . . .
]

(8.13)

whereBui stands for the i-th column of matrixB related to the i-th input. Let also define
an augmented feedback gain K̃ ∈ Rn×ny partitioned accordingly

K̃ :=
[
KT

1,u1
KT

1,u2
. . . KT

1,unu
KT

2,u1
. . . KT

2,u2
. . .
]T

(8.14)

where Kj,ui ∈ R1×ny are j-th feedback gain from y(t) to the i-th input u i. The contri-
bution of the different gains Kj,ui to a particular input is just their sum

Kui :=

N∑
j=1

Kj,ui (8.15)

Let also define the change-of-variables involving the augmented controller K̃ and the
multiplier Λ2

K̂ := Λ2K̃. (8.16)

Due to the augmentation of input matrix and controller, the multiplier is now a square
matrix Λ2 ∈ Rn×n. Whenever Λ2 is non-singular, the original controller gains can be
reconstructed according to K̃ = Λ−1

2 K̂. With these definitions at hand, the stabilizability
condition can now be stated.

Theorem 14. (Stabilizability) There exists a static output feedback that renders A +
BKC Hurwitz if ∃ P ∈ Sn, K̂ ∈ Rn×ny , Λ1, Λ2, Γ1 ∈ Rn×n, μ ∈ R :

J +H +HT ≺ 0, P � 0, J :=

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , (8.17a)

H :=

⎡
⎣ Λ1A+ K̂C −Λ1 Λ1B̃ − Λ2

α(Λ1A+ K̂C) −αΛ1 α(Λ1B̃ − Λ2)

Γ1A+ μK̂C −Γ1 Γ1B̃ − μΛ2

⎤
⎦ (8.17b)

for an arbitrary scalar α > 0 and if the solution yields Λ2 non-singular.

The above inequality arise from (8.12), the multiplier constraints of Lemma 8, as well
as the constraint Γ2 := μΛ2 enforced to facilitate the change-of-variables (8.16). This
constraint brings conservatism to the above theorem. The structure of (8.17) does not
guarantee a non-singular multiplier Λ2. The later multiplier constraint and the possibility
of solutions that renders Λ2 singular thus not invertible are the reasons for sufficiency of
this condition. Notice the required line search in μ.

The enlarged space containing the output vector (x(t), ẋ(t), y(t)) is now consid-
ered. This time, let the dual of the dynamical equations (8.1)-(8.2) be re-written in the
equivalent form

ẋ
′
(t) = ATx

′
(t) + CT y

′
(t) (8.18a)

y
′
(t) = KTBTx

′
(t). (8.18b)
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where the subscript (·)′ stands for dual state and input vectors with appropriate dimen-
sions. Working with the dual system facilitates the appearance of multipliers in a suit-
able position for change-of-variables with controller gains, as will become clear later.
It is worth to mention that duality preserves the eigenvalues of the state matrix, i.e.
λ(A + BKC) = λ(AT + CTKTBT ). Therefore, a stabilizing controller for the dual
system also stabilizes the primal one. Stability of the above dynamical system is charac-
terized by the existence of the set

V̇ (x
′
(t), ẋ

′
(t)) < 0, ∀(x′

(t), ẋ
′
(t), y

′
(t)) = 0 satisfying (8.18) (8.19)

where the quadratic form V̇ : Rn × Rn → R is also defined as (8.11). The existence of
set (8.19) is equivalent to the LMI feasibility problem stated in the following theorem.

Theorem 15. (Quadratic Stability, Dual System) A + BKC is Hurwitz if, and only if,
∃ P ∈ Sn, Λ1, Φ1 ∈ Rn×n, Γ1 ∈ Rn×ny , Λ2, Φ2 ∈ Rny×n, Γ2 ∈ Rny×ny ,

J +H +HT ≺ 0, P � 0, J :=

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , (8.20a)

H :=

⎡
⎣AΛ1 +BKΛ2 AΦ1 +BKΦ2 AΓ1 +BKΓ2

−Λ1 −Φ1 −Γ1

CΛ1 − Λ2 CΦ1 − Φ2 CΓ1 − Γ2

⎤
⎦ (8.20b)

Proof. Assign

x(t)←
⎛
⎝x

′
(t)

ẋ
′
(t)

y
′
(t)

⎞
⎠ , Q←

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , BT ←

⎡
⎣ A BK
−I 0
C −I

⎤
⎦ , X ←

⎡
⎣ΛT

1 ΛT
2

ΦT
1 ΦT

2

ΓT
1 ΓT

2

⎤
⎦

and apply Finsler’s lemma to the constrained Lyapunov problem (8.19) with P � 0.

A condition suitable for computing stabilizable controllers can be obtained analo-
gously to what was done for the enlarged space containing u(t). Let an extended coutput
matrix C̃ ∈ Rn×n be the result of augmenting redundant outputs to the system, such that
the number of outputs are equal to the number of states.

C̃ :=
[
CT

y1
CT

y2
. . . CT

yny
CT

y1
CT

y2
. . .
]T

(8.21)

where Cyi stands for the i-th line of matrix C related to the i-th output. Let an augmented
feedback gain K̃ ∈ Rnu×n be partitioned accordingly

K̃ :=
[
K1,y1 K1,y2 . . . K1,yny

K2,y1 . . . K2,y2 . . .
]

(8.22)

where Kj,yi ∈ Rnu×1 are j-th feedback gain from the i-th output y i to the input u(t).
The contribution of the different gains K j,yi from a particular output is just their sum

Kyi :=

N∑
j=1

Kj,yi (8.23)
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3 Static Ouput Stability Conditions

Due to the augmentation of output matrix and controller, the multiplierΛ 2 ∈ Rn×n is now
a square matrix facilitating the change-of-variables (8.16). The elimination of multipliers
without added conservatism follows analogously to Lemma 8 and will be omitted for
brevity. The stabilizability condition for the enlarged space containing y(t) is stated next.

Theorem 16. (Stabilizability, Dual System) There exists a static output feedback that
renders A+BKC Hurwitz if ∃ P ∈ Sn, K̂ ∈ Rnu×n, Λ1, Λ2, Γ1 ∈ Rn×n, μ ∈ R :

J +H +HT ≺ 0, P � 0, J :=

⎡
⎣0 P 0
P 0 0
0 0 0

⎤
⎦ , (8.24a)

H :=

⎡
⎣AΛ1 +BK̂ α(AΛ1 +BK̂) AΛ1 + μBK̂

−Λ1 −αΛ1 −Γ1

C̃Λ1 − Λ2 α(C̃Λ1 − Λ2) C̃Γ1 − μΛ2

⎤
⎦ (8.24b)

for an arbitrary scalar α > 0 and if the solution yields Λ2 non-singular.

Sufficiency of this condition is occasioned by the constraint Γ 2 := μΛ2 enforced
to facilitate the change-of-variables (8.16) and the possibility of solutions that yields Λ 2

singular, thus not invertible.

Ensuring an Invertible Multiplier

The numerical experiments to be shown later suggest that the assumption of a solution
rendering a non-singular multiplier Λ2 is not strong. However, it is possible to ensure an
invertible multiplier involved in the change-of-variables with the drawback of increased
LMI complexity and (possibly) higher conservatism. For doing so, an extra equation of
the time derivative of the input

u̇(t) = KCẋ(t). (8.25)

is included on the description of the dynamical system (8.9). Similarly, the time derivative
of the dual output

ẏ
′
(t) = KTBT ẋ

′
(t). (8.26)

is included on the description of the dual system (8.18). The enlarged space should also
be extended with u̇(t) or ẏ

′
(t). The following stability condition originates from applying

Finsler’s Lemma to the set (8.10) with the extended enlarged space and equality constraint
(8.25), and subsequent use of the Elimination Lemma to remove excessive multipliers.

Theorem 17. A + BKC is Hurwitz if, and only if, ∃ P ∈ Sn, Λ1 ∈ Rn×n, Γ1 ∈
Rnu×n, Λ2, Λ3 ∈ Rn×nu , Γ2, Γ3 ∈ Rnu×nu ,

J +H+HT ≺ 0, P � 0, J :=

⎡
⎢⎢⎣
0 P 0 0
P 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (8.27a)

H :=

⎡
⎢⎢⎣

Λ1A+ Λ2KC −Λ1 + Λ3KC Λ1B − Λ2 −Λ3

α(Λ1A+ Λ2KC) α(−Λ1 + Λ3KC) α(Λ1B − Λ2) −αΛ3

Φ1A+Φ2KC −Φ1 +Φ3KC Φ1B − Φ2 −Φ3

Γ1A+ Γ2KC −Γ1 + Γ3KC Γ1B − Γ2 −Γ3

⎤
⎥⎥⎦ (8.27b)
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for an arbitrary scalar α > 0.

The proof follows similar arguments of Theorem 13 and Lemma 8 and is omitted
for brevity. When considering the augmented input matrix in (8.27), i.e. B ← B̃, the
following constraints on the square multipliers

Λ2 := μ1Γ3, Λ3 := μ2Γ3, Φ2 := μ3Γ3,

Φ3 := μ4Γ3, Γ2 = μ5Γ3

facilitate the change-of-variables K̂ = Γ3K̃. Note that Γ3 + ΓT
3 ≺ 0 on the lower

right block of (8.27) implies a non-singular Γ 3 and ensure, theoretically, the controller
reconstruction. Line searches on the scalars μ1, μ2, . . . , μ5 are now required making the
characterization less attractive.

Some Applications

The LMI characterizations composed of multipliers facilitate the solution of some hard
control problems [11]. The Lyapunov variable P can be made multiple or parameter-
dependent due to its appearance free from products with system matrices. This can be
exploited in the well known simultaneous and robust stabilization problems.

Simultaneous stabilization

The simultaneous stabilization problem can be posed as follows: given a family of open-
loop plants,

Gi :=

[
Ai Bi

Ci Di

]
, i = 1, 2, . . . , Np

find a controllerK that simultaneously stabilizes the plants, that is,

Re (λ (Ai +BiKCi)) < 0, i = 1, 2, . . . , Np.

Considering the enlarged space (x(t), ẋ(t), u(t)), this problem can be cast as the suffi-
cient LMI feasibility condition: ∃Pi ∈ Sn, K̂ ∈ Rn×ny , Λ1,i, Λ2, Γ1,i ∈ Rn×n, μ ∈ R :

Ji +Hi +HT
i ≺ 0, Pi � 0, Ji :=

⎡
⎣ 0 Pi 0
Pi 0 0
0 0 0

⎤
⎦ , (8.28a)

H :=

⎡
⎣ Λ1,iAi + K̂Ci −Λ1,i Λ1,iB̃i − Λ2

α(Λ1,iAi + K̂Ci) −αΛ1,i α(Λ1,iB̃i − Λ2)

Γ1,iAi + μK̂Ci −Γ1,i Γ1,iB̃i − μΛ2

⎤
⎦ (8.28b)

for i = 1, . . . , Np where α > 0 is an arbitrary scalar, and if the solution yields Λ2 non-
singular. A single Λ2 is adopted for the family of open-loop plants in order to facilitate
change-of-variables involving the controller gain and multiplier, while multiple Λ 1,i and
Γ1,i help to reduce conservativeness.
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4 Numerical Experiments

Robust stabilization

Consider the linear time-invariant uncertain polytopic system,

ẋ =

Nθ∑
i=1

θiAix+

Nθ∑
i=1

θiBiu, y =

Nθ∑
i=1

θiCix,

θi ≥ 0,

Nθ∑
i=1

θi = 1.

The polytopic symmetric matrix variable P (θ) is also defined

P (θ) :=

Nθ∑
i=1

θiPi. (8.29)

When synthesis of robust SOF is of concern, the LMI condition for the dual system might
find a controller: ∃ Pi ∈ Sn, K̂ ∈ Rnu×n, Λ1, Λ2, Γ1 ∈ Rn×n, μ, α ∈ R :

Ji +Hi +HT
i ≺ 0, Pi � 0, Ji :=

⎡
⎣ 0 Pi 0
Pi 0 0
0 0 0

⎤
⎦ , (8.30a)

H :=

⎡
⎣AiΛ1 +BiK̂ α(AiΛ1 +BiK̂) AΛ1 + μBiK̂

−Λ1 −αΛ1 −Γ1

C̃iΛ1 − Λ2 α(C̃iΛ1 − Λ2) C̃iΓ1 − μΛ2

⎤
⎦ (8.30b)

holds for i = 1, . . . , Nθ and if the solution yields Λ2 non-singular. Notice that the
choice of α does influence on the conservativeness and, in this case, should be considered
a variable.

4 Numerical Experiments

The success of the proposed conditions in finding stabilizable controllers is verified em-
pirically via numerical experiments. Sets of 1.000 random triplices (A,B,C) satisfy-
ing the generic stabilizability results of Kimura [21] were generated with the aid of rss
MATLAB function. The Kimura condition guarantees the existence of a stabilizing static
output feedback if the dimensions of (A,B,C) satisfies n > nu + ny . The state di-
mension takes the values n ∈ {4, 6}. The set of triplices are characterized by different
combinations of input and output dimensions - (nu, ny) ∈ {(2, 3), (3, 2)} for n = 4 and
(nu, ny) ∈ {(3, 4), (4, 3)} for n = 6 - with the aim of investigating whether the char-
acterization of stabilizability of a particular enlarged space (u(t) or y(t)) is better suited
for inputs/outputs with larger dimensions. The random systems were made unstable by
updating the state matrix according to A← A− 1.1λ+I , where λ+ = max(Re (λ(A))).
Each state matrix had a minimum of one up to four unstable eigenvalues. The redun-
dant inputs of the augmented matrix B̃ are the first up to n − nu inputs of B, i.e.
B̃ :=

[
B B(:, 1 : n− nu)

]
in MATLAB notation. The augmented matrix C̃ is sim-

ilarly constructed.
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The stabilizability conditions of the enlarged spaces containing u(t) and y(t) (The-
orems 14 and 16, respectively) were solved for each random unstable system. The line
search in μ was performed in the discrete set

M := {μ : μ ∈ {100, 102, 101, 10−1, 10−2,−10−2,−10−1,−100,−101,−102}}

until either a valid solution is found or infeasibility resulted for all μ ∈M. We consider a
valid solution as a feasible solution to which the solver did not accuse any problems dur-
ing the optimization like numerical problems, exceeded maximum number of iterations,
or lack of progress. The occurrences of valid solutions that yielded a multiplier Λ 2 close
to singular were registered according to the rule min(|λ(Λ 2)|) < 10−3 with the purpose
of accessing if non-singularity of this multiplier is a strong assumption. To enforce strict
LMI solutions the right hand side of the inequalities ≺ 0 (� 0) were replaced by ≺ −εI
(� εI) where ε = 10−6. The Lyapunov matrix were constrained to be P � I with the
purpose of improving numerical conditioning. This can be done without loss of gener-
ality due to homogeneity arguments [6]. The interface YALMIP [22] and semidefinite
programming SeDuMi [23] had been used with standard configuration.

Table 8.1 summarizes the success of finding valid solutions for different dimensions
(n, nu, ny). The number of successes related to the primal dynamical system (Theorem
14), dual dynamical system (Theorem 16), and either one of these two are depicted. The
rates of at least one characterization succeed are over 90%, remarkably high. A trend
on the results suggest that the condition for the enlarged space containing u(t) is more
suited to systems in which nu > ny. Conversely, the success rates of the condition for
the enlarged space containing y(t) are higher when ny > nu. Out of all valid solutions,
the smallest absolute eigenvalue of the multiplier Λ2 was smaller than 10−3 only at two
occasions (0.03%). The controller reconstruction was disturbed by the close-to-singular
multiplier and yielded an unstable closed-loop system only once.

(nu, ny) Thm. 14 Thm. 16 Thm. 14 or 16

n=4
(3,2) 924 (92.4%) 859 (85.9%) 983 (98.3%)
(2,3) 847 (84.7%) 943 (93.4%) 972 (97.2%)

n=6
(3,4) 796 (79.6%) 856 (85.6%) 943 (94.3%)
(4,3) 881 (88.1%) 819 (81.9%) 954 (95.4%)

Table 8.1: Success rate on the SOFS problem.
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1 Introduction

Abstract

Many dynamical systems are modelled as vector second order differential equa-
tions. This paper presents analysis and synthesis conditions in terms of Linear Ma-
trix Inequalities (LMI) with explicit dependence in the coefficient matrices of vec-
tor second-order systems. These conditions benefit from the separation between the
Lyapunov matrix and the system matrices by introducing matrix multipliers, which
potentially reduce conservativeness in hard control problems. Multipliers facilitate
the usage of parameter-dependent Lyapunov functions as certificates of stability of
uncertain and time-varying vector second-order systems. The conditions introduced
in this work have the potential to increase the practice of analyzing and controlling
systems directly in vector second-order form.

1 Introduction

Many physical systems have dynamics governed by linear time-invariant ordinary differ-
ential equations (ODEs) formulated in the vector second order form

Mq̈(t) + Cq̇(t) +Kq(t) = Ff(t) (9.1)

where q(t) ∈ Rn, M ∈ Rn×n, C ∈ Rn×n, K ∈ Rn×n, F ∈ Rn×nf and f(t) ∈
Rnf is the force input vector. Depending on the type of loads (i.e. conservative, non-
conservative), matrices M , C, K have a particular structure. Conservative systems (i.e.
pure structural systems) possess symmetric system matrices. Non-conservative systems
yielding from the fields of aeroelasticity, rotating machinery, and interdisciplinary system
dynamics usually possess nonsymmetric system matrices. For control purposes, system
(9.1) is often re-written as first-order differential equations

ẋ(t) = Ax(t) +Bf(t) (9.2a)

commonly referred to as state-space form. The relationship between the physical coordi-
nate description (9.1) and the state-space description (9.2) is simply

x(t) :=

(
q(t)
q̇(t)

)
, A :=

[
0 I

−M−1K −M−1C

]
, B :=

[
0

M−1F

]
(9.3)

where a nonsingular matrix M is assumed. Working with the model in physical coordi-
nates has some advantages over the model in state-space form [1], [2], [3]:

• Physical interpretation of the coefficient matrices and insight of the original prob-
lem are preserved;

• Natural properties of the coefficient matrices like bandedness, definiteness, sym-
metry and sparsity are preserved;

• Unlike first-order systems in which the acceleration is composed as a linear com-
bination of position and velocity states by an additional circuitry, the acceleration
feedback can be utilized in its original form;

• Physical coordinates favour computational efficiency, because the dimension of the
vector x(t) is twice that of the vector q(t);
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• Complicating nonlinearities in the parameters introduced by inversion of a parameter-
dependent mass matrix are avoided.

The stability of vector second-order systems received considerable interest during the
last four decades. In [4] several sufficient conditions for stability and instability using
Lyapunov theory are derived. Necessary and sufficient conditions of Lyapunov stabil-
ity, semistability and asymptotic stability are proposed in [5]. This work also brings a
substantial literature survey up to 1995. In [2] the necessary and sufficient conditions
of stability are based on the Generalized Hurwitz criteria. A desirable property of these
works is the explicit dependence of the conditions on the system coefficient matrices.
An undesirable fact is that conditions are particular to systems under different dynamic
loadings.

Most of the research on feedback-control design of vector-second order systems has
focused on stabilization, pole assignment, eigenstructure assignment and observer de-
sign. Identification errors in mechanical systems might be quite large. Therefore, robust
stability of the closed-loop system is of utmost importance. The fact that stability of
some classes of vector-second order systems can be ensured by qualitative condition on
the coefficient matrices has facilitated the design of robust stabilizing controllers. In [6]
conditions for robust stabilization via static feedback of velocity and displacement were
motivated by the stability condition M T = M � 0, CT + C � 0, KT = K � 0 in the
coefficient matrices An extension to dynamic displacement feedback control law is pre-
sented in [7]. Dissipative system theory is exploited in [8, 9] for the synthesis of stabiliz-
ing controllers. All these approaches result in closed-loop systems inherently insensitive
to plant uncertainties. Based on the eigenvalue analysis of real symmetric interval matri-
ces, in [10] the authors propose sufficient conditions for robust stabilizability considering
structured uncertainty in the system matrices. A transformation on the system matrices
suitable for modal control is proposed in [3]. Partial pole assignment techniques via state
feedback control are proposed in [11, 12]. Robustness in the partial pole assignment
problem is considered in [13]. An effective method for partial eigenstructure assignment
for systems with symmetric mass, damping and stiffness coefficients is presented in [14].
Robust eigenstructure assignment is treated in [15]. Vector second-order observer and
their design are addressed in [16, 17, 18].

Despite these efforts, the first-order state-space remains the preferred representation
due to the abundance of control techniques and numerical algorithms tailored for such.
As far as modern, optimization-based control theories are concerned, the literature lacks
on results to handle the systems directly in second-order form. An interesting contribu-
tion towards this goal is the stability results of [19] for systems in standard phase-variable
canonical form, given in terms of linear matrix inequalities (LMI) extended with mul-
tipliers. The numerical tools of modern convex optimization can solve these problems
efficiently [20]. The authors also mentioned the possibility of generalizing these results
to systems described by higher order vector differential equations.

The present manuscript extend the results in [19] by presenting conditions for analy-
sis and synthesis of vector second-order systems given in terms of LMI. We believe that
the conditions here introduced have the potential to increase the practice in analyzing and
controlling mechanical systems explicitly in physical coordinates. Necessary and suffi-
cient LMI criteria for checking stability of vector second-order systems is presented in
Section 2. Some of these benefit from the separation between the Lyapunov matrix and
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the system matrices by introducing Lagrange multipliers, which potentially reduce con-
servativeness in robust and other hard control problems [21, 19, 22, 23]. The multipliers
facilitate the usage of parameter-dependent Lyapunov functions as certificates of stabil-
ity of uncertain and time-varying systems. They also allow structural constraints on the
controller to be addressed less conservatively. Elimination of multipliers is investigated
to determine in which circumstances multipliers can be removed without loss of gener-
ality. The stabilization problem by a full vector second-order feedback as well as the
problem of clustering the closed-loop system poles in a convex region of the complex
plane, namely D-Stability, completes the results related to stability. A gradual extension
for systems with inputs and outputs during Section 3 leads to the criteria of synthesis
subject to Integral Quadratic Constrains (ICQ). Conditions for the design of static state
and output feedback controllers in vector second-order form are addressed, with focus on
the L2 to L2 gain performance measure due to its importance in robust control. Section 4
concludes the paper and suggest topics for future work.

2 Asymptotic Stability

Let us recall some concepts of Lyapunov stability for first-order state-space systems
before working with vector second-order representation. Consider the dynamics of a
continuous-time linear time-invariant (LTI) system governed by the differential equation

ẋ(t) = Ax(t), x(0) = x0, (9.4)

where x(t) : [0,∞] → R2n and A ∈ R2n×2n. Define the quadratic Lyapunov function
V : R2n → R as

V (x) := x(t)TPx(t) (9.5)

where P ∈ S2n. According to Lyapunov theory, system (9.4) is asymptotically stable if
there exists V (x(t)) > 0, ∀x(t) = 0 such that

V̇ (x(t)) < 0, ẋ(t) = Ax(t), ∀x(t) = 0. (9.6)

In words, if there exists P � 0 such that the time derivative of the quadratic Lyapunov
function (9.5) is negative along all trajectories of system (9.4). Conversely, if the linear
system (9.4) is asymptotically stable then there always exists P � 0 that satisfies (9.6).
These two affirmatives imply the well known fact that Lyapunov theory with quadratic
functions is necessary and sufficient to prove stability of LTI systems. The usual way
to obtain a linear matrix inequalities (LMI) condition equivalent to (9.6) is to explicitly
substitute (9.4) into (9.5) [20], that is

V̇ (x(t)) = x(t)T
(
ATP + PA

)
x(t) < 0, ∀x(t) = 0. (9.7)

The condition (9.7) is equivalent to the LMI feasibility problem

∃P ∈ S
2n : P � 0, ATP + PA ≺ 0. (9.8)

The fact that (9.6) is a set characterized by inequalities subject to dynamic equality
constraints is explored in [19] to propose a constrained optimization solution to the stabil-
ity problem. It is then possible to characterize the set defined by (9.6) without substituting
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(9.4) explicitly into V̇ (x(t)) < 0 of (9.6) [19]. The well know Finsler’s Lemma [24] is the
main mathematical tool to transform the constrained optimization problem into a problem
subject to LMI constraints.

Lemma 9 (Finsler). Let x(t) ∈ Rn,Q ∈ Sn and B ∈ Rm×n such that rank(B) < n. The
following statements are equivalent.

i. x(t)TQx(t) < 0, ∀ Bx(t) = 0, x(t) = 0.

ii. B⊥TQB⊥ ≺ 0.

iii. ∃μ ∈ R : Q− μBTB ≺ 0.

iv. ∃X ∈ Rn×m : Q+ XB + BTX T ≺ 0.

A similarity between statement i. of the above lemma and (9.6) can be noticed. In
contrast to (9.7), the space of statement i. is composed of x(t) and ẋ(t) that can be seen as
an enlarged space [19]. Statements iii. and iv. can be seen as an equivalent unconstrained
quadratic forms of i. [19]. The equality constraint ∀ẋ(t) = Ax(t) is included in the
formulation weigthed by the Lagrangian scalar multiplier μ or matrix multiplier X .

In order to obtain a stability condition for an unforced system of the form (9.1) (f(t) =
0), define the quadratic Lyapunov function V : R 2n → R as

V (q(t), q̇(t)) :=

(
q(t)
q̇(t)

)T

P

(
q(t)
q̇(t)

)
:=

(
q(t)
q̇(t)

)T [
P1 P2

PT
2 P3

](
q(t)
q̇(t)

)
(9.9)

where P ∈ S2n is conveniently partitioned into P1, P3 ∈ Sn, P2 ∈ Rn. Resorting to
Lyapunov theory once again, system (9.1) is asymptotically stable if, and only if, there
exists V (q(t), q̇(t)) > 0, ∀q(t), q̇(t) = 0 such that

V̇ (q(t), q̇(t)) < 0, ∀Mq̈(t) + Cq̇(t) +Kq(t) = 0,

(
q(t)
q̇(t)

)
= 0 (9.10)

with the time derivative of the quadratic function as

V̇ (q(t), q̇(t)) =

(
q̇(t)
q̈(t)

)T [
P1 P2

PT
2 P3

](
q(t)
q̇(t)

)
+

(
q(t)
q̇(t)

)T [
P1 P2

PT
2 P3

](
q̇(t)
q̈(t)

)
< 0.

(9.11)
Let an enlarged state space vector be defined as x(t) :=

(
q(t)T , q̇(t)T , q̈(t)T

)T
. For

this enlarged space, the constrained Lyapunov stability problem becomes

⎛
⎝q(t)q̇(t)
q̈(t)

⎞
⎠

T ⎡
⎣ 0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎦
⎛
⎝q(t)q̇(t)
q̈(t)

⎞
⎠ < 0,

∀Mq̈(t) + Cq̇(t) +Kq(t) = 0,

⎛
⎝q(t)q̇(t)
q̈(t)

⎞
⎠ = 0.

(9.12)

An LMI stability condition for vector second-order systems results from the direct
application of Finsler’s Lemma 9 to the problem above.
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Theorem 18. System (9.1) is asymptotically stable if, and only if,

i. ∃P2 ∈ R
n×n, P1, P3 ∈ S

n :⎡
⎣E11 E12

E21 E22

E31 E32

⎤
⎦
T ⎡
⎣ 0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎦
⎡
⎣E11 E12

E21 E22

E31 E32

⎤
⎦ ≺ 0, (9.13a)

⎡
⎣E11 E12

E21 E22

E31 E32

⎤
⎦ :=

[
K C M

]⊥
,

[
P1 P2

PT
2 P3

]
� 0. (9.13b)

ii. ∃P2 ∈ Rn×n, P1, P3 ∈ Sn, λ ∈ R :⎡
⎣−λKTK P1 − λKTC P2 − λKTM

� P2 + PT
2 − λCTC P3 − λCTM

� � −λMTM

⎤
⎦ ≺ 0, (9.14a)

[
P1 P2

PT
2 P3

]
� 0. (9.14b)

iii. ∃Φ, Γ, Λ, P2 ∈ R
n×n and P1, P3 ∈ S

n :⎡
⎣KTΦT +ΦK P1 +KTΓT +ΦC P2 +KTΛT +ΦM

� P2 + PT
2 + CTΓT + ΓC P3 + CTΛT + ΓM

� � MTΛT + ΛM

⎤
⎦ ≺ 0,

(9.15a)[
P1 P2

PT
2 P3

]
� 0. (9.15b)

Proof. Assign

x(t)←
⎛
⎝q(t)q̇(t)
q̈(t)

⎞
⎠ , Q ←

⎡
⎣ 0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎦ , BT ←

⎡
⎣KT

CT

MT

⎤
⎦ , X ←

⎡
⎣ΦΓ
Λ

⎤
⎦

and apply Lemma 9 to the constrained Lyapunov problem (9.12) with P � 0.

Notice the diagonal entries of the first inequality of statement ii., i.e. λK TK � 0
and λMTM � 0, which implies that λ > 0 and K, M nonsingular. The condition
reflects that asymptotic stability of mechanical systems requires that no eigenvalues of
matrix K should lie on the imaginary axis, i.e. no rigid body modes. At last, notice that
the condition does not enforce any specific requirement on the structure of the damping
matrix C (except C = 0). Thus, applicable to system under different loadings.

When applied to systems in first order form, the LMI conditions extended with mul-
tipliers are obtained by applying the Finsler’s lemma with [19]

x(t)←
(
x(t)
ẋ(t)

)
, Q ←

[
0 P
P 0

]
, BT ←

[
AT

−I
]
, B⊥ ←

[
I
A

]
.
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In this case, the standard Lyapunov LMI condition (9.8) can be easily recovered from
Lemma 9 item ii.. Notice that the basis for the null space B⊥ can be computed in a
straighforward manner from B (the identity matrix I is convenient). However, for vector
second order systems, it is not trivial to find a basis B⊥ from B :=

[
K C M

]
without

resorting to matrix operations on the system matrices. This fact reflects the inherent
difficulties in finding standard Lyapunov stability conditions for general vector second
order systems. The statement i. of Theorem 18 depends solely on the Lyapunov matrices
and thus can be interpreted as a standard Lyapunov condition, with the drawback that
matrix inversion is required to determine B⊥. Taking advantage of the non-singularity of
the mass matrix, a trivial choice for B⊥ is

B⊥ :=

⎡
⎣ −I 0

0 −I
M−1K M−1C

⎤
⎦

yielding the LMI stability condition ∃P1, P3 ∈ Sn, P2 ∈ Rn :[ −P2M
−1K −KTM−TPT

2 P1 − P2M
−1C −KTM−TP3

P1 − P3M
−1K − CTM−TPT

2 P2 + PT
2 − P3M

−1C − CTM−TP3

]
≺ 0,

(9.16a)[
P1 P2

PT
2 P3

]
� 0. (9.16b)

Less trivial conditions involve inverses of both mass and stiffness matrices. Consider the
factorization

B := B1B2 :=
[
I C I

]⎡⎣K 0 0
0 I 0
0 0 M

⎤
⎦ =

[
K C M

]
.

The nonsingularity assumption on M and K implies that B2 is also nonsingular and thus
invertible. Notice that

B1B2x = 0, x = 0 ⇔ B1y = 0, y = B2x = 0.

Therefore

y = B⊥
1 z ⇒ x = B−1

2 y = B−1
2 B⊥

1 z ⇒ B⊥ = B−1
2 B⊥

1 .

The basis for the null space B⊥ can now be determined from B1. As an example

B⊥
1 :=

⎡
⎣ C 0
−I −I
0 C

⎤
⎦ ⇒ B⊥ := B−1

2 B⊥
1 =

⎡
⎣K−1C 0
−I −I
0 M−1C

⎤
⎦

This particular choice ofB⊥
1 yields the LMI stability condition: ∃P1, P3 ∈ Sn, P2 ∈ Rn :[−CTK−TP1 − P1K

−1C + P2 + PT
2 F (x)

� −P3M
−1C − CTM−TP3 + P2 + PT

2

]
≺ 0

F (x) := −CTK−TP1 + CTK−TP2M
−1C − P3M

−1C + P2 + PT
2[

P1 P2

PT
2 P3

]
� 0.
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Some of the Lyapunov stability conditions available in the literature [5] could, in princi-
ple, be replicated by choosing B⊥ appropriately. The presented conditions of asymptotic
stability with only Lyapunov matrices as decision variables are quite intricate because of
the presence of matrix inverses M−1 and K−1. When M and K are given real, the in-
verse can be computed numerically. Complicating nonlinearities arise as soon as system
matrices are functions of uncertain parameters or controller variables.

Linearizing Lyapunov Function

The undesirable dependence of (9.16a) in the inverse of the mass matrix can be circum-
vented by a suitable modification of the quadratic Lyapunov function (9.9). The next
theorem presents a standard Lyapunov stability condition with linear dependence on the
system matrices.

Theorem 19. System (9.1) is asymptotically stable if, and only if, ∃P1 ∈ Sn, W2, W3 ∈
Rn×n : [ −(W2K +KTWT

2 ) P1 −W2C −KTWT
3

P1 −W3K − CTWT
2 P2 + PT

2 − (W3C + CTWT
3 )

]
≺ 0, (9.17a)

[
P1 W2M

MTWT
2 W3M

]
+

[
P1 W2M

MTWT
2 W3M

]T
� 0, (9.17b)

W3M =MTWT
3 (9.17c)

Proof. Inequality (9.17a) results from (9.16a) with the change-of-variables P 2 :=W2M
and P3 := W3M . This change-of-variables substitutes the symmetric matrix P3 with
a general matrix W3M yielding a non-symmetric Lyapunov matrix (9.16b). Constraints
(9.17b), (9.17c) are equivalent versions of the Lyapunov matrix and restores the symmetry
of the problem. Equality constraint (9.17c) enforces symmetry toW 3M , while inequality
(9.17b) arises from the fact that P � 0⇔ (

P + PT
) � 0.

Although the above theorem offers a quadratic stability certificate with linear depen-
dence on the system matrices, the conditions extended with multipliers are appealing due
to the extra degrees of freedom introduced by these variables.

Elimination of Multipliers

The matrix inequality (9.15) is a function of the multipliers Φ, Γ, Λ. It is worth question-
ing if all degrees of freedom introduced by the multipliers are really necessary. Would it
be possible to constrain or eliminate multipliers without loss of generality? The Elimina-
tion Lemma [20, 25] will serve for the purpose of removing multipliers without adding
conservatism to the solution.

Lemma 10 (Elimination Lemma). Let Q ∈ Sn, B ∈ Rm×n, C ∈ Rn×k. The following
statements are equivalent.

i. ∃X ∈ Rn×m : Q+ CTXB + BTX TC ≺ 0
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ii. B⊥TQB⊥ ≺ 0 (9.18a) C⊥TQC⊥ ≺ 0 (9.18b)

iii. ∃μ ∈ R : Q− μBTB ≺ 0, Q− μCTC ≺ 0.

Notice that Elimination Lemma reduces to the Finsler’s Lemma when particularized
with C = I . In such a case C⊥ = {0} and (9.18b) is removed from the statement.
A discussion on the relation between these two lemmas can be found in [20, 25]. The
elimination of multipliers on LMI conditions for systems in first-order form was studied
in [3]. In general terms, the idea is to select a suitable C such that (9.18b) does not
introduce conservatism to the original problem while reducing the size of the multiplier
X . The next theorems result from a similar rationale.

Theorem 20. System (9.1) is asymptotically stable if, and only if, ∃Φ, Λ, P2 ∈ Rn×n

and P1, P3 ∈ Sn :⎡
⎣ΦK + � P1 +KT (αΦ + Λ)T +ΦC P2 + αKTΛT +ΦM

� P2 + (αΦ + Λ)C + � P3 + αCTΛT + (αΦ + Λ)M
� � αΛM + �

⎤
⎦ ≺ 0,

(9.19a)[
P1 P2

PT
2 P3

]
� 0. (9.19b)

for an arbitrary scalar α > 0.

Proof. Assign

Q ←
⎡
⎣ 0 P1 P2

P1 P2 + PT
2 P3

PT
2 P3 0

⎤
⎦ , BT ←

⎡
⎣KT

CT

KT

⎤
⎦ , C⊥ ←

⎡
⎣α2I
−αI
I

⎤
⎦ ,

CT ←
⎡
⎣ I 0
αI I
0 αI

⎤
⎦
T

, X ←
[
Φ
Λ

]
.

and apply the Elimination Lemma with P � 0. The chosen C⊥ does not introduce
conservativeness to the condition. To see this expand (9.18b)

C⊥TQC⊥ = −α3P1 − αP3 + α2P2 + α2PT
2 ≺ 0 (9.20a)

�
α3P1 + αP3 − α2P2 − α2PT

2 � 0. (9.20b)

Notice that the following support inequality

−NW−1NT �W −N −NT (9.21)
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holds whenever W � 0. Resorting to the support inequality with N := α2P2, W :=
αP3 � 0, (9.20b) is satisfied whenever

α3(P1 − P2P
−1
3 PT

2 ) � 0. (9.22)

P1 − P2P
−1
3 PT

2 � 0 is equivalent to (9.19b) by a Schur complement argument and thus
positive definite. Therefore (9.22) and consequently (9.20b) holds for an arbitrary real
scalar α > 0.

A similar, equivalent characterization of the Theorem above can be derived by assign-
ing

C⊥ ←
⎡
⎣ I
−αI
α2I

⎤
⎦ , CT ←

⎡
⎣αI 0
I αI
0 I

⎤
⎦
T

and following the same steps presented on the proof.
The number of multipliers can be further reduced by constraining Φ := μΛ in (9.19a)

where μ > 0 is a real scalar. Unfortunately, this constraint introduce conservativeness
leading to a sufficient condition.

Theorem 21. System (9.1) is asymptotically stable if ∃P2, Λ ∈ Rn×n, P1, P3 ∈ Sn, μ,∈
R :⎡
⎣μΛK + � P1 + (1 + αμ)KTΛT + μΛC P2 + αKTΛT + μΛM

� P2 + (1 + αμ)ΛC + � P3 + αCTΛT + (1 + αμ)ΛM
� � αΛM + �

⎤
⎦ ≺ 0

(9.23a)[
P1 P2

PT
2 P3

]
� 0, α > 0, μ > 0. (9.23b)

for an arbitrary scalar α > 0.

A source of conservatism is the appearance of a single multiplier on the block diag-
onal entries of (9.23a). For M � 0, usual property of the mass matrix, the (1,1) block
α(MTΛT +ΛM) ≺ 0 with α > 0 is satisfied only if Λ ≺ 0. As a consequence, stability
cannot be certified whenM � 0 andK is indefinite because μ(K TΛT +ΛK) ≺ 0 never
holds when μ > 0 and Λ ≺ 0. Numerical experiments suggest that a similar situation
is encountered when the matrix C is indefinite and M or K are positive definite. The
condition was unable to attest stability of randomly generated stable systems (M,C,K)
in which C had at least one negative eigenvalue and M, K � 0. P2 + PT

2 � 0 holds
whenever the condition was able to find a certificate of stability, another contributing fact
to why the (2-2) block cannot be verified as negative definite when C is indefinite.

Stabilization by Static State Feedback

The dependence of the stability condition to a single multiplier Λ is particularly interest-
ing in the context of feedback stabilization. The vector second order system is augmented
with a controllable input u(t) ∈ Rnu
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Mq̈(t) + Cq̇(t) +Kq̇(t) = Fuu(t), q(0), q̇(0) = 0 (9.24)

where Fu ∈ Rn×nu . Consider a static state feedback controller of the form

u(t) = −Gaq̈(t)−Gv q̇(t)−Gpq(t) (9.25)

where Ga , Gv, Gp ∈ Rn×n are static feedback gains from acceleration, velocity and
position, respectively. The plant (9.24) in closed-loop with the controller (9.25) yields
the equations of motion

Mq̈(t) +Cq̇(t) +Kq(t) = 0 (9.26a)

M := (M + FuGa) , C := (C + FuGv) , K := (K + FuGp) (9.26b)

Conditions for controller synthesis often involve products between controller gains
and Lyapunov matrices or multipliers, resulting in nonlinear matrix inequalities. The
nonlinear terms can be linearized by resorting to the change-of-variables, firstly intro-
duced in [26] in which only the Lyapunov variable is involved, and later in the context
of conditions extended with multipliers [21]. Define the following nonlinear change-of-
variables

Ĝa := GaΛ, Ĝv := GvΛ, Ĝp := GpΛ. (9.27)

Notice from (9.23) that the matrix Λ multiplies the system matrices in a position not
suitable for linearization of the nonlinear terms, i.e. Λ (K + FuGp). A dual transforma-
tion of the closed-loop system

M←MT , C← CT , K← KT (9.28)

makes the linearizing change of variables possible. A discussion on algebraic duality of
vector second-order system with inputs and outputs is given in the appendix. It is worth
mentioning that the above dual transformation preserves the eigenvalues of the system
cast in first-order form, that is

λ

([
0 I

−M−1K −M−1C

])
= λ

([
0 I

−M−TKT −M−TCT

])
.

With these definitions at hand, the stabilizability conditions by static feedback can
now be stated.

Theorem 22. System (9.24) is stabilizable by a static feedback law of the form (9.25) if
∃ Λ, P2 ∈ Rn×n, P1, P3 ∈ Sn, Ĝa, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

⎡
⎣ μ(KΛ+ FuĜp) + � P1 + (1 + αμ)(KΛ + FuĜp) + μ(CΛ + FuĜv)

T

� P2 + (1 + αμ)(CΛ + FuĜv) + �
� �

P2 + α(KΛ + FuĜp) + μ(MΛ + FuĜa)
T

P3 + α(CΛ + FuĜv) + (1 + αμ)(MΛ + FuĜa)
T

α(MΛ + FuĜa) + �

⎤
⎦ ≺ 0, (9.29a)
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[
P1 P2

PT
2 P3

]
� 0, μ > 0, (9.29b)

and Λ is nonsingular.

Proof. The LMI (9.29) results from a direct application of Proposition 20 to the dual of
closed-loop system (9.26), together with a dual transformation Λ← Λ T of the multiplier
and the change-of-variables (9.27). The change-of-variables are without loss of generality
when Λ is nonsingular thus invertible. The original controller gains can then be recovered
by the inverse map

Ga = ĜaΛ
−1, Gv = ĜvΛ

−1, Gp = ĜpΛ
−1. (9.30)

which characterizes the stabilizable control law.

A nonsingular multiplierΛ is not implied by inequality (9.29). This fact contrasts with
stability criteria for systems in first-order form where nonsingularity of multipliers is a
direct consequence of the structure of the LMI [22, 27]. With some restrictions imposed
on the problem formulation, it is possible to ensure a nonsingular Λ. For instance, the
multiplier can be confined to the positive cone of symmetric matrices, i.e. Λ ∈ Sn, Λ � 0,
or to the negative cone of symmetric matrices Λ ∈ Sn, Λ ≺ 0. In these cases, extra
conservativeness is brought into the condition.

An assumption that facilitates a nonsingular Λ without adding conservativeness is
to exclude the acceleration feedback, i.e. Ga = 0. In this case, the lower right block
MΛ+ΛTMT ≺ 0 of the LMI (9.29) withM nonsingular implies a nonsingular multiplier
Λ. Therefore, a stabilizing controller can be computed according to (9.30) whenever
(9.29) is feasible. Note that the control law (9.25) with Ga = 0 is a full state feedback in
the first-order state-space sense.

As metioned in the introduction section, acceleration feedback is often desirable due
to practical reasons. When position feedback is excluded from the control law (G p = 0)
the multiplier is assured to be nonsingular. The entry μ(KΛ+ΛTKT ) ≺ 0 located in the
upper left of (9.29) withK nonsingular and μ > 0 impliesΛ nonsingular. Therefore, once
a solution for the LMI problem above is found, the controller gains can be reconstructed
according to (9.30).

D-Stability

Performance specifications like time response and damping in closed-loop can often be
achieved by clustering the closed-loop poles into a suitable subregion of the complex
plane. The subclass of convex regions of the complex plane can be characterized in terms
of LMI constraints [28]. A class of convex subregions representable as LMI conditions
extended with multipliers was proposed in [29]. LetR11, R22 ∈ Sd, R12 ∈ Rd,R22 � 0.
The DR region of the complex plane is defined as the set [29]

DR(s) :=
{
s ∈ C : R11 +R12s+RT

12s
H +R22s

Hs ≺ 0
}

(9.31)

where s is the Laplace operator. An LMI characterization for DR-stability of vector
second-order systems can be derived from DR-stability condition of a system in first-
order form. The autonomous system (9.4) is DR-stable if and only if ∃P ∈ S2n : [29]

R11 ⊗ P +R12 ⊗ (PA) +RT
12 ⊗

(
ATP

)
+R22 ⊗

(
ATPA

) ≺ 0 (9.32)
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A relation between regions of the complex plane and a particular Lyapunov constrained
problem can be deduced from the above LMI. First define the d-stacked system as

xd(t) := 1d ⊗ x(t), Ad := Id ⊗A ⇒ ẋd(t) = Id ⊗Axd(t) (9.33)

where 1d represents a column vector composed of 1’s and Id is the identity matrix both
with dimension d. For example, the d-stacked system for d = 2 yields

(
ẋ(t)
ẋ(t)

)
=

[
A 0
0 A

](
x(t)
x(t)

)
.

The time derivative of the Lyapunov function tailored for DR-stability analysis is
defined as

V̇ (xd(t), ẋd(t)) : = xd(t)
TR11 ⊗ Pxd(t) + ẋd(t)

TR12 ⊗ Pxd(t)
+ xd(t)

TRT
12 ⊗ P ẋd(t) + ẋd(t)

TR22 ⊗ P ẋd(t) < 0
(9.34)

Substitute (9.33) into (9.34) and expand to arrive at (9.32). The usual time derivative of
a quadratic Lyapunov function, i.e. V̇ (x(t)) = ẋ(t)TPx(t) + x(t)TP ẋ(t) is recovered
from the above by choosing R11 = R22 = 0, R12 = 1. The set of solutions of the
D-stability problem in time-domain is defined as

DR(x(t)) :=
{
x(t) ∈ R

n : V̇ (x(t), ẋ(t)) < 0, V̇ (x(t), ẋ(t)) as (9.34), P � 0
}
.

(9.35)
For the sake of DR-stability of vector second-order systems the d-stacked system is de-
fined

qd(t) := 1d ⊗ q(t), q̇d(t) := 1d ⊗ q̇(t), q̈d(t) := 1d ⊗ q̈(t), (9.36a)

Md := Id ⊗M, Cd := Id ⊗ C, Kd := Id ⊗K (9.36b)

Mdq̈d(t) + Cdq̇d(t) +Kdqd(t) = 0. (9.36c)

Let the constrained Lyapunov problem in the enlarged space be formalized

⎛
⎝qd(t)q̇d(t)
q̈d(t)

⎞
⎠

T ⎡
⎣ R11 ⊗ P1 R11 ⊗ P2 +R12 ⊗ P1

� R11 ⊗ P3 +RT
12 ⊗ P2 +R12 ⊗ PT

2 +R22 ⊗ P1

� �

R12 ⊗ P2

R12 ⊗ P3 +R22 ⊗ P2

R22 ⊗ P3

⎤
⎦
⎛
⎝qd(t)q̇d(t)
q̈d(t)

⎞
⎠ < 0,

(9.37a)

[
P1 P2

PT
2 P3

]
� 0, ∀Mdq̈d(t) + Cdq̇d(t) +Kdqd(t) = 0,

⎛
⎝qd(t)q̇d(t)
q̈d(t)

⎞
⎠ = 0. (9.37b)

The D-stability condition for vector second-order systems is stated in the next theo-
rem.
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Theorem 23. System (9.1) isDR-stable if, and only if, ∃P1, P3 ∈ Sn, P2 ∈ Rn,Φ,Γ,Λ ∈
Rdn×dn :

J +H +HT ≺ 0, H :=

⎡
⎣Φ(Id ⊗K) Φ(Id ⊗ C) Φ(Id ⊗M)
Γ(Id ⊗K) Γ(Id ⊗ C) Γ(Id ⊗M)
Λ(Id ⊗K) Λ(Id ⊗ C) Λ(Id ⊗M)

⎤
⎦ , (9.38a)

J :=

⎡
⎣ R11 ⊗ P1 R11 ⊗ P2 +R12 ⊗ P1

� R11 ⊗ P3 +RT
12 ⊗ P2 +R12 ⊗ PT

2 +R22 ⊗ P1

� �

R12 ⊗ P2

R12 ⊗ P3 +R22 ⊗ P2

R22 ⊗ P3

⎤
⎦ , (9.38b)

[
P1 P2

PT
2 P3

]
� 0. (9.38c)

The proof follows similarly to Theorem 18 and is omitted for brevity. Multipliers
need to be eliminated to make the above condition suitable for computing stabilizing
controllers. The same choice of C⊥ and C of Theorems 20 and 21 serve this purpose.
However, conservativeness when eliminating multipliers depend on the particular DR

region. Taking (C⊥, C) similarly to Theorem 20, C⊥TQC⊥ ≺ 0 after expansion and some
algebraic manipulations yields

R11 ⊗
(
α4P1 − α3P2 − α3PT

2 + α2P3

)
+R12 ⊗

(−α3P1 + α2P2 + α2PT
2 − αP3

)
+RT

12 ⊗
(−α3P1 + α2P2 + α2PT

2 − αP3

)
+R22 ⊗

(
α2P1 − αP2 − αPT

2 + P3

) ≺ 0
(9.39)

This inequality depends on the matrices R11, R12, R22 that defines the stability region.
Although it is not trivial to state non-conservativeness independently of the chosen region,
one can attest if the elimination of a multiplier brings any conservativeness for a partic-
ular DR-region. To do so, first note that all of the addends of the above inequality are
similar in structure. A correspondence with the Lyapunov matrix P can be established
via a congruence transformation involving α, and multiplications with a matrix and its
transpose, e.g.

Y THT

[
P1 P2

PT
2 P3

]
HY � 0, H := diag(αI, I), Y :=

[
I −I]T .

Whenever HTPH � 0 holds, which is always the case because of (9.38c), α2P1 −
αP2 − αPT

2 + P3 � 0 also holds. Let us take some typical regions as examples. The
continuous-time stability region is determined by R11 = R22 = 0, R12 = 1, rendering
non-conservativeness as shown in Theorem 20. For a region with minimum decay rate
β > 0 set with R11 = 2β, R22 = 0, R12 = 1, if

2αHT

[
P1 P2

PT
2 P3

]
H � 2α2βHT

[
P1 P2

PT
2 P3

]
H � 0 (9.40)

holds, then (9.39) also holds. Indeed, multiply the inequality above with Y :=
[
I −I]T

from the right and Y T from the left to obtain (9.39). A set of values of α which does not

169



Paper F

introduce conservativeness to the condition can be inferred from (9.40), that is, {α :
α − α2β > 0, α > 0, β > 0}. For the discrete-time stability region, represented as a
circle centred at the origin of the complex plane with R11 = −1, R22 = 1, R12 = 0, if

α2HT

[
P1 P2

PT
2 P3

]
H � HT

[
P1 P2

PT
2 P3

]
H � 0

is satisfied than inequality (9.39) is satisfied. Therefore, any α > 1 does not bring con-
servativeness.

3 Quadratic Performance

The following linear time-invariant vector second-order system with inputs and outputs

Mq̈(t) +Dq̇(t) +Kq̇(t) = Fww(t), q(0), q̇(0) = 0 (9.41a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) (9.41b)

is considered in this section, where w(t) ∈ Rnw and z(t) ∈ Rnz are the disturbance input
and performance output vectors, respectively, U, V, X ∈ Rnz×n. The presence of input
signals w(t) requires a definition of stability.

L2 to L2 Stability

The notion of stability of a system with inputs it related to the characteristics of the input
signal w(t). Assume w(t) : [0,∞) → Rnw a piecewise continuous function in the
Lebesgue function space L2

‖w(t)‖L2 :=

(∫ ∞

0

w(τ)Tw(τ)dτ

)1/2

<∞.

In the control literature, the quantity ‖w(t)‖L2 is often referred to as the energy of
signal w(t). The system (9.41) is said to be L2 stable if the output signal z(t) ∈ L2 for
all w(t) ∈ L2. Define the L2 to L2 gain as the quantity

γ∞ := sup
w(t)∈L2

‖z‖2
‖w‖2 . (9.42)

This quantity can serve as a certificate of L2 stability. If the L2 to L2 gain of a system
is finite, i.e. 0 < γ∞ < ∞, then one can conclude that the system is L2 stable. Because
γ∞ is bounded by below, it sulffices to find an upper bound γ such that 0 < γ∞ < γ <∞.
Consider the modified Lyapunov stability condition

V̇ (q(t), q̇(t), q̈(t)) < 0, z(t)T z(t) ≥ γ2w(t)Tw(t) (9.43a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (9.41), (9.43b)

(q(t), q̇(t), q̈(t), w(t), z(t)) = 0. (9.43c)
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3 Quadratic Performance

where γ > 0 is a given scalar. Invoking the S-procedure [20] produces a necessary and
sufficient equivalent condition [19]

V̇ (q(t), q̇(t), q̈(t)) < γ2w(t)Tw(t) − z(t)T z(t), (9.44a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (9.41), (9.44b)

(q(t), q̇(t), q̈(t), w(t), z(t)) = 0. (9.44c)

To realize that (9.44) implies an L2 to L2 gain less than γ, integrate both sides of
(9.44a) over time t > 0 to get∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ <

∫ t

0

γ2w(τ)Tw(τ) − z(τ)T z(τ) dτ (9.45)

For t→∞, the resulting Lyapunov function∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ = V (q(τ), q̇(τ), q̈(τ)) > 0 (9.46)

is positive by definition. From the above and (9.45) it can be inferred that

‖z(t)‖2L2
< γ2‖w(t)‖2L2

. (9.47)

which compared to (9.42) implies γ > γ∞.
Synthesis of controllers are usually attached to some performance indicator or mea-

sure of a system. The L2 gain also serve as a system performance measure.

L2 Performance

The L2 to L2 gain may also be interpreted as a performance measure. The system is
supposed to have good performance when z(t) is small regardless of the disturbance
w(t). The quantity γ provides a measure (in an L2 sense) of the size of the output signal
z(t) in response to the worst-case disturbance w(t) with zero initial conditions. This is
the time domain interpretation. A frequency domain interpretation can also be attributed
to the L2 gain. Obtain the frequency domain couterpart of system (9.41)

s2MQ(s) + sCQ(s) +KQ(s) = FwW (s), (9.48a)

Z(s) = s2UQ(s) + sV Q(s) +XQ(s) +DzwW (s) (9.48b)

by applying the Laplace transform, where s in the Laplace operator. Define the input-
output transfer matrixHzw(s) as

Hzw(s) :=
(
s2U + sV +X

) (
s2M + sC +K

)−1
Fw +Dzw. (9.49)

It is well know that

sup
ω
|Hzw(jω)| = ‖Hzw‖H∞ = sup

w(t)∈L2

‖z‖2
‖w‖2 .

due to Parseval’s theorem [30]. Hence, ‖Hzw‖H∞ < γ is equivalent to L2 to L2 stability.
Moreover, the quantity γ gives an upper bound on the maximum singular value of the
transfer matrixHzw(jω).
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Integral Quadratic Constraints

The notion of system performance can be further generalized by enforcing an integral
quadratic constraint on the input and output signals [31, 32]

∫ t

0

(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
≥ 0 (9.50)

where Q ∈ Snz , R ∈ Snw , S ∈ Rnz×nw . Similarly to (9.45), pose the inequality

∫ t

0

V̇ (q(τ), q̇(τ), q̈(τ)) dτ < −
∫ t

0

(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
(9.51)

The right hand side of the above inequality can be seen as a quadratic contraint on the
Lyapunov quadratic function V (q(t), q̇(t), q̈(t)). The modified Lyapunov problem then
becomes

V̇ (q(t), q̇(t), q̈(t)) < −
(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
, (9.52a)

∀(q(t), q̇(t), q̈(t), w(t), z(t)) satisfying (9.41), (9.52b)

(q(t), q̇(t), q̈(t), w(t), z(t)) = 0, (9.52c)

ready to be transformed in an LMI condition by Finsler’s Lemma.

Theorem 24 (Integral Quadratic Constraints). The following statements are equivalent.

i. The set of solutions of the Lyapunov problem (9.52) with

[
P1 P2

PT
2 P3

]
� 0 is not

empty.

ii. ∃P1, P3 ∈ Sn, Φ1, Γ1, Λ1, P2 ∈ Rn, Π1 ∈ Rnz×n, Ξ1 ∈ Rnw×n, Φ2, Γ2, Λ2,∈
R

n×nz , Π2 ∈ R
nz×nz , Ξ2 ∈ R

nw×nz :

J +H +HT ≺ 0,

[
P1 P2

PT
2 P3

]
� 0, where (9.53a)

J :=

⎡
⎢⎢⎢⎢⎣

0 P1 P2 0 0
P1 P2 + PT

2 P3 0 0
PT
2 P3 0 0 0
0 0 0 Q S
0 0 0 ST R

⎤
⎥⎥⎥⎥⎦ , (9.53b)

H :=

⎡
⎢⎢⎢⎢⎣
Φ1K − Φ2X Φ1C − Φ2V Φ1M − Φ2U Φ2 −Φ1Fw − Φ2Dzw

Γ1K − Γ2X Γ1C − Γ2V Γ1M − Γ2U Γ2 −Γ1Fw − Γ2Dzw

Λ1K − Λ2X Λ1C − Λ2V Λ1M − Λ2U Λ2 −Λ1Fw − Λ2Dzw

Π1K −Π2X Π1C −Π2V Π1M −Π2U Π2 −Π1Fw −Π2Dzw

Ξ1K − Ξ2X Ξ1C − Ξ2V Ξ1M − Ξ2U Ξ2 −Ξ1Fw − Ξ2Dzw

⎤
⎥⎥⎥⎥⎦ .

(9.53c)
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Proof. Assign

x(t)←

⎛
⎜⎜⎜⎜⎝
q(t)
q̇(t)
q̈(t)
z(t)
w(t)

⎞
⎟⎟⎟⎟⎠ , Q ← (9.53b), BT ←

⎡
⎢⎢⎢⎢⎣
KT −XT

CT −V T

MT −UT

0 I
−FT

w −DT
zw

⎤
⎥⎥⎥⎥⎦ , X ←

⎡
⎢⎢⎢⎢⎣
Φ1 Φ2

Γ1 Γ2

Λ1 Λ2

Π1 Π2

Ξ1 Ξ2

⎤
⎥⎥⎥⎥⎦ (9.54)

and apply Finsler’s lemma to the constrained Lyapunov problem (9.52) with P � 0.

The above condition yields specialized quadratic peformance criterias depending on
the choice of Q, S, R. Assign[

Q S
ST R

]
←

[
I 0
0 −γ2I

]
.

to verify the L2 performance criteria∫ t

0

(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
≥ 0⇔

∫ t

0

z(t)T z(t) dt < γ2
∫ t

0

w(t)Tw(t) dt

⇔ ‖z(t)‖2L2
< γ2‖w(t)‖2L2

⇔ ‖Hzw(jω)‖2H∞ < γ2

also known as bounded real lemma. To check passivity of a vector second order system,
select [

Q S
ST R

]
←

[
0 −I
−I 0

]
.

reducing the integral quadratic constraint to∫ t

0

(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
≥ 0⇔ −2

∫ t

0

z(t)Tw(t) dt < 0

�∫ t

0

z(t)Tw(t) dt > 0⇔ Hzw(jω) +Hzw(jω)
∗ � 0 ⇔ Hzw(jω) is passive,

condition also known as positive real lemma. Sector bounds on the signals z(t) and w(t)
can be enforced by choosing

[
Q S
ST R

]
←

⎡
⎢⎣ I −1

2
(α+ β)I

−1

2
(α+ β)I −αβI

⎤
⎥⎦ .

The integral quadratic constraint yields∫ t

0

(
z(t)
w(t)

)T [
Q S
ST R

](
z(t)
w(t)

)
≥ 0⇔

∫ t

0

(z(t)− αw(t))T (z(t)− βw(t)) dt > 0

⇔ (z(t), w(t)) ∈ sector(α, β).
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Similarly to the stability case, in (9.53) the product of the multipliers with the system
matrices occurs in a position that does not facilitate possible change-of-variables. One
would be tempted to invoke algebraic duality of the vector second-order system once
again. However, as discussed in the appendix, the presence of outputs bring complicat-
ing issues making such an approach not trivial. Add to this, the multipliers involved in
the ICQ condition have different dimensions. An ICQ condition dependent on a single,
square, invertible and well located multiplier is desirable for synthesis purposes.

A modification on the constrained Lyapunov problem is the first step towards a con-
dition with such properties. The integral quadratic constraint may depend explicitly on
positions, velocities and accelerations by substituting z(t) = Uq̈(t) + V q̇(t) +Xq(t) +
Dzww(t) into (9.50) yielding

∫ t

0

⎛
⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠

T [
ZTQZ ZT (S +QDzw)
� R+DT

zwQDzw +DT
zwS + STDzw

]⎛⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠ ≥ 0, (9.55a)

Z :=
[
X V U

]
(9.55b)

The new constrained Lyapunov problem

V̇ (q(t), q̇(t), q̈(t)) < −

⎛
⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠

T [
ZTQZ ZT (S +QDzw)

(S +QDzw)
TZ R̄

]⎛⎜⎜⎝
q(t)
q̇(t)
q̈(t)
w(t)

⎞
⎟⎟⎠ ,

R̄ := R +DT
zwQDzw +DT

zwS + STDzw

(9.56a)

∀(q(t), q̇(t), q̈(t), w(t)) satisfyingMq̈(t) + Cq̇(t) +Kq(t) = Fww(t), (9.56b)

(q(t), q̇(t), q̈(t), w(t)) = 0, (9.56c)

is not dependent explicitly on the output vector z(t). Sufficient conditions with reduced
number of multipliers can be derived from the above Lyapunov problem by applying the
Elimination Lemma. They become also necessary if the acceleration vector (or position
vector) is absent in z(t) i.e. U = 0 (orX = 0).

Theorem 25. The set of solutions of the Lyapunov problem (9.56) with P � 0 is not
empty if ∃ P1, P3 ∈ Sn, P2, Φ, Λ ∈ Rn×n, α ∈ R :

J +H+HT ≺ 0, where (9.57a)

J :=

⎡
⎢⎢⎣

0 P1 P2 0
P1 P2 + PT

2 P3 0
PT
2 P3 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
XTQX XTQV XTQU XT (S +QDzw)

� V TQV V TQU V T (S +QDzw)
� � UTQU UT (S +QDzw)
� � � R̄

⎤
⎥⎥⎦ ,

(9.57b)

H :=

⎡
⎢⎢⎣

ΦK ΦC ΦM −ΦFw

(αΦ + Λ)K (αΦ + Λ)C (αΦ + Λ)M −(αΦ+ Λ)Fw

αΛK αΛC αΛM −αΛFw

0 0 0 0

⎤
⎥⎥⎦ , α > 0,

(9.57c)
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[
P1 P2

PT
2 P3

]
� 0. (9.57d)

This is necessary and sufficient whenever U = 0 in (9.56).

Proof. Assign

Q ←

⎡
⎢⎢⎣

0 P1 P2 0
P1 P2 + PT

2 P3 0
PT
2 P3 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
XTQX XTQV XTQU XT (S +QDzw)

� V TQV V TQU V T (S +QDzw)
� � UTQU UT (S +QDzw)
� � � R̄

⎤
⎥⎥⎦

BT ←

⎡
⎢⎢⎣
KT

CT

MT

−FT
w

⎤
⎥⎥⎦ , C⊥ ←

⎡
⎢⎢⎣
α2I 0
−αI 0
I 0
0 I

⎤
⎥⎥⎦ , CT ←

⎡
⎢⎢⎣
I 0
αI I
0 αI
0 0

⎤
⎥⎥⎦ , X ←

[
Φ
Λ

]

and apply the Elimination Lemma with P � 0. This lemma renders a condition without
extra conservatism whenever C⊥TQC⊥ ≺ 0, that is[

F11(x) F12(x)
F12(x)

T F22(x)

]
� 0, F22(x) := −R̄, R̄ ≺ 0,

F11(x) :=2(α3P1 − α2(P2 + PT
2 ) + αP3)−

(
α4XTQX − α3XTQV + α2XTQU

+α2V TQV − αV TQU + UTQU
)
+ �,

F12(x) :=− α2XT (S +QDzw) + αV T (S +QDzw)− UT (S +QDzw).
(9.58)

Use the support inequality (9.21) with N := α2PT
2 , W := α3P1 � 0 and a Schur

complement with respect to R̄ to show that (9.58) is equivalent to

P3 − PT
2 P

−1
1 P2 � 1

2

(
α3XTQX − α2XTQV + αXTQU + αV TQV − V TQU

+α−1UTQU
)− 1

2
(α3XT R̄−1X − α2XT R̄−1V + α(XT R̄−1U − V T R̄−1V )

+α−1(UT R̄−1U − UT R̄−1V )) + � � 0.
(9.59)

Note that P3 − PT
2 P

−1
1 P2 � 0 implies P � 0 due to a Schur complement argument.

When U = 0 the right hand side of (9.59) is polynomial in α with no constant term.
Thus, there exists a sufficiently small α such that (9.59) holds which implies no added
conservatism as long as α > 0 is considered a variable in the formulation.

For a constant α the above constraint is an LMI. However, the condition requires a
line search in α. When X = 0 the same rationale with slightly modified C⊥ and C

C⊥ ←

⎡
⎢⎢⎣

I 0
−αI 0
α2I 0
0 I

⎤
⎥⎥⎦ , CT ←

⎡
⎢⎢⎣
0 αI
αI I
I 0
0 0

⎤
⎥⎥⎦

also yields a necessary and sufficient condition.
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The second step towards an ICQ condition for synthesis is to define a nonlinear
change-of-variables between the Lyapunov matrices and a multiplier. Let a congruence
transformation be Y := diag(Γ,Γ), Γ := Λ−T where Λ is assumed invertible. Apply it
to the partitioned Lyapunov variable, leading to the change-of-variables

Y T

[
P1 P2

PT
2 P3

]
Y :=

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0 (9.60a)

P̂1 := ΓTP1Γ, P̂2 := ΓTP2Γ, P̂T
2 := ΓTPT

2 Γ P̂3 := ΓTP3Γ. (9.60b)

The original Lyapunov matrices can be reconstructed by the inverse congruence transfor-
mation [

P1 P2

PT
2 P3

]
= Y −T

[
P̂1 P̂2

P̂T
2 P̂3

]
Y −1 � 0 (9.61)

With the results of Theorem 25 and the previously defined nonlinear change-of-variables
at hand, an ICQ criteria suitable for synthesis can be stated.

Theorem 26. The set of solutions of the Lyapunov problem (9.56) with P � 0 is not
empty if ∃ P̂1, P̂3 ∈ S

n, P̂2, Γ ∈ R
n×n, α, μ ∈ R :

J +H+HT ≺ 0,

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0, where (9.62a)

J :=

⎡
⎢⎢⎣

0 P̂1 P̂2 0

P̂1 P̂2 + P̂T
2 P̂3 0

P̂T
2 P̂3 0 0
0 0 0 0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
ΓTXTQXΓ ΓTXTQV Γ ΓTXTQUΓ ΓTXT (S +QDzw)

� ΓTV TQV Γ ΓTV TQUΓ ΓTV T (S +QDzw)
� � ΓTUTQUΓ ΓTUT (S +QDzw)
� � � R̄

⎤
⎥⎥⎦ ,

R̄ := R+DT
zwQDzw +DT

zwS + STDzw

(9.62b)

H :=

⎡
⎢⎢⎣

μKΓ μCΓ μMΓ −μFw

(1 + αμ)KΓ (1 + αμ)CΓ (1 + αμ)MΓ −(1 + αμ)Fw

αKΓ αCΓ αMΓ −αFw

0 0 0 0

⎤
⎥⎥⎦ , α > 0, μ > 0.

(9.62c)

Proof. To derive (9.62) from (9.57), first introduce the constraint Φ = μΛ where μ > 0.
Apply the congruence transformation Ya := diag(Γ,Γ,Γ, I), Γ := Λ−T to (9.57a), con-
gruence transformation Yd := diag(Γ,Γ) to (9.57d), and the change-of-variables (9.60).
Notice that the upper left entry of J + H + HT ≺ 0 in (9.62), i.e. KΓ + ΓTKT +
ΓTXTQXΓ ≺ 0 with K nonsingular implies Γ nonsingular. This fact corroborates the
assumption of an invertible Γ in the change-of-variables (9.60).
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The condition from Theorem 26 benefits from some convenient properties. It depends
on a single multiplier Γ in products with M,C,K matrices as well as U, V,X matrices.
Moreover the product occurs at the ”right side” of the matrices. Both properties facili-
tate change-of-variables involving the controller data, as will become clear later in this
manuscript.

Synthesis of controllers is the subject of the reminder of this paper. It will be given
focus to the design of controllers with guaranteedL2-gain performance for clarity and its
practical relevance. Synthesis conditions considering other ICQ criterias can be derived
similarly by particularizingQ, R, S and appropriate Schur complements involving these
matrices.

Static Full Vector Feedback

The proposed ICQ condition offers the possibility of synthesizing controllers. Consider
the vector second-order system with disturbance and controllable inputs

Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t) + Fuu(t) (9.63a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) +Dzuu(t) (9.63b)

in loop with a static full vector feedback yielding the closed-loop system denoted H zw:

Mq̈(t) +Cq̇(t) +Kq(t) = Fww(t) (9.64a)

z(t) = Uq̈(t) +Vq̇(t) +Xq(t) +Dzww(t) (9.64b)

M := (M + FuGa) , C := (C + FuGv) , K := (K + FuGp) (9.64c)

U := (U −DzuGa) , V := (V −DzuGv) , X := (X −DzuGp) (9.64d)

The same issues regarding the nonsingularity of the multiplier in the stabilizability case
have also to be consider here. Therefore, the next theorem states the existence of a static
controller in which the acceleration feedback is absent (Ga = 0). This controller structure
corresponds to a full state feedback in the first-order state-space sense.

Theorem 27. There exists a controller of the form (9.25) withGa = 0 such that ‖Hzw‖L2 <
γ2 if ∃ P̂1, P̂3 ∈ Sn, P̂2, Γ ∈ Rn, Ĝv, Ĝp ∈ Rnu×n, α, μ ∈ R :

⎡
⎢⎢⎢⎢⎣
μ(KΓ + FuĜp) + � P̂1 + μ(CΓ + FuĜv) + (1 + αμ)(KΓ + FuĜp)

T

� P̂2 + (1 + αμ)(CΓ + FuĜv) + �
� �
� �
� �

P̂2 + μMΓ + α(KΓ + FuĜp)
T −μFw ΓTXT − K̂T

p D
T
zu

P̂3 + (1 + αμ)MΓ + α(CΓ + FuĜv)
T −(1 + αμ)Fw ΓTV T − K̂T

v D
T
zu

α(MΓ + ΓTMT ) −αFw ΓTUT

� −γ2I DT
zw

� � −I

⎤
⎥⎥⎥⎥⎦ ≺ 0.

(9.65a)

α > 0, μ > 0,

[
P̂1 P̂2

P̂T
2 P̂3

]
� 0 (9.65b)
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Proof. In order to obtain the above inequalities from (9.62), first particularize it with
Q = I ,R = −γ2I and apply a Schur complement with respect toQ. A direct application
of the resulting inequalities to the closed-loop system (9.26) together with a change-of-
variables of the form (9.27) involving the multiplier Γ and the controller data G v, Gp

yields (9.65). Nonsingularity of Γ is implied by the entry MΛ + ΛTMT ≺ 0 with M
nonsingular. Once a solution to the problem above is found, invertibility of Γ assures the
reconstruction of the controller gains from the auxiliary ones according to G v = ĜvΓ

−1

and Gp = ĜpΓ
−1.

The acceleration feedback was removed from the feedback law for theoretical reasons:
ensure a nonsingular Γ. As discussed in the stabilizability section, a nonsingular Γ could
also be enforced by neglecting the position feedbackG p. If all feedback gains are desired,
in practice the LMI above could be augmented with the acceleration gain and solved.
The multiplier Γ could be invertible. In case this happens, the acceleration, velocity and
position gains can all be recovered from the auxiliary controller gains.

Working with the closed-loop system in vector form facilitates the feedback of only
the position or the velocity vector without introducing extra conservatism to the presented
formulation. These controller structures would correspond to partial state feedback in the
first-order state-space sense, to which convex reformulations without loss of generality
are not known to exist.

Static Output Feedback

The acceleration, velocity or position vectors are often partially available for feedback.
In such a case, the vector second order system

Mq̈(t) + Cq̇(t) +Kq(t) = Fww(t) + Fuu(t) (9.66a)

z(t) = Uq̈(t) + V q̇(t) +Xq(t) +Dzww(t) +Dzuu(t) (9.66b)

y(t) = Rq̈(t) + Sq̇(t) + Tq(t) +Dyww(t) (9.66c)

is augmented with a measurement vector y(t) ∈ Rny . The interest lies on the synthesis
of a static output feedback controller of the form

u(t) = −Gyy(t) (9.67)

where Gy ∈ Rnu×ny . To facilitate the derivations that follows, the measurement vector
is not corrupted by noise (Dyw = 0). Assume, without loss of generality, that the output
matrices R, S and T are of full row rank. Then, there exist nonsingular transformation
matrices Wa, Wv, Wp ∈ Rn×n such that

RWa =
[
I 0

]
, SWv =

[
I 0

]
, TWp =

[
I 0

]
. (9.68)

For any given triplice (R,S, T ), the corresponding (Wa,Wv,Wp) are not unique in
general. A particular (Wa,Wv,Wp) can be obtained by

Wa :=
[
RT (RRT )−1 R⊥] , Wv :=

[
ST (SST )−1 S⊥] , Wp :=

[
T T (TT T )−1 T⊥] .

The feedback of a single quantity, that is either accelerations, velocities or positions
are addressed here. Let the measurement vector be composed of position feedback only,
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i.e. y(t) = Tq(t). From the coordinate transformation defined as q̈ := Wp
¨̃q, q̇ := Wp

˙̃q
and q :=Wpq̃, the system matrices of (9.66) are substituted according to

M ←MWp, C ← CWp, K ← KWp

U ← UWp, V ← VWp, X ← XWp

R← RWp, S ← SWp, T ← [I 0
]
.

The closed-loop matrices of the transformed system related to positions are then

K :=
(
K + Fu

[
Gy 0

])
, X :=

(
X −Dzu

[
Gy 0

])
while the other closed-loop matrices are the same as the open-loop ones. A static output-
feedback gain can be obtained by imposing on the auxiliary controller gain Ĝ and the
multiplier Γ the structure

Ĝ :=
[
Ĝy 0

]
, Γ :=

[
Γ1 0
Γ3 Γ4

]
. (9.69)

This kind of controller/multiplier constraint was firstly prpoposed in [22] in the context of
first-order state-space systems. This structure is merged in Theorem 27 by imposing the
structural constraints Ĝa := Ĝv := Ĝp := Ĝ and Γ as (9.69). Supposing Γ nonsingular,
and consequently the upper left block Γ1 invertible, the original controller data can be
recovered by the inverse change-of-variables

G =
[
Gy 0

]
=
[
ĜyΓ

−1
1 0

]
. (9.70)

Thus, the structure imposed to the state feedback gain matrix G facilitates the output
feedback law u(t) = Gyy(t). The same procedure can be made when the mesurement
vector is y(t) = Rq̈(t) or y(t) = Sq̇(t).

Robust Control

The inherent decoupling of the Lyapunov and system matrices occasioned by the intro-
duction of multipliers facilitates the usage of parameter-dependent Lyapunov functions
[33]. This decoupling property was firstly exploited under the context of robust stability
of first-order state-space systems in [21] and latter extended to performance specifications
[22]. Assume that the matrices of system (9.63) are uncertain but belong to a convex and
bounded set. This set is such that the matrix

S :=

[
M C K Fu Fw

U V X Dzu Dzw

]

takes values in a domain defined as a polytopic combination ofN given matricesQ 1, . . . ,QN ,
that is,

S :=

{
S(α) : S(α) :=

N∑
i=1

Siαi,

Nα∑
i=1

αi = 1, αi ≥ 0.

}

The operator Vert(S) := {S1, . . . ,SN} reduces the infinite dimensional set S to the ver-
tices Si, i = 1, . . . , N . The LMI conditions for vector second-order systems presented
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here can turn into sufficient conditions for robust analysis and synthesis by defining a
parameter-dependent Lyapunov matrix

P (α) :=

Nα∑
i=1

Piαi (9.71)

and maintaining the multipliers as parameter-independent. In this case, the LMIs are
infinite-dimensional functions of the uncertain vector α. A finite-dimensional problem
arises with Vert (F (x, α) ≺ 0). Consider the robust stability problem as an example.
System (9.24) is robustly stabilizable by a static feedback law of the form (9.25) with
Ga = 0, for all S ∈ S, if ∃Λ, P2,i ∈ R

n×n, P1,i, P3,i ∈ S
n, Ĝv, Ĝp ∈ R

nu×n, α, μ ∈ R :

Ji +Hi +HT
i ≺ 0, Ji :=

⎡
⎣ 0 P1,i P2,i

P1,i P2,i + PT
2,i P3,i

PT
2,i P3,i 0

⎤
⎦ , (9.72a)

Hi :=

⎡
⎣ μ(KiΛ + Fu,iĜp) μ(CiΛ + Fu,iĜv) μ(MiΛ)

(1 + αμ)(KiΛ + Fu,iĜp) (1 + αμ)(CiΛ + Fu,iĜv) (1 + αμ)(MiΛ)

α(KiΛ + Fu,iĜp) α(CiΛ + Fu,iĜv) α(MiΛ)

⎤
⎦

(9.72b)[
P1,i P2,i

PT
2,i P3,i

]
� 0, α > 0, μ > 0, (9.72c)

for i = 1, . . . , N .

4 Numerical Examples

Three-Mass System

The simplicity of a three-mass system depicted in Fig. 9.1 allows an easy analysis and
straightfoward interpretation of the results. In this figure, m1, m2 and m3 are system
masses, k1, k2, k3 and k4 are stiffness coefficients, while d1, d2, d3 and d4 are damping
coefficients.

f , q1 1

k1

d1

m1

f , q2 2

k2

d2

m2

f , q3 3

k3

d3

m3

k4

d4

Figure 9.1: Three-mass mechanical system.

The control input u(t) acts at mass 2 and mass 3 in opposite directions. The first
disturbance w1(t) acts at mass 2 and mass 3 in opposite directions, with an amplification
factor of 3, and the second disturbance w2(t) acts at mass 2. The controlled outputs
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(z1(t), z2(t), z3(t)) are the displacement of mass 2 with an amplification factor of 3, the
velocity of mass 3, and the input u(t), respectively. The motion of this mechanical system
is described by the differential equations

⎡
⎣m1 0 0

0 m2 0
0 0 m3

⎤
⎦ q̈(t) +

⎡
⎣c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3 + c4

⎤
⎦ q̇(t)

+

⎡
⎣k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4

⎤
⎦ q(t) =

⎡
⎣ 0 0

3 1
−3 0

⎤
⎦w(t) +

⎡
⎣ 0

1
−1

⎤
⎦u(t),

(9.73a)

z(t) =

⎡
⎣0 0 0
0 0 1
0 0 0

⎤
⎦ q̇(t) +

⎡
⎣0 3 0
0 0 0
0 0 0

⎤
⎦ q(t) +

⎡
⎣00
1

⎤
⎦u(t). (9.73b)

For this system, m1 = 3, m2 = 1, m3 = 2, k1 = 30, k2 = 15, k3 = 15, k4 = 30,
and C = 0.004K + 0.001M . Magnitude plots of the open-loop transfer functions from
disturbances (w1, w2) to outputs (z1, z2) are depicted in Fig. 9.3a. The lightly damped
characteristics of the system modes are noticeable.
H∞ control will be used to reject oscillatory response of these modes in face of distur-

bances. Full vector feedback gains of positions and velocities are synthesized using The-
orem 27 for different values of the scalars α, μ. The upper bound γ of theH∞-norm for
various (α, μ) is illustrated in Fig. 9.2. The minimum achieved upper bound γ ∗ = 7.679
occurs at (α, μ) = (0.0060, 0.0820) with corresponding position and velocity feedback
gains

Gp =
[
0.2501 0.0774 −0.0786] , Gv =

[
5.2757 1.9574 −1.6351] .

Improved vibration performance is corroborated by magnitude plots and impulse re-
sponses of the closed-loop system (Fig. 9.3a and 9.3b).

Model Matching Control of Wind Turbines

A different perspective to modern control of wind turbines is given here by considering
the design model in its natural form. For clarity, the turbine model contains only the two
structural degrees of freedom with lowest frequency contents: rigid body rotation of the
rotor and fore-aft tower bending described by the axial nacelle displacement. The simpli-
fied dynamics of a wind turbine can be described by the nonlinear differential equations

Jψ̈ = Qa(v − q̇t, ψ̇, β)(t)−Qg(t) (9.74)

M1q̈1 +K1q1 = Ta(v − q̇1, ψ̇, β) (9.75)

where the aerodynamic torque Qa(t) and thrust Ta(t) are nonlinear functions of the rel-
ative wind speed v(t) − q1(t) with v(t) being the mean wind speed over the rotor disk,
the rotor speed ψ̇(t), and the collective pitch angle β(t). Linearization of (9.74) around
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Figure 9.2: Upper bound on theH∞-norm of the closed-loop three-mass system with full
position and velocity feedback, obtained by Theorem 27.

an equilibrium point θ yields

(Jr +N2
gJg)ψ̈(t) =

∂Qa

∂ψ̇

∣∣∣∣
θ

ψ̇(t) +
∂Qa

∂V

∣∣∣∣
θ

(v(t)− q̇1(t)) + ∂Qa

∂β

∣∣∣∣
θ

β(t) − η−1NgQg(t)

(9.76)

M1q̈1(t) +K1q1(t) =
∂Ta

∂ψ̇

∣∣∣∣
θ

ψ̇(t) +
∂Ta
∂V

∣∣∣∣
θ

(v(t)− q̇1(t)) + ∂Ta
∂β

∣∣∣∣
θ

β(t) (9.77)

where Jr and Jg are the rotational inertia of the rotor (low speed shaft part) and the gen-
erator (high speed shaft part), K1 is the stiffness for axial nacelle motion q1(t) due to
fore-aft tower bending,M1 is the modal mass of the first fore-aft tower bending mode, η
is the total electrical and mechanical efficiency, andNg is the gearbox ratio. The primary
control objective of pitch controlled wind turbines operating at rated power is to regulate
power generation despite wind speed disturbances. To accomplish this, rotor speed is
controlled using the collective blade pitch angle, and generator torque is maintained con-
stant (Q(t) = 0 in (9.76)). Tower fore-aft oscillations are induced by the wind turbulence
hitting the turbine as well as changes in the thrust force due to pitch angle variations.
The collective blade pitch angle can be controlled to supress these oscillations without
degrading rotor speed regulation. The vector second-order system

[
Jr +N2

gJg 0
0 M1

](
ψ̈(t)
q̈1(t)

)
+

⎡
⎢⎢⎣
∂Qa

∂ψ̇

∣∣∣∣
θ

−∂Qa

∂V

∣∣∣∣
θ

∂Ta

∂ψ̇

∣∣∣∣
θ

−∂Ta
∂V

∣∣∣∣
θ

⎤
⎥⎥⎦
(
ψ̇(t)
q̇1(t)

)
+

[
0 0
0 K1

](
ψ(t)
q1(t)

)

=

⎡
⎢⎢⎣
∂Qa

∂v

∣∣∣∣
θ

∂Ta
∂v

∣∣∣∣
θ

⎤
⎥⎥⎦ v(t) +

⎡
⎢⎢⎣
∂Qa

∂β

∣∣∣∣
θ

∂Ta
∂β

∣∣∣∣
θ

⎤
⎥⎥⎦β(t)

(9.78)
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Figure 9.3: Comparison of open-loop three-mass system and closed-loop with full posi-
tion and velocity feedback (Theorem 27).

arise from re-arranging expression (9.76). In the above, the disturbance vector is w(t) :=
v(t) and control input is u(t) := β(t). The open-loop system (9.78) has a singular stiff-
ness matrix due to the rigid-body mode of the rotor, which at first may seem inadequate
for a direct application of the conditions presented in this work. However, the closed-loop
stiffness matrix is non-singular because the position of the rotor is part of the feedback
law. Feedback of rotor position is analogous to the inclusion of integral action on rotor
speed regulation, usual scheme in wind turbine control.

Controller design follows anH∞ model matching criteria, which has an elegant struc-
ture when considered in vector second-order form. The performance of the system in
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closed-loop should approximate a given a reference model

Mr q̈r(t) + Cr q̇r(t) +Krq̈r(t) = Fwrw(t) (9.79a)

zr(t) = Ur q̈r(t) + Vr q̇r(t) +Xrq̈r(t) (9.79b)

in an H∞-norm sense. The matrices of the reference model are chosen to enforce a
desired second-order closed-loop sensitivity function from wind speed disturbance v(t)
to rotor speed ψ̇(t). The augmented system for synthesis is

[
M 0

−M(1,:) Mr

]⎛⎝ ψ̈
q̈1
ψ̈r

⎞
⎠[ C 0
−C(1,:) Cr

]⎛⎝ ψ̇
q̇1
ψ̇r

⎞
⎠[ K 0
−K(1,:) Kr

]⎛⎝ ψ
q1
ψr

⎞
⎠

=

[
Fw

0

]
w(t) +

[
Fu

Fu (1,:)

]
u(t)

(9.80a)

z(t) =

[−1 0 1
0 0 0

]⎛⎝ ψ̇
q̇1
ψ̇r

⎞
⎠+

[
0
Dzu

]
u(t) (9.80b)

where ψ̇r(t) is the reference model velocity and (·)(1,:) stands for the first line of matrix
(·). The reference filter in (9.80a) is forced indirectly by the the open-loop system (9.78),
which is convenient for implementation purposes. In this example, M r = 6.0776 · 106,
Cr = 6.1080 · 106, andKr = 3.9346 · 106 characterizes a reference system with damped
natural frequency ωd = 0.628 rad/s and damping ξ = 0.625.

Full vector feedback gains of positions and velocities are synthesized using Theorem
27 with α = 0.9 and μ = 1, yielding a guaranteed upper bound γ = 1.462. The true
upper bound of the augmented system in closed-loop computed using Theorem 25 is
γ = 0.1058. Controller gains are

Gv =
[−0.3734 −0.1702 0.0028

]
, Gp =

[−0.1951 −0.1029 −0.0096]
Bode plots of the closed-loop, open-loop and reference systems are depicted in Fig.9.4a.

A good agreement between the closed-loop and reference model is noticeable. The cho-
sen reference model indirectly impose some damping of the tower fore-aft displacement
by trying to reduce the difference in magnitude between open-loop and reference model
at the tower natural frequency. Step responses of the controlled and reference systems are
compared in Fig.9.4b, showing a good correspondence.
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Appendix: A Remark on Algebraic Duality

One of the most convenient features of the input-state-output framework of linear systems
theory is the notion of duality. It is a well known fact that a minimal, controllable and
observable first-order state-space form (9.2) admits the dual representation [30]

ẋ′(t) = ATx′(t) + CTu′(t) (9.81a)

y′(t) = BTx′(t) +DTu′(t). (9.81b)

The dual system has also a frequency domain interpretation. Define a transfer matrix
as G(s) := C(sI − A)−1B + D. The transpose of a transfer matrix G(s) or the dual
system is defined as [Zhou]

G(s) �→ G(s)T = BT
(
sI −AT

)−1
CT +DT .

The transfer matrix (9.49) of a vector second-order system is repeated here for conve-
nience

Hzw(s) :=
(
s2U + sV +X

) (
s2M + sC +K

)−1
Fw +Dzw.

The definition of the dual of the transfer matrix above follows a similar rationale. The
transpose of the transfer matrixHzw(s) or the dual vector second-order system is defined
as

Hzw(s) �→ Hzw(s)
T = FT

w

(
s2MT + sCT +KT

)−1 (
s2UT + sV T +XT

)
+DT

zw.
(9.82)

or equivalently

MT q̈′(t) + CT q̇′(t) +KT q′(t) = UT ẅ′(t) + V T ẇ′(t) +XTw′(t) (9.83a)

z′(t) = FT q′(t) +DT
zww

′(t), q′(0), q̇′(0) = 0. (9.83b)

Some observations about the dual system and the original system can be drawn. The
dimensions of q(t) and q ′(t) are the same, as well as the dimensions of w(t) and z ′(t),
and those of z(t) and w′(t). The dependence of the system dynamics on the derivatives
of the dual disturbance input w ′(t) brings difficulties on the application of the methods
described on this manuscript. Analysis and synthesis conditions derived from (9.83) can
be a subject of future work.
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1 Introduction

Abstract

This paper presents sufficient extended LMI conditions to the simultaneous plant-
controller design problem. We introduce the notion of linearizing change-of-variables
between the multipliers and plant parameters to be optimized. Integral quadratic con-
straints offer the possibility of designing linear systems with guaranteed L2-norm
performance, passivity properties, and sector bounds on input/output signals.

1 Introduction

Motivated by the need of designing light-weight spacecraft systems, the first efforts to de-
velop simultaneous plant-controller design (SPCD) methods dates from the 1980’s. The
solid theory in state-space and optimal control influenced the choice of linear feedback
control laws and quadratic performance indices. The resulting complex non-convex con-
strained optimization problems had major drawbacks such as high computational cost, no
guaranteed convergence to a global solution, and lack of robustness in face of uncertain-
ties on the plant.

In order to overcome the computational difficulty, some authors propose a sequential
redesign of plant and controller by adding a constraint on the closed-loop system while
optimizing the plant [1]. The constraint changes the problem to a convex optimization
and can either be (i) preservation of the closed-loop system matrix or (ii) preservation
of the closed-loop covariance matrix. This sequential procedure is actually a suboptimal
problem with proof of convergence to a solution which improves the initial design. Ap-
proaches of SPCD followed the advances in robust control theory during the last decades.
The SPCD is originally a non-convex Bilinear Matrix Inequality (BMI) problem when
formulated in the state-space domain and stability is characterized by Lyapunov theory.
Nowadays, the numerical solution of BMI optimization problems does not reach a satis-
factory maturity. A natural way to handle the problem is to ”split” the BMI into Linear
Matrix Inequalities (LMI) optimization problems which typically yields a stationary solu-
tion. Several LMI-based algorithms for SPCD have been suggested, taking the advantage
of well established LMI approaches for robust optimal control [2, 3]. Most of the pro-
posals consider the state-space matrices as affine functions on the structural optimization
parameters, and differ from each other on how the sequential redesign is derived from the
original non-convex BMI problem. The approach in [4] iterates between two different
formulations of H∞ control synthesis, basic characterization and projected characteri-
zation, to explore their convexity with respect to different variables. These two convex
sub-problems yield to a local optimum and have poor convergence time, since the Lya-
punov matrix is kept fixed in the structure redesign step. The algorithm proposed in [5]
also iterates between convex sub-problems: a controller is designed for a fixed plant;
plant and controller gains are redesigned for a fixed Lyapunov variable. An H 2/H∞
mixed-performance was possible by using a single Lyapunov variable for both criteria.
Reference [6] adds a certain function to render the constraint convex. This ”convexify-
ing” function is updated at each iteration until it disappears at a stationary point of the
non-convex problem. A homotopy-based procedure was proposed in [7]. In the plant re-
design step the variables are slightly perturbed resulting in perturbed matrix inequalities
which are approximated to LMIs by ignoring their second and higher order terms.
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Different from previous works, the results of the the present paper are not based on
sequential LMI-based algorithms. We propose sufficient LMI conditions to the simultane-
ous plant-controller design subject to integral quadratic constraints. The LMI conditions
benefit from the separation between the Lyapunov and system matrices by introducing
Lagrange multipliers [8, 9, 10, 11]. We introduce the notion of linearizing change-of-
variables between the multipliers and plant parameters to be optimized. Integral quadratic
constraints offer the possibility of designing linear systems with guaranteedL 2-norm per-
formance, passivity properties, and sector bounds on input/output signals.

This paper is organized as follows. Some instrumental lemmas are presented in Sec-
tion II. Main results are given in Section III, initially addressing the plant design problem,
that is, the optimal design of plant parameters, and later the simultaneous plant-controller
design. Section IV brings conclusions and suggestions for future work.

2 Preliminaries

We resort to a couple of lemmas well known in robust control. The following lemma is
originally attributed to Finsler Uhlig [12].

Lemma 11 (Finsler). Let x(t) ∈ Rn, Q ∈ Sn and B ∈ Rm×n such that rank(B) < n.
The following statements are equivalent.

i. x(t)TQx(t) < 0, ∀ Bx(t) = 0, x(t) = 0.

ii. B⊥TQB⊥ ≺ 0.

iii. ∃μ ∈ R : Q− μBTB ≺ 0.

iv. ∃X ∈ Rn×m : Q+ XB + BTX T ≺ 0.

Finsler’s lemma has been used frequently in control theory. Historically, its usage
started almost exclusively for the purpose of eliminating variables. For this reason, a more
general version of this lemma is even called the Elimination Lemma [2]. In this context,
the application of the lemma starts from item iv. to obtain item ii., thus eliminating the
variableX . Later the lemma served to the purpose of introducing additional variables [9],
starting from item i. and arriving at items iii. and iv. where the Lagrange multipliers are
present.

The Elimination lemma [2, 3] is a generalized version of Finsler’s lemma.

Lemma 12 (Elimination Lemma). Let Q ∈ Sn, B ∈ Rm×n, C ∈ Rn×k. The following
statements are equivalent.

i. ∃X ∈ Rn×m : Q+ CTXB + BTX TC ≺ 0

ii. B⊥TQB⊥ ≺ 0 (10.1a) C⊥TQC⊥ ≺ 0 (10.1b)

iii. ∃μ ∈ R : Q− μBTB ≺ 0, Q− μCTC ≺ 0.
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Notice that Elimination Lemma reduces to the Finsler’s Lemma when particularized
with C = I . In such a case C⊥ = {0} and (10.1b) is removed from the statement. A
discussion on the relation between these two lemmas can be found in [2, 3].

3 Simultaneous Plant-Controller Design

The plant design problem involves the optimal design of plant parameters according to
some performance criteria. Simultaneous plant-controller design includes both plant pa-
rameters and controller gains as optimization variables. For clarity, the plant design is
addressed first.

Plant Design

Consider the following state-space system for plant design

ẋ(t) = A(ρ)x(t) +Bw(ρ)w(t) (10.2a)

z(t) = Cz(ρ)x(t) +Dzw(ρ)w(t) (10.2b)

where x ∈ Rn is the state vector,w(t) ∈ Rnw is the disturbance vector, z(t) ∈ Rnz is the
performance channel, and systems matrices are real valued with appropriate dimensions,
and defined as

A(ρ) := A0 +Aρρ, Bw(ρ) := Bw0 +Bwρρ,

Cz(ρ) := Cz0 + Czρρ, Dzw(ρ) := Dzw0 +Dzwρρ,

Aρ :=
[
Aρ1 Aρ2 . . . AρN

]
, Bwρ :=

[
Bwρ1 Bwρ2 . . . BwρN

]
,

Czρ :=
[
Czρ1 Czρ2 . . . CzρN

]
, Dzwρ :=

[
Dzwρ1 Dzwρ2 . . . DzwρN

]
,

ρ :=
[
ρ1In ρ2In . . . ρNIn

]T
, ρ

i
≤ ρi ≤ ρi, i = 1, . . . , N.

Note the affine dependence of the above matrices on ρ representing deviations of
the plant parameters from the nominal ones. Matrices Aρ, Bwρ, Czρ, Dzwρ define how
parameter deviations affect the nominal plant matrices A0, Bw0, Cz0, Dzw0. These pa-
rameters are assumed bounded by a hypercube with lower limit ρ

i
and upper limit ρi.

An equivalent reformulation of (10.2)-(10.3) is better suited for the derivations that
follows. We work with the dual representation

ẋ
′
(t) = AT (ρ)x

′
(t) + CT

z (ρ)w
′
(t) (10.4a)

z
′
(t) = BT

w(ρ)x
′
(t) +DT

zw(ρ)w
′
(t). (10.4b)

Working with the dual system is not vital to the plant design, but will facilitate the si-
multaneous plant-controller design later in this manuscript. The influence of the plant
parameters on the dynamics of the nominal system is represented by separate channels
p

′
x(t) and p

′
w(t) leading to the system of equations

ẋ
′
(t) = AT

0 x
′
(t) + CT

z0w
′
(t) + p

′
x(t) + p

′
w(t) (10.5a)

z
′
(t) = BT

w0x
′
(t) +DT

zw0w
′
(t) +BT

wρp
′
x(t) +DT

zwρp
′
w(t) (10.5b)

p
′
x(t) := ρTAT

ρ x
′
(t), p

′
w(t) := ρTCT

zρw
′
(t). (10.5c)
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To characterize stability of the above system, define the quadratic Lyapunov function
V : Rn → R as

V (x
′
(t)) := x

′
(t)TPx

′
(t) (10.6)

where P ∈ S
n and its time derivative yields

V̇ (x
′
(t), ẋ

′
(t)) := ẋ

′
(t)TPx

′
(t) + x

′
(t)TP ẋ

′
(t). (10.7)

Also consider a integral quadratic constraint (ICQ) on the input and output signals

∫ ∞

0

(
z

′
(t)

w
′
(t)

)T [
Q S
ST R

](
z

′
(t)

w
′
(t)

)
≥ 0 (10.8)

where Q ∈ Snz , R ∈ Snw , S ∈ Rnz×nw , R � 0. The above constraint yields specialized
quadratic performance criteria depending on the choice of Q, S, R. Assign

[
Q S
ST R

]
←

[
I 0
0 −γ2I

]
.

to obtain theL2 performance criteria also known as bounded real lemma. A natural design
objective within this particular constraint is the minimization of the performance level γ 2.
One may also want to design a linear system with passivity properties, by selecting

[
Q S
ST R

]
←

[
0 −I
−I 0

]
,

condition also known as positive real lemma. Sector bounds on the signals z(t) and w(t)
may also be a design objective by choosing

[
Q S
ST R

]
←

⎡
⎢⎣ I −1

2
(α+ β)I

−1

2
(α+ β)I −αβI

⎤
⎥⎦ .

Resorting to Lyapunov theory and the S-procedure [9], system (10.5) is asymptoti-
cally stable and satisfy the ICQ constraint (10.8) if, and only if, there exists V (x(t)) > 0,
∀x(t) = 0 such that

V̇ (x
′
(t), ẋ

′
(t)) < −

(
z

′
(t)

w
′
(t)

)T [
Q S
ST R

](
z

′
(t)

w
′
(t)

)
, ∀(x′

(t), ẋ
′
(t), z

′
(t), w

′
(t)) = 0

satisfying (10.5).
(10.9)

The dependence of the ICQ on the vector z(t) can be turned into an explicitly dependence
in terms of x(t), px(t) and pw(t) that yields
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V̇ (x
′
(t), ẋ

′
(t)) < −

⎛
⎜⎜⎝
x

′
(t)

p
′
x(t)

p
′
w(t)

w
′
(t)

⎞
⎟⎟⎠

T

M

⎛
⎜⎜⎝
x

′
(t)

p
′
x(t)

p
′
w(t)

w
′
(t)

⎞
⎟⎟⎠ , (10.10a)

M :=

⎡
⎢⎢⎣
Bw0QB

T
w0 Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� BwρQB
T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � R̄

⎤
⎥⎥⎦ (10.10b)

R̄ := R+Dzw0QD
T
zw0 +Dzw0S + STDT

zw0 (10.10c)

∀(x′
(t), ẋ

′
(t), p

′
x(t), p

′
w(t), w(t)) = 0 satisfying (10.10d)

ẋ
′
(t) = AT

0 x
′
(t) + Cz0w

′
(t) + p

′
x(t) + p

′
w(t) (10.10e)

p
′
x(t) := ρTAT

ρ x
′
(t), p

′
w(t) := ρTCT

zρw
′
(t). (10.10f)

An LMI condition equivalent to non-emptiness of the set (10.10) is obtained by the
use of Finsler’s Lemma.

Theorem 28 (Integral Quadratic Constraint). The set (10.10) is not empty if, and only if,
∃ P ∈ Sn, Φ1, Φ2, Φ3, Γ1, Γ2, Γ3, Λ1, Λ2, Λ3, Π1, Π2, Π3 ∈ Rn×n, Ξ1, Ξ2, Ξ3 ∈
R

n×nz :

J +HT +H ≺ 0, P � 0, (10.11)

J :=

⎡
⎢⎢⎢⎢⎣
Bw0QB

T
w0 P Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� 0 0 0 0
� � BwρQB

T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � � R̄

⎤
⎥⎥⎥⎥⎦ , (10.12)

H :=

⎡
⎢⎢⎢⎢⎣

A0Φ1 +AρρΦ2 A0Γ1 +AρρΓ2 A0Λ1 +AρρΛ2 A0Π1 +AρρΠ2

−Φ1 −Γ1 −Λ1 −Π1

Φ1 − Φ2 Γ1 − Γ2 Λ1 − Λ2 Π1 −Π2

Φ1 − Φ3 Γ1 − Γ3 Λ1 − Λ3 Π1 −Π3

Cz0Φ1 + CzρρΦ3 Cz0Γ1 + CzρρΓ3 Cz0Λ1 + CzρρΛ3 Cz0Π1 + CzρρΠ3

A0Ξ1 +AρρΞ2

−Ξ1

Ξ1 − Ξ2

Ξ1 − Ξ3

Cz0Ξ1 + CzρρΞ3

⎤
⎥⎥⎥⎥⎦ . (10.13)

Proof. Assign

x(t)←

⎛
⎜⎜⎜⎜⎜⎝

x
′
(t)

ẋ
′
(t)

p
′
x(t)

p
′
w(t)

w
′
(t)

⎞
⎟⎟⎟⎟⎟⎠ , Q← J , BT ←

⎡
⎢⎢⎢⎢⎣
A0 Aρρ 0
−I 0 0
I −I 0
I 0 −I
Cz0 0 Czρρ

⎤
⎥⎥⎥⎥⎦ , X ←

⎡
⎢⎢⎢⎢⎣
ΦT

1 ΦT
2 ΦT

3

ΓT
1 ΓT

2 ΓT
3

ΛT
1 ΛT

2 ΛT
3

ΠT
1 ΠT

2 ΠT
3

ΞT
1 ΞT

2 ΞT
3

⎤
⎥⎥⎥⎥⎦
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and apply Lemma 11 to the constrained Lyapunov problem (10.10) with P � 0.

The matrix inequality above is a function of several multipliers. Would it be possible
to constrain or eliminate multipliers without loss of generality? The Elimination Lemma
[2, 3] will serve for the purpose of removing multipliers without adding conservatism to
the solution.

Lemma 13 (Elimination of Multipliers). The following constraints on the multipliers

Γ1 := αΦ1, Γ2 := αΦ2, Γ2 := αΦ3, Ξ1 := 0, Ξ2 := 0, Ξ3 := 0

can be enforced without loss of generality, where α > 0 is a real scalar variable.

Proof. Assign

Q ← J , BT ←

⎡
⎢⎢⎢⎢⎣
A0 Aρρ 0
−I 0 0
I −I 0
I 0 −I
Cz0 0 Czρρ

⎤
⎥⎥⎥⎥⎦ , CT ←

⎡
⎢⎢⎢⎢⎣
αI 0
−I 0
0 0
0 0
0 I

⎤
⎥⎥⎥⎥⎦

T

, X ←

⎡
⎢⎢⎢⎢⎣
ΦT

1 ΦT
2 ΦT

3

ΓT
1 ΓT

2 ΓT
3

ΛT
1 ΛT

2 ΛT
3

ΠT
1 ΠT

2 ΠT
3

ΞT
1 ΞT

2 ΞT
3

⎤
⎥⎥⎥⎥⎦

and apply the Elimination Lemma with P � 0. The chosen C⊥ does not introduce
conservativeness to the condition. To see this expand (10.1b)

C⊥TQC⊥ =

[
α2Bw0QB

T
w0 − 2αP αBw0SDzw0

� R̄

]
≺ 0. (10.14)

The above is equivalent to

R̄ ≺ 0, P � 1

2
α
(
Bw0QB

T
w0 −Bw0SDzw0R̄

−1DT
zw0S

TBT
w0

) � 0 (10.15)

where the second inequality arises from a Schur complement argument. Therefore, no
conservatism is introduced provided that α > 0 is considered a variable in the LMI.

The ICQ condition with fewer multipliers is computationally less costly and more
revealing to the purpose of synthesis. Notice that the matrix of plant parameters ρ has
products with the multipliers Φ2, Φ3, Λ2, Λ3, Π2, Π3. The first step towards a condition
for plant design is to enforce the following constraints on the multipliers

Φ2 := Φ3 := Λ2 := Λ3 := Π2 := Π3 := Ψ, Ψ := ψIn. (10.16)

where ψ ∈ R are scalar variables. Some conservatism to the condition is introduced by
these constraints. The second step is to define the following nonlinear change-of-variables

ρ̂ := ρψIn, ρ̂ =
[
ρ̂1In ρ̂2In . . . ρ̂NIn

]T
(10.17)

involving ρi and ψ. Whenever ψ = 0, the original plant parameters can be reconstructed
according to ρi = ρ̂iψ

−1. With these definitions at hand, a condition for plant design
subject to ICQ constraints can be stated.
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3 Simultaneous Plant-Controller Design

Theorem 29 (Plant Synthesis). There exists plant parameters ρi, i = 1, . . . , N such that
the set (10.10) is not empty if ∃P ∈ Sn, ρ̂i, i = 1, . . . , N, ψ, α ∈ R, Φ1, Γ1, Λ1, Π1, ∈
Rn×n :

J +HT +H ≺ 0, P � 0, (10.18)

J :=

⎡
⎢⎢⎢⎢⎣
Bw0QB

T
w0 P Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� 0 0 0 0
� � BwρQB

T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � � R̄

⎤
⎥⎥⎥⎥⎦ , (10.19)

H :=

⎡
⎢⎢⎢⎢⎣
A0Φ1 +Aρρ̂ α(A0Φ1 +Aρρ̂) A0Λ1 +Aρρ̂ A0Π1 +Aρρ̂ 0
−Φ1 −αΦ1 −Λ1 −Π1 0

Φ1 − ψIn α(Φ1 − ψIn) Λ1 − ψIn Π1 − ψIn 0
Φ1 − ψIn α(Φ1 − ψIn) Λ1 − ψIn Π1 − ψIn 0

Cz0Φ1 + Czρρ̂ α(Cz0Φ1 + Czρρ̂) Cz0Λ1 + Czρρ̂ Cz0Π1 + Czρρ̂ 0

⎤
⎥⎥⎥⎥⎦ ,

(10.20)

ρ
i
ψ ≥ ρ̂i ≥ ρiψ. (10.21)

and if the solution yields ψ non-singular. In this case, the original plant parameters can
be recovered from the auxiliary ones according to ρ i = ρ̂iψ

−1.

Inequalities (10.18) to (10.20) result from combining Theorem 28 with Lemma 13,
multiplier constraints (10.16) and change-of-variables (10.17). Bounds on the plant pa-
rameters are respected during synthesis by including (10.21) in the formulation. Notice
the assumption of a solution rendering ψ non-singular. Although the structure of the
above LMI does not imply non-singularity of ψ, the inclusion of an extra constraintψ > ε
or ψ < −ε, ε > 0 may render this variable non-singular.

Plant-Controller Design

The results from the previous section are now extended with controller design. Control
inputs u(t) ∈ Rnu are included in the open-loop system

ẋ = A(ρ)x(t) +Buu(t) +Bw(ρ)w(t) (10.22a)

z(t) = Cz(ρ)x(t) +Dzuu(t) +Dzw(ρ)w(t) (10.22b)

where Bu ∈ Rn×nu and Dzu ∈ Rnz×nu are considered independent of the plant param-
eters. This assumption can be fulfilled by augmenting the plant with states containing
filtered inputs. We consider the problem of designing a full-state feedback controller
u(t) = Kx(t) concurrently with plant parameters ρi. Similarly to the plant design, the
derivations are based on the dual closed-loop system

ẋ
′
(t) = (AT

0 +KTBT
u )x

′
(t) + (CT

z0 +KTDT
zu)w

′
(t) + p

′
x(t) + p

′
w(t) (10.23a)

z
′
(t) = BT

w0x
′
(t) +DT

zw0w
′
(t) +BT

wρp
′
x(t) +DT

zwρp
′
w(t) (10.23b)

p
′
x(t) := ρTAT

ρ x
′
(t), p

′
w(t) := ρTCT

zρw
′
(t). (10.23c)

197



Paper G

The first step towards a condition for simultaneous plant-controller design is to en-
force the constraint

Φ1 := Λ1 := Π1 := Φ. (10.24)

Some conservatism to the condition is introduced by these constraints. The second step
is to resort to the nonlinear change-of-variables between controller and multiplier data
[13, 8, 10]

K̂ := KΦ. (10.25)

Whenever Φ is non-singular, the original controller gains can be reconstructed from the
auxiliary ones according to K = K̂Φ−1. With these definitions at hand, a condition for
simultaneous plant-controller synthesis subject to ICQ constraints can be stated.

Theorem 30 (Simultaneous Plant-Controller Synthesis). There exist plant parameters
ρi, i = 1, . . . , N and a controller gain K such that the set (10.10) is not empty if ∃ P ∈
Sn, ρ̂i, i = 1, . . . , N, ψ, α ∈ R, Φ1, Γ1, Λ1, Π1, ∈ Rn×n :

J +HT +H ≺ 0, P � 0, (10.26)

J :=

⎡
⎢⎢⎢⎢⎣
Bw0QB

T
w0 P Bw0QB

T
wρ Bw0QD

T
zwρ Bw0SDzw0

� 0 0 0 0
� � BwρQB

T
wρ BwρQD

T
zwρ BwρSD

T
zw0

� � � DzwρQD
T
zwρ DzwρSD

T
zw0

� � � � R̄

⎤
⎥⎥⎥⎥⎦ , (10.27)

H :=

⎡
⎢⎢⎢⎢⎣

A0Φ+BuK̂ +Aρρ̂ α(A0Φ+BuK̂ +Aρρ̂) A0Φ +BuK̂ +Aρρ̂
−Φ −αΦ −Φ

Φ− ψIn α(Φ− ψIn) Φ− ψIn
Φ− ψIn α(Φ− ψIn) Φ− ψIn

Cz0Φ+DzuK̂ + Czρρ̂ α(Cz0Φ+DzuK̂ + Czρρ̂) Cz0Φ +DzuK̂ + Czρρ̂

A0Φ +BuK̂ +Aρρ̂ 0
−Φ 0

Φ− ψIn 0
Φ− ψIn 0

Cz0Φ +DzuK̂ + Czρρ̂ 0

⎤
⎥⎥⎥⎥⎦ (10.28)

ρ
i
ψ ≥ ρ̂i ≥ ρiψ. (10.29)

Proof. The above inequalities are trivially obtained from Theorem 29 but considering
the closed-loop (10.23), multiplier constraints (10.24) and change-of-variables with con-
troller data (10.25). Bounds on the plant parameters are respected during synthesis by
the presence of (10.29). If a feasible solution is found, the original plant and controller
parameters can always be recovered from the auxiliary ones according to ρ i = ρ̂iψ

−1 and
K = K̂Φ−1, respectively. To realize this, first notice that −α(Φ + ΦT ) ≺ 0 in the (2,2)
entry of J +H + � ≺ 0 with α > 0 implies Φ non-singular thus invertible. Moreover,
ψ = 0 is implied by the entry (3,3), i.e. −ψIn ≺ −Φ with Φ non-singular.

4 Conclusions and Future Work

Sufficient LMI conditions to the simultaneous plant-controller design problem is pre-
sented in this paper. The insertion of multipliers in the formulation facilitates a linearizing
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4 Conclusions and Future Work

change-of-variables involving plant parameters to be optimized. Synthesis is subject to
integral quadratic constraints on input and output signals, offering flexibility on the speci-
fication of closed-loop performance. The linear dependence of the LMIs on the Lyapunov
matrix facilitates the usage of parameter-dependent Lyapunov functions as certificates of
stability of uncertain and time-varying systems. Results on simultaneous plant-controller
design for uncertain and linear-parameter varying systems have already been derived and
will be presented in a separate manuscript.
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1 Introduction

Abstract

Tuning a model-based multivariable controller for wind turbines can be a tedious
task. In this report, multiobjective output-feedback control via LMI optimization is
explored for wind turbine control design. In particular, we use D-stability constraints
to increase damping and decay rate of resonant structural modes. In this way, the
number of weighting functions and consequently the order of the final controller is
reduced, and the control design process is physically more intuitive and meaningful.

1 Introduction

Optimal methods are attractive to wind turbine control, as the controller is the minimizer
of a cost function that is chosen a priori. Optimal control also handles multiple-input
multiple-output (MIMO) systems naturally. In practice, building the cost function can
be just as difficult as tuning a classical controller. Due to mathematical convenience, the
cost function is usually defined as a quadratic functional of the states and inputs (LQR
control). The selection of the weights composing the cost function to achieve genera-
tor speed and power regulation as well as load attenuation can be a tedious task, often
relying on trial-and-error procedures. For example, the designer tries to indirectly con-
trol mechanical loads by penalizing positions and velocities of the structural degrees of
freedom. To achieve asymptotic generator speed regulation, it is common to include a
term to penalize the speed error, and another term for the integral of the speed error. An
analytical characterization of the weights that should be attributed to each of these terms
is not trivial. H∞-control of wind turbines also suffers from some problems related to
weighting, since the weighting functions are usually transfer functions augmented to the
design model, increasing the the order and complexity of the controller.

2 D-Stability Control of Wind Turbines

Our interest lies in the design of a dynamic output feedback controller

ẋc(t) = Acxc(t) +Bcy(t) (11.1)

u(t) = Ccxc(t) +Dcy(t) (11.2)

for a wind turbine, such that satisfactory generator speed (and power) regulation as well
as mitigation of mechanical vibrations are attained. Consider the closed-loop system

ẋ(t) = Ax(t) + Bw(t) (11.3)

z(t) = Cx(t) +Dw(t). (11.4)

The ideas presented here can be extended to linear-parameter varying (LPV) systems by
making plant and controller matrices as functions of some scheduling parameter. Choose
input-output operators (transfer matrices) Tw→z of interest. For example, TV→Ωg is the
operator from wind disturbance to generator speed and T V→β̇ is the operator from wind
disturbance to pitch angle velocity. Then, adopt time and frequency domain specifications
in closed-loop. These specification can include input-output norms as
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• L2-norm (‖Tw→z‖2i,2 < γ): ”energy gain” of a system to a worst-case disturbance,
e.g. a constant relating the energy of the worst-case wind (wind gust) to the energy
on the gen. speed;

• H2-norm (‖Tw→z‖22 < μ): expected variance of the output when the disturbance
is assumed white noise with zero mean;

• Generalized H2-norm (‖Tw→z‖g < �): energy-to-peak gain of a system, e.g. a
constant relating wind gust with maximum pitch angle rates.

The specifications can also take regional pole placement constraints, such as the ones
illustrated in Fig. 11.1.

• Conic region: minimum damping for all modes;

• Decay region: minimum decay rate for all modes;

• Circle region: a circle with radius r and center −c.

Figure 11.1: Regions of the complex plane for pole placement constraints.

For illustration purposes, we adopt a generic wind turbine model with 9-states com-
posed of the following modes/states:

• Two-mass flexible drive-train;

• Tower fore-aft displacement;

• Second-order pitch actuator;

• First-order generator lag;

• Generator speed integral.

The chosen design criteria is to minimize the performance level γ subject to

• ‖Tv→z‖2i,2 < γ, z(t) = [Ωi(t) Qg(t) β(t)]T ;

•
∥∥∥Tv→β̇

∥∥∥
g
< 8 deg/s;

• arg(λ(A)) < φ, Re(λ(A)) < α.
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C(s)

G (s)WT

Qg
�

G (s)z1

�I,g
V

G (s)z2

z1

z2

z3

�

Figure 11.2: Augmented system for synthesis.

where Ωi is the integral of speed error,Qg is the generator torque and β is the pitch angle.
In words, this performance criteria states that the generator speed ”integral square error
(ISE)” should be small with minimum control effort while respecting the pitch rate limit,
for the worst-case wind disturbance. The augmented system for synthesis purposes is
depicted in Fig. 11.2. The weighting functions were chosen frequency independent on the
form G1(s) := k1 and G2(s) := diag(k2, k3). All modes should be contained in a conic
region with internal angle 2φ and decay rate of at least α. The adopted multiobjective
LMI formulation follows [1]. The LMIs were solved with the semidefinite programming
code SeDuMi [2] and parser YALMIP [3].

The drive-train torsional mode is the least damped mode in open-loop. Active vibra-
tion control can be obtained by a D-stability constraint on the minimum damping of the
closed-loop system. via the conic region constraint. Figure 11.3 depicts the closed-loop
system response for a unit step on wind speed disturbance, under various internal angles
of the conic region. The location of the closed-loop poles are illustrated in Fig. 11.4.
The effect of the damping constraint on the generator speed Ω g and generator torque Qg

signals is noticeable.
Increased damping in the tower fore-aft direction can be achieved by intersecting the

conic region with a minimum decay rate constraint. Figures 11.5 and 11.5 depicts wind
disturbance step response and location of the poles in the complex plane, respectively,
for various decay rates intersected with a conic region with angle of 87 o. Notice that
the decay constraint does not influence significantly the torque signal, responsible for
damping the drive-train mode. This is due to the differences in terms of damping of
these modes in open-loop. The contribution of aerodynamic damping is higher in the
tower mode than in the drive-train mode, making the former more damped than the later.
Therefore, the decay rate acts on the tower mode without moving the drive-train poles
and vice-versa.

All the above simulations considered an energy-to-peak constraint on the pitch rate β̇
of 10 deg/s. We now access how changes in the pitch rate bounds impacts the response
of the system in closed-loop. Wind speed step responses for different bounds on the pitch
rate are depicted in (11.7). Notice that both drive-train damping and tower decay rates are
kept the same irrespective of the energy-to-peak gain of pitch rate. Response of generator
speed regulation expectedly changes, and could be fine tuned by varying the gain k 1.
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Figure 11.3: Closed-loop response for a unit step on wind speed disturbance for different
angles of the conic region.
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Figure 11.4: Location of the closed-loop poles for different angles of the conic region.
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Figure 11.5: Closed-loop response for a unit step on wind speed disturbance for different
decay rates and conic region with angle of 87o.
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Figure 11.6: Closed-loop poles for different decay rates and conic region with angle of
87o.
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β⋅

β⋅

β⋅

Figure 11.7: closed-loop response for a unit step on wind speed disturbance for different
energy-to-peak gains on pitch angle rate, with decay rate of τ = 4s and conic region with
angle of 87o.
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[3] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in MATLAB,” in
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. [Online]. Available:
http://users.isy.liu.se/johanl/yalmip

208


