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Abstract

Refrigeration is used in a wide range of applications, e.g., for storage of food at low tem-
peratures to prolong shelf life and in air conditioning for occupancy comfort. The main
focus of this thesis is control of supermarket refrigeration systems. This market is very
competitive and it is important to keep the variable costs at a minimum and, if possible,
offer products which have higher robustness, performance, and functionality than similar
products from competitors. However, the multitude of different system configurations,
system complexity, component wear, and changing operating conditions make optimal
tuning of controllers a difficult and time consuming task. These are also some of the chal-
lenges which make advanced model-based control difficult, and a model-based controller
will often be tailored to a specific system. The focus in this thesis is therefore instead on
development of data-driven control strategies with a higher plug and play potential.

One of the main control challenges in refrigeration systems is proper control of su-
perheat for efficient and safe operation of the system. This task can be performed by an
electronic expansion valve and requires two sensors, which traditionally are a pressure
and a temperature sensor. In this thesis, a novel maximum slope-seeking (MSS) control
method is developed. This has resulted in a control implementation, which successfully
has been able to control the evaporator superheat in four widely different refrigeration
system test facilities without using a pressure sensor. A single-sensor solution is thus
provided, which either reduces the variable costs or increases the robustness of the sys-
tem by not relying on pressure measurements. MSS is an example of data-driven control
and can be applied to a broad class of nonlinear control problems. The method utilizes
the qualitative nonlinearity in the system and harmonic analysis of a perturbation signal
to reach an unknown, but suitable, operating point.

Another important control task in refrigeration systems is to maintain the temperature
of the refrigerated space or foodstuff within the desired/legislative requirement, e.g., to
prevent possible deterioration of the foodstuff. Refrigeration systems are often dimen-
sioned to be able to cope with the highest possible loads and the hottest temperatures
during the year, while also taking into account extreme weather conditions. Overdimen-
sioning is expensive, both in terms of the variable cost, but also due to possibly higher
peak energy consumption costs. Further, load patterns could have some degree of re-
peatability on a daily basis, and the possible use of repetitive control and iterative learn-
ing control are therefore investigated in this thesis. As a result, learning-based precool
strategies are proposed, which utilize the thermal storage capability in foodstuff to shift
some of the peak load to less loaded hours. The precool time and period can continuously
be updated based on data from previous days and the data-driven solutions are not based
on models of the system, prior knowledge of load patterns, or weather forecasts and can
therefore easily be added to existing systems.
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Synopsis

Køling bruges i en lang række applikationer eksempelvis til opbevaring af fødevarer ved
lave temperaturer for at forlænge holdbarheden og i klimaanlæg til forbedring af inde-
klima. Denne afhandling fokuserer hovedsageligt på regulering af køleanlæg i supermar-
keder. Dette er et meget konkurrencepræget marked og det er derfor vigtigt at holde de
variable omkostninger på et minimum og hvis det er muligt tilbyde produkter, som har hø-
jere robusthed, ydeevne og funktionalitet sammenlignet med konkurrenternes produkter.
Men de mange forskellige systemkonfigurationer, kompleksiteten af systemerne, kompo-
nentslid, og skiftende driftsbetingelser gør optimal tuning af regulatorer en vanskelig og
tidskrævende opgave. Dette er også nogle af de udfordringer, der gør avanceret model-
baseret regulering vanskelig og en modelbaseret regulator vil ofte være skræddersyet til
et specifikt system. Fokus i denne afhandling er derfor i stedet på at udvikle datadrevne
reguleringsstrategier med et større plug and play potentiale.

En af hovedudfordringerne ifm. regulering af kølesystemer er passende styring af
overhedning for effektiv og sikker drift. Dette kan gøres med en elektronisk ekspansions-
ventil og kræver to følere, der traditionelt er en tryk- og en temperaturføler. I denne af-
handling er en ny "maximum slope-seeking"(MSS) reguleringsmetode udviklet. Det har
udmyntet sig i en reguleringsimplementation, som med succes har været i stand til at
styre fordamperoverhedningen i fire vidt forskellige kølesystemstestanlæg uden brug af
tryksensor. En én-sensor løsning er derved fundet, som enten kan reducere de variable
omkostninger eller øge robustheden ved ikke at være afhængig af trykmålinger. MSS er
et eksempel på datadreven regulering og kan anvendes i en bred klasse af ulineære regu-
leringsproblemer. Metoden udnytter den kvalitative ulinearitet i systemet og harmonisk
analyse af et perturbationssignal til at nå et ukendt men passende driftspunkt.

En anden vigtig reguleringsopgave i kølesystemer er at holde temperaturen af det af-
kølede rum eller fødevarerne inden for det ønskede/lovmæssige krav, fx for at forhindre
eventuel forringelse af fødevarerne. Køleanlæg er ofte dimensionerede til at kunne klare
de størst tænkelige belastninger og de varmeste temperaturer i løbet af året, mens der også
tages hensyn til ekstreme vejrforhold. Overdimensioning er dyrt, både hvad angår de va-
riable omkostninger, men også på grund af eventuelt højere omkostsninger ifm. spidsbe-
lastninger. Endvidere kan belastningsmønstre have en vis grad af repeterbarhed på daglig
basis og mulig brug af "repetetive control"og "iterative learning control"er derfor blevet
undersøgt. På baggrund heraf foreslås i denne afhandling læringsbaserede forkølingsstra-
tegier, som kan udnytte den termiske lagerkapacitet, der er i fødevarer, til at flytte noget
af spidsbelastningen til mindre belastede timer. Den anvendte forkølingstid og periode
kan opdateres løbende baseret på data fra foregående dage og de datadrevne løsninger
er ikke baserede på modeller af systemet, forudgående kendskab til belastningsmønstre,
eller vejrudsigter og kan derfor nemt tilføjes til eksisterende systemer.
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1 Introduction

This chapter first provides the project background and a description of a typical refrigera-
tion system based on the most common vapor compression cycle (VCC) principle, which
is the type of refrigeration considered in this thesis. Then, the motivation and objectives
for this research is given, which is followed by a review of the state-of-the-art within these
objectives and an outline of the research challenges. Finally, an outline of the remainder
of the thesis is given.

1.1 Background and Motivation

This project was proposed in collaboration with Danfoss A/S and their Automatic Con-
trol department, which is now a part of the Electronic Control & Services department
under the Refrigeration & Air Conditioning Controls division. Danfoss is a leading com-
pany within refrigeration and their range of services and products include areas such as
refrigeration of food, air conditioning, building heating, district heating, solar inverters,
and electrical motor control. This thesis is mainly focused on supermarket refrigeration
systems control, which is one of the major markets for Danfoss. A general description
of a supermarket refrigeration system is given in the following subsection before going
into detail in the typical control challenges and the research objectives. Extension of the
developed concepts to areas such as air conditioning and water chillers have also been
made in this project as the basic refrigeration system behind is very similar.

1.1.1 Description of a Typical Supermarket Refrigeration System

Refrigeration systems are required in order to maintain a high quality and shelf life of
foodstuff, which is achieved by keeping the food at low temperatures. Supermarket re-
frigeration systems have multiple fridge and freezer display cases each equipped with
local control of the air temperature inside the display case. Fig. 1.1 shows typical display
cases in a Danish Supermarket.

A refrigerant is circulated to ensure transport of heat from one medium to another.
This heat transfer is achieved by proper control of pressures and mass flows inside the re-
frigeration system using compressors, valves, and fans. A simplified schematic of a typ-
ical supermarket refrigeration system is shown in Fig. 1.2 and the state of the refrigerant
in the vapor compression type refrigeration cycle is illustrated using a pressure-enthalpy
diagram in Fig. 1.3. The states are marked with light blue numbers in the figures and there
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Introduction

Figure 1.1: Supermarket display cases. Freezer gondolas are located in the front and open
shelf type fridges are located in the back.

are in general four processes in the vapor compression refrigeration cycle; compression,
condensation, expansion, and evaporation.

Compression (State 1-2): If we start at State 1, then a gaseous refrigerant is com-
pressed by the compressor rack consisting of multiple compressors in parallel depending
on the capacity needs of the system. The compression results in an increase in pressure
from Pcp,mt to Pc at State 2 and a corresponding temperature increase of the refriger-
ant (isobaric condensation process assumed). Two compression stages, with two separate
compressor racks, are used when the refrigeration system both services freezers at a low
temperature (LT) and fridges at a medium temperature (MT). The LT compressor rack
takes the refrigerant at State 1’ with pressure Pcp,lt to State 2’ with pressure Pcp,mt. The
work performed on the refrigerant by the compressors can be computed as

Ẇcp,mt = ṁrcp,mt (hcp,o,mt − hcp,i,mt) , (1.1)

Ẇcp,lt = ṁrcp,lt (hcp,o,lt − hcp,i,lt) , (1.2)

where Ẇcp,mt and Ẇcp,lt are the work performed by the MT and LT compressor racks,
ṁrcp is refrigerant mass flow through the compressor rack, and hcp,o and hcp,i are the
specific enthalpy out of and into the compressor rack. Equation (1.1) and (1.2) assume
a steady state process with a steady flow and are derived based on the first law of ther-
modynamics. The specific enthalpy cannot be measured, but can be calculated based
on pressure and temperature measurements and refrigerant property tables included in
software packages such as RefEqns [Skovrup, 2000].

Condensation (State 2-3): The refrigerant is then directed to a condenser unit located
outside, which circulates colder air across the refrigerant piping to transfer heat to the
surroundings. This lowers the temperature of the refrigerant, which starts to condensate.
The temperature of the refrigerant is constant during condensation (liquid/gas mixture)
and a requirement for proper heat transfer is that the outside air temperature Tair,o is
lower than the saturation temperature Tc of the refrigerant, which is determined by the

2
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refrigerant type and the pressure Pc. At State 3 the refrigerant is slightly subcooled and
liquefied. The condenser unit is called a gas cooler if the high pressure side of the vapor
compression cycle is operated in the supercritical region.

Expansion (State 3-4): Some refrigeration systems have a high pressure and a bypass
expansion valve in connection with a receiver. The high pressure valve lowers the pressure
by expanding the refrigerant to State 5, which ensures a smaller pressure difference across
each valve in the system. The bypass valve takes gas from the receiver at State 6 and
bypasses it to the suction line before the compressor at State 7. This can be used to create
an artificial load on the system and can reduce the number of compressor on/off switches
especially at low load conditions. The bypassed gaseous refrigerant will also increase
the suction pressure and temperature and can help prevent frosting. Liquid refrigerant is
then directed from the receiver at State 3’ to the individual display cases and cold storage
rooms, each installed with an evaporator and an expansion valve. The valve maintains a
pressure difference and the opening degree OD of the valve determines the refrigerant
flow individually depending on the required cooling capacity of each evaporator. All
refrigerant expansion processes can be assumed to be isenthalpic with no heat transfer to
or from the surroundings and thus having equal enthalpy.

Evaporation (State 4-1): The refrigerant then evaporates in the evaporators due to
circulation of hotter air across the evaporator fins. This gives a heat transfer from the
air in the cold storage to the refrigerant. A requirement for proper heat transfer is that
the evaporation temperature Te,mt or Te,lt is below the desired temperature in the cold
storage. Again, by using the first law of thermodynamics, the steady state heat transfer
rate out of the cold storages can be computed as

Q̇e,mt = ṁre,mt (he,o,mt − he,i,mt) , (1.3)
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Q̇e,lt = ṁre,lt (he,o,lt − he,i,lt) , (1.4)

where Q̇e,mt and Q̇e,lt are the total heat transfer rates out of the MT and LT sections of
evaporators, ṁre is the total refrigerant mass flow through the section, and he,o and he,i
are the specific enthalpy out of and into the section. The refrigerant mass flow through
the LT evaporators ṁre,lt is equal to ṁrcp,lt in steady state, and he,o and hcp,i are al-
most equivalent if the pipes between the evaporator and compressor rack are well insu-
lated. The evaporation process can also be assumed isobaric, since the pressure drop in
most cases is negligible. When all the refrigerant is evaporated into gas form it starts
to superheat. The difference in temperature between evaporation temperature Te and the
temperature at the inlet of the compressor at State 1 or 1’ is called superheat Tsh.

For further details on supermarket refrigeration systems see, for example, [Larsen,
2005, Petersen et al., 2012, Shafiei et al., 2013b]. Additionally, note that water chillers
and air conditioning systems are very similar in construction using the same basic vapor
compression cycle to either cool air or water depending on the configuration.

1.1.2 Supermarket Refrigeration System Control

The most important task of the refrigeration system is to ensure that the temperature
of the foodstuff is maintained at the right temperature in each of the cold storages, e.g.,
display cases, to maintain high food quality and shelf life. The heat transfer rate out of the
individual cold storages (cooling) should therefore in average match the heat transfer rate
into the cold storage (load). It is not possible to measure the heat transfer rates directly and
not practical to measure the foodstuff temperature, since this means that the shop owner
would need to place thermocouples on the foodstuff. The display case air temperature
coming out of the display case into the evaporator Tdc,o and/or the air coming back to the
display case Tdc,i is instead measured and typically controlled with an on/off hysteretic
feedback loop. This controller switches the valve on when the temperature is above an
upper limit, which generates a refrigerant flow and thus cooling, and off again when it
is below a lower limit. The evaporator fan speed fe could also be varied according to
the required cooling demand. However, this fan is mostly operated at constant speed in
supermarket refrigeration systems.

There exist legislative temperature thresholds for different types of refrigerated food-
stuff and the supermarket refrigeration system should maintain the temperature within
these thresholds. In Denmark the Danish Veterinary and Food Administration (DVFA) is
responsible for conducting yearly checks of the supermarkets to ensure that the regulative
is met and that self checks have been performed. The inspection rules and thresholds
for different foodstuffs can be found in [Danish Veterinary and Food Administration,
2005, Danish Veterinary and Food Administration, 2013]. Freezers should typically be
operated below -18◦C and fridges should be operated between 0 and 5◦C, but it also de-
pends on the type of food. If some of the foodstuff has been maintained outside the limits
during self checks or a DVFA inspection, then that could consequently result in discarded
foodstuff and possibly a penalty fine to the shop owner depending on the severity. Health
hazards could also arise due to increased bacteria growth in the foodstuff. DVFA usu-
ally inspects the temperature in supermarkets using an infrared temperature measurement
device, which measures the product surface temperature. If there is a problem, a ther-
mometer is inserted in the display case to measure the air temperature or placed on the
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product itself [Danish Veterinary and Food Administration, 2013]. The Danish legislation
on the allowed temperature is actually on the air temperature. However, by ensuring that
the product is within the bound, then it is less likely that the air temperature is measured.
The 5◦C limit for some fridge products is chosen because most bacterial growth stops
below this temperature [Danish Veterinary and Food Administration, 2005].

Apart from maintaining the foodstuff at the right temperature it is also important to
operate the refrigeration system as optimal as possible. The coefficient of performance
COP is a measure of how well the system operates as it gives the relation between the
energy put into the system versus the amount of cooling obtained. A high number thus
indicates a well operated system and the total COP can be defined as

COP =
Q̇e,mt + Q̇e,lt

Ẇcp,mt

ηmt
+

Ẇcp,lt

ηlt
+
∑N
i=1 Ẇf,i

, (1.5)

where ηmt ∈]0, 1[ and ηlt ∈]0, 1[ represent the efficiency when going from consumed
electrical power to actual work performed on the refrigerant by the MT or LT compres-
sor racks. Ẇf,i is the electrical power consumption of fan i out of N (evaporator and
condenser fans). Valve power consumption is negligible and not included. Note here that
there also exist other more simple approximations of the COP, e.g., which do not include
the fans as they typically only account for roughly 10% of the total power consumption.

The work of the compressor racks were expressed in Eq. (1.1) and (1.2). The mass
flow matches the required cooling. This means that the difference in enthalpy should be
minimized to optimize the system performance. The difference in enthalpy is determined
by the efficiency of the compressor rack, which is a mechanical optimization task, and
the pressure difference between the high and low pressure side. The system can there-
fore be optimized by increasing the suction pressures Pe,lt and Pe,mt while lowering the
condenser pressure Pc. The suction pressures are typically controlled by the compressor
racks and the setpoints have to be low enough to make the evaporation temperature lower
than the desired temperature of the air in the display case. The condenser pressure is
controlled by the condenser fan speed fc, which is increased if the pressure gets too high.
The resulting increase in air flow gives a higher heat transfer and faster condensation,
which lowers the pressure. The condenser pressure setpoint has to be high enough to get
the condensation temperature above the outside air temperature Tair,o and can thus be set
to follow this temperature with a fixed offset. The pressure difference can therefore not
be made smaller than what the surrounding temperatures allow.

A high heat transfer in the evaporators is obtained by having a high liquid to gas
ratio of refrigerant in the evaporator. However, all the refrigerant should be evaporated
before the compressor rack in order to reduce the wear on the compressors and the risk of
damaging them. An important control task in the refrigeration system is thus to maintain
suitable levels of superheat Tsh,mt and Tsh,lt, since zero superheat is an indication of
possible flooding of the compressors and too high superheat gives a low utilization of the
evaporator cooling capacity. The superheat is controlled by regulating the mass flow into
the evaporator with the valve and the setpoint is typically between 6-12oC.

It is also important to control the level of subcooling Tsub. This is mostly because
even small gas bubbles in the liquid refrigerant drastically lowers the mass flow through
the valve, which will cause a drop in the obtainable cooling capacity. There is also an
operating point dependent energy optimal level of subcooling different from zero [Pottker
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& Hrnjak, 2012], which can be obtained by the condenser fan, the high pressure valve,
and the bypass valve.

Due to safety reasons and system performance it is also necessary to include fault
detection and isolation (FDI) and possibly fault handling or fault tolerant control (FTC).
This is typically done on a higher supervisory level in a hierarchical control structure.
Some of the issues could be refrigerant leakage, heat exchanger fouling, critical low/high
pressures, or pressure sensor "freezing". The first two problems affect the system perfor-
mance and manifest themselves on a longer term, which can make them harder to detect.
An exception is fouling due to frost build up on the evaporator fins, which have to be
defrosted once to several times a day. Defrost is performed using an electrical heater
and/or a temporary shutdown of refrigerant flow and it is either scheduled or based on
measurements from an extra temperature sensor placed on top of the fins. Safety lim-
its on pressures are usually maintained with pressostats, limits on operating ranges, or
proper shutdown mechanisms. A combination of impurities/dirt and oil might also block
the passage to pressure sensors, which can result in that the measurement signal "freezes".
This can eventually lead to evaporator flooding, liquid in the compressor, and compressor
damage, since pressure sensors are used to calculate the evaporation temperature and thus
the superheat temperature.

Another problem that might occur in refrigeration systems with multiple evaporators
is synchronization of the temperature hysteresis controlled on/off valves. This is mostly
a problem if the display cases are homogeneous and it can lead to large fluctuations in
mass flow. The requested compressor rack capacity will as a result vary a lot giving an
increase in on/off compressor switches and increased variability in power grid consump-
tion [Larsen et al., 2007b].

A way to significantly reduce the heat transfer rate (load) on the display cases are to
use night covers. Some systems have automatic covers, which roll down during closed
hours and some older systems have to be manually covered with foam plates. This cov-
ering and uncovering gives big changes in system load, which gives an additional control
challenge. The effect is enforced by increased customer and employee activity, when the
supermarket is open.

Finally, the large thermal energy storage capability of the foodstuff provides load
shifting and cost optimization possibilities. Cost optimization can be achieved by cooling
more when the energy price are low and/or when it is more favorable during nighttime
where the system COP is higher, due to lower outside temperatures. Supermarkets could
therefore provide ancillary services to the grid by shifting power consumption according
to power production. Another potential is to utilize the thermal storage capability to better
cope with hot summer days by, e.g., precooling the foodstuff in advance during the night.

1.1.3 Control Challenges and Overall Objectives

The research presented in this thesis addresses a part of the extensive amount of control
problems mentioned in Subsection 1.1.2. These control problems have been categorized
in Fig. 1.4 into essential lower level decentralized control tasks and higher level supervi-
sory control challenges meant to make the system more robust, cost optimal, and energy
efficient.

The main objective of the supermarket refrigeration system is to maintain the temper-
ature in the display cases within the legislative requirements due to health issues and to
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Figure 1.4: Overview of typical control challenges in supermarket refrigeration systems.
Light blue boxes indicate the focus of this thesis.

ensure high foodstuff shelf life. Furthermore, as stated in Subsection 1.1.2, if some of the
foodstuff has been maintained outside the limits during self checks or a DVFA inspection,
then that could consequently result in discarded foodstuff and possibly a penalty fine to
the shop owner depending on the severity. Dimensioning a refrigeration system to also
meet the highest possible load condition is costly (e.g., hottest summer day with highest
customer activity). Fig. 1.5 shows the filtered total estimated compressor rack work ap-
plied to the refrigerant in a representative medium sized Danish supermarket during three
days. The estimate is calculated based on Eq. (1.1) and (1.2). Note the variability in
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Figure 1.5: Filtered total estimated compressor rack work during three days in a medium
sized Danish supermarket.
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the load during the day and the high load during the opening hours of the supermarket
with customer activity and higher outdoor temperature. Furthermore, an overdimensioned
system will also have a higher peak power demand, which could result in an additional
cost in terms of larger transformers or extensions of transmission lines for large systems.
Finally, additional display cases might be added later, which puts further stress on the
system. An alternative to overdimensioning the system could be to utilize the thermal
storage capability of foodstuff and store energy in terms of "coldness" for later use. Some
of the peak load and required cooling capacity could possibly be shifted temporally by
precooling the foodstuff in lightly loaded hours during the night or early morning. Load
shifting could also add robustness towards component wear and degradation during the
refrigeration systems lifetime.

The second most important control challenge, after maintaining the display case tem-
perature within the requirements, is to maintain a suitable superheat level and thus to
ensure the integrity of the compressor rack, while meeting the required cooling demand.
A typical Danfoss evaporator superheat control setup requires a control unit, an elec-
tronic expansion valve (EEV), a temperature sensor, and a pressure sensor. The setup is
illustrated in Fig. 1.6. The sensors provide the evaporator outlet temperature Te,o and the
evaporation temperature Te (through the pressure Pe and refrigerant property tables). The
difference in these temperatures is defined as the superheat Tsh. Each evaporator (display
case) is equipped with this control setup and approximately one third of the total cost of
these components is the pressure sensor. In this example it is assumed that the control unit
and valve cost is halved, since these components are also necessary for display case air
temperature control. The pressure sensor also costs approximately three times as much as
the temperature sensor and is not as reliable, since impurities and oil can clutter the sensor
and because it is more sensible to mechanical and electrical stress. Alternative superheat
control is therefore investigated in this thesis, which does not require a pressure sensor
and can function as a fallback strategy in case of pressure sensor malfunction.

EvaporatorEEV

OD

Te,o Pe Te

Controller
Tsh +

-

Liquid refrigerant 
from condenser

Gaseous refrigerant 
to compressor

Tsh,ref

+

-

Figure 1.6: Evaporator superheat control setup.

Denmark roughly has 4500 supermarkets1 and their refrigeration systems are seldom
completely similar, since each supermarket is different in size and needs. This means
that there exist thousands of different system configurations worldwide. Changes in op-
erating conditions and load patterns will also occur during the day and during the year
due to seasonal weather changes. Finally, system parameters can change due to compo-
nent wear, heat exchanger fouling, ice buildup, reduction in refrigerant charge, changes in
foodstuff type and amount, etc. These are some of the challenges, which make advanced
model-based control solutions difficult and a solution will therefore often be tailored to a

1http://ing.dk/artikel/supermarkeder-kan-gore-store-maengder-kulkraft-overflodige-103015
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specific system and have some form of adaptation mechanism. Another challenge is the
nonlinearity of some of the control problems and the cross coupling between the lower
level controllers. An example is the characteristic of the relationship between the evap-
orator valve opening degree and the superheat, which is very flat until the evaporator
is almost filled with liquid refrigerant. At this point the superheat drops fast and then
flattens out again at zero when the evaporator is flooded. Making a controller that gets
the opening degree to a level that gives a small non-zero superheat fast without suffer-
ing from valve hunting (instability) at the desired operating point is difficult [Lim et al.,
2009]. The controllers could often be tuned more optimally. However, this results in
an additional investment. The multitude of different system configurations and changing
operating conditions also make tuning difficult. These challenges justifies an effort to
incorporate more intelligence and adaptation and a move towards control strategies with
a higher degree of plug and play potential. Furthermore, model-based control approaches
often lack flexibility, modularity, and robustness towards changes.

The focus of the research presented in this thesis has therefore been to improving the
tolerance of superheat control towards potential pressure sensor problems by making this
sensor obsolete and to improve the robustness of foodstuff temperature control towards
saturation situations through "intelligent" load shifting. Additionally, emphasis has been
on non model-based solutions with a high plug and play potential, in order to reduce the
commissioning costs, which is also in the interest of the industrial partner Danfoss. The
other control challenges summarized in Fig. 1.4 are mostly energy optimization related.
The broad objectives are in short:

• To derive single-sensor superheat control solutions, which do not require a pressure
sensor.

• To improve the robustness of foodstuff temperature control towards saturation sit-
uations.

• To find non model-based solutions with a high degree of plug and play potential.

1.2 State-of-the-Art

An overview of the existing literature is first given, before outlining the research chal-
lenges and hypotheses. The overview includes a discussion of existing superheat and
foodstuff temperature control strategies, together with a discussion of key control meth-
ods related to the proposed solutions and the broad objectives outlined in Subsection
1.1.3.

1.2.1 Superheat Control

Transfer of heat from a medium (cooling), in vapor compression cycle systems, is car-
ried out by evaporation of liquid refrigerant in an evaporator at a temperature below the
temperature of the surrounding medium. When all the refrigerant is evaporated it starts to
superheat. If liquid or a two-phase mixture of refrigerant is allowed to leave the evapora-
tor and enter the compressor (zero superheat situation), it can potentially cause increased
wear on the compressor or in the worst case damage it. The most common reasons for
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compressor failure are [Danfoss, 2009]; refrigerant flood back, flooded starts, liquid slug-
ging, overheating, and lack of lubrication. These failures can in most cases be avoided
by maintaining a proper level of superheat. It is also important not to have too high su-
perheat, since the vaporization process accounts for the majority of the heat transfer and
a low superheat is thus required for maximum cooling capacity of the system [Outtagarts
et al., 1997, Elliott et al., 2011].

Modeling of Evaporator Dynamics

Different approaches for modeling of evaporator dynamics are first covered, before going
into detail with the superheat control strategies. A thorough review on this subject is given
in [Rasmussen, 2012a]. The approaches include data-based, moving boundary (MB),
switched moving boundary (SMB), and fixed control volume (FCV) modeling, which
usually have increasing complexity and computational needs in that order.

The evaporator is essentially a distributed parameter system described by balance
equations [Gruhle & Isermann, 1985,Rasmussen, 2012a] and the FCV approach can give
a detailed approximation of the evaporator dynamics. However, the simpler lumped pa-
rameter MB approach has been widely used in the literature (e.g., see [Wedekind et al.,
1978,Broersen & van der Jagt, 1980,Grald & MacArthur, 1992,He et al., 1997,Willatzen
et al., 1998, He & Asada, 2003, Schurt et al., 2009, Rasmussen & Larsen, 2011]), which
models the evaporator with a two-phase fluid and a superheated vapor zone having a time-
varying boundary. The number of zones can be varied to also model start-up and shut-
down situations using SMB models [McKinley & Alleyne, 2008, Li & Alleyne, 2010].

The modeling choice should in general reflect the level of detail required in the anal-
ysis and data-based modeling can provide an even simpler approach to describe the im-
portant evaporator dynamics. The use of linear first and second order dynamics, Ham-
merstein, autoregressive-moving-average (ARMA), neural networks, and linear param-
eter varying (LPV) models are briefly discussed in [Rasmussen, 2012a]. In [Elliott &
Rasmussen, 2010], second-order models are utilized to capture EEV-superheat and EEV-
pressure dynamics. Identification of first order plus dead time (FOPDT) model at high
and low load are used for control of an EEV-evaporator loop in [Finn & Doyle, 2000]
and linear parameter varying (LPV) FOPDT and second order models are similarly used
in [Outtagarts et al., 1997] to describe mass flow to superheat dynamics. Furthermore,
second-order Padé approximations of FOPDT models in one nominal and four extreme
conditions are used in [Lim et al., 2009], to derive a suitable proportional-integral (PI)
superheat controller for the different operating conditions in question.

Superheat Control Strategies

Thermostatic expansion valves (TEV) provide a simple and cheap way to control super-
heat. They work by having a sensing bulb, placed at the evaporator outlet, which is filled
with two-phase refrigerant. The pressure in the sensing bulb is affected by the temper-
ature at the evaporator outlet, which is determined by the amount of superheat. When
the superheat is high, the sensing bulb pressure increases, which acts on a diaphragm that
creates a force on a spring system that opens up the valve more. When the superheat de-
creases, the valve opening decreases again accordingly. TEVs are purely mechanical and
do not require sensors or an electronic controller, which is the case with EEVs. However,
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EEVs can offer improved performance under nonlinear operating conditions and tran-
sients by having higher control freedom [Finn & Doyle, 2000]. EEVs usually either have
a stepper motor that controls the opening degree or use pulse width modulation (PWM)
with a frequency that is much faster than the evaporator dynamics.

A problem that often occurs in TEV operation (and also EEV) is valve hunting,
where the length of the two-phase flow and the superheat in the evaporator start to os-
cillate. [Broersen & van der Jagt, 1980] used an evaporator model to show that the in-
teraction between the evaporator dynamics and TEV can cause valve hunting. According
to [Chen et al., 2002] there are many beliefs on why hunting exists and they show through
experiments that valve hunting is primarily caused by changes in heat transfer mechanism
and not just control problems. A change between convective and nucleate boiling at low
temperature gradients causes a change in heat transfer coefficient and flow type, which
leads to valve hunting. This indicates that the superheat setpoint should not be too low
whatever the choice of valve and the critical point is also called minimum stable super-
heat. With EEVs it is possible to operate closer to the minimum stable superheat by
adapting the reference setpoint and, e.g., variance-based adaptation of the reference is
used in Danfoss EEV solutions [Danfoss, 2008].

Most of the systems today with EEV valves use simple variations of proportional-
integral-derivative (PID) control. A PID controller is tested in [Outtagarts et al., 1997] and
both P, PI, and PID control is tested in [Finn & Doyle, 2000] with increasing performance.
However, there are still some performance issues, since the system dynamics change
considerable under different conditions (e.g., low flow versus high flow). The PI(D) type
control should be tuned conservatively to be stable for all operating conditions, which
also means that performance requirements might not always be fulfilled. This issue is well
described in [Lim et al., 2009] and a pattern recognition adaptive controller is proposed in
[Seem, 1998], where a PI controller is retuned each time a step change in setpoint is made.
Furthermore, [Finn & Doyle, 2000] suggests an adaptive scheme that updates the control
parameters based on the surrounding temperature and model-based gain scheduling is
applied to a PID controller in [Rasmussen et al., 2006a].

The simple PI(D) superheat control solution without adaptation still requires initial
tuning. Different auto-tuning or self-tuning approaches exist in the literature (e.g., see
[Åström & Hägglund, 1988,Åström & Hägglund, 1995,Yu, 2006]). Low-order modeling
from relay feedback is also described in [Shen et al., 1996, Wang et al., 1997] and [Bi
et al., 2000] uses relay feedback and step tests to tune of PID control loops in heating,
ventilation, and air conditioning (HVAC) systems. The control can either be tuned in
nominal operating conditions or in a critical operating point such as low temperature and
low flow where the system gain is high [Lim et al., 2009]. Self-tuning plug&control for
temperature control, or in general low order models, is presented in [Pfeiffer, 2000,Visioli,
2003], where PI(D) control loops are tuned in closed-loop based on the first step change
in setpoint and therefore provide a faster tuning alternative to relay feedback. However, a
conservative control parameter start guess is instead required.

There are also more advanced alternatives to the standard PI(D) EEV superheat con-
trol, which seek to handle larger ranges of operating conditions better. Model-based gain
scheduling is, e.g., applied to a PID superheat controller in [Rasmussen et al., 2006a]. An-
other example of more advanced control is given in [He & Asada, 2003] where feedback
linearization is used to make PI design straightforward and [Rasmussen et al., 2006b]
suggests converting superheat to a referred variable leading to control of a linear sys-
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tem independent of the operating point. The backstepping approach can also be used to
compensate for the nonlinearity [Rasmussen & Larsen, 2009b] and cascaded superheat
control structures are proposed in, e.g., [Elliott & Rasmussen, 2010, Elliott et al., 2011],
where an inner loop controls the pressure with the EEV and an outer loop changes the
pressure setpoint based on the superheat error.

EEV technology is also becoming more complex. A hybrid expansion valve (HEV)
design is presented in [Elliott et al., 2009], which uses a diaphragm as in TEVs for fast
regulation of flow and a stepper motor and spring to adjust the pressure on the diaphragm.
The stepper motor position is governed by a slow superheat regulator. This gives better
performance compared with TEV operation and HEVs also have better motor lifetime
than stepper motor EEVs. As another example, Danfoss offers a new EcoFlow valve that
can have individual opening degrees for each tube in the evaporator, which can provide
a way to balance the filling across the evaporator [Danfoss, 2011]. This also makes it
possible to defrost each individual section of the evaporator individually and, thus, does
not require dedicated defrost heaters.

An alternative to EEV superheat control is to use the compressors for superheat con-
trol and then use the EEV for capacity control. However, the compressor frequency and
superheat relationship is highly nonlinear. Nonlinear control such as backstepping is
used in [Rasmussen, 2008, Rasmussen & Larsen, 2009a, Rasmussen & Larsen, 2011]
to solve this problem. The ability to control the superheat with multiple inputs is also
an indicator of the high cross coupling in the refrigeration system. This cross-coupling
is shown in [He et al., 1997] using relative gain array, and a linear quadratic Gaussian
(LQG)-based multiple-input multiple-output (MIMO) control strategy with gain schedul-
ing is proposed in [He et al., 1998] using a linearized model of the refrigeration system.
LQG-based MIMO control is also presented in [Schurt et al., 2009] with the inclusion
of a Kalman state observer. Decoupling can also be achieved using alternatively chosen
SISO loops. [Jain & Alleyne, 2009, Jain et al., 2010] show that controlling the average
system pressure with the EEV, the differential pressure with the compressor, and the aver-
age evaporator temperature with the evaporator fan can result in better reference tracking.
However, the strategy is only shown for single evaporator systems with one EEV and not
for supermarket refrigeration systems with multiple EEVs.

Pressure Sensor Malfunction and Potential Solutions

Most EEV superheat control setups use a pressure and a temperature sensor to calculate
the superheat and a fixed PI(D) controller to ensure that the superheat tracks the reference
superheat despite the potential performance benefit of more advanced controllers. This
is mainly because of the widespread use of PI(D) control, the intuitive operation of de-
centralized control loops, the low complexity, and the high flexibility/modularity (each
evaporator has its own superheat control, which does not rely on information from other
parts of the system). More advanced control also often relies on good model knowledge
and deriving such a model can be a significant undertaking. However, an alternative strat-
egy is needed if the pressure sensor fails in order to be able to continue operation and
maintain the correct temperature without compromising the compressors.

A possible solution is to replace the pressure sensor with a temperature sensor placed
on the outside of the evaporator inlet tube after the EEV, which approximately have the
same temperature as the evaporation temperature. This gives a two-temperature-sensor
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superheat control solution as in [Finn & Doyle, 2000, Chen et al., 2002]. However, pres-
sure sensors are still used despite that temperature sensors are cheaper and possibly more
reliable. The pressure sensor does give a faster and better measure of the evaporation
temperature than a temperature sensor, due to the slower dynamics and low-pass charac-
teristics of the tube wall. Replacing pressure sensors with temperature sensors in existing
systems also imposes an added cost in terms of new sensors, installation cost, and tuning.

The increased closed-loop variance close to the minimum stable superheat can be used
to adapt the superheat reference as described in [Danfoss, 2008]. Here the reference is
lowered until the variance exceeds a limit, and the possibility of using this principle, when
the pressure measurement is not available, is investigated in this thesis. This solution is
also closely related to automatic variance control concepts, e.g., see [Moir, 2001].

The qualitative behavior of the evaporator outlet temperature as a function of the EEV
opening degree is also nonlinear. The evaporator input/output (I/O) relationship is almost
flat at low opening degrees and then suddenly drops close to the minimum stable super-
heat and then flattens out again when the evaporator is flooded. This qualitative behavior
is illustrated in Fig. 1.7, and the system gain therefore has a maximum close to the min-
imum stable superheat. The exact relationship will of course depend on the operating
conditions and the system. Note, that the typical lumped parameter model used in the
literature does not have a smooth s-shape, but rather a sharp corner when Te,o reaches
Te. However, actual evaporator behavior does not exhibit sharp corners because of refrig-
erant spray, sensor dynamics, superposition of separate evaporator sections (investigated
in [Lyhne & Sørensen, 2011]), and because it is a distributed parameter system.
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Figure 1.7: Qualitative nonlinear relationship between evaporator outlet temperature Te,o
and valve opening degree OD.

The increase in gain could be detected using a dedicated perturbation signal, which
could provide the missing information for superheat control in case of pressure sensor
malfunction. The general idea of detecting the system gain with a perturbation signal and
utilizing the increase in gain near a low superheat to develop a single-sensor superheat
controller has been proposed in [Izadi-Zamanabadi et al., 2012a]. The idea therein is to
make a large step up in input and then detect the extremum in system gain by continuous
calculation of the rate of change of the evaporator outlet temperature. When an extremum
is detected then the lowest encountered evaporator outlet temperature could be used as
zero superheat reference. However, this temperature might change over time and the step
test would have to be performed either continuously or with a given interval. One of
the main aims of the research presented in this thesis has been to further investigate the
possibility of developing a perturbation-based single-sensor superheat control.
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1.2.2 Perturbation-Based Control

The perturbation principle is used in the non model-based extremum-seeking (ES) and
slope-seeking (SS) control schemes, where a sinusoidal signal is applied to the system
input. These methods use the perturbation of the nonlinear system to estimate the gra-
dient and feedback control then ensures convergence toward the zero slope point in the
I/O-map (extremum) or a certain slope (other than zero) corresponding to a suitable op-
erating point. The first appearance of ES control is believed to be [Leblanc, 1922], while
a resurgence of interest was sparked with more rigorous assessment of stability in [Wang
& Krstić, 2000] using singular perturbation and averaging analysis. Later, non-local sta-
bility properties where derived in [Tan et al., 2006]. A thorough coverage of the subject
is provided in books such as [Ariyur & Krstić, 2003,Zhang & Ordóñez, 2012] and a liter-
ature review on ES is given in, e.g., [Tan et al., 2010]. [Henning et al., 2008] investigates
the use of an extended Kalman filter for gradient estimation in SS control and possible
adaptation of the perturbation amplitude to limit the impact of perturbation on the system
output. Observers are also used in [Moase et al., 2010,Bishop et al., 2011] for ES control
and [Bishop et al., 2011] provides an analytic way to find an upper bound in the feed-
back gain. [Moase & Manzie, 2011] also suggests adaptation of the control parameters
in real-time to make a fast ES controller and [Haring et al., 2013] suggests an alternative
gradient estimator using a periodic finite impulse response (FIR) filter, which extracts first
harmonic information and effectively filter out other harmonics and, thus, showing better
performance than the traditional infinite impulse response (IIR) filters used in ES and SS.

The use of ES control in optimization of refrigeration processes is already beginning
to emerge. An example is given in [Li et al., 2005], where ES is used to optimize a tunable
thermoacoustic cooler. The chilled water setpoint temperature can also be optimized us-
ing ES in cooling towers, because the total power consumption of the chiller compressors
and cooling tower fans is a convex function of the water temperature (these components
are the main power consumers these HVAC systems) [Tyagi et al., 2006,Sane et al., 2006].
The main benefit of ES is that a model of the chiller and cooling tower is not required.
The same strategy is used in [Li et al., 2012] except that the fan speed is perturbed in-
stead of the water temperature. [Li et al., 2010] also investigates the use of ES control in
HVAC control for optimization of outdoor air damper opening in air-side economizers.
Optimization of the total power consumption of the compressor and evaporator fan, in a
vapor compression cycle system, can also be performed using ES control by perturbing
the fan speed [Burns & Laughman, 2012]. Furthermore, the optimal subcooling in vapor
compression cycle air conditioning systems is shown to be non-zero and highly dependent
on the operating conditions in [Koeln & Alleyne, 2013] and a non model-based control
method using ES control is presented for optimization of the subcooling.

The qualitative nonlinear I/O-relationship illustrated in Fig. 1.7 indicates the potential
use of SS control. A discrete ES/SS control setup, using the filter proposed in [Haring
et al., 2013], is shown in Fig. 1.8 for an example Hammerstein system with an s-shaped
nonlinearity. The objective in ES/SS is to drive the input offset ū(k) towards u∗ and
u∗ denotes the input at the desired reference slope f ′ref . The Gain/gradient/slope of the
system in the current operating point ū(k) can be extracted using the gradient estimator
filter and a perturbation signal Aex sin(ωexk), with amplitude Aex and period ωex. The
gradient estimator basically extracts the amplitude of the first harmonic in the output and
relates it to the amplitude of the input. The variable Nφ can be used to compensate for
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any potential phase shift in the dynamics fo(t) and a function r(f ′ref ) can be used to
offset the error signal ξ(k) according to the desired reference slope f ′ref . The scheme is
ES control if r(f ′ref ) = 0. However, ES control would not make sense on the s-shaped
nonlinearity as it would converge to ū(k) = ±∞.
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Figure 1.8: ES/SS control scheme. Sample and hold on the system is denoted (S/H).

A suitable operating point for the evaporator system could be to control the opening
degree of the EEV to a level where the I/O-map experiences a maximum in the slope,
which is close to the minimum stable superheat. A problem with SS control is that the
maximum slope point is not a possible operating point, because the gradient decreases
in both directions leading to instability. Global convergence to the desired operating
point using a reference slope to either side of the maximum slope would also not be
possible, see Fig. 1.9. Furthermore, estimation of a good reference slope is also difficult,
if not practically impossible, for a time-varying s-shaped I/O-map (the evaporator I/O
gain variation due to changes in operating conditions is shown in [Lim et al., 2009,Elliott
& Rasmussen, 2010]). An alternative maximum slope seeking (MSS) control scheme
inspired by ES/SS control, which does not require specification of a reference slope,
is therefore investigated in this thesis. MSS could potentially eliminate the need for a
pressure sensor or provide fault tolerance in existing systems, without additional hardware
and very limited system knowledge. Note also that no other non model-based single-
sensor superheat control strategy has been found in the literature.
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Figure 1.9: Convergence direction with SS control using a reference slope close to the
maximum slope point.
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1.2.3 Temperature Control and Load Shifting

The purpose of refrigeration systems is to maintain the temperature of spaces or products
within specified bounds. For example, in supermarkets it is important to maintain the
temperature of the foodstuff within legislative requirements, in buildings it is important
to obtain thermal comfort for the occupants, and in pharmaceutical or food processing
facilities it might be important to track the right setpoint temperature during production.
Different temperature control strategies and load shifting possibilities are outlined in the
following.

Conventional Temperature Control

The most common temperature control strategies in HVAC systems are on/off hysteretic
control and PI(D) control, e.g., see [Seem, 1998, Underwood, 1999, Bi et al., 2000, Lim
et al., 2009]. On/off hysteretic control is mostly used in supermarkets for control of
the temperature in the display cases, e.g., see [Larsen, 2005, Sonntag et al., 2008, Sarabia
et al., 2009,Hovgaard et al., 2012a,Shafiei et al., 2013b]. These strategies are widely used
due to their simple implementations, but hysteretic control can give large fluctuations in
the suction pressure, due to the on/off operation of the EEVs, resulting in frequent com-
pressor switches and increased wear. However, the fluctuations will average out if there
are many evaporators and care is taken to desynchronize them so that they do not turn
on and off at the same time [Larsen et al., 2007b]. There are some studies of continuous
valve opening temperature control for supermarket display cases. An example could be
to control the superheat in an inner loop as usual and then set the superheat reference in
an outer loop dependent on the air temperature in the display case. This gives a lower
filling of the evaporator, when less cooling is required and a much more steady suction
pressure [Petersen et al., 2012]. However, an advantage with on/off hysteretic control is
that it does not require any tuning and it can be used in conjunction with TEVs, which is
not possible in the cascaded control structure. A positive side effect of on/off operation
is also that less ice builds up on the evaporator and the ice is more dense giving a better
heat transfer. Further, operating with a low filling can give a nonhomogenous temperature
distribution in the display case, which can impact the food quality [Sarabia et al., 2009].

Advanced Temperature Control and Load Shifting Strategies

Knowledge of variations in weather, occupancy in buildings, restocking times in super-
markets, energy prices, and opening hours can be included in the refrigeration system
temperature control problem to improve performance, reduce running costs, and/or to
better handle potential out of capacity situations. This, e.g., involves precooling during
the night and early morning to utilize a higher system efficiency due to lower outdoor
temperatures and potentially lower energy prices. The additional cost associated with a
higher heat loss due to a lower temperature should then not exceed the savings obtained
by precooling. Precool can also help prepare the system to meet peak loads if capacity
limits will be reached or in general reduce peak loads to give a more flat demand.

Significant energy cost savings are demonstrated in [Braun, 2003], where building
thermal mass is used for load shifting and reduction of peak cooling loads. Braun esti-
mates the savings to be in the range from 0 to 35%, depending upon utility rates, type of
equipment, accuracy of occupancy schedules, climate, building construction, and control
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strategy. Based on simulations in [Hovgaard et al., 2011] it is similarly estimated that 20%
of the capacity in supermarket refrigeration systems can be offered as regulating power,
which can cover a significant part of the total primary reserve needs in Denmark. Further-
more, [S. Goli & Olsen, 2011] states that the load from refrigerated warehouses located
in California was 360 MW in 2008 and that the potential demand response capability of
these warehouses is somewhere between 45-90 MW (12.5-25%).

There are in general two control strategies being employed for cost optimization and
load shifting. The simplest is a fixed schedule for the setpoints in the system or a schedule
derived based on day ahead expectations/predictions. The second strategy is to use some
variation of model predictive control (MPC). In MPC a cost function over a receding
prediction horizon is minimized to find an optimal set of inputs to the system under certain
constraints (e.g., actuator and temperature limits). This makes MPC an ideal candidate
for load shifting and temperature control, since economical incentives can be optimized
while temperatures are guaranteed to stay within the constraints.

Examples of using a fixed schedule compared with energy/demand optimization con-
trol (MPC) is provided in [Braun, 2003] for large buildings. Other examples of ad-
vanced model-based temperature control in buildings focused on energy savings and oc-
cupancy comfort are given in [Prívara et al., 2011, Castilla et al., 2011, Oldewurtel et al.,
2012, Goyal et al., 2012, Álvarez et al., 2013b]. The strategies therein use a combina-
tion of occupancy estimation, weather forecasts, and energy prices to compute optimal
settings for the HVAC system.

Demand response opportunities have been investigated for nine refrigerated ware-
houses in [S. Goli & Olsen, 2011]. Using a day-ahead demand response scheme, where
a central server asked the warehouses for demand response services to help reduce peak
loads, showed good results. One site was able to shift 36% of its load in a 2-4 hour period
when compared with the baseline by shutting off some of the equipment and adjusting the
setpoints in a pre-set hierarchy. Models of four low temperature warehouses located in
the North Central U.S. have also been used to simulate different predefined load-shifting
schedules in [Altwies & Reindl, 2002]. The first strategy cools for 10 hours and then
turns off for 14 hours, which could save up to 53% of the total cooling cost. However,
this would also require investment in larger refrigerators big enough to apply all the nec-
essary cooling within the 10 hours. The second strategy was to always maintain the same
cooling load during 24 hours, which reduces the electricity fluctuations and peak load.
The last strategy was a mix.

MPC load shifting strategies are also beginning to emerge for supermarket refrigera-
tion systems. An economic-optimizing nonlinear MPC scheme using weather and energy
prices and thermal storage capabilities in supermarket display cases is presented in [Hov-
gaard et al., 2011, Hovgaard et al., 2012a]. The scheme reduces operating costs and
provides 15 min up/down regulating services to the grid and simulations show signifi-
cant savings of up to approximately 30%. A linear MPC scheme is similarly proposed
in [Shafiei et al., 2013a,Shafiei et al., 2013c] showing approximately the same savings. A
linear scheme is possible due to a separate optimization algorithm for the suction pressure.
A virtual power plant setup with MPC, which tries to minimize grid power overproduc-
tion using refrigeration systems as flexible consumers, is demonstrated in [Pedersen et al.,
2013]. Each node is approximated by a simple flexibility model describing their current
energy level, dain rate, fill rate, and constraints on the energy level. A test using three
simulated nodes and a water chiller system shows the potential use of thermal systems as
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"blowoff" valves in cases with electricity overproduction. In [Cai et al., 2008], a model
of a display case is also used to demonstrate that MPC can be used to handle potential
capacity limitations in refrigeration systems by precooling the foodstoff in an antisipatory
manner on hot summer days.

Installation of thermal energy storage (TES) tanks, called active storages, can also
help solve capacity limitations, give additional demand response capabilities, and/or pro-
vide the possibility of downscaling the refrigeration system. Examples of the use of TES
in buildings using MPC or fixed precool schedules are given in, e.g., [Henze & Krati,
1998, Ma et al., 2012, Powell et al., 2013]. A combination of the utilization of TES and
building thermal mass (passive storage) is also demonstrated in [Zhou et al., 2005] with
optimal control to shift electrical loads to off-peak hours at night and in the weekend.
The study on a large three story office building modeled in EnergyPlus [U.S. Department
of Energy, 2013] shows big potential savings when compared with only fixed precool
of TES during nighttime. However, a considerable additional capital investment is also
associated with installation of TES. Investigations in [Vrettos et al., 2013] on buildings
with photovoltaics, electric water heat, slap cooling, heat pump, and battery storage addi-
tionally showed that using batteries as storage element is not economically tractible as the
payback time is approximately 20 year and the expected lifetime of batteries are between
5-15 year and almost the same demand response was possible without the battery.

Precooling and Food Quality

Storing thermal energy in foodstuff in terms of "coldness" by precooling it can potentially
affect the quality and shelf life negatively due to the higher fluctuations in temperature.
The advantages of precooling in terms of demand response capabilities, reduced peak
demand, or higher shelf life due to lower average/maximum temperature should therefore
exceed the disadvantages.

Results from different studies on foodstuff quality have been compiled in [Altwies
& Reindl, 2002]. The studies included food products such as cauliflower, spinach, peas,
strawberries, etc. and showed that storage temperature fluctuations over the ranges of in-
terest had little to no effect on frozen foods. However, significant quality loss is observed
when fluctuations included freeze/thaw cycles. A study also indicated that nutrient reten-
tion can be expected to remain the same or even improve, due to a lower average storage
temperature with precooling. Different frozen food products (salmon, mackerel, pork, ice
cream, pizza, brocolli, etc.) were also studied in [Gormley et al., 2002], which showed
that the fluctuations in temperature for most of the products had minimal effect on color,
texture, water-holding capacity, and drip loss on thawing. However, parameters such as
peroxide and free fatty acid were affected on a longer term in products containing fat.
Additionally, most bacteria growth in non frozen foods stops below 5◦C [Danish Veteri-
nary and Food Administration, 2005], which indicate that upper temperature limits are
probably more important than fluctuating temperatures. The potential quality loss caused
by cycling temperatures due to precooling is less critical, when precooling is applied to
handle capacity limitation situations, since quality and shelf life is mainly affected by
bacteria growth, which increase with higher temperatures. The shop owner also risks
having to discard all the foodstuff if legislative temperature requirements are not main-
tained. Furthermore, an accumulated quality loss model for foodstuffs is derived in [Cai,
2007]. This model is based on the foodstuff temperature sensitivity and quality loss time
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constant, where higher accumulated quality loss occurs with higher temperature.
The potential for thermal energy storage in different refrigerated foodstuffs is pre-

dominantly determined by the mass, specific heat capacity, exposed surface area A, and
surface heat transfer coefficient U . Another important factor is the Biot numberB, which
indicates if a lumped or non-lumped temperature analysis is appropriate;

B =
U V
A

k
, (1.6)

where k is the thermal conductivity and V is the volume [Ash, 2005]. The Biot number
can also be seen as the ratio of internal temperature difference required to move energy
within a product compared with the difference required at the surface to add or remove the
same amount of energy and a lumped temperature analysis can be applied if the Biot num-
ber is small (B < 0.1). The storage capability of different foodstuffs was experimentally
studied in [Hovgaard et al., 2012b], where most of the obtained Biot numbers were above
0.1. However, a lumped temperature analysis is often performed despite of the high Biot
numbers, since this approach does not involve solving complex multidimensional partial
differential equations. Additionally, it might not be important to distinguish between the
exterior and the interior of the foodstuff during a precool phase if it ensured that enough
precool time is applied to activate the entire mass. Refrigeration system saturation, due
to increasing outside temperatures, might also happen slow enough to allow a lumped
analysis. The study in [Hovgaard et al., 2012b] also showed that products such as milk
almost have a 12-hour load shifting potential.

Simulation Benchmarks

A simulation benchmark model provides a way to evaluate different control strategies
under the exact same load conditions, which would not be possible otherwise. Perfor-
mance can also quickly be evaluated for longer periods of time (weeks, months, or years)
and introducing saturation in buildings and supermarket refrigeration systems is often not
practically feasible.

Different advanced simulation tools for buildings exist such as EnergyPlus [U.S. De-
partment of Energy, 2013] aimed at estimating the energy usage of a building while taking
all the building materials into account. Lumped resistive-capacitive networks is a simpler
and more commonly used method for modeling of the zone/room and wall temperature
dynamics in buildings for control purposes (e.g., see [Lorenz & Masy, 1982, Hudson &
Underwood, 1999,Gouda et al., 2002,Oldewurtel et al., 2012,Ma et al., 2012]). Each zone
is typically modeled by a capacitance and each wall is modeled by three resistors and two
capacitors also referred to as the 3R2C modeling approach illustrated in Fig. 1.10. The
states in the model are the temperatures of the inner and outer wall surfaces Twi,i and
Two,i, respectively, and the temperature of the ambient Tai,i and Tao,i, which could be
zone temperature, outside air temperature, or ground temperature. The parameters of the
model are the heat resistances and thermal capacitances of all the i walls included in the
model (Rwi,i, Rwo,i, Rww,i, Cw,i, and Cwo,i).

A detailed study on modeling of vapor compression cycles is given in [Rasmussen,
2012a,Rasmussen, 2012b] and different available tools for simulation of supermarket re-
frigeration systems also exist. Thermosys [CU Aerospace, 2013] is an example of such a
tool, which can simulate complete dynamic vapor compression cycles with transient be-
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Figure 1.10: 3R2C lumped resistive-capacitive network model of a wall.

havior and shut-down and start-up operation. However, Thermosys is relatively slow and
the model detail should in general match the particular problem. Simpler models might
suffice for simulations focused on slow air and foodstuff temperatures dynamics. Indi-
vidual models for the compressor rack, suction manifold, display cases, and condenser
are typically used and [Larsen, 2005] demonstrated such a model, which is accepted for
firsthand verification of new controllers at Danfoss. The model has also been used in
slightly modified versions in, e.g., [Larsen et al., 2007a, Sonntag et al., 2008, Sarabia
et al., 2009, Yang et al., 2011, Petersen et al., 2012, Shafiei et al., 2013b]. A supermar-
ket simulation benchmark with three display cases is also presented in [Hovgaard et al.,
2011, Hovgaard et al., 2012a] using parameters based on data from supermarkets. How-
ever, the air temperature is not part of this model. Estimation of refrigeration system
parameters, based on supermarket data, is also presented in [Petersen et al., 2012, Shafiei
et al., 2013b].

Utilization of Repetitiveness in Load Disturbances

The study in [Braun, 2003] shows that there is a tremendous potential for utilization of
thermal mass for reduction of peak demand and on-peak energy consumption. However,
the potential is also sensitive to uncertainty in building and refrigeration system char-
acteristics, utility rates, weather forecasts, and occupancy schedules. [Braun, 2003] also
shows the total cooling load profile during six days on two chiller units, which exhibit a
very repeatable pattern (except during the weekend where the load profile is different).
Furthermore, there is a much larger load in the occupancy hours. The high degree of
repetitiveness in load disturbances is also visible in the data from a Danish medium sized
supermarket refrigeration system presented in [Petersen et al., 2012]. The load behavior
in these refrigeration systems is dependent on a combination of customer and employee
activity, energy loss through insulation at the cooling sites, the temperature and humidity
in the supermarket, the temperature thresholds used in the display cases, evaporator fan
heat, heat from lighting, defrost cycles, and air infiltration to the display cases. Knowl-
edge or prediction of the load pattern is required in model-based control such as MPC to
be able to predict the required cooling. Kalman filters, as proposed in [Petersen et al.,
2012], can be used to estimate the load, which has to be observable. Deriving such filters
can be quite cumbersome especially in large systems and considering the multitude of
different configurations of refrigeration systems. The observed repetitiveness in the load
could instead be utilized in data-driven learning-based control schemes as an alternative
to model-based approaches. The necessary precooling of foodstuff or building thermal
mass, required to prevent cooling capacity saturation, due to repetitive peak loads that
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might exceed system capacity, could be learned based on the saturation in previous days.
A learning-based approach is an interesting alternative, since it does not require a model
or adaptation of such, weather forecasts, occupancy schedules, or knowledge of super-
market opening hours.

1.2.4 Iterative Learning and Repetitive Control

Well established examples of learning-based control are iterative learning control (ILC)
and repetitive control (RC). These methods are often used when a task is repeated, such
as in batch processes, e.g., robot manipulation tasks that have to be repeated with high
precision or if the disturbance repeats itself. The primary role of learning-based control
is to improve the performance of an already stabilized system. There are in general two
configurations; a parallel structure where a feedforward signal for the next repetition is
learned and a serial structure where a reference modifying signal is learned. The parallel
setup is also sometimes called a direct approach, and the serial setup is an indirect ap-
proach or a plug-in type learning controller (it just modifies the reference to an already
existing closed-loop system). Fig. 1.11 illustrates ILC applied to a closed-loop system
described by the controller C and the system G, where the reference vector yr and/or the
disturbance vector d has a repeatable pattern. A widely used learning algorithm is [Bris-
tow et al., 2006]

fj+1 = Q (fj + Lej) , (1.7)

where fj is a vector of reference/error modifiers (serial setup) or feedforward signals
(parallel setup) for repetition/trial j, ej is a vector of tracking errors, and L and Q are
learning functions. When trial j ends, a new batch or vector f, to be used in trial j + 1,
is calculated based on the errors in the previous trial j. An approximate representation of
the ILC system in the z-domain can be given as [Bristow et al., 2006]

Fj+1(z) = Q(z) (Fj(z) + zL(z)Ej(z)) , (1.8)

where F (z) and E(z) are z-transformations of the signals. The error is shifted forward
in time by z in Eq. (1.8), which corresponds to a plant delay of one time step (should
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Figure 1.11: ILC (light blue) applied to a closed-loop system (black). Both serial and
parallel ILC structure are shown.
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in general match the particular system and the applied sample time). A well-known con-
dition for stability and monotonic error convergence (||e∞ − ej+1||2 < ||e∞ − ej ||2 for
j ∈ [1, 2, ...]) in the ILC system is [Bristow et al., 2006]

||Q(z) (1− zL(z)P (z)) ||∞ < 1, (1.9)

whereP (z) is the complementary sensitivity function (P (z) = (1+G(z)C(z))−1G(z)C(z)
for the serial structure). If L(z) is chosen to be the inverse of the complementary sensi-
tivity function and Q(z) = 1, then zero tracking error can be achieved after one trial with
perfect model knowledge and repeatability. However, this choice is sensitive to model
errors, and performance can be traded for robustness with Q(z), which in most cases
is designed as a low-pass filter. This choice is made because the model is usually well
known for low frequencies and because the repeatable part of the disturbances are mostly
contained in the low frequency range, and it is also desirable to attenuate high frequency
noise. An alternative design approach is to produce Bode plots of the feedback control
system and base the ILC design on this system description [Longman, 2000].

The simplest implementation of Eq. (1.7) is obtained when Q and L are diagonal
matrices. The learning transfer functions Q(z) and L(z) can also be implemented as
zero-phase noncausal filters to avoid phase lag [Longman, 2000, Bristow et al., 2006],
and in general, when filters are used, it is necessary to extend the vectors to be filtered
in both ends to avoid filter transients. There are also more advanced ILC schemes such
as including a derivative term in the learning algorithm, higher order ILC, and time-
varying ILC and different design techniques such as frequency domain, lifted framework,
optimal, and robust methods [Bristow et al., 2006]. An interesting ILC design technique is
proposed in [Helfrich et al., 2008] using calculations of repeatable-to-nonrepeatable ratios
(RNR) for all frequencies contained in tracking error data from previous trials without
ILC implemented. These values are calculated as

RNR(ω) =20log

(
|FFT [ē]|2

1
Nt

∑Nt

j=1 |FFT [ē− ej ]|2

)
, (1.10)

where FFT denotes the fast Fourier transform, Nt is the number of trials in the analysis,
and the repeatable error ē is given as

ē =
1

Nt

Nt∑
j=1

ej . (1.11)

RNR(ω) is also the power of the repeatable signal versus the power of the nonrepeat-
able signal in dB. If it is larger than 0 at some frequencies, then there is potential for
improvement of the closed-loop system, and the learning filter could be applied to these
frequencies using, e.g., low- or band-pass filters.

A comparison of ILC and RC is made in [Longman, 2000]. Here it is shown that
serial ILC and serial RC are essentially equivalent mathematically and that the stability
condition given in Eq. (1.9) can be applied in both cases. However, there is an important
difference in that ILC calculations are performed once at the end of each trial, whereas
RC calculates the reference modifier in real time at each time step k. Some of the previ-
ous publications on discrete-time RC include [Tomizuka et al., 1989, Kempf et al., 1993]
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where different designs of the serial type RC are discussed. The equivalence of the meth-
ods are also highlighted in [Wang et al., 2009] together with an ILC/RC literature survey
and guidelines for choice of method. The outline of ILC and RC given above is not ex-
haustive. For further detail see [Longman, 2000, Bristow et al., 2006, Wang et al., 2009]
and the references therein.

Simple PI(D) temperature controllers in buildings seldom perform well at all possible
operating conditions because the system response is not linear, and the control is typically
tuned only for a selected nominal situation or conservatively based on the worst case
operating conditions; also the control parameters might have been reused from a similar
system and not tuned properly in the first place [Underwood, 1999, Bi et al., 2000, Lim
et al., 2009]. It is therefore investigated in this thesis if the potential use of the plug-
in type serial ILC/RC can help improve the existing temperature control by utilization
of the potential repetitiveness in load disturbances. Furthermore, the RNR calculation
could help to design the learning-based control in a data-driven way rather than deriving
complex models. Using a serial ILC/RC structure also means that the existing control is
left unchanged and if the performance of ILC/RC is not living up to expectations, then
it can easily be deactivated. Additionally, no modifications are necessary in the existing
system, because it is only the setpoints that are changed. These proposed applications
of learning-based control are outside the typical application areas and use of ILC/RC to
improve temperature control in buildings or in supermarket refrigeration system has not
been found in the literature. However, application of RC in building systems have been
pursued in [Álvarez et al., 2013a], parallel to the work presented in this thesis. Here PI
control is used to control the thermal comfort in a building quantified using the predicted
mean vote (PMV). The controller and a model of the PMV is used to design a learning
filter using the internal model principle. The results are very promising and indicate
the hidden potential of utilization of learning-based control in buildings. However, the
results are achieved with perfect repeatability in occupancy on a daily basis and it would
be interesting to see the performance under more realistic load patterns.

Another potential use of learning-based control theory is to handle refrigeration sys-
tem saturation, when the system is not dimensioned to cope with hot days. The idea
is that yearly weather variations happens slowly and a learning control implementation
could start to apply precool in the early colder hours of the day, to better cope with capac-
ity limitations later in the hot hours of the day, based on the level of saturation in previous
days. This could potentially provide a non model-based alternative to MPC. [Mishra et al.,
2011] proposes an optimization-based constrained ILC scheme for constrained linear sys-
tems. However, this method only ensures that the ILC converges to the optimum within
the imposed constraints. Changing the reference signal in an already saturated system
does not help and the reference has to be altered in an anticipatory manner (precool). A
learning law with a noncausal compensator (an upper triangular learning matrix L) could
give precool before the error occurs. However, this precool would also be seen as an error
causing stability issues. A tailored learning law for the precool problem is thus required.

1.3 Research Challenges and Hypotheses

In conclusion, non model-based single temperature sensor superheat control could involve
utilization of increased variance close the the minimum stable superheat or the qualitative
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s-shaped characteristic of the nonlinear relationship between valve opening degree and
evaporator outlet temperature. Derivation of a general control method for systems having
similar I/O-maps, where the maximum slope point is a suitable operating point, is addi-
tionally investigated in this thesis. Learning-based control utilizing repeatability in load
disturbances could also provide a non model-based approach to application of precool
in refrigeration systems to reduce potential saturation during peak loads or in general to
improve performance of conventional PI and on/off hysteretic temperature control.

The broad objectives and the above discussion lead to the following six hypotheses:

1. The superheat in refrigeration system evaporators can be controlled using only a
single temperature sensor with similar performance as existing controllers.

2. The proposed superheat control can be implemented on existing systems in a plug
and play fashion without a priori system knowledge.

3. A general non model-based control solution can be derived for systems where the
nonlinearity in the I/O-map has s-shaped characteristics and where the maximum
slope point is a suitable operating point.

4. Repetitiveness in load disturbances can be utilized to improve the temperature
tracking performance of refrigeration systems.

5. The potential risk of deterioration of refrigerated foodstuff during hot summer days
can be minimized by precooling the foodstuff in an anticipatory manner before the
refrigeration system capacity goes into saturation.

6. The tracking performance improvement and precooling can be performed without
additional hardware, predefined schedules, or system models using learning-based
approaches.

1.4 Outline of the Thesis

The background, motivation, state-of-the-art, and research challenges are presented in
Sections 1.1-1.3. Based on this, a division of the research work into two subject areas is
made in the following two chapters. The subjects are; single temperature sensor superheat
control using qualitative system knowledge (Hypothesis 1-3) and improvement of refrig-
eration system temperature control by utilization of daily repetitiveness (Hypothesis 4-6).
A summary of the results and findings within these two research areas is provided in
Chapter 2, which also contains a condensed list of contributions with reference to pub-
lished and submitted papers. A conclusion on the work is then drawn in Chapter 3, which
is followed by an outline of perspectives and recommendations. The thesis is written as a
collection of papers, which are located in the contributions part. However, Chapter 2 can
be read without having access to the papers. A short abstract of each paper is provided in
the following to give an overview of the publications.

Paper A [Vinther et al., 2012a]
In this paper, a single temperature sensor superheat control is derived. The solution
uses an inner loop to control the evaporator outlet temperature, while an outer loop
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adjusts the reference by estimation of suction pressure and calculation of the sam-
ple variance, which increases at the minimum stable superheat. A startup tuning
procedure is additionally proposed and tests are conducted on an air conditioning
system and a water chiller system.

Paper B [Vinther et al., 2012c]
In this paper, a perturbation-based maximum slope-seeking (MSS) control method
is proposed for a class of nonlinear systems having sigmoid function properties.
The control is based on a harmonic analysis and adaptation of the perturbation am-
plitude is also proposed. The performance is compared with a basic slope-seeking
controller through simulation on a Hammerstein system model.

Paper C [Vinther et al., 2012b]
In this paper, the proposed MSS control is applied to an air conditioning system
and a water chiller system. Safety logic for fast detection of flooding is provided
and results from 8 hour tests on the two system are presented, which include large
disturbance steps and operation under different conditions.

Paper D [Vinther et al., 2013d]
In this paper, a general tuning procedure for the MSS controller is proposed and
tested on the same systems as in Paper C, with the addition of a supermarket refrig-
eration system test setup. The obtained superheat with MSS control is also com-
pared with conventional two-sensor control and TEV control. On/off hysteretic
display case air temperature is also tested together with MSS superheat control.

Paper E [Vinther et al., 2013b]
In this paper, the tuning procedure from Paper D is fully automated and tests are
performed on another supermarket refrigeration system using CO2 as refrigerant.

Paper F [Vinther et al., 2013c]
In this paper, focus has been put on stating more rigorous assumptions about the
class of systems MSS is intended for and stability and convergence conditions are
derived. A method to find an upper estimate on the feedback gain is also provided
and Monte Carlo simulations on different models with parameter uncertainty are
used to demonstrate the robustness of the control method.

Paper G [Vinther et al., 2013a]
In this paper, a serial repetitive controller is added to the existing temperature
control in an example office building simulation to improve the tracking perfor-
mance. The repetitive controller is tuned based on calculation of repeatable-to-
nonrepeatable ratios for each frequency in past data.

Paper H [Vinther et al., 2013e]
In this paper, a learning-based precool strategy is proposed to reduce the level of
saturation in supermarket refrigeration systems when peak demands exceed the
capacity. Tuning guidelines are also proposed and a suitable simulation benchmark
is presented. The benchmark is then used to compare the performance with and
without precool of foodstuff in a yearlong simulation.
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Paper I [Vinther et al., 2013f]
In this paper, an extension of the results in Paper H is made. The repetitiveness of
the refrigeration system load is demonstrated using data from a real supermarket
and an additional precool strategy is proposed, where precooling is applied to the
freezer section instead of the individual medium temperature display cases.
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2 Summary of Contributions

This chapter provides a summary of the contributions and results published or submitted
in the nine referenced papers. Each research area is treated separately in Section 2.1 and
2.2 and a condensed list of contributions are finally given in Section 2.3.

2.1 Single Temperature Sensor Superheat Control Using
Qualitative System Knowledge

Evaporator superheat can potentially be controlled with a single sensor by utilizing the
qualitative system behavior. This section is based on Papers A-F and a short description
of the different refrigeration system test facilities is first provided for reference when
presenting results. Then variance-based superheat control is discussed, which is followed
by presentation of MSS control and perturbation-based superheat control.

2.1.1 Description of Test Facilities

Four different refrigeration system test facilities have been used for test of superheat con-
trol methods; an air conditioning system (located at Aalborg University), a water chiller
system (located at Aalborg University), a supermarket refrigeration system using R404A
as refrigerant (located at Danfoss), and another supermarket refrigeration system using
CO2 (located at Danfoss). These systems therefore constitute a wide variety of setups.

A simplified schematic of the residential air conditioning system is shown in Fig. 2.1.
The maximum cooling capacity is approximately 11 kW and a corresponding load can be
applied to the cold room with electrical heaters. The system use refrigerant R410A and
has a finned tube evaporator, a Danfoss Ecoflow valve (PWM controlled with a 10 second
period), a scroll compressor, and a microchannel condenser unit.

A similar simplified schematic of the water chiller system is shown in Fig. 2.2. This
system has an approximate maximum cooling capacity of 4 kW and water is circulated
on the secondary side of the evaporator in a circuit with a 60 liter water tank, a pump, and
a heater. The refrigerant is R134a and the system also consists of a scroll compressor, a
condenser unit, and interchangeable expansion valves; either a stepper motor EEV or a
thermostatic expansion valve (TEV).

The supermarket refrigeration system using refrigerant R404A is shown in Fig. 2.3.
This system has a compressor rack with three compressors, a condenser unit, and four
display cases; two open shelfs and two open gondolas. Each display case has a finned
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Figure 2.1: Simplified schematic of the air conditioning system using refrigerant R410A.
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Figure 2.2: Simplified schematic of the water chiller system using refrigerant R134a.
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Figure 2.3: Simplified schematic of the supermarket refrigeration system using refrigerant
R404A.

tube evaporator, an EEV valve (PWM controlled with 6 second period), a defrost heater,
and a night cover/curtain. An additional water chiller load system can also be connected.

A simplified schematic of the CO2 supermarket refrigeration system is shown in Fig.
2.3. This system has 2 medium temperature (MT) and 2 low temperature (LT) compressor
units; one in each section is controlled by a frequency converter. The system also consists
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Figure 2.4: Simplified schematic of the supermarket refrigeration system using refrigerant
R744 (CO2).

of 7 display cases; 2 MT open shelfing units, 1 MT open gondola, 1 MT closed gondola,
1 LT closed shelfing unit, 1 LT closed gondola, and 1 LT open gondola. The thermal
mass in the display cases is provided by ethylene- and propylene-glycol containers and
foodstuff is emulated by blocks of tylose, with temperature sensors placed in the middle
and on the surface, see Fig. 2.5.

Figure 2.5: MT open shelfing units with ethylene- and propylene-glycol containers (left)
and tylose block with temperature sensors (right).

The air conditioning and water chiller systems are monitored and controlled with the
Matlab XPC toolbox and the two supermarket refrigeration systems use MiniLog Soft-
ware. Only some of the available sensors and control inputs are visualized in the figures.
The sensors related to superheat control are sampled at 1 Hz and for further information
see the individual papers or visit www.es.aau.dk/projects/refrigeration/
test-facilities/.
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2.1.2 Variance-Based Superheat Control

The proposed variance-based superheat control setup is illustrated in Fig. 2.6. A PI
controller in an inner loop tracks a reference setpoint for the evaporator outlet tempera-
ture Te,o and the reference setpoint Te,o,ref is adapted in an outer loop. A logic block
continuously lowers the superheat reference Tsh,ref using a ramp until the variance in
Te,o exceeds an upper threshold σ2

high. The superheat reference is then stepped back and
ramped down again when the variance goes below a lower threshold σ2

low. A step back in
superheat reference is also made if the superheat reference goes below 1◦C. The evapora-
tion pressure is simultaneously estimated by the opening degree OD and a linear gain c,
which is adapted with the MIT rule each time the upper variance threshold is reached. The
bottom graph in Fig. 2.6 also shows how the level of variance increases as the opening
degree is slowly increased in an open-loop experiment. The highest variance is close to
a low superheat (minimum stable superheat). The variance thresholds can be determined
based on this open-loop experiment and a step test can be used to tune the PI controller.
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Figure 2.6: Variance-based superheat control (top) and calculated variance for different
opening degrees based on an open-loop experiment (bottom).

Fig. 2.7 shows how the estimated superheat T̂sh follows the measured superheat Tsh
and how the superheat reference Tsh,ref is continuously ramped down and stepped back,
thus, effectively maintaining a low non-zero superheat in the evaporator. The first 1000
seconds is the initial startup phase and a disturbance in the room temperature Tair,i is
introduced at approximately 4000 seconds. For further detail see Paper A [Vinther et al.,
2012a], which also contains results from the water chiller test facility.

The proposed solution is a simplification of the first observer based solution presented
in [Lyhne & Sørensen, 2011], which also contains additional test results. An even sim-
pler implementation has also been tested on the air conditioning and water chiller systems.
This approach modifies the evaporator outlet temperature directly and does not estimate
the pressure. One of the tests on the water chiller system is shown in Fig. 2.8. The con-
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Figure 2.7: Closed-loop test on the air conditioning system using variance-based super-
heat control.

troller maintains the evaporator outlet temperature Te,o in between the surrounding water
temperature Tw and the evaporation temperature Te, without knowing these temperatures.
The reference Te,o,ref is stepped back each time the variance exceed the threshold.
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Figure 2.8: Closed-loop test on the water chiller system using variance-based outlet tem-
perature control.

All the variance based controllers have shown to work close to the nominal operating
conditions. However, the variance also depends on the amount and size of disturbances
and the system gain, which varies with operating conditions. This means that it is difficult
to determine a suitable variance threshold for all operating conditions. More advanced
estimation of the pressure would also require additional knowledge such as compressor
frequency and load. A more robust single-sensor superheat control solution is therefore
needed, which has led to the development of the maximum slope-seeking (MSS) control
scheme.
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2.1.3 Maximum Slope-Seeking Control

Preliminary System Assumptions

System assumptions are outlined in the following, before going into detail with the MSS
control. To simplify the analysis, only SISO systems are considered, which can be repre-
sented with a Hammerstein model structure given as

y(t) =(fo ? f(u(·)))(t) (2.1)

where u is the input to the system, y is the output, f(·) is the static nonlinear function,
fo(·) is the function describing the output dynamics (having the Laplace domain transfer
function Fo(s) = L{fo(t)}), and ? is the convolution operator. The Hammerstein model
structure is also illustrated in Fig. 2.9. Additionally, it is assumed that f(·) is either
monotonically decreasing or increasing, time-invariant, smooth, and bounded within the
input set u ∈ U ⊂ R under consideration. The first three derivatives with respect to
u are also bounded and continuous, and f ′ is either non-negative or non-positive bell
shaped with a unique extremum (u∗, f(u∗)) (maximum slope point) defined within U .
The second derivative f ′′ therefore has a unique zero crossing. These are also sigmoid
function properties and a monotonic decreasing I/O-map example is illustrated in Fig.
2.10. It is not strictly required that f(·) is time-invariant and smooth, but it is assumed
here for simplicity. Finally, it is assumed that the output dynamics (described by Fo(s))
are linear, time-invariant, and asymptotically stable.

y(t) 

 f  (t)o

u(t)

u

 f(u)

Figure 2.9: Hammerstein model structure.

f(u)

f’(u)

f’’(u)

(u*,f(u*))

u0

Figure 2.10: Qualitative I/O-relationship for a monotonically decreasing nonlinearity.

MSS Control Problem and Design

The proposed MSS control scheme is illustrated in Fig. 2.11 and it is intended for systems
where the maximum slope point (u∗, f(u∗)) is a suitable operating point. The objective is
therefore to make limk→∞ ū(k) = u∗, while only knowing that the system is qualitatively
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defined by the assumptions given above. The unknown operating point (u∗, f(u∗)) is
reached by continuous perturbation of the system using a sinusoidal signalAex sin(ωexk),
with amplitude Aex and period defined by ωex. Curvature information is then extracted
by sampling the output y using sample and hold (S/H) and a periodic FIR filter with the
output

ξ(k) =
2

N

k∑
n=k−N+1

y(n) cos (2ωex (n−Nφ)) , (2.2)

where Nφ is an optional phase shift compensation given in samples and N = Tex

ts
is the

number of samples in one perturbation period with sample time ts (assumed sufficiently
small compared to perturbation period).
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Figure 2.11: MSS control applied on a Hammerstein system.

The output y contains a steady state term and multiple harmonics of the perturbation
signal due to the distortion caused by the system nonlinearity. Multiplication with a
cosine term with the second harmonic frequency and summing over one period gives a
filter magnitude response of zero for all the harmonics and only leaves a DC term. It has
been shown in Paper F [Vinther et al., 2013c] that, for sufficiently small Aex and K, the
error signal approximately becomes

ξ(k) ≈− c2A
2
exf
′′(ū)

4
cos(φ− φ2), (2.3)

where c2 and φ2 are the gain and phase shift caused by Fo(s) at the second harmonic
frequency and φ is given by the phase shift compensationNφ. For a monotonic decreasing
I/O-map (f ′(u) < 0 for all u ∈ U , c2 > 0) we have

ξ(k) =0 for f ′′(ū = u∗), (2.4)
ξ(k) >0 for f ′′(ū < u∗), (2.5)
ξ(k) <0 for f ′′(ū > u∗), (2.6)

if we can ensure that the phase shift satisfies |φ − φ2| < π
2 (can be achieved by picking

ωex sufficiently small, i.e., slow perturbation compared to system dynamics). If the phase
shift φ2 is known it is also possible to compensate for it using Nφ.
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Distortion of the perturbation is illustrated for a simple static system in Fig. 2.12. The
open-loop frequency content is calculated in three operating points using FFT analysis
and it shows that the second harmonic disappears at the maximum slope point, where
there is zero mean curvature (see also Paper B [Vinther et al., 2012c]). The properties of
the error signal ξ(k) given in Eq. (2.4)-(2.6) are also illustrated in Fig. 2.12.
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Figure 2.12: Distortion of the input signal in three operating points and error signal ξ for
different input offsets ū.

The error signal ξ(k) in Eq. (2.3) is a good estimate of the curvature if φ ≈ φ2

and if it is scaled by − 4
c2A2

ex
. However, we are only interested in the sign change of

ξ(k) in MSS control and a discrete integrator C(z) = Kts
z−1 is added in the feedback loop

to drive the input offset ū(k) towards u∗. Low frequency content is added to the input
signal when ū(k) is changed in closed-loop. However, this low frequency content will be
filtered away by curvature estimator if it is well separated from 2ωex. This can be ensured
by choosing a sufficiently small feedback gainK and the sign ofK should also match the
system under consideration. A positive K is required in the example given above with a
monotonic decreasing static nonlinearity and c2 > 0. Finally, note that MSS control will
converge to the zero mean curvature point, which will be offset from the maximum slope
point if the I/O-map is not symmetric around this point. However, the offset is limited
by the amplitude of the perturbation Aex, which can be chosen small (but should be large
enough to overcome noise). Additional detail on stability and convergence can be found
in Paper F [Vinther et al., 2013c].

Upper Bound Estimate on the Integral Gain

The above analysis only states that a stabilizing feedback gain K exists. A method to
get an estimate of the upper bound on K is therefore derived in Paper F [Vinther et al.,
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2013c]. An outline of the result is that the FIR filter is periodic and that stability can
be analyzed by deriving a monodromy matrix ΨA(k) for the closed-loop system for one
period T defined as

ΨA(k) =A(k + T − 1)A(k + T − 2)...A(k), (2.7)

where A(k) ∈ Rn×n is the state transition matrix at time index k. A well known result
for such systems is that the eigenvalues of the monodromy matrix do not depend on k and
that the system is stable if and only if the characteristic multipliers (eigenvalues) of the
monodromy matrix are contained within the open unit disc [Bittanti & Colaneri, 2000].
Furthermore, marginal stability is in general obtained if and only if the eigenvalues are
contained within the closed unit disc, and further, any eigenvalue on the unit circle is
semi-simple [Horn & Johnson, 1985].

Since the desired operating point (u∗, f(u∗)) is where the gain in the system is highest
(critical point), we can eliminate the static nonlinearity by replacing it with the maximum
gain. A requirement is then that ū(0) = ū(k) = u∗ ∀k > 0 in the closed-loop system
with the perturbation set to zero (Aex = 0). This can be satisfied by choosing a K where
all the eigenvalues of the monodromy matrix are contained within the unit disc. A higher
K with eigenvalues outside the unit disc is not stable, when the perturbation amplitude is
small, and limit cycles will occur since the system gain decreases away from u∗.

Simulation Examples

Convergence to the maximum slope point is shown in Fig. 2.13 using an example sys-
tem with FOPDT dynamics. The input offset ū converges to u∗ and the response in the
I/O-map ends up circling around the maximum slope point due to the continuous and
intentional perturbation (with amplitude Aex = 2). The chosen feedback gain K is just
below the upper limit found with the monodromy matrix.
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Figure 2.13: Convergence in an example system illustrated with an I/O-map.

Fig. 2.14 shows how limit cycles occur if the feedback gain K is chosen too large for
the same system as in Fig. 2.13. The figure also shows how the input offset ū jumps away
from the maximum slope point in the unstable situation and that it does not converge back
when the system is not perturbed (Aex = 0).
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Figure 2.14: Response of the input offset ū in a stable and an unstable situation.

Modified MSS for Systems with Dynamics

An uncompensated phase shift larger than 90 degrees will flip the sign properties of the
feedback error signal ξ(k) and cause divergence from the desired operating point. Choos-
ing a slow perturbation and compensating with Nφ can help guarantee that this does
not happen. However, the phase shift might not be known exactly and could be time-
varying. Further, a conservatively chosen perturbation frequency will make the feedback
loop slow. A modified MSS control setup is therefore introduced and shown in Fig. 2.15.
The cross product between the first two harmonics is instead taken. The harmonicsHp(k)

y(t) 

 f  (t)o

System

u(t)

H S

Curvature estimator
Modified maximum slope-seeking controller

u

 
(u*,f(u*))

 

 

H (k)2

H (k)1
M(H ,H )

f   (k)2

y(k)

n

 

2 1+

A   sin(ω  k)

ū(k)

ex ex

s

z - 1
t_K-1{        } ξ (k)

f (k)1

f(u)

Figure 2.15: Modified MSS control applied to a Hammerstein system.
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are calculated using periodic FIR filters as in Eq. 2.2;

Hp(k) =
2

N

k∑
n=k−N+1

(cos (pωex (n−Nφ))− j sin (pωex (n−Nφ)) y(n)) ,

≡ap(k)− jbp(k), (2.8)

with p = {1, 2} being the number of the harmonic. The cross product is then defined as

M(H1, H2) =
a1(k)b2(k)− a2(k)b1(k)

η
=
|H1| |H2| sin (θ12)

η
, (2.9)

where the angle from the first harmonic to the second is denoted θ12 and η is an optional
normalization function. A similar expression as given in Eq. (2.3) can be derived for the
modified MSS controller whenAex andK are sufficiently small (see also Paper F [Vinther
et al., 2013c]);

ξn(k) ≈c1c2A
3
exf
′(ū)f ′′(ū)

4η
cos(φ1 − φ2 + φ), (2.10)

where cp and φp are the gain and phase shift at the harmonic in question caused by the
output dynamics. The sign properties of ξn(k) are the same as given in Eq. (2.4)-(2.6)
for a monotonic decreasing I/O-map (f ′(u) < 0 for all u ∈ U , c1 > 0, c2 > 0). The
cross product ensures that only the uncompensated phase shift difference between the first
and second harmonic needs to be less than ±90 degrees. This is easier to fulfill, since
these frequencies are only an octave apart, and the modified MSS control is therefore a
more robust solution for systems with dynamics when compared with the implementation
shown in Fig. 2.11.

The normalization η is optional, but gives a way to compensate for changes in sys-
tem gain. The error signal in open-loop with different normalizations (η0 = 1, η2 =
|H1(k)|2, η3 = |H1(k)|3) is shown in Fig. 2.16 using the same simulation parameters as
in Fig. 2.13. η3 gives an almost linear relationship. However, tests have shown that η2

works better in refrigeration systems as it weights the error signal less when the ampli-
tude of the harmonics becomes small and thus better reflects the trust that can be put in
the Fourier analysis, when noise and disturbances become significant compared with the
output due to perturbation.
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Figure 2.16: Normalized error and amplitude of harmonics as a function of input ū.
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2.1.4 Perturbation-Based Superheat Control

MSS control can be used in a broad class of nonlinear systems that have I/O-maps with
sigmoid function properties (s-shaped) and where the maximum slope point is a suit-
able operating point. It is originally intended as a solution to the single-sensor superheat
control problem in refrigeration systems and the proposed implementation for superheat
control is illustrated in Fig. 2.17. The method exploits the qualitative characteristic of
the I/O-map between input opening degree OD and evaporator outlet temperature Te,o,
which slowly decreases when OD is increased and then suddenly drops fast and then
flattens out when the evaporator floods. The fast drop happens near the minimum stable
superheat, which also corresponds to a good utilization of the evaporator (good amount
of liquid refrigerant in the evaporator). The modified MSS controller shown in Fig. 2.15
is therefore used to drive the input offset ū towards the maximum slope point without
knowing its location. Anti-windup is added to the integrator, since the opening degree
OD is limited between 0-100%, and it is also important to act fast if the evaporator sud-
denly floods due to large disturbances. Safety logic is therefore proposed, which uses the
amplitude of the first harmonic to detect if the perturbation signal suddenly becomes very
small in the output, which could indicate a flooding situation.

Integral control
w. anti-windup

Harmonic 
analysis

Safety
logic

ξn

|H |1

Te,oOD
+A   sin(ω   k)

u

usl

ex

Evaporator

EEV
Liquid refrigerant 
from condenser

Gaseous refrigerant 
to compressor

_

_

ex

Figure 2.17: Proposed single-sensor evaporator superheat control setup.

The results within single-sensor superheat control are summarized in the following,
which include analysis of the evaporator characteristics, automatic tuning of the MSS
control, safety logic for fast flooding detection, and test results obtained from the four test
facilities described in Subsection 2.1.1. Additional detail and test results can be found in
Papers C-E [Vinther et al., 2012b, Vinther et al., 2013d, Vinther et al., 2013b].

Automatic Tuning of MSS Control

Fig. 2.18 shows the relation between inputOD and output Te,o in the evaporator for three
of the test facilities. The fitted sigmoid function indicates that all the evaporators qual-
itatively have the same behavior of the outlet temperature Te,o; there are two horizontal
asymptotes determined by the ambient temperatures and the evaporation temperature Te,
and a point where the temperature decreases fastest (maximum system gain). The exact
shape of the I/O-map is dependent on the system operating conditions, e.g., the temper-
ature of the asymptotes, and the fit shown in Fig. 2.18 is not valid for other operating
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Figure 2.18: Temperature during a slow input sweep from low OD to high OD on the
air conditioning system (top), water chiller system (middle), and a MT open shelf type
display case in the supermarket refrigeration system using R404A (bottom). A sigmoid
function is fitted to the Te,o measurements using a 2-norm.

conditions. However, the qualitative s-shaped relationship remains the same, which can
be exploited with MSS control. Furthermore, system dynamics are not revealed in the
OD-sweep tests and, as discussed in Subsection 1.2.1 and 1.2.2, the exact evaporator dy-
namics are quite complex, but can approximated by simpler FOPDT models depending
on the level of detail required (see also [Izadi-Zamanabadi et al., 2012b]).

Test experience have shown that the Hammerstein model structure, with a static non-
linearity describing the changes in gain and a FOPDT describing the dynamics, can be
used to derive a representative model of the response from OD to Te,o for tuning of the
MSS controller. Automatic approaches to identifying this model are described in Paper

41



Summary of Contributions

D and E [Vinther et al., 2013d, Vinther et al., 2013b] and outlined in the following.
The Hammerstein model is parameterized by a static nonlinearity

Te,o =− k1atan (k2 (OD +OD∗)) + T ∗e,o (2.11)

and FOPDT dynamic

Fo(s) =
1

(Tsyss+ 1)
e−sTd , (2.12)

where the gains k1 and k2, the maximum slope point (OD∗,T ∗e,o), the time constant Tsys,
and the delay Td can be identified using a simple ramp test and a biased relay feedback
test. This procedure is shown in Fig. 2.19, which also shows the individual identified
models described by Eq. (2.11) and (2.12). Further, a comparison between the combined
Hammerstein model and the sinusoidal response close to the maximum slope point is
shown in Fig. 2.20, which indicates a good model fit.
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Figure 2.19: Ramp and relay feedback test on a MT open shelf type display case in the
CO2 supermarket refrigeration system.

More advanced identification of Hammerstein models for nonlinear systems can be
found in, e.g., [Eskinat et al., 1991, Crama & Schoukens, 2001, Tan et al., 2012], and
could involve the Matlab system identification toolbox and the nlhw function. [Eskinat
et al., 1991] also gives an example with a heat exhanger. However, only a rough parameter
estimate is needed for tuning.

Ramp and relay feedback tests performed on the four refrigeration systems described
in Subsection 2.1.1 have provided the model parameters presented in Table 2.1. Note that

42



1 Single Temperature Sensor Superheat Control Using Qualitative System
Knowledge

145 150 155 160 165 170
-12

-10

-8

-6

-4

-2

0

2

Time (s)

Te
m

pe
ra

tu
re

 (°
C

)

Te,o Te,o  (model) Te

Figure 2.20: Measured and modeled evaporator outlet temperature Te,o with a sine input.
The evaporation temperature Te is also shown.

Parameter Air con. Water Display Display
chiller case (R404A) case (R744)

k1 5.68 4.89 5.59 4.02
k2 0.50 1.31 1.07 0.44
OD∗ 33.02 50.78 38.15 71.04
T ∗e,o 9.08 12.41 0.71 -2.10
Tsys 23.07 31.51 59.52 96.95
Td 15 26 29 87

Table 2.1: Identified evaporator model parameters for the air conditioning system, water
chiller system, and a display case in each of the supermarket refrigeration systems.

identification of OD∗ and T ∗e,o is only used to initialize the relay feedback test and not
used in tuning of the MSS controller.

The parameters in MSS control are the perturbation period Tex, the amplitude Aex,
the phase shift compensationNφ, and the integral gainK. The perturbation signal should
in general be slower than the system dynamics and a good choice of Tex, based on test
experience from different refrigeration systems, is between 3-5 times the system time
constant Tsys, in order to also account for variation in parameters and model uncertainty.
The choice of amplitude Aex is not highly critical, but should in general give adequate
perturbation of the output compared with the average noise level and disturbances. The
identified model could be used to find an amplitude that approximately gives the desired
perturbation near the maximum slope point. The phase shift compensation Nφ can be set
to match the system delay Td, which is relatively large in refrigeration systems and, if left
uncompensated, would introduce a large difference in phase shift between the harmonics.
Nφ could also include the phase shift caused by the first order dynamics. Finally, a
suitable integral gain K can be determined based on the system model and the already
chosen parameters (Tex, Aex, and Nφ). This can be done by iterating K in simulation
until a prespecified performance criteria is met, e.g., overshoot less than 10%. Tuning
is also discussed in Paper D and E [Vinther et al., 2013d, Vinther et al., 2013b] and the
control parameters used in the tests are summarized in Table 2.2.

43



Summary of Contributions

Parameter Air con. Water Display Display
chiller case (R404A) case (R744)

Nφ 15 26 29 87
Tex 120 130 180 388
Aex 8.5 10.8 8.0 10
K 0.079 0.067 0.042 0.0285

Table 2.2: MSS Control parameters used in the tests presented in this subsection.

Exact knowledge of system parameters for controller tuning is not critical, which
is illustrated using Monto Carlo simulations, see Fig. 2.21. The model parameters k1,
k2, Tsys, and Td have been varied randomly in a range of ±50% from the nominal val-
ues given in Table 2.1 in 100 simulations (same variation in dynamics is also suggested
in [Izadi-Zamanabadi et al., 2012b]). All simulations, starting from random initial ū, con-
ververged to the maximum slope point using the same control parameters in all tests. For
further detail see Paper F [Vinther et al., 2013c].

0 500 1000 1500 2000 2500 3000 3500 4000
20

30

40

50

Time (s)

In
pu

t o
ff

se
t

u
u*

_

0 500 1000 1500 2000

20

30

40

50

In
pu

t o
ff

se
t

0 500 1000 1500 2000

40

50

60

70

In
pu

t o
ff

se
t

u
u*

_

u
u*

_

Figure 2.21: Time evolution of the input offset ū in 100 individual simulations on the air
conditioning system model (top), water chiller system model (middle), and display case
model (R404A) (bottom).
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Safety Logic for Fast Flooding Detection

The proposed safety logic for fast detection of flooding (overflow) situations in the evapo-
rator is described using a flowchart in Fig. 2.22. The amplitude of the first harmonic |H1|
is used as an indicator of healthy/unhealthy situations. If the amplitude is consistently
low (e.g., for the duration of a perturbation period Tex), then action should be taken and
the opening degree is stepped back for safety reasons. A check is then made to see if the
low amplitude was caused by a low flow (very high superheat) or an overflow situation
(very low superheat) in the evaporator, which determines where the input offset ū should
start ramping up from. The amplitude |H1| will eventually become large as ū increases
and a switch back to MSS is then made.

MSS ctrl

Close
ODTdc < Tdc? Tdc > Tdc? Yes

No

Refill 
Evaporator

Start perturbation

|H1|consistently low?

Overflow situation?
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Wait
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No
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Start

Wait
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u
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Figure 2.22: Flowchart describing the safety logic.

The air temperature in display cases Tdc is also maintained within a lower bound
T dc and an upper bound T dc using hysteretic on/off control on the valve. This control
overrides the superheat control and is shown in Fig. 2.22 as an interrupt. An additional al-
gorithm is proposed after the off period (closed OD), which quickly refills the evaporator
before MSS starts. More detail on the refill algorithm can be found in Paper E [Vinther
et al., 2013b] and the safety logic is further described in Papers D and E [Vinther et al.,
2013d, Vinther et al., 2013b].

Test Results

The single-sensor superheat control setup based on MSS, shown in Fig. 2.17, has been
tested on four different refrigeration systems. Some of the test results, presented in Papers
C-F [Vinther et al., 2012b, Vinther et al., 2013d, Vinther et al., 2013b, Vinther et al.,
2013c], are highlighted in the following.

Fig. 2.23 shows a part of the result from a test conducted on a MT display case
in the CO2 supermarket system (see Fig. 2.5). Some of the data is also presented in
Fig. 2.20 and the full test is presented in Paper E [Vinther et al., 2013b]. MSS control
is started after an evaporator refill procedure and the evaporator outlet temperature Te,o
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quickly drops down to a too low value, due to a too high initial OD. The error signal ξn
then becomes negative and the OD offset ū is integrated down and stabilizes close to the
maximum slope point at an average superheat of 7◦C.
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Figure 2.23: Single-sensor superheat control test result from a MT display case in the
CO2 supermarket system. The evaporation temperature Te and superheat Tsh are not
available in the control, but shown for verification purposes.

Fig. 2.24 shows the first 3.5 hours of a 8.33 hour test, presented in Paper D [Vinther
et al., 2013d], conducted on the water chiller refrigeration system. The compressor
frequency and heat load were varied according to the benchmark described in [Izadi-
Zamanabadi et al., 2012b], in order to test disturbance rejection and operation under
different conditions. The initial OD is too low and this is correctly detected as a low flow
situation by the safety logic. OD is then ramped up and MSS control takes over after
approximately 20 minutes. This convergence time is higher than what can be achieved
with a TXV valve or conventional two-sensor control. However, it was done using only
the evaporator outlet temperature measurement and, thus, without a pressure sensor. The
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average superheat during the entire 8.33 hour test was 12.9◦C (12.2◦C without the first
20 minutes) with single-sensor MSS control and 12.68◦C with the TXV valve (a lower
average superheat setting with the TXV valve would give excessive valve hunting). The
slightly higher superheat is due to the higher superheat during initialization and activation
of the safety logic, which approximately gives a 15 minute period with higher superheat.
An example of safety logic taking over is shown 1.5 hour into the test, which is caused by
a step down in load followed by a large step down in compressor frequency. This results
in a low superheat and ū is stepped back for safety reasons and ramped back up.
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Figure 2.24: Single-sensor superheat control test result from the water chiller system. The
superheat, compressor frequency, and heat load are not available in the MSS control and
the obtained superheat from a separate test using a TXV valve is shown for comparison.

Fig. 2.25 shows two 2.5 hour tests conducted on a MT display case in the R404A su-
permarket refrigeration system. Both tests were conducted under approximately the same
operating conditions and with the same initial conditions to be able to compare the super-
heat obtained with MSS control and with conventional two-sensor control. Furthermore,
the night cover was up the first 1.5 hours and lowered from 1.5 to 2.5 hours. The con-
ventional two-sensor control adapts the superheat reference based on the variance level
as described in [Danfoss, 2008]. Two-sensor control therefore operates just above the
minimum stable superheat, whereas the MSS control operates with an average superheat
T̄sh,mss close to the maximum slope point at a lower superheat, which gives a higher
utilization of the evaporator. For further detail see Paper D [Vinther et al., 2013d].

MSS single-sensor superheat control combined with hysteretic on/off display case air
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Figure 2.25: Obtained superheat using MSS control Tsh,mss and conventional two-sensor
control Tsh,conv on the MT display case in the R404A supermarket refrigeration system.
The two control methods have been tested separately with almost similar operating con-
ditions and the results are overlayed sharing the same time axis.

temperature control is shown in Fig. 2.26. The display case air temperature Tdc is taken
from an initial temperature of approximately 15◦C to between the hysteresis limits of 0
and 5◦C during the 4 hour test. The average superheat will be relatively high due to the
on/off operation of the valve, but it is optimized during the on period. For further detail
see Paper D [Vinther et al., 2013d].
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Figure 2.26: Combined superheat and air temperature control on a MT display case in the
R404A supermarket refrigeration system.

In summary, the tests demonstrate that single-sensor evaporator superheat control
based on MSS is possible and that the average obtained superheat is comparable or even
lower than what can be achieved with conventional two-sensor control. However, the
single-sensor solution is not as fast during initial startup and require continuous perturba-
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tion of the system.

2.2 Improvement of Refrigeration System Temperature Control by
Utilization of Daily Repetitiveness

Repetitiveness in load patterns and learning based control can potentially be utilized to
improve the existing temperature control in refrigeration systems. Two different cases
are investigated in this thesis; repetitive control for building HVAC systems and learning-
based precool strategies for supermarket refrigeration systems. The contributions and
obtained results within these subjects, presented in Papers G-I [Vinther et al., 2013a,
Vinther et al., 2013e, Vinther et al., 2013f], are summarized in the following.

2.2.1 Repetitive Control in Building HVAC Systems

Building Simulation Model

An example single-zone office building simulation model is derived in Paper G [Vinther
et al., 2013a], to be able to evaluate and compare the performance of the designed con-
trollers under the same operating conditions over longer periods of time (e.g., a year).
The model is based on the 3R2C modeling framework, see Fig. 1.10, and has the discrete
state space model representation[

Tw
Tz

]
(k + 1) =

[
Aww Awz
Azw Azz

] [
Tw
Tz

]
(k) +

[
0
Bz

]
Q̇hvac(k)

+

[
Bair Bgnd Bdw 0

0 0 0 Bdz

]
Tair,o
Tgnd
dw
dz

 (k), (2.13)

where Tw is a vector with the inner and outer wall surface temperatures, Tz is the zone
temperature, Tair,o is the outside air temperature, Tgnd is the ground temperature, Q̇hvac
is the HVAC heat transfer rate, dw is a vector of lumped Long Wave Radiation (LWR)
and Short Wave Radiation (SWR) heat transfers affecting each wall, and dz is the thermal
load on the zone. Finally, the matrices Aww, Awz , Azw, Azz , Bz , Bair, Bgnd, Bdw, and
Bdz are derived from the resistances and capacitances in the 3R2C networks.

The disturbance inputs Tair,o, Tgnd, and dw are derived for an entire year based on
typical meteorological year 2 (TMY2) weather data for Phoenix, Arizona. This hot lo-
cation requires mostly cooling, but also some heating during the winter months, and the
weather profile has repeatability on a daily basis and changes seasonally. The disturbance
load dz on the ≈6000 m3 office zone comes from body heat, appliances, and lighting.
It is randomly generated each day based on five Gaussian probability density functions
(PDF) governing how many people arrive for work, how many hours each person works,
when each person works, when each person has lunch, and how long that person’s lunch
is. Furthermore, it is assumed that each person contributes with 0.6 kW heating when
occupying the zone and 0.3 kW when the person is at lunch (the numbers include body
heat together with each persons share of the total heat from appliances and lighting). The
values are close to 0.63 and 0.37 kW used in [Zhou et al., 2005] and Fig. 2.27 shows dz
during four days in the simulation.
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Figure 2.27: Randomly generated zone load during four days in the simulation.

The controllable input to the model is the HVAC heat transfer rate Q̇hvac, which is
limited to the interval -35 to 17.5 kW. The zone temperature sample time and control
update rate is set to 5 minutes, where typical values are between 1 to 15 minutes in
buildings. This update rate is faster than the open-loop zone air temperature constant of
about 27 minutes (wall temperatures are much slower) and assumed slow enough to allow
the HVAC system to meet the desired heating/cooling demand before it is changed again.
The objective is to maintain the zone air temperature Tz at a reference temperature Tz,r
by controlling Q̇hvac and a PI feedback controller with anti-windup is therefore designed
and added to the system. PI control is common in building system due to the intuitive
and simple implementation. However, a fixed gain PI control will not work optimally in
all operating conditions, because the extreme high and low load situations will determine
how aggressively the control can be tuned.

Repetitiveness in Tracking Error Data

The described single-zone building model with zone temperature control is simulated for
a year from 1st of January to 31st of December. The daily tracking error and repeatable-
to-nonrepeatable ratio (RNR), calculated based on Eq. (1.10), are shown in Fig. 2.28.
Large tracking errors occur when there is a quick change in load, e.g., when people meet
for work, go to lunch, come back from lunch, and go home. The RNR also indicates that
there is repeatability in the low frequency range. The frequency at the first two peaks
in RNR correspond to the first and third harmonic of a square signal with a period of
approximately 18 hours, which fit with the shape of the disturbance load. A few days also
have a tracking error between 13 to 17 hours, which is caused by slight saturation of the
HVAC system during the hottest days in the summer period. The repeatable pattern seen
in the tracking error motivates the development of a learning/repetitive type control for
improvement of the tracking performance.

Serial Repetitive Control Implementation

The proposed addition of reference modifying serial repetitive control (RC) to the existing
feedback controlled zone temperature is shown in Fig. 2.29. The basic idea is to modify
the reference/error seen by the inner controller C to get better closed-loop performance
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Figure 2.29: Proposed addition of serial RC (blue) to the existing temperature controller
and system (black).

of the original error e. This is achieved by modifying the zone temperature reference
Tz,r with the RC block using a vector of past errors e = [e(k − 2N + 2), ..., e(k −
1), e(k)], a vector of past reference modifiers Tz,rm = [Tz,rm(k−2N+1), ..., Tz,rm(k−
2), Tz,rm(k − 1)], and learning filters L and Q. The output of the RC block for the next
time step k is defined as

T̂z,rm =Q(Tz,rm + Le), (2.14)

T̂z,rm =[T̂z,rm(1), T̂z,rm(2), ..., T̂z,rm(2N − 1)], (2.15)

Tz,rm(k + 1) =T̂z,rm(N + 1), (2.16)
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where Tz,rm(k + 1) is the updated version of the reference modifier used in the last tri-
al/day (N samples back in time) to be applied in the next time step. Tz,rm(k + 1) is then
saved in memory, and the error e goes to zero as the number of trials/days go to infinity
if there is enough repetitiveness. Furthermore, vectors are used in the calculations be-
cause of the learning filters L andQ, which can be causal/noncausal filters with low-pass,
band-pass, or high-pass characteristics depending on the frequencies where repeatability
occurs.

Based on past tracking error data and the RNR calculations, e.g., from January, it is
possible to choose an appropriate filter type and cutoff frequency for the learning filter
L. Here, a noncausal low-pass filter implementation is used and designed based on the
Matlab functions butter and filtfilt. TheQ filter can then be chosen to satisfy Eq. (1.9).
This means that even though the learning-based approach is non model-based, a model
is still needed in order to check for stability. However, it might be possible to base the
analysis on identification of a simple generic FOPDT model. Modifying the reference
is also not as critical as directly introducing a feedforward signal between the controller
and the system using a parallel RC structure, as the inner closed-loop is already assumed
to be asymptotically stable. For further detail on the proposed serial RC implementation
and tuning see Paper G [Vinther et al., 2013a].

One Year Simulation Case Study

Data from January is used to tune the learning filter and the performance during the rest
of the year is compared with control without RC in the following. Fig. 2.30 first indicates
how the reference is modified by RC and continuously updated each day. Note how the
shape of the modified reference is similar to the repeatable error in Fig. 2.28. Fig. 2.31
additionally shows the zone temperature for each day in March both with and without
RC. The deviation from the reference Tz,r = 22.5◦C has been reduced with RC and the
summed error using different norms, the total energy consumption, and the total energy
charge in U.S. $ using a time-of-use tariff are outlined in Table 2.3. The total sum of
the error is reduced by 52-67% depending on the norm with almost no change in energy
charge cost and no additional hardware. The obtained result will of course depend on how
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Tz,r + Tz,rm during the last two days/trials in the simulation (j denotes the trial num-
ber).
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Figure 2.31: Zone temperature for each day in March with and without RC.

Table 2.3: Comparison of control with and without RC, based on simulation data from
1st of February to the 31st of December.

quantity without RC with RC % improvement∑334
j=1 ‖ej‖∞ 115.28 55.43 51.91∑334
j=1 ‖ej‖2 1357.70 475.87 64.95∑334
j=1 ‖ej‖1 29037.42 9584.77 66.99

Total energy (kWh) 50612 50450 0.32
Total energy charge (U.S. $) 2926.31 2915.54 0.37

well the initial PI control is tuned, but RNR calculations, using past tracking error data,
can be used to evaluate, if there is potential for improvement with learning-based control.

The few days with saturation during the summer period are still saturated. Modifying
the reference does not help if the system is already saturated and shifting the error to
base the modification of the reference on future errors in order to precool the system
will give oscillatory behavior, since the precool period will also be seen as an error and
introduce modification of the reference even earlier in the opposite direction and so forth.
Alternative learning-based strategies are therefore required in order to handle saturation
in refrigeration system capacity better using precooling to shift the peak load.

2.2.2 Learning-Based Precool Strategies

Repetitiveness in Supermarket Refrigeration System Load

The repetitiveness in the load has been investigated using data from a medium sized Dan-
ish supermarket refrigeration system. This system is similar to the CO2 supermarket
refrigeration test facility described in Subsection 2.1.1 and the main components of the
refrigeration system are seven medium temperature (MT) storage evaporators, four low
temperature (LT) storage evaporators, two compressors for the MT storages, two com-
pressors for the LT storages, a bypass valve (BP), a gas cooler/condenser, and a receiver.
The supermarket is open every day between 8 am and 9 pm and data is sampled every 60
seconds. Filtered compressor work Ẇcp, cooling load Q̇, and valve opening OD from
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six consecutive days from 18th of September 2011 are shown in Fig. 2.32. A high in-
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Figure 2.32: Low-pass filtered data from a medium sized supermarket showing the esti-
mated work of the compressor racks (top), the estimated cooling loads (middle), and the
opening degree OD of a fridge and a freezer display case (bottom).

crease in load is seen during the opening hours of the supermarket, which results in a
repeatable pattern on a daily basis. The MT fridge section with four open shelf type dis-
play cases shows the highest repeatability and if the refrigeration system saturates, it will
most likely occur during the opening hours in the middle of the day on hot summer days.
Further detail can be found in Paper I [Vinther et al., 2013f].

Supermarket Refrigeration System Simulation Model

A supermarket refrigeration system simulation model is presented in Paper H [Vinther
et al., 2013e]. The purpose of the model is to simulate the dynamics of the air and food-
stuff temperature in display cases and potential saturation of the compressor racks due to
high cooling loads and outdoor air temperature. The model therefore provides a bench-
mark to compare different precool strategies.

The model simulates four MT storages with hysteretic control on the air temperature
Tdc, a suction manifold that connects all the mass flows, and a MT compressor rack
that controls the suction pressure. The temperature corresponding to the condensation
pressure is set five degrees above the outdoor temperature and it is assumed that the
condenser dynamics and condenser pressure control are fast and negligible compared with
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the rest of the system. Compressor capacity limitations and yearlong TMY2 weather data
are then used to simulate hot days with high condenser pressure and corresponding higher
load on the compressors. An increased load during the supermarket opening hours, where
the night covers are up and customer activity is higher, is simulated by increasing the
overall heat transfer coefficient between the air in the supermarket Tair,i and the average
display case air temperature Tdc = 1

2Tdc,i + 1
2Tdc,o. The resulting cooling load Q̇e,mt

is approximately twice as high during the opening hours, which is comparable with the
supermarket data shown in Fig. 2.32.

Fig. 2.33 shows the air and foodstuff temperature in the second MT display case
with hysteretic control using the simulation parameters given in Paper H [Vinther et al.,
2013e]. The valve is turned on when Tdc,2 reaches an upper threshold T dc,2 and turned
off again when Tdc,2 goes below a lower threshold T dc,2. The dynamics of the food-
stuff temperature are much slower than the air temperature dynamics and by lowering the
thresholds it is possible to save thermal energy in the foodstuff in terms of "coldness".
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Figure 2.33: Display Case 2 air temperature controlled with hysteretic on/off control. A
shift in temperature thresholds is made after 40 minutes.

The thermal storage potential in each display case will mainly depend on the type of
food, the amount, and how it is packed. Different combinations of heat transfer coefficient
and mass times specific heat are therefore simulated in each of the four cold storages. A
step in the air temperature Tdc from 3.5 to 1◦C is simulated and the time it takes the
foodstuff temperature Tgoods to reach 90% of the step is 166 minutes, for Display Case
1, 250 minutes for Display Case 2, 500 minutes for Display Case 3, and 300 minutes
for the cold storage room. This is roughly the time it takes to precool each individual
cold storage, and Fig. 2.34 shows average display case air temperature and foodstuff
temperatures from a similar step test conducted on a MT open shelf type display case
in the CO2 supermarket refrigeration system test facility. The time it takes the foodstuff
surface temperature Tgoods,surf to reach 90% of the step is roughly 350 minutes and the
foodstuff core temperature Tgoods,core initially drops slower, but reaches 90% of the step
in roughly the same time. The precool times in the simulation are chosen to be both
faster and slower than this to simulate different situtions. The precool time for a closed
MT gondola display case in the test facility was similarly identified to be approximately
475 minutes and a closed LT gondola display case had a precool time of 900 minutes.
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Figure 2.34: Display case food temperatures during a step in the air temperature on the
CO2 supermarket refrigeration system test facility. Temperature sensors on a tylose block
are used to get the foodstuff temperatures, see Fig. 2.5.

Simulation of MT open shelf type display cases are thus considered to be the worst case
scenario in terms of thermal storage potential.

Proposed Learning-Based Precool Strategies

The proposed learning-based precool strategy for hysteretic controlled display cases is
illustrated in Fig. 2.35 using a trial domain notation, where j denotes the trial number.
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Figure 2.35: Proposed addition of learning-based precooling to hysteretic temperature
control in display cases.

Each trial starts at midnight (or when the load is low) and lasts a day in the super-
market refrigeration system case. The objective is then to lower the baseline display case
air temperature thresholds T dc,0 and T dc,0 when precooling is needed in an anticipatory
manner based on the saturation in previous days. The saturation can be detected by low-
pass filtering the vector of valve signals from the previous trial valvej−1 saved in memory

to get v̂alvej−1. If ||v̂alvej−1||∞ exceeds an upper threshold v̂alve, then more precool-
ing is needed to shift more of the peak load to less loaded hours. The precool time ∆ is
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recalculated for each trial and defined as

∆j =∆j−1 + δj−1, (2.17)

δj−1 =

{
l1∆ if

∣∣∣∣∣∣v̂alvej−1

∣∣∣∣∣∣
∞
≥ v̂alve

l2∆ otherwise,
(2.18)

where δ is the update to the precool time, l1 =]0, 1] is the learning gain, l2 = [−1, 0[ is the
de-learning gain, and ∆ is the maximum allowed precooling time. Further, the precool
time is limited between 0 and ∆ and is

∆j =

∆ if ∆j > ∆
0 if ∆j < 0

∆j otherwise.
(2.19)

The time when the precool should be applied during the day is parameterized by tend,
which can be the start of the longest saturation period in v̂alve. An alternative could also
be to set tend manually based on the supermarket opening hours, a time-of-use energy
charge tariff, experience, etc. The threshold modifying vectors Tm and Tm are then set to
zero outside the period of precool parameterized by ∆ and tend and to predefined precool
thresholds Tm and Tm inside the precool period. Tm must be chosen so that T dc is still
above the hard constraints on the air temperature in the display case (e.g., 0 degree in MT
display case). The full procedure is described in ALGORITHM_1.

1: Initialize ∆ = 0, n = 0, Tm = 0, Tm = 0, tend = 0
2: Wait until midnight (start of new trial)
3: function ALGORITHM_1(valve)
4: if n has reached 24 hours of data then
5: Reset n
6: Filter valve to get v̂alve
7: Find longest saturation period in v̂alve
8: if system is saturated then
9: Set tend at start of long saturation period

10: end if
11: Update ∆ according to Eq. (2.17), (2.18), and (2.19)
12: Set Tm = 0 and Tm = 0
13: Insert precool in Tm, Tm using ∆, tend, Tm, Tm
14: Extend precool to include saturation period
15: else
16: Increment n
17: end if
18: Set new temperature thresholds in fridge display case: T dc = Tdc,0(n) + Tm(n),

T dc = Tdc,0(n) + Tm(n)
19: Save valve(n) = valve
20: end function
The precool is extended to include the saturation period in order to keep the temperature
in the display case low for as long as possible. Further detail on the proposed precool
algorithms and tuning guidelines are provided in Papers H and I [Vinther et al., 2013e,
Vinther et al., 2013f].
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One Year Simulation Case Study

Three strategies have been simulated on the supermarket refrigeration system in Paper
H [Vinther et al., 2013e]. The first strategy is simply to precool all the cold storages
constantly by always having the air temperature thresholds on the low settings. The com-
pressor rack has been dimensioned to exactly be able to keep the foodstuff temperature
below the upper limit during the entire year using this strategy. The second strategy is not
to precool at all. The third strategy is to use ALGORITHM_1 in each of the cold storages
to apply precooling more intelligently compared with constant precooling. Table 2.4 sum-
marizes the results with the three strategies. The foodstuff temperature in Display Case 1
and 2 violated the upper temperature constraint in five and four days, respectively, if the
foodstuff is not precooled. Further, a slightly lower average temperature in the display
cases due to precooling also slows down bacteria growth. The energy charge cost based
on the simulated compressor power and a time-of-use energy tariff showed an increase of
4.24% using constant precooling and only 1.21% using the precool algorithm. The kWh
numbers are rough estimates, but the strategies are compared under the same conditions
and the differences do indicate the advantage of the precool algorithm.

Table 2.4: Summary of case study results for simulation from 1st of January to the 31st
of December with and without precool locally in each fridge.

Quantity No Variable Constant

precool precool precool

Tgoods,1 above lim. (days) 5 0 0

Tgoods,2 above lim. (days) 4 0 0

Tgoods,3 above lim. (days) 0 0 0

Tgoods,cs above lim. (days) 0 0 0

Total energy (kWh) 54742 55401 57235

Energy charge (U.S. $) 3089 3126 3220

Fig. 2.36 shows foodstuff temperature in Display Case 2 with and without the precool
algorithm during four hot summer days. The MT compressor capacity quickly saturates
when the supermarket opens. This results in an increased suction pressure and the in-
ability of the refrigeration system to keep the air temperature down. The increased air
temperature affects the foodstuff, which as a result goes above the upper limit of 5◦C.
The foodstuff temperature is kept lower during the day when precool is applied, which
shifts some of the load in the saturated period to the non saturated earlier hours. The
maximum precool time is activated in the presented days, which brings the foodstuff tem-
perature down to 1◦C before the system saturates. The precool time ∆ for each day in the
simulation with variable precool is shown in Fig. 2.37. Maximum precooling is applied
during the summer period as expected and removed again during the winter. Remark that
the learning-based precool algorithm does not have a system model and does not know
the weather, but continuously tries to find the least amount of precool that removes system
saturation, just based on the saturation in the past days.
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Figure 2.36: Foodstuff temperature and low-pass filtered air temperature in Display Case
2, together with MT compressor capacity, during four saturated summer days in the sim-
ulations without and with variable precool applied locally.
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Figure 2.37: Precool time applied in the three display cases and in the cold storage room
for each day in the simulation.

An alternative precool algorithm has been simulated in Paper I [Vinther et al., 2013f]
where saturation in any MT cold storage results in precool in the LT freezer section in-
stead. The precool period is not extended into the saturation period in this algorithm as the
stored thermal energy in the frozen food should be "released" when the MT compressor
rack saturation starts. Fig. 2.38 shows how the freezer foodstuff temperature Tgoods,fr is
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lowered before the compressor rack saturates, which results in less saturation and lower
maximum temperature in the MT display case.
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Figure 2.38: Foodstuff temperature in Display Case 2 and in freezers, together with MT
compressor capacity, during four saturated summer days without and with variable pre-
cool.

Similar performance in terms of keeping the foodstuff temperature in the MT cold
storages below the upper threshold is achieved with this precool strategy during the sim-
ulated year. Further, the result can be obtained with a relatively fast LT freezer section
precool time of 420 minutes, which also means low capability of storing thermal energy
for longer periods of time. In comparison, data from a LT freezer gondola in the CO2

supermarket refrigeration system show a 900 minute precool time, which therefore has
even higher thermal storage potential than the simulated case. Additionally, the simula-
tion shows that reducing the refrigerant demand from the LT section during the saturation
period, by precooling it before the saturation, can also reduce the load on the MT com-
pressor rack in the saturation period and therefore potentially prevent violation of the
upper temperature threshold in the MT display cases during hot summer days. The mass
of the foodstuff in the MT and LT sections were similar in the presented case study, and
the potential of this precool strategy will of course depend on the relative size of the MT
and LT sections.

2.3 Paper Contributions

A short summary of the contributions, within the two research areas presented in this
thesis, is given in the following with reference to the individual publications.
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3 Paper Contributions

2.3.1 Single Temperature Sensor Superheat Control Using Qualitative
System Knowledge

Contribution 1: Single-sensor superheat control
Single temperature sensor superheat control was first demonstrated in Paper A
[Vinther et al., 2012a], where it is shown how measurement variance can be used
to gain the missing information for control. Tests on two refrigeration systems also
show the applicability of the method. However, the method relies on identifica-
tion of a variance threshold, which can be sensitive to large changes in operating
conditions, as the level of variance also changes. An alternative perturbation-based
control scheme has therefore been developed (see Contribution 2), which utilizes
the observed s-shaped qualitative behavior of the evaporator I/O-map. Additional
safety logic for fast detection of flooding is derived in Paper C [Vinther et al.,
2012b]. Multiple tests on four widely different refrigeration systems, presented
in Papers C, D, and E [Vinther et al., 2012b, Vinther et al., 2013d, Vinther et al.,
2013b], show the applicability of the method and the possibility of controlling the
superheat without a pressure sensor. Tests presented in Paper D [Vinther et al.,
2013d] demonstrate that a lower average superheat can be maintained compared
with conventional superheat control with two sensors due to operation closer to the
minimum stable superheat.

Contribution 2: MSS control
A novel MSS method for control of a general class of nonlinear systems has been
developed. The method is inspired by slope-seeking control and relies on contin-
uous perturbation of the system. Harmonic analysis is then used to drive the input
offset towards the maximum slope point in the I/O-map and the method does not
require specification of the maximum slope and can adapt to changes in the I/O-
map. MSS was first presented in Paper B [Vinther et al., 2012c] and analysis of
stability and convergence for Hammerstein systems is provided in Paper F [Vinther
et al., 2013c].

Contribution 3: Plug and play solution
Methods to automatically tune the MSS-based single temperature sensor superheat
control are proposed and successfully tested in Papers D and E [Vinther et al.,
2013d, Vinther et al., 2013b]. The tuning procedure uses a simple ramp test and a
relay feedback test to identify the important characteristics of the particular evapo-
rator. Paper E [Vinther et al., 2013b] demonstrates that the code can be added to an
existing system, in a plug and play sense, without a priori system knowledge.

2.3.2 Improvement of Refrigeration System Temperature Control by
Utilization of Daily Repetitiveness

Contribution 4: Repetitiveness in refrigeration systems
Analysis of data from a medium size Danish supermarket in Paper I [Vinther et al.,
2013f] demonstrate that there can be a high degree of repetitiveness in the load on
the refrigeration system and that it is mainly caused by opening and closing of the
supermarket. Simulations of a temperature controlled building in Paper G [Vinther
et al., 2013a] also indicate that calculation of a repeatable-to-nonrepeatable ratio
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for each frequency contained in past tracking error data can be used to reveal if
there is potential for learning-based control.

Contribution 5: Repetitive control in building systems
A serial repetitive control scheme for improvement of temperature control in build-
ings is given in Paper G [Vinther et al., 2013a]. The non model-based method
utilizes any potential repetitiveness in tracking error and simulations on a building
model demonstrate that significant improvements in tracking error can be obtained.
A tuning procedure is also outlined and the serial structure of the repetitive control
allows implementation without modification of the existing control loops.

Contribution 6: Learning-based precool strategies
A learning-based precool strategy for display cases is proposed in Paper H [Vinther
et al., 2013e]. Here, EEV valve saturation in previous days lead to precool of the
foodstuff in an anticipatory manner. This reduces the potential risk of violation of
temperature limits and deterioration of the foodstuff. Simulations show that pre-
cool is only applied if needed (e.g., during hot summer months) and the solution
provides a more intelligent alternative to fixed precool schedules and does not re-
quire a system model or load estimation as in MPC solutions. Another strategy is
also demonstrated in Paper I [Vinther et al., 2013f], where precool is applied to
the freezers, due to their slower dynamics and better thermal storage capabilities,
instead of locally in each medium temperature display case.
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3 Conclusions and Perspectives

3.1 Conclusions

The aim of the research presented in this thesis has been to find alternative data-driven
control strategies for vapor compression cycle refrigeration systems that can improve the
robustness and performance of the conventional decentralized control loops in these sys-
tems. Further, a focal point has been to provide solutions with a high plug and play
potential and to keep the variable costs at a minimum. Finally, superheat control is the
most critical control challenge in refrigeration systems, and temperature control is the
main reason for having a refrigeration system. This has therefore resulted in research
in single-sensor evaporator superheat control using qualitative system knowledge and
learning-based improvement of temperature control by utilization of daily repetitiveness.

Tests have shown that the static relationship between expansion valve opening degree
and evaporator outlet temperature has a nonlinear s-shaped curve with two horizontal
asymptotes and a maximum gain/slope near the minimum stable superheat. The maxi-
mum slope point also corresponds to a high refrigerant filling in the evaporator and a suit-
able superheat level. This qualitative characteristic can be utilized for control purposes,
and a novel maximum slope-seeking (MSS) control method has therefore been devel-
oped. The MSS method relies on continuous perturbation of the system. This generates
higher harmonics in the output due to the curvature of the nonlinear I/O-map. Filters are
then used to extract the harmonics, which can be used to drive the input offset towards
the maximum slope point, where the mean curvature is zero. Conditions for stability and
convergence have been provided for Hammerstein systems. Further, MSS could be seen
as an extension to the general slope-seeking (SS) control method for systems where the
maximum slope is a suitable operating point; SS will not be stable in this situation as
the slope decreases on both sides of the maximum slope, and MSS does not require a
reference slope setpoint as in SS.

Multiple tests with changing operating conditions on four widely different refrigera-
tion systems have demonstrated that it is possible to control the superheat of the evapo-
rator to a suitable level, using only a single temperature measurement combined with an
electronic expansion valve. Further, this was achieved in all the systems with the same
non model-based control implementation based on MSS. A comparison with conventional
two-sensor control and with control with a thermostatic expansion valve have also shown
that similar or even slightly lower average superheat can be maintained with MSS control
due to operation closer to the minimum stable superheat. However, the MSS controller
is slower than conventional control, because it relies on continuous perturbation of the

63



Conclusions and Perspectives

system, which should be slower than the system dynamics. Safety logic has therefore
been implemented which can ensure fast reaction in case of evaporator overflow or low
flow situations caused by large and abrupt changes in operating conditions. MSS is a
non model-based control method, but does require initial tuning. Automatic tuning pro-
cedures have therefore been proposed for refrigeration systems based on identification of
a simple Hammerstein model and has been tested on the four test facilities. Additionally,
simulations are used to demonstrate the robustness of the control towards uncertainty in
model parameter estimates. The proposed solution therefore introduces the possibility
of reducing the variable costs or provides a fallback strategy in case of pressure sensor
malfunction, thus, increasing the robustness.

On the topic of improvement of existing temperature control, it has been demonstrated
that refrigeration systems could experience daily repetitiveness in load disturbances and
temperature tracking error due to the repetitive nature of weather conditions, occupancy,
opening hours, etc. A reference modifying serial repetitive control (RC) implementation
on a simulated building has demonstrated the potential of learning-based control and pro-
vided a temperature tracking performance improvement of more than 50%. However,
the gained improvement depends on the situation and on the limitations of the underly-
ing refrigeration system, e.g., its ability to suppress quick changes in load. Calculation
of the repeatable-to-nonrepeatable ratio (RNR) of the tracking error for each frequency
can reveal how repetitive the error is, it can reveal if there is potential for learning-based
control, and it can help tune the learning filters. The reference modifying serial setup
also allows easy implementation in existing systems compared with adding feedforward
signals directly between the existing control and the system. The RC implementation will
also automatically adapt to seasonal weather changes, changes in occupancy patterns, and
changes in reference setpoint and does not need knowledge of any of these. The poten-
tial use of learning-based control could, e.g., be extended to include processing facilities
where tight temperature tracking might be even more important or where the tracking
improvement can allow operation closer to an upper temperature constaint, which could
save electricity costs by requiring less cooling.

Finally, hot summer days and higher load during opening hours might saturate the re-
frigeration system in supermarkets, which can lead to violation of temperature thresholds.
Learning-based precool algorithms have therefore been developed. The idea is to use the
repetitiveness in the load pattern and then precool the foodstuff in an anticipatory manner
based on the saturation during the previous days. This can temporally shift some of the
peak load by utilization of the thermal storage capability of foodstuff. The proposed al-
gorithms adapts to changes in component performance, weather, customer behavior, and
to some extend to component failure (compressor out for maintenance will start to trigger
precooling in the following days if it causes saturation). Further, the algorithms could
also provide an alternative to expensive overdimensioning of the refrigeration system and
could provide an easier implementable alternative to model predictive control (MPC),
which would require models of the specific system and load pattern. The simulation case
study presented in this thesis demonstrated that upper temperature threshold violation
could be avoided with precooling, and that the algorithm only applied precooling during
the hot summer period. However, note that the precool algorithm only reduces the sat-
uration and cannot guarantee that upper temperature thresholds are not violated in case
of extreme saturation, but it is considerably better than not doing anything. Potential use
of the precool algorithm could also extend to ice production, warehouses, refrigerated
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transports, building air conditioning, etc. if there is sufficient repeatability in the load
pattern.

In summary, and in line with the hypotheses, it has been demonstrated that superheat
in refrigeration systems can be controlled with only a single sensor and a novel MSS
control method has been developed for this purpose. Further, repetitiveness in load is seen
in many refrigeration systems, and realistic simulations have demonstrated that learning-
based control can potentially be utilized to improve temperature tracking performance
and to reduce system saturation. Finally, both the proposed MSS control and the proposed
learning-based control implementations are examples of data-driven control with a high
potential for plug and play, since they can be implemented with very limited knowledge
of the underlying system and do not require a system model for control or additional
hardware.

3.2 Perspectives and Recommendations

Perspectives and recommendations on single-sensor superheat control and MSS:

• Preliminary tests have indicated that the proposed single-sensor superheat control
and conventional two-sensor control are comparable in terms of COP. However,
longer tests in a climate controlled chamber with power measurements would be
required, before a conclusion can be made about any long term economic differ-
ence in the two methods. This would help determine if single-sensor control has
potential as a replacement for conventional control or if it is more suited as a fall-
back strategy in case of pressure sensor malfunction.

• Improvement of the periodic FIR filters in MSS for better extraction of harmonics
could be investigated. This would possibly allow faster perturbation of the system,
faster convergence, and faster detection of evaporator overflow situations. The MSS
method could also be used as a building block for development of a more advanced
single-sensor superheat control setup using both evaporator outlet temperature and
the information provided by the air temperature sensor located in display cases.
Further, the air temperature sensor could also be used to provide a faster and more
precise automatic startup tuning procedure, as it can help reveal if the display case
is cold or hot, when the tuning procedure is started.

• Conditions for stability and convergence are provided for MSS control applied to
Hammerstein systems. It could be interesting to simulate MSS on more detailed
evaporator models and expand the class of systems that can be controlled by MSS.
In general, MSS could possibly be applied to other control loops in the refrigera-
tion system if a monotonically increasing or decreasing s-shaped I/O-map can be
identified.

Perspectives and recommendations on learning-based improvement of temperature
control by utilization of daily repetitiveness:

• The design of the RC implementation could potentially be based only on previous
tracking error data, i.e., without a model of the system. However, the stability
check requires the complementary sensitivity function for the existing closed-loop
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system. A stability check could alternatively be based on a simple generic model
if the RC loop is tuned conservatively. Fast convergence in the trial domain is
also typically not important when reference modifying serial type RC is used for
improvement of an existing stable closed-loop system.

• Buildings might be used less during the weekend and supermarkets can have dif-
ferent opening hours in the weekend. This gives a different load pattern in week-
days compared with weekends. Individual learning algorithms could therefore be
activated for weekdays and weekends, which would require development of appro-
priate switching.

• Analysis of the foodstuff quality and shelf life using precooling compared to letting
the temperature exceed thresholds could be investigated further. A lower tempera-
ture due to precooling decreases bacteria growth, but might have a negative effect
on water content, texture, color, etc.

• The time it takes to precool the foodstuff in each display case is individual and the
maximum allowed precool time should be identified either based on experience or
experiments. The foodstuff temperature is not measured directly, but the precool
time can be revealed, when a step down in air temperature is made, by monitoring
how long it takes the valve duty cycle to settle after the step, since this duty cycle
first settles when the temperature of the foodstuff has settled. This could either be
performed during initial startup or each day based on the previous precool cycle.

• Finally, it would be interesting to test the learning-based precool algorithms on
some of the refrigeration system test facilities, e.g., by comparing the performance
with and without precool in a situation with compressor saturation.
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[Wang & Krstić, 2000] Wang, H.-H. & Krstić, M. (2000). Extremum seeking for limit
cycle minimization. IEEE Transactions on Automatic Control, 45(12), 2432–Ű2437.
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1 Introduction

Abstract

This paper proposes a novel method for superheat control using only a single
temperature sensor at the outlet of the evaporator, while eliminating the need for a
pressure sensor. An inner loop controls the outlet temperature and an outer control
loop provides a reference setpoint, which is based on estimation of the evaporation
pressure and suitable reference logic. The pressure is approximated as being linear
and proportional to the opening degree of the expansion valve. This gain and the
reference logic is based on calculation of the variance in the outlet temperature, which
have shown to increase at low superheat. The parameters in the proposed controller
structure can automatically be chosen based on two open-loop tests. Results from
tests on two different refrigeration systems indicate that the proposed controller can
control the evaporator superheat to a low level giving close to optimal filling of the
evaporator, with only one temperature sensor. No a priori model knowledge was used
and it is anticipated that the method is applicable on a wide variety of refrigeration
systems.

1 Introduction

Refrigeration systems normally operate by continuous vaporization and compression of
refrigerant. This process is maintained by a valve, an evaporator, a compressor and a
condenser, and this setup remains to a considerable extent the same in most refrigeration
systems. The details of the vapor compression type refrigeration process are not given
here, but can be found in e.g. [1].

Refrigeration systems are typically controlled by decentralized control loops and
evaporator superheat is controlled in one of these loops. Superheat control can be achieved
by regulating the opening degree (OD) of the expansion valve. Superheating of the re-
frigerant beyond the evaporation temperature is important, since no superheat means that
two-phase refrigerant will enter the compressor and increase the power comsumption and
wear. This means that the flow through the valve must be kept a level, where all the re-
frigerant is evaporated before it reaches the compressor. At the same time, it is important
to have as much two-phase refrigerant in the evaporator as possible, to increase the heat
transfer and thus optimize the refrigeration process. So a key variable, which greatly ef-
fects the efficiency of a refrigeration system, is the superheat, which again is an indirect
measure of the filling of the evaporator.

The heating, ventilating and air conditioning (HVAC) industry commonly use some
variant of proportional-integral (PI) feedback control [2]. These controllers have tradi-
tionally been tuned by refrigeration and control specialists, due to the complexity and
nonlinearity of the refrigeration process and the large number of different refrigeration
system designs available. The problem is that the human operator often copies parameter
values from any previous system in the hope that the new refrigeration system will work
with these settings. However, each system is associated with different optimal working
point conditions, sensor/actuator configurations and cooling demands. Furthermore, the
tuning process can be time consuming and there is a risk of system damage, if the opera-
tor is not cautious. It is therefore desirable to automate the tuning process of controllers
for refrigeration systems and/or implement adaptive algorithms.

Automatic tuning of PI/PID controllers have been treated in many books, see e.g. [3]
and [4]. The relay method is used in [5] to obtain the ultimate frequency and gain, which
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is used to find PID controller parameters based on model knowledge. These parameters
are compared with Zeigler-Nichols tuned parameters and model-based gain scheduling is
additionally employed to cope with the operating point dependent system gain. In [6],
auto-tuners for PI/PID control of HVAC systems are designed based on a combination of
relay and step tests. The auto-tuners show better performance than manual tuning and
standard relay auto-tuning.

The response from valve OD to superheat is in general very nonlinear, making con-
troller tuning difficult. The need for gain scheduling in [5] is eliminated in [7], by trans-
ferring the superheat to a referred variable. In both papers a cascaded control setup is
utilized, where a flow meter is used to control the refrigerant mass flow in an inner loop.
However, most refrigeration systems does not have such a sensor and [8] instead proposes
a cascaded control, where evaporator pressure measurements are used in an inner loop to
reduce the nonlinearities. Backstepping can also be used to design a nonlinear controller,
as done in [9]. This controller can be made almost independent of the cooling capacity
and therefore does not require any gain scheduling. Another possibility is to control the
superheat with the compressor and the cooling capacity with the valve. In [10], backstep-
ping is again used to derive a nonlinear controller. However, extensive model knowledge
is required in both cases and some model parameters are only partly known and vary with
the operating conditions, thus requiring adaptive methods for finding these parameters.
These have been pursued in [10].

All the controllers mentioned so far require at least a temperature sensor and a pres-
sure and/or a flow meter to control the filling of the evaporator. In this paper, we will
present a novel control method capable of controlling the filling with only one tempera-
ture sensor placed at the outlet of the evaporator. This will make it easier to install and
buy superheat controllers based on electronic valves. The method utilizes the fact that
the variance of the outlet temperature increases when the evaporator is close to overflow-
ing and this gives a fix point, where the gain, in a simple linear model relating the valve
OD to the pressure, can be identified. The estimated pressure can then be converted into
evaporation temperature and thus a reference for a simple PI controller for the outlet tem-
perature. Furthermore, the reference is slowly decreased until the fix point is reached
and then stepped back. This makes it possible to adaptively correct the gain in the lin-
ear model each time the fix point is reached and ensures that the system is continuously
operated close to where the evaporator is fully filled (low superheat). In other words,
qualitative system knowledge is used to identify when the filling of the evaporator is suit-
able and it has been shown in tests that the method works on two completely different
refrigeration systems. Additionally, only two open-loop tests are required to set the con-
trol parameters and these tests can be performed in an automated fashion. Another benefit
of the proposed controller is that no a priori model knowledge is required, which is often
the case when e.g. gain scheduling and nonlinear control design methods are used.

The structure of this paper is as follows. The two test refrigeration systems are first
presented in Section 2. Then, calculation of variance of the outlut temperature is shown
in Section 3, followed by a presentation of the control strategy in Section 4. Then, an
adaptive pressure estimator is derived in 5 and the startup procedure is shown in Section
6. Finally, test results are presented in Section 7 and conclusions are drawn in Section 8.
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2 System Description

2 System Description

The proposed superheat control method in this paper is designed for unknown vapor com-
pression type refrigeration systems, where no a priori model knowledge is assumed. The
method should work on a wide variety of setups and two different types of refrigeration
systems have therefore been used for test. The first system is an air conditioning sys-
tem and the second is a refrigeration system with a water tank and heater as load on the
evaporator. Simplified drawings of these systems are shown in Fig. 4.1.
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Figure 4.1: Simplified drawings of the two available test systems. T , P and f are indica-
tors for temperature sensors, pressure sensors and frequency control, respectively. Only
Te,o and OD are used for the superheat control and the other sensors are used for verifi-
cation purposes. System (a) is an air conditioning system and system (b) is a refrigeration
system with water on the secondary side of the evaporator.

The air conditioning system in Fig. 4.1a has a four channel finned-tube evaporator
and a Danfoss EcoflowTMvalve. It is possible to control the OD of the valve and the
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distribution of flow into the individual pipes, however, the distribution is kept constant
in this setup. Furthermore, it is possible to control the frequency of both the evaporator
and condenser fans, and also the frequency of the fans between the cold room, the hot
room and the outside. The compressor frequency is also controllable and sensors measure
temperature and pressure at the indicated places.

The refrigeration system in Fig. 4.1b has an evaporator with water on the secondary
side, which is connected to a water tank with controllable heater and pump. It is possible
to control the OD of the electronic expansion valve and the frequency of the condenser
fan. The compressor frequency is again controllable and sensors measure temperature
and pressure at the indicated places. Both systems are monitored and controlled using the
XPC toolbox for Simulink.

Evaporator superheat Tsh is defined as the outlet temperature Te,o minus the evapo-
ration temperature Te (evaporator saturation temperature). The evaporation temperature
is normally measured indirectly by measuring the evaporation pressure Pe. We propose
a control method, which does not require an direct or indirect measurement of Te, but
only the Te,o measurement. Instead, qualitative system knowledge is used to calculate
the variance on Te,o to estimate Pe, which is further discussed in Section 3. This makes
this controller easier to install and buy, compared to other superheat controllers using
electronic expansion valves, since we save a pressure sensor.

In the following it is assumed that the condenser pressure is controlled separately and
that the compressor is running at constant frequency, which means that any change is
considered as a disturbance.

3 Variance Calculation

An open-loop test has been performed on each of the test systems, where the OD sig-
nal was increased slowly while outlet temperature Te,o measurements were saved. By
calculating the sample variance as

σ2 =
1

n

n∑
i=1

(xi − x̄)2, x̄ =
1

n

n∑
i=1

xi, (4.1)

where σ2 is the sample variance using n samples, xi is the i’th sample and x̄ is the sample
mean, then it is possible to get an estimate of the variance in the outlet temperature.
Fig. 4.2 and 4.3 shows the test results using a five minute sample window on the air
conditioning system and the refrigeration system, respectively. The system response
is clearly different between the two systems, however, the tests indicate, in both cases,
that the variance increases considerably at low superheat and then decreases again when
the evaporator is flooded. This increase in variance can be used to identify when the
evaporator is nearly flooded and provides an alternative way of controlling the filling of
the evaporator compared to conventional control.
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Figure 4.2: Evaporator outlet temperature and variance during an OD sweep on the air
conditioning system. Variance thresholds are also indicated.
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4 Control Strategy

The control strategy is illustrated in Fig. 4.4. A simple PI feedback control is used in an
inner loop to control the evaporator outlet temperature Te,o and an outer loop provides
the temperature controller with a suitable reference setpoint.

Tsh,ref Te,o,ref

^
eT ^

eP
c

OD

Te,o

+ + +

-

Figure 4.4: Control structure for control of the evaporator outlet temperature. A suit-
able reference is found based on adaptive estimation of the evaporation temperature and
superheat reference logic.

The Logic block in Fig. 4.4 controls the superheat reference, which is implemented
so that it continuously decreases in temperature until the variance has increased to a pre-
determined variance level σ2

high. Then it is stepped back and the cycle is repeated, so that
the superheat is constantly kept at a low level despite a change in system load. A waiting
period is introduced during startup, which prevents the reference from decreasing until
the system has calmed down and the variance is below the hysteresis bound σ2

low, see Fig.
4.2 for a definition of the variance levels. Furthermore, a step back in reference can only
be made if the system has calmed down since last step, since a step will cause a tempo-
rary increase in variance. A larger step back in reference is taken if the system has not
calmed down since the last step and the reference has decreased to its level from before
the previous step. For further safety, the reference is also stepped back if the superheat
reference goes below 1 degree.

The reference to the inner loop Te,o,ref is made by adding the superheat reference
Tsh,ref with an estimated evaporation temperature T̂e. The estimated evaporation tem-
perature is based on an estimate of the evaporator pressure, which in steady state can
be approximated as being proportional to the OD signal. The gain c from OD to P̂e is
adapted using the MIT rule (see e.g. [4]) and updated each time the reference logic brings
the evaporator to a state where it is nearly flooded, which can be identified by an increase
in variance. It is important to note that no pressure sensor is used in this setup.

The startup procedure should be made so that the control can start automatically and
work on a wide variety of refrigeration systems. In Section 6 it is explained how the
controller can be tuned based on two open-loop tests.

5 Pressure Estimator Design and Adaptation

The fundamental concept of conservation of mass in physics (refrigerant is neither added
nor removed from the system), implies that the mass flow rate ṁv through a tube is
constant (assuming incompressibility) and equal to the product of the density ρ, velocity
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v and cross-sectional area A,

ṁv =ρvA. (4.2)

If assuming laminar, inviscid and incompressible refrigerant mass flow rate through the
expansion valve, then Bernoulli’s equation furthermore states that

1

2
v2 + gz +

P

ρ
=k, (4.3)

where g is the gravitational constant, z is the elevation, P is the pressure and k is a
constant, which does not change across the valve. Combining (4.2) and (4.3), while
isolating for the valve mass flow ṁv , gives

1

2

(
ṁv

Acρl

)2

+ gz +
Pc
ρl

=
1

2

(
ṁv

Aeρl

)2

+ gz +
Pe
ρl

ṁv =
√
Pc − Pe

√
ρlCv, (4.4)

where Pc and Pe are the pressures in the condenser and the evaporator, ρl is the density
of the liquid refrigerant, Ac and Ae are the cross-sectional area before and after the valve,
and Cv is a collection of constants. Equation (4.4) is consistent with the result in e.g. [11]
for a fully open expansion valve and Cv is also called the orifice coefficient. A valve with
variable opening degree OD is added to (4.4). The valve OD is in most refrigeration
systems linear going from zero (closed) to one (fully open),

ṁv =OD
√
Pc − Pe

√
ρlCv. (4.5)

In steady state, the mass flow through the valve ṁv must be equal to the mass flow
through the compressor ṁc, which can be calculated as the product between the com-
pressor frequency fcp, the compressor inlet volume Vcp and the density of the gaseous
refrigerant ρg ,

ṁv =ṁc = fcpVcpρg. (4.6)

The mass flow ṁc is essentially the product between a constant and the evaporator pres-
sure Pe, when the system is in steady state (Pe is proportional to ρg). However, this is
only true if the compressor speed is held constant. Equation (4.5) can also be simplified
if assuming that the fluctuations in the square root of the pressure difference is negligible
small and that the density of the refrigerant is constant. Combining (4.5) and (4.6) with
simplifications, gives a steady state equation for the evaporator pressure Pe with variable
input control signal OD,

Pe =cOD, (4.7)

where c is a further collection of constants. A first order filter is now introduced, since
the outer loop has to be slower than the inner loop for stability. This can be handled by
choosing the time constant τ appropriately,

G(s) =
Pe(s)

OD(s)
=

c

τs+ 1
. (4.8)
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The gain c in the simplified expression is very dependent on the operating point and
on the characteristics of the given refrigeration system. Therefore, an adaptive update
of the constant c is introduced, in order to better estimate the pressure. By continuously
calculating the variance of the outlet temperature, while slowly increasing theOD signal,
it is possible to detect the point when the evaporator is close to being fully flooded. This
was also discussed in Section 3 and the point is used as a fix point to find a good estimate
of the gain c∗ in the fix point, by using (4.7), since OD is known along with the pressure
at the fix point P ∗e . The pressure is not measured directly but can be calculated based on
the measured evaporator outlet temperature T ∗e,o and a predetermined offset temperature
Toff as

P ∗e =PDewT (T ∗e,o − Toff ), (4.9)

where the refrigeration equation software package RefEqns by Morten Juel Skovrup has
been used, however, there are many other software packages that can do the conversion.
Fig. 4.5 shows a plot of the evaporator pressure Pe, while OD is gradually increased
from 0.28 to 0.80 in open-loop on the air conditioning system shown in Fig. 4.1a. The
dot marks the identified fix point, where the evaporator is nearly flooded. The estimated
linear pressure P̂e based on the estimated gain c is also shown in the figure. Note thatOD
has been replaced by OD0.5 on the air conditioning system, to better account for valve
nonlinearities. However, this is not necessary when the gain c is continuously adapted.

4000 8000 12000 16000
4

5

6

7

8

9

time [s]

P
re

ss
u
re

[b
ar

]

Pe

P̂e

Fix Point

Figure 4.5: Measured evaporator pressure during an OD sweep and resulting linear esti-
mated pressure based on the gain c, found in the marked fix point.

It is undesirable to change the value of the gain c instantly in closed-loop, since this
could result in unstable behavior. The MIT rule is therefore used to adapt the gain c
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slowly and it is defined as (see e.g. [4]):

J =
1

2
e2 (4.10)

dθ

dt
=− γ ∂J

∂θ
= −γe∂e

∂θ
, (4.11)

where J is an objective function to be minimized, e is the error, θ is the adjustable pa-
rameter to be adapted and γ is the adaptation gain. The MIT rule can be interpreted as a
gradient method for minimizing the error and in the case of adapting the gain c we have

θ =c (4.12)
ec =c− c∗ (4.13)
dc

dt
=− γec, (4.14)

since the partial derivative of ec is equal to 1. The gain c∗ is the gain obtained at the last
fix point and the gain c is the current gain. Only the adaptation gain γ has to be chosen.
In general a small γ means slow convergence and a large γ means fast convergence and
possibly instability. However, it is hard to say in general how γ influences time-variant
systems. In the tests on the refrigeration systems γ has been chosen small and thus con-
servatively. Another possibility would be to use the normalized MIT rule, which would
lead to less sensitivity towards signal levels or one could use Lyapunov stability theory to
adapt the gain c, and most likely obtain faster adaptation and stability guarantees.

6 Startup Procedure

All parameters in the controller can be determined based on two open-loop tests. TheOD
signal is increased slowly in the first test, while the temperature Te,o is measured and its
variance is calculated. The test is stopped when the variance plot shows a clear peak and
has decreased to a low level again. The result on each of the systems is presented in Fig.
4.2 and 4.3. The variance levels σ2

low and σ2
high are set to

σ2
high =

1

2
max(σ2) (4.15)

σ2
low =

3

4
σ2
high, (4.16)

wheremax(σ2) is the highest variance during the test. These have shown to be reasonable
values based on multiple tests on the two different systems introduced in Section 2.

A temperature offset Toff is required in (4.9) to determine the gain c and thus the
evaporator pressure. This temperature offset accounts for the temperature difference be-
tween the outlet temperature T ∗e,o, when the high variance threshold σ2

high is reached and
an estimate of the evaporation temperature. This estimate is set to be the lowest outlet
temperature measured during the OD sweep test and gives Toff = T ∗e,o −min(Te,o). A
start guess of the gain c is then obtainable from (4.7) and (4.9).

The second open-loop test is a small upward step inOD at low superheat, while Tair,i
or Tw is close to Te, which is considered as a worst case operating point. This test is used
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to tune the PI controller based on Ziegler-Nichols tuning with quarter decay ratio, see
e.g. [12]. The transfer function of the PI controller is defined as

D(s) =kp

(
1 +

1

TIs

)
(4.17)

kp =
0.9

RL
(4.18)

TI =
L

0.3
, (4.19)

whereR is the slope of the reaction curve and L is the lag obtained from the step test. The
PI controller is tuned at an operating point, where the temperature and refrigerant flow is
low, which gives the highest system gain. This gives a conservative controller and ensures
that the system is stable at all other operating points. The selected worst case operating
point is supported by e.g. [13]. The slope R was measured to be -8.08 and -0.95, for the
air conditioning system and refrigeration system, respectively, and the lag L was 23.6 and
27.6. These parameters can also be used to determine a suitable value for the reference
decrease rate and the time constant τ , since these measures gives an indication of how
fast/slow the system is. During the tests, the reference decrease rate and reference step
size was set to 3/1000 and 3, respectively, and τ was set to 30 seconds.

7 Test Results

Fig. 4.6 shows the result from a test of the controller on the air conditioning system. The
estimated superheat T̂sh follows the reference well and the reference is slowly decreased
and then stepped back each time the variance gets too high, which indicates low superheat.
The measured superheat Tsh, using a pressure sensor, is shown for comparison and the
difference between the estimated and measured superheat gets smaller as the estimate of
the gain c is adjusted (γ was set to 0.0005).
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Figure 4.6: Closed-loop test results on the air conditioning system.

A similar test was conducted on the air conditioning system, where the load was
changed by blowing air from the hot room to the cold room. This caused a sudden rise in
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ambient temperature and thus a change in the load. Fig. 4.7 shows that this disturbance
is handled by the controller.
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Figure 4.7: Closed-loop test results on the air conditioning system with a sudden change
the in ambient air temperature Tair.

Fig. 4.8 finally shows the result from a test of the controller on the refrigeration
system. A change in load was also made in this test, by changing the temperature setpoint
in the water tank with the water heater shown in Fig. 4.1b.

The estimated superheat follows the reference superheat and is stepped back each time
the variance gets too high, as anticipated. However, there is approximately a 5 degree
temperature offset between the estimated and measured superheat. This is because the
variance starts to increase a little earlier in closed-loop, and the temperature offset Toff
was estimated in open-loop. The Toff estimate could be improved by allowing a small
overflow in closed-loop. However, if comparing the actual superheat of about 15 degree
with Fig. 4.3, then this superheat corresponds to a working point just before the steep
slope, which happens over 2-3 quantizations in OD. Controlling the superheat to a point
on the middle of the slope is quite difficult and the result is close to optimal.

The PI controller parameters are chosen conservatively in a situation with low flow
and temperature. The controller response time could possibly be improved by limiting the
operating range of the system or by adding some kind of gain scheduling. However, the
gain scheduling should only be based on the information given by the evaporator outlet
temperature measurement. Feedforward, when a step in the reference is made, could also
improve the controller.
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Figure 4.8: Closed-loop test results on the refrigeration system with a sudden change in
the water temperature Tw.

8 Conclusion

Evaporator superheat control is important in order to optimize the heat transfer in refriger-
ation systems and to prevent compressor wear. The superheat is conventionally obtained
by subtracting the evaporation temperature, given by a pressure sensor, from the temper-
ature at the evaporator outlet. In this paper we have shown that the pressure sensor can be
saved by looking at the variance in the outlet temperature, which have shown to increase
at low superheat. Results from tests on two different refrigeration systems indicate that
the proposed controller, using qualitative system knowledge, can control the evaporator
superheat to a low level giving close to optimal filling of the evaporator, with only one
temperature sensor. No a priori model knowledge was used and it is anticipated that the
method is applicable on a wide variety of refrigeration systems.
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1 Introduction

Abstract

Many model-based control methods exist in the literature. Producing a sufficient
system model can be cumbersome and a new non model-based method for control
of nonlinear systems with input/output maps exhibiting sigmoid function properties
is therefore proposed. The method utilizes an excitation signal together with Fourier
analysis to generate a feedback signal and simulations have shown that different sys-
tem gains and time constants does not change the global equilibrium/operating point.
An evaporator in a refrigeration system was used as example in the simulations, how-
ever, it is anticipated that the method is applicable in a wide variety of systems satis-
fying the sigmoid function properties.

1 Introduction

Most physical systems or processes are inherently nonlinear in nature, which makes de-
sign and tuning of controllers difficult, especially if the controller is expected to work
in a large operation area, thus experiencing the full effect of the nonlinearity. Addition-
ally, most systems are also time-varying to some degree and change with unpredictable
operating conditions and disturbances. This makes controller design even more difficult
and often result in poorly tuned controllers. Possible ways to control these systems are
with gain scheduling for time-varying systems, see e.g. [1, 2], or adaptive backstepping
control, see e.g. [3, 4].

Producing a sufficient nonlinear model for control purposes can be cumbersome, es-
pecially for time-varying systems. Furthermore, a suitable reference operating point is
often not known beforehand. A good alternative is therefore to look at non model-based
methods such as extremum-seeking control, if it is desirable to drive the process output
towards an extremum. If the input/output map does not have an extremum, but is instead
"S" shaped exhibiting sigmoid function properties, then it is possible to use slope-seeking
control. This is just a generalization of extremum-seeking control, where the reference
slope is not zero. There are many examples of extremum- and slope-seeking control
applied to practical control problems, see e.g. [5–7].

In this paper we look at a non model-based approach for control of time-varying
nonlinear systems, where the input/output map exhibits sigmoid function properties. A
problem with slope-seeking control is that it can be hard to identify a reference slope,
since the slope is often dependent on systems parameters that change with operating con-
ditions. Another problem is that a badly chosen reference slope can make the system
unstable, since a reference slope will be mirrored around the middle of the "S" shaped
curve. If for example one chooses the slope at the middle of the curve as reference, then
the slope will decrease in both directions leading to instability. An example of a system
where the middle of the curve could be a desirable operating point is given in Section 2.

We instead propose a novel control method called harmonic control for such types
of systems. A Fourier analysis is conducted in this method to identify the distortion
of an excitation signal as it passes the system nonlinearity. Taking the cross product
between the first and second harmonic of the excitation signal gives an error signal which
is negative and positive depending on which side of the middle of the "S" shaped curve the
current operating point is located. In other words, qualitative knowledge about the system
nonlinearity is used together with Fourier analysis of an excitation signal to generate an
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error signal for feedback purposes. The amplitude of the excitation signal can furthermore
be adapted to better suite the current gain in the system, giving a controllable amount
of excitation in the output. The proposed method has potential in any system having a
nonlinear "S" shaped input/output map and it does not require any reference setpoint nor
does it have the instability problem experienced with slope-seeking control. Replacing
sensors with qualitative knowledge in the control loop also has the potential of reducing
the commissioning costs and in some systems it might also be difficult or even impossible
to measure certain states.

The structure of this paper is as follows. An example of a nonlinear system is first
given in Section 2, which will be used for simulation purposes. Then, the concept of
harmonic control is given in Section 3, which entails a presentation of the control strategy,
how the error and control signal is generated, and adaptation of the excitation signal
amplitude. The harmonic control is then applied to the nonlinear system in simulation and
compared with slope-seeking control and the results are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2 System Nonlinearity

The nonlinear system given as example in this paper is an evaporator in a refrigeration
system. Refrigeration systems normally operate by continuous vaporization and compres-
sion of refrigerant. This process is maintained by a valve, an evaporator, a compressor
and a condenser, and this setup remains to a considerable extent the same. The details of
the vapor compression type refrigeration process are not given here, but can be found in
e.g. [8].

Refrigeration systems are typically controlled by decentralized control loops and
evaporator superheat is controlled in one of these loops by regulating the opening de-
gree OD of a valve, see e.g. [9–11]. Superheating the refrigerant beyond the evaporation
temperature is important, since no superheat means that two-phase refrigerant will enter
the compressor and increase the power consumption and wear. Therefore, the valve flow
must be kept at a level, where all refrigerant is evaporated before it reaches the compres-
sor. However, there should be as much two-phase refrigerant in the evaporator as possible,
to increase the heat transfer and thus optimize the refrigeration process.

The level of superheat in the evaporator is traditionally determined using at least a
temperature sensor at the evaporator outlet and a pressure sensor, which can be used to
calculate an evaporation temperature. The response from input to output in the evaporator
is in general very nonlinear, making controller tuning difficult. However, it has been
observed that the nonlinear response from valve OD to evaporator outlet temperature in
some refrigeration systems follow an "S" shaped curve, and it is believed that exploiting
this qualitative system knowledge not only has the potential of saving a pressure sensor,
since this behavior is observable in the outlet temperature alone, but can also simplify the
controller design significantly.

A test was conducted on a refrigeration system with a water tank and heater as load
on the evaporator. The system has an Electronic Expansion Valve (EEV) with control-
lable OD and controllable compressor and condenser fans. Sensors furthermore measure
temperatures, pressures and flow and the system is monitored and controlled using the
XPC toolbox for Simulink. In the test the OD of the EEV was slowly increased while the
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evaporator outlet temperature was measured (the compressor speed and condenser pres-
sure was kept constant during this test). The result of this test is presented in Fig. 5.1.
The evaporator outlet temperature Te,o for this refrigeration system follows an "S" shaped
curve, and this system nonlinearity is then approximated using the inverse trigonometric
function atan shown in the bottom graph in Fig. 5.1. The mathematical expression is

y =

(
−atan

(
4π (u− 50)

50

)
+
π

2

)
10, (5.1)

where y is the output (evaporator outlet temperature Te,o) and u is the input (OD). The
OD is limited to a value between 0-100% open, where OD = 50% is located in the
middle of the "S" shaped curve. This point in the "S" shaped curve also represents a
close to optimal setpoint for the outlet temperature, as the evaporator is nearly filled (low
superheat). A lower superheat is hard to maintain and does not provide that much safety
margin.
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Figure 5.1: The top graph shows the evaporation temperature Te, outlet temperature Te,o
and ambient water temperature Tw for an evaporator during a sweep in the OD of the
EEV. The bottom graph is an approximation of the nonlinearity seen in the outlet temper-
ature.

The approximation in Fig. 5.1 is shown again in Fig. 5.2 where the system input has
been overlayed with a sine excitation signal in three different operating points. It is clear
from the output of the system that the sine excitation has been distorted. This is due to the
nonlinearity in the system. In point (1) and (3) the sine is distorted more to one side than
the other and in point (2) the distortion is equally large in both directions. Looking at the
power spectrum density made over 80 periods of the excitation signal, it is observable that
the output consist mainly of an offset and the first and second harmonic of the excitation
signal.

A system time constant Tsys and delay Td is furthermore added to the approximation
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Figure 5.2: The top graph shows the nonlinear input/output map with three operating
points marked as (1), (2) and (3). The system is excited with a sine wave in each of
these points and the steady state output is shown in the middle graphs along with a power
spectrum density analysis in each operating point (bottom graphs).

of the output described in (5.1), given in the Laplace domain as

G(s) =
1

1 + sTsys
e−sTd . (5.2)

The value of Tsys and Td can be chosen almost arbitrarily and in this simulation example
they are set to 25 and 10 seconds, respectively. Note that (5.1) and (5.2) combined gives
a Hammerstein model structure.

The system nonlinearity used in this paper is taken from a test refrigeration system,
with valve OD as input and evaporator outlet temperature Te,o as output. However, it is
important to remember that the method applies in general for systems, with nonlinearities
that can be approximated with sigmoid functions.

3 Harmonic Control

This section introduces the concept of harmonic control. Various situations are analyzed
through simulation and indicative conclusions are drawn based on the observed behavior

100



3 Harmonic Control

of the excited system.

Control Strategy

The distortion seen in Fig. 5.2 can be used to generate an error signal. This distortion is
measurable through Fourier analysis and requires a continuous excitation of the system,
e.g. using a sine wave. The error signal ξn can then be used to drive the nonlinear system
to the state with the highest gain (the middle of the "S" shaped nonlinearity), e.g. using
Proportional-Integral (PI) control. Additionally, the Fourier analysis can give an estimate
of the amplitude of the excitation in the output, which provides a way to adapt the am-
plitude of the excitation signal Aex at the input, in order not to disturb the system more
than what is necessary. The proposed control strategy called harmonic control is depicted
in Fig. 5.3. In case there is saturation on the input it can help to add anti-windup to the
integral part of the PI control. Furthermore, using the harmonics to generate the error sig-
nal acts as a powerful way of filtering the measurement. However, an adequate time scale
separation between the system dynamics, the excitation frequency (Fourier analysis), and
the PI controller is required, which is also the case with extremum- and slope-seeking
control, see [5]. The next two subsections will address error signal generation and adap-
tation of the excitation signal amplitude.

Nonlinearity Dynamics

Fourier Analysis

Excitation Signal

Saturation Controller

X

Anti Windup

++

+ -

PI

yu

Aex

ξnu

uex

Process

|H |1

AGC
Adaption

_

Figure 5.3: Block diagram of proposed closed-loop harmonic control.

Error Signal Generation

The discrete Fourier series F (t) of a periodic function f(t), sampled at time tn with
sampling time Tex/N (N is the number of samples in one period Tex), is given as

F (t) =a0 +

M∑
p=1

[
apcos(p

2π

Tex
t) + bpsin(p

2π

Tex
t)

]
(5.3)
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a0 =
1

N

N∑
n=1

f(tn)

ap =
2

N

N∑
n=1

f(tn)cos

(
p

2π

N
n

)
, p = 1, ...,

N

2
− 1

bp =
2

N

N∑
n=1

f(tn)sin

(
p

2π

N
n

)
, p = 1, ...,

N

2
− 1,

where ap and bp are the Fourier coefficients for each of theM harmonics denoted by p. If
taking N samples it is possible to determine M = N/2 harmonics. Mathematical study
of the overlapping waves is called harmonic analysis and the Fourier coefficients of the
first and second harmonic can be used to generate a scalar error signal ξ using the cross
product of vectors in R2 given as

ξ =

[
a1

b1

]
×
[
a2

b2

]
= a1b2 − a2b1. (5.4)

The cross product between the first and second harmonic is also defined as[
a1

b1

]
×
[
a2

b2

]
=|H1||H2|sin(θ12) (5.5)

|H1| =
√
a2

1 + b21, |H2| =
√
a2

2 + b22,

where |H1| and |H2| are the amplitudes of the first and second harmonic respectively and
θ12 is the angle from the first harmonic to the second harmonic. The cross product is a
normal vector and it is positive if the operating point is located to the right of the middle
of the "S" shaped nonlinearity and negative to the other side. If there is enough time
separation between system dynamics and excitation, then the two vectors in the cross
product will be almost perpendicular. Equation (5.4) therefore provides a usable error
signal for feedback. However, the error signal is still nonlinear, which can be corrected
by making a normalization with respect to the cubed amplitude of the first harmonic.

ξn =
a1b2 − a2b1√
a2

1 + b21
3 =

a1b2 − a2b1

(a2
1 + b21)

1.5 . (5.6)

The normalized error signal ξn is calculated at different OD values in Fig. 5.4, 5.5, 5.6
and 5.7 under different situations to visualize the effects on the error signal. Note that the
Fourier coefficients a1, b1, a2, and b2 are determined online in the implementation using
time-invariant linear FIR filters with the same sample time as the rest of the system and a
ring buffer of size N in accordance with (5.3).

Fig. 5.4 shows the error signal using three different system time constants. The
normalized error remains linear in all cases. A change in the system delay Td has the
same effect, however, an increase gives a decrease in the slope of the normalized error.
Fig. 5.4 also indicates that the generated error can give a globally stable controller with
only one equilibrium at the point of zero mean curvature. This is under the assumption
that the nonlinearity fulfill the properties of a sigmoid function and that the succeeding
controller is sufficiently slow compared to the excitation of the system.

102



3 Harmonic Control

-0.2

-0.1

0

0.1

0.2

E
rro

rξ

Tsys=15
Tsys=25
Tsys=35

0 20 40 60 80 100
-0.5

0

0.5

N
or

m
al

iz
ed

 e
rro

r ξ
n

Opening degree OD (%)

Tsys=15
Tsys=25
Tsys=35

Figure 5.4: Error signal and normalized error signal at differentOD values. Same system
nonlinearity as in Fig. 5.2 with dynamics and different system time constants.

Fig. 5.5 shows the error signal with three different system gains (the total gain in the
system is changed ±25%). Again the normalized error signal remains linear in all cases
and the closed-loop system will converge to the same point. This is not achievable with
slope-seeking control, since the reference slope will have to be changed.
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Figure 5.5: Top graph shows the system with three different gains and the bottom graph
shows the corresponding normalized error signal at different OD values.

Fig. 5.4 and 5.5 also indicates that the slope of the normalized error signal increases
when the time constants increases and decreases when the delay and gain in the system in-
creases. Therefore, the controller gain should be chosen based on the worst case values of
the system time constant, delay and gain, assuming that the system can be approximated
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with the dynamics described in (5.2) including a parameter varying nonlinear gain.
The system time constant and delay also determines the period of the excitation signal

as this period should be slow enough to make the excitation visible in the output and at
the same time as fast as possible to speed up the controller. Fig. 5.6 shows the error
signal using three different excitation signal periods Tex. Using Tex = 45 makes the
closed-loop system loose global stability at low OD values. Simulations have shown that
the excitation signal period should at least be twice the combined system time constant
and delay. Any higher period time gives approximately the same normalized error, which
means that it does not affect the controller gain.
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Figure 5.6: Normalized error signal at different OD values. Same system nonlinearity as
in Fig. 5.2 with dynamics and different excitation periods.

Fig. 5.7 finally shows the error signal using three different excitation signal ampli-
tudes Aex. Changing the amplitude between 2% to 4% in OD does not change the nor-
malized error signal and the amplitude can therefore be adapted without compromising
the controller. However, the amplitude should still be within reasonable bounds and large
enough to overcome any noise and quantizations in the measurement.
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Figure 5.7: Normalized error signal at different OD values. Same system nonlinearity as
in Fig. 5.2 with dynamics and different excitation amplitudes.

One problem with Fourier analysis is that the Fourier series defined in (5.3) only
converge to the output if the system is periodic. This is not the case when the system
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is operated in closed-loop, especially during startup, unless the controller is tuned so
slow that the output looks periodic. Fig. 5.8 shows an open-loop simulation, where the
OD is kept constant and then slowly increased giving a periodic and an aperiodic part.
The power spectrum density is calculated for each part and the aperiodic part has more
low frequency content. However, reconstructing the signal using a Fourier series is not
required, since we only use the two first harmonics to calculate an error signal and these
harmonics are still present.
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Figure 5.8: Power spectrum density analysis of periodic steady state operation and aperi-
odic operation. The OD was slowly increased in the simulation between 8000 to 16000
seconds, giving the aperiodic output.

Adaptation of Excitation Signal Amplitude

The gain in the nonlinear system is largest at the equilibrium point. In order to be able
to generate enough excitation of the output at low gains, while still maintaining an ac-
ceptable level of excitation when the gain is highest, it is often necessary to adapt the
excitation amplitude. The harmonic analysis used to calculate the error signal can also
be used for adaptation. The amplitude of the first harmonic |H1|, calculated as in (5.5),
is a good approximation of the amplitude of the excitation at the output. Keeping this
amplitude close to a reference can be achieved by changing the input excitation signal
amplitude. However, it is undesirable to change the amplitude instantly in closed-loop,
since this will result in unstable behavior. The MIT rule is therefore used to adapt the
amplitude slowly and it is defined as (see e.g. [12]);

J =
1

2
e2 (5.7)

dθ

dt
=− γ ∂J

∂θ
= −γe∂e

∂θ
, (5.8)
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where J is an objective function to be minimized, e is the error, θ is the adjustable pa-
rameter to be adapted and γ is the adaptation gain. The MIT rule can be interpreted as a
gradient method for minimizing the error and in the case of adapting the amplitude |H1|
we have

θ = |H1| (5.9)
e|H1| = |H1|ref − |H1| (5.10)

dc

dt
=γe|H1|, (5.11)

since the partial derivative of e|H1| is equal to −1. The amplitude |H1|ref is the desired
reference amplitude of the first harmonic. Only the adaptation gain γ has to be chosen.
In general a small γ means slow convergence and a large γ means fast convergence and
possibly instability. However, it is hard to say in general how γ influences time-variant
systems, but a general rule is that the adaptation must be slower than the control loop.
Another possibility would be to use the normalized MIT rule, which would lead to less
sensitivity towards signal levels or one could use Lyapunov stability theory to adapt the
amplitude |H1|, and most likely obtain faster adaptation and stability guarantees.

4 Simulation Results

The performance of harmonic and slope-seeking control is compared in this section. The
reference slope in slope-seeking was set manually to a value giving a reference operating
point just above point (2) and below (1), see Fig. 5.2. Note that (2) is an unstable point in
slope-seeking control.

The proportional gain Kp,h, the integral time Ti and integral reset time Tt were tuned
manually for the harmonic controller and set to 0.2, 2 and 2 respectively. This gives a
good compromise between convergence speed and robustness. The system can maintain
a stable limit cycle at a critical controller gain, which can be found approximatively using
the describing function method. Due to space limitations this analysis will not be part of
this paper, but will be considered in future publications. The slope-seeking control gain
Kp,s was also tuned manually and set to 0.04, which is small enough to give acceptable
oscillations in the control signal. The oscillations appear after the demodulator and a low
pass filter can help filter this out [5].

The OD signal has a saturation limit of 0 to 100%, and this was lowered in the con-
troller to between 5 to 95% to allow the excitation signal to get through uncut. The
adaptation gain γ in the harmonic controller should be slower than the PI control and was
set to 0.00003, with a reference amplitude |H1|ref of 2. Furthermore, the excitation sig-
nal amplitude was set to 2 in the slope-seeking controller. Fig. 5.9 shows the performance
of the two controllers in a simulation without measurement noise and disturbances. The
slope-seeking controller reaches a settling boundary of 5% of the step size about twice as
fast as the harmonic controller, however, the harmonic controller can go to 50 in control
signal without becoming unstable. If the reference slope was changes just slightly up or if
the gain in the slope-seeking controller was raised giving more pronounced oscillations,
it would make the controller go to the saturation limit of 95. The excitation signal ampli-
tude was adapted during the simulation shown in Fig. 5.9 and the results are presented in
Fig. 5.10. The excitation signal amplitude is slowly adapted from 5 to approximately 1.7,
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shown in Fig. 5.9. The amplitude of the first harmonic |H1| is used as feedback signal.

which makes the amplitude of the first harmonic |H1| converge to the reference of 2. The
upper limit is 5 due to the saturation limits.

Fig. 5.11 shows the performance of the two controllers in a simulation with measure-
ment noise (2σ = 0.14◦C) and a disturbance in the system nonlinearity. The performance
is similar to the performance without noise, however, the harmonic controller experiences
small oscillations in the control signal when the gain in the system is low (ū between 25
to 37), but it does converge to the correct operating point. Quantization on the measure-
ment of 0.1◦C and on the valve of 0.2% was also added in the simulation shown in Fig.
5.11 to simulate realistic conditions. This quantization does not disturb the controllers
noticeably.

The disturbance was made as an increase in the total gain in the system of 25%,
see Fig. 5.5, introduced with a time constant of 10 seconds, 15000 seconds into the
simulation. This corresponds to a decrease in the flow in the refrigeration system and
causes the control signal in the slope-seeking controller to decrease as the reference slope
now corresponds to a different operating point. If the disturbance was made as a decrease
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Figure 5.11: Same simulation as in Fig. 5.9, but with added measurement noise, measure-
ment quantization and actuator quantization. The system nonlinearity is changed slightly
at 15000 seconds.

in the gain, then the slope-seeking controller would have become unstable. In comparison
the harmonic controller does not deviate from the operating point.

The promising simulation results have lead to the implementation of the control method
on two different test refrigeration system in our laboratory and the results are presented
in [13].

5 Conclusion

A new non model-based method for control of nonlinear systems with input/output map
exhibiting sigmoid function properties have been proposed. The method is called har-
monic control and utilize an excitation signal together with Fourier analysis to obtain
qualitative knowledge about where on the nonlinearity the closed-loop system is located.

It was discovered that the excitation signal amplitude and period has little to no effect
on the linear error signal as long as the period is about twice as large as the system time
constant and delay. The amplitude of the signal can therefore be adapted to limit the
unavoidable oscillations in the output due to the excitation. The control method was
also simulated using different system gains and time constants, which did not change
the global equilibrium/operating point. This was not the case with slope-seeking control.
Furthermore, slope-seeking has stability problems if the reference slope is not chosen
carefully and in general it can be difficult to obtain a suitable reference slope.

An evaporator in a refrigeration system was used as example in the simulations. How-
ever, it is anticipated that the method in general is applicable when the point of zero mean
curvature of the system nonlinearity is close to the desired operating point and when the
system input/output map satisfies the sigmoid function properties.
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1 Introduction

Abstract

An important aspect of efficient and safe operation of refrigeration and air condi-
tioning systems is superheat control for evaporators. This is conventionally controlled
with a pressure sensor, a temperature sensor, an expansion valve and Proportional-
Integral (PI) controllers or more advanced model-based control. In this paper we
show that superheat can be controlled without a pressure sensor and without a model
of the system. This is achieved by continuous excitation of the system and by ap-
plying Fourier analysis, which gives an error signal that can be used together with
standard PI control. The proposed method works for systems with "S" shaped in-
put/output maps that satisfy sigmoid function properties and such behavior has been
identified in both an air conditioning and a refrigeration system. Tests on these sys-
tems show that the superheat can be controlled to a low level over a large operating
range with only one sensor. It is believed that the method in general is applicable to a
wide variety of nonlinear systems for which the desired operating points are close to
points of zero mean curvature of system nonlinearities.

1 Introduction

Maximization of two-phase refrigerant flow in evaporators is an important aspect of ef-
ficient operation of refrigeration and air conditioning systems, because liquid refrigerant
accounts for the majority of cooling. At the same time it is important that all refriger-
ant is vaporized before it enters the compressor to avoid the risk of compressor damage.
Control of the evaporator filling level is also known as superheat control, where superheat
is the difference between the evaporation temperature and the temperature of the vapor
leaving the evaporator. Superheat control is generally achieved using an expansion valve
and the most commonly used devices are the Thermostatic Expansion Valve (TXV) and
the Electronic Expansion Valve (EEV).

The significant nonlinear response from the opening degree (OD) of the expansion
valve to the evaporator superheat poses as a control challenge. TXV’s operate well within
a certain operating range, but are limited by a constant control gain, which is problematic,
since changes in operating conditions for the nonlinear system can cause unstable behav-
ior and actuator hunting [1, 2]. The EEV allows for much greater freedom in expansion
valve control and introduces the possibility of using PID control, which is used in the
majority of EEV superheat control setups seen today [2]. However, there is still a need
for adaptation of the controller to changes in operating conditions, which is often solved
using some variant of gain scheduling, see e.g. [3].

There are also alternatives to gain scheduling. In [4] nonlinearity compensation in the
valve to superheat response is achieved using a cascaded feedback loop, [5] uses feedback
linearization to compensate for nonlinearities and the backstepping design method is used
in [6] to find a nonlinear superheat controller that works for a wide range of operating
points. Another alternative is to use the compressor, instead of the valve, to control the
superheat as done in [7]. There are many possibilities, however, a problem with advanced
methods is that they often require a good model of the system, which can be difficult
to produce and furthermore each system is often composed of components from many
different manufactures making most systems unique. The desire for cheap systems in the
industry also means less sensors and thus a need for even more accurate models.
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We will in this paper show that the evaporator superheat can actually be controlled
over a wide range of operating conditions using only a single temperature measurement
at the outlet of the evaporator, thus saving a pressure sensor. Furthermore, this is achieved
without using a model of the system and very little a priori system knowledge. Qualitative
knowledge about the evaporator nonlinearity from valve input to evaporator outlet tem-
perature is used instead of quantitative knowledge to control the filling of the evaporator.
This is possible for Input/Output (I/O) relationships that have sigmoid function properties
("S" shaped I/O-map).

The proposed method has taken inspiration from excitation signal based extremum-
and slope-seeking control, which are gradient descent non model-based methods (this
subject is well covered in e.g. [8]). Extremum-seeking control has e.g. been used in [9] for
optimization of condenser water temperature in chilled water cooling plants resulting in a
minimization of the total sum of chiller and cooling tower power consumption and in [10]
for optimization of air-side economizers in HVAC systems. However, the more general
slope-seeking control is better suited for superheat control, since the nonlinear I/O-map is
"S" shaped and the optimal superheat will be at a certain slope rather than where the slope
is zero. A reasonable sub-optimal choice in general is where the slope is largest, since this
gives an evaporator outlet temperature that lies between the surrounding temperature and
evaporation temperature. However, finding an appropriate reference slope can be very
difficult, since this changes with operating conditions and load.

While still using an excitation signal, as in slope-seeking control, we instead propose
to use Fourier analysis to calculate an error signal for feedback. We have called this
method harmonic control and it is presented in [11]. This is another approach for single-
sensor superheat control than the variance-based method we presented in [12] and the
benefit of harmonic control is that it does not require a system model, it works for a wide
operating range, and it does not require any reference setpoints, which together means
that it has a high degree of Plug and Play.

The structure of this paper is as follows. Two different test systems are first introduced
in Section 2 followed by a description of the harmonic control method and simulation
results in Section 3. Then safety logic is added to the control concept in Section 4 and
the controller is tested on the two systems with results presented in Section 5. Finally,
conclusions are drawn in Section 6.

2 System Descriptions

The proposed harmonic controller is designed for systems with steady state I/O-maps that
exhibit sigmoid function properties and such qualitative behavior has been identified in
the relation between the OD of an EEV and the outlet temperature Te,o of evaporators in
two different refrigeration systems located at Aalborg University (www.es.aau.dk/
projects/refrigeration/). This behavior is utilized for evaporator filling (su-
perheat) control and the physical layout of the two systems are therefore described in
the two following subsections, along with presentation of the qualitative behavior of the
evaporator outlet temperature.

Air Conditioning System

A simplified schematic of the air conditioning system is presented in Fig. 6.1. This
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Figure 6.1: Simplified schematic of the air conditioning system. T , P and f are indicators
for temperature sensors, pressure sensors and frequency control.

air conditioning system uses refrigerant type R410a and has a finned-tube evaporator
with four channels and a cooling capacity of 11 kW. The refrigerant flow is controllable
with a Danfoss EcoflowTMvalve. It is possible to control the OD of the valve and the
distribution of flow into the individual pipes, however, the distribution is kept constant
in this setup. Furthermore, it is possible to control the frequency of both the evaporator
and condenser fans, and also the frequency of the fans between the cold room, the hot
room and the outside. The scroll compressor frequency is also controllable and sensors
measure temperature and pressure at the indicated locations with a sampling interval of 1
second.

A test was conducted on the air conditioning system, where the OD of the valve was
gradually increased with 0.01 %/s from low opening until the refrigerant overflows the
evaporator (low superheat). The cold room temperature Tair,i, the evaporator fan speed,
the compressor frequency fcp and the condenser pressure Pc were kept constant during
the OD sweep and the test result is shown in Fig. 6.2. The I/O-map is almost flat when
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Figure 6.2: Evaporator outlet temperature Te,o, room air temperature Tair,i and evapora-
tion temperature Te during a sweep in OD.
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the valve OD is below 25% and above 37%. Furthermore, it is approximately "S" shaped
inbetween, with steepest decline at about 35% OD for the given operating conditions.

Refrigeration System

A simplified schematic of the refrigeration system is presented in Fig. 6.3. This refriger-
ation system has an evaporator with water on the secondary side, which is connected to a
water tank with controllable heater and pump. The cooling capacity of the evaporator is
4 kW and the refrigerant type is R134a. It is possible to control the OD of the EEV and
the condenser fan frequency. The compressor frequency is again controllable and sensors
measure temperature and pressure at the indicated locations with a sampling interval of 1
second.

Compressor

Evaporator EEV

Pump

Water heater

Condenser

Fan

Water tank

fc
OD

fcp Tc,i

Tc,o

Te,o

Te

Tw

PcPe Tair,o

TXV

Figure 6.3: Simplified schematic of the refrigeration system. T , P and f are indicators
for temperature sensors, pressure sensors and frequency control.

An OD sweep test was also conducted on the refrigeration system. The water tem-
perature Tw, the pump speed, the compressor frequency fcp and the condenser pressure
Pc were again kept constant and the result is shown in Fig. 6.4. The I/O-map is similar to
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Figure 6.4: Evaporator outlet temperature Te,o, water temperature Tw and evaporation
temperature Te during a sweep in OD.
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the one shown in Fig. 6.2, however, with steepest decline at about 80%OD and more "S"
shaped. In the following, we will utilize the observed qualitative behavior of the nonlinear
I/O-map of the two systems, which exhibit sigmoid function properties.

3 Harmonic Control

We have in [11] presented the harmonic control concept. This control concept is intended
for systems with a steady state nonlinear "S" shaped I/O-map that exhibits sigmoid func-
tion properties. A short description of harmonic control is given in the rest of this section
and simulations, using the example system defined in (6.1) and (6.2), will be given, to
show how the method works.

In the following the inverse trigonometric function atan will be used as system non-
linearity. Note, however, that any function with sigmoid function properties could be
used. The mathematical expression is

y =

(
−atan

(
k1

(u− k2)

k2

)
+ k3

)
k4, (6.1)

where y is the output, u is the input, and the rest (k1 = 10π, k2 = 50, k3 = π/2, k4 = 7)
is arbitrary scaling. This gives the I/O-map shown in Fig. 6.5, where u is limited to
values between 0-100 simulating an input saturation, which is seen in most systems. The
input u = 50 is located in the middle of the "S" shaped curve and this also represents
the desired operating point. In addition, first order dynamics with time constant Tsys and
delay Td is added;

G(s) =
1

1 + sTsys
e−sTd . (6.2)

The value of Tsys and Td can be chosen almost arbitrarily and are set to 30 and 10 seconds
respectively, in the simulation results presented in this paper. The nonlinear gain, input
saturation, system time constant and delay are chosen to resemble the characteristics of
the evaporator in the refrigeration system shown in Fig. 6.3.

The basic idea of harmonic control is to exploit the curvature of the nonlinear "S"
shaped I/O-map. If a ramp signal is used as the input to such an I/O-map, then the
first derivative is "bell" shaped and the second derivative (indicator of the curvature) is
negative and positive respectively to each side of the middle of the "S" shaped I/O-map,
as shown in Fig. 6.5. This makes the second derivative usable for feedback, if the middle
of the "S" shape is a suitable operating point.

Finding the second derivative of a signal can be problematic due to e.g. measurement
noise. The second derivative in the example simulation given above was about 4 × 104

times as small as the measured output. Furthermore, it is also necessary to somehow
excite the system to "see" a derivative.

We propose, with the harmonic control method, to continuously excite the system
using a sine wave. This makes it possible to indirectly measure the curvature of the I/O-
map, locally at an operating point, by looking at the distortion of the excitation signal.
This distortion is detectable through Fourier analysis, since distortion of a sine wave
gives higher order harmonics.
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Figure 6.5: "S" shaped I/O-map (defined in (6.1)) and corresponding scaled first and
second derivative when a ramp is used as input (rate 0.01 per second).

The discrete Fourier series F (t) of a periodic function f(t), sampled at time tn with
sampling time Tex/N , where N is the number of samples in one period Tex, is given as

F (t) =a0 +

M∑
p=1

[
apcos(p

2π

Tex
t) + bpsin(p

2π

Tex
t)

]
(6.3)

a0 =
1

N

N∑
n=1

f(tn)

ap =
2

N

N∑
n=1

f(tn)cos

(
p

2π

N
n

)
, p = 1, ...,

N

2
− 1

bp =
2

N

N∑
n=1

f(tn)sin

(
p

2π

N
n

)
, p = 1, ...,

N

2
− 1,

where ap and bp are the Fourier coefficients for each of the M harmonics denoted by p.
These coefficients can be used to calculate a scalar error signal ξ for feedback purposes
and a power spectrum density analysis, presented in [11], showed that most of the energy
is contained in the first two harmonics. The calculation of a1, b1, a2, and b2 is performed
online in the implementation with time-invariant linear FIR filters defined as

ap(k) =
2

N

N∑
n=1

y(k −N + n)cos

(
p

2π

N
n

)
, p = 1, 2 (6.4)

bp(k) =
2

N

N∑
n=1

y(k −N + n)sin

(
p

2π

N
n

)
, p = 1, 2, (6.5)

where y(k) is the measured output from the system at time k. Taking the cross product of
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vectors in R2 of these coefficients gives an error signal defined as

ξ =

[
a1

b1

]
×
[
a2

b2

]
=a1b2 − a2b1 = |H1||H2|sin(φ) (6.6)

|H1| =
√
a2

1 + b21

|H2| =
√
a2

2 + b22,

where |H1| and |H2| are the amplitudes of the two first harmonics and φ is the angle from
the first harmonic to the second harmonic. The cross product is a normal vector and it is
positive if the operating point is located to the right of the middle point of the "S" shaped
nonlinearity and negative to the other side.

It can be a good idea to normalize the error signal ξ, since the amplitude of the excita-
tion signal at the output is dependent on the operating point dependent gain in the system.
In (6.7), the error signal is normalized with the cubed amplitude of the first harmonic,
which gives an almost linear feedback signal.

ξn =
a1b2 − a2b1√
a2

1 + b21
3 =

a1b2 − a2b1

(a2
1 + b21)

1.5 . (6.7)

Other normalizations can be used as well and some of them are shown in Fig. 6.6. The
first three normalized error signals looks similar to the second derivative in Fig. 6.5 except
for a much larger amplitude (the signal is also flipped, but this depends on the order in
the cross product). Another benefit of Fourier analysis is that it is a very powerful way
of filtering out unwanted noise, since only the content at the frequencies of the first and
second harmonic are considered. The choice of normalization is not important, but can
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Figure 6.6: Four normalizations of the error signal. The error signal is calculated at
different offsets in input ū in steady state and the corresponding amplitude of the first
harmonic in the output, together with the amplitude of the input sine.
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improve the response of the controller. In this simulation example the nonlinearity is quite
severe, which is indicated by the amplitude of the excitation signal at the output. This
amplitude is very small when the input ū is below 35 and above 65. In theory this should
not matter when using the normalization in (6.7), however, noise and modeling errors
could make the method unstable when the excitation vanishes at the output. Therefore,
in some cases it might be better to use e.g. |H1| or |H1|2 as normalization, since it better
resembles how well the Fourier analysis can be trusted.

After the Fourier analysis and calculation of a normalized error signal, it is now pos-
sible to close the loop using e.g. a PI controller. Anti-windup can optionally be added if
there is input saturation. Furthermore, it is possible to adapt the amplitude of the input
excitation signal using the amplitude of the first harmonic, since a large magnitude im-
proves the Fourier analysis but also disturbs the system more. A healthy balance should
be maintained, however, adaptation of the excitation signal will not be treated further in
this paper (we briefly addressed this issue in [11]). Fig. 6.7 depicts the proposed harmonic
control strategy. The input to the system u is the sum of the input from the control part ū
and the excitation signal uex and Aex is the amplitude of the excitation signal, which in
this paper is considered constant.

Nonlinearity Dynamics

Fourier Analysis

Excitation Signal

Saturation Controller

X

Anti Windup

++

+ -

PI

yu

Aex

ξnu

uex

Process

|H |1

AGC
Adaption

_

Figure 6.7: Harmonic Control Structure. Anti-windup is optional.

The controller has been tested in simulation using the setup shown in Fig. 6.7 and the
system equations defined in (6.1) and (6.2). The period of the excitation signal was set
to 135 s and the amplitude Aex to 5. Furthermore, the normalization |H1|2 was used
together with PI proportional gain Kp = 1, integral time Ti = 15 and anti-windup
reset time Tt = Ti/3. Different starting values of OD (ū) were used and the result is
presented in Fig. 6.8. The operating point converges to the desired value of ū = 50 in
all the simulations, however, the response is more uncertain when noise and quantization
is added. This is not surprising, since the amplitude of the harmonics are very small
compared to the noise, when the valve OD is below 35% and above 65%, see Fig. 6.6.

Note that slope-seeking control could not have stabilized the system to the same op-
erating point, because the slope decreases on both sides of the operating point. If slope-
seeking control is used, one would have to choose a reference slope that deviates from
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Figure 6.8: Simulation results showing closed-loop harmonic control applied to the ex-
ample system given in (6.1) and (6.2) for different initial conditions. Input and output
quantization (0.2 and 0.1 respectively) and measurement noise (2σ = 0.1) is added to
some of the simulations and the desired operating point is ū = 50.

the middle of the "S" shaped curve, well aware that this slope will be mirrored around
the middle of the curve, giving only local stability. Furthermore, choosing a suitable ref-
erence can be difficult in itself, since the slope changes when the operating conditions
and hence the system nonlinearity changes in the time-varying system, giving an unpre-
dictable operating point.

The PI control part of the harmonic controller has been tuned manually in the simu-
lations and tests presented in this paper. However, automatic tuning of the controller will
be pursued in future research. When tuning it is important to remember that the Fourier
analysis is meant for periodic signals, which means that the controller should not be tuned
too aggressively. However, slow variations will only give frequency content in the lower
spectrum, which also indicates that the frequency of the excitation should be high. Sim-
ulations have also shown that the period of the excitation Tex should approximately be at
least twice as large as the combined system time constant Tsys and delay Td.

4 Safety Logic

Before applying harmonic control to the test systems presented in Section 2, some safety
logic is added. This logic handles situations when the amplitude of the first harmonic is
low, which can give uncertain response as indicated by the simulations shown in Fig. 6.8.
The safety logic is designed to step the valve OD down to a known situation that gives
low flow (ūmin), when the amplitude of the first harmonic |H1| gets below a predefined
threshold |H1|t,verylow. The control signal ū is then ramped up, until the amplitude of
the first harmonic is larger than a threshold |H1|t,high. However, to speed things up, the
information given by the step down in OD can be used to detect if the low amplitude
was caused by low flow or overflow in the evaporator. If it was low flow, then the step
will not give a noticeable change (more than defined by a threshold Te,o,t) between the
temperature before the step Te,o,old and the new evaporator outlet temperature Te,o and
the ramp can therefore start at the OD value before the step was made. For added safety,
a timer is also implemented, with the purpose of checking if the amplitude |H1| is consis-
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tently lower than a less restrictive threshold |H1|t,low. This will give the controller time
to recover by itself, but if it does not do so within a time frame, then recovery is activated
automatically. A flowchart giving an overview of the safety logic is presented in Fig. 6.9.
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Figure 6.9: Flowchart describing the safety logic. State 0 is normal operation (top part
of the flowchart), state 1 indicates recovery from overflow situation and state 2 indicates
recovery from low flow situation. ū+sine means that the EEV is applied a control signal
ū superimposed with sine excitation.

5 Test Results

The two systems described in Section 2 have multiple temperature and pressure sensors,
however, the proposed evaporator superheat control only uses the evaporator outlet tem-
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perature Te,o to control the valve OD. This eliminates the need for a pressure sensor
when comparing with conventional control or gives fault tolerant control possibilities.

An 8.33 hour test has been conducted on both systems, where the compressor fre-
quency and heat load was changed in steps according to the test sequence described
in [13]. The sequence is also shown in the bottom plot in Fig. 6.10 and 6.11. The
compressor frequency limits are 35-60 Hz for the refrigeration system and 25-60 Hz for
the air conditioning system. In the following it is assumed that the condenser pressure
is controlled separately to 9 and 22 bar for the refrigeration system and the air condi-
tioning system, respectively, and that the condenser room temperature is maintained at
approximately 22.5◦C.

Fig. 6.10 shows the test result for the refrigeration system, where the controller pa-
rameters were set to Tex = 135, Aex = 10, Kp = 4, Ti = 15 and Tt = Ti/3. These sig-
nal parameters gives adequate excitation of the system and the controller is tuned to give a
good compromise between convergence speed and robustness towards disturbances. Fur-
thermore, the safety logic parameters where set to |H1|t,verylow = 0.5, |H1|t,low = 1.5,
|H1|t,high = 2.5, Te,o,t = 4, ūmin = 10, ūmax = 90 and ramp rate = 10/Tex. Fig. 6.11
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Figure 6.10: Test of the harmonic controller on the refrigeration system. The load in the
bottom plot is approximately the heat applied to the water tank. The same time scale
is used for all four plots. The average superheat achieved with a TXV in a similar test
without harmonic control is shown for comparison.
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shows the test result for the air conditioning system. The PI parameters were changed to
Kp = 2 and Ti = 20 giving a less aggressive controller and the excitation signal period
Tex and amplitude Aex were set to 180 and 8 respectively, corresponding to the slightly
larger and slower system.
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Figure 6.11: Test of the harmonic controller on the air conditioning system. The load in
the bottom plot is approximately the heat applied to the air conditioned room using an
electric heater. The same time scale is used for all four plots.

The average superheat was controlled to a low level in both tests using only the evap-
orator outlet temperature Te,o. There are a couple of places where the safety logic is
activated. It is also activated in the beginning where the OD is low. This gives faster
convergence and means that the controller can be started with a very low OD. All except
one activation (going up from lowest compressor frequency in air conditioning system) is
caused by evaporator overflow, which gives a very low first harmonic amplitude. The step
back in OD causes the superheat to increase and thus gives a performance degradation.
However, this mostly happens when there are steps down in compressor frequency and
not every time (the timing of the step during the excitation has an effect) and the controller
does slowly optimize itself again. The average superheat in the test on the refrigeration
system was 10.18◦C and only 7.39◦C if looking at the time from 10000 to 30000 sec-
onds. This is lower that the average obtained with the TXV, which was 12.68◦C. Manual
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6 Conclusion

fine tuning of the mechanical TXV could potentially have made the superheat lower, how-
ever, it could also have been higher depending on the skill of the operator. There are also
oscillations in the superheat due to valve hunting when using a TXV, which is compara-
ble to those seen while using continuous excitation and an EEV. However, the superheat
oscillations seen in all three tests do not affect the water or room temperature on the sec-
ondary side of the evaporator. The average superheat in the test on the air conditioning
system was 10.31◦C.

6 Conclusion

The proposed non model-based harmonic controller, for nonlinear systems with I/O-maps
exhibiting sigmoid function properties, have shown, in tests on two different refrigeration
systems, that it is possible to control the superheat without a pressure sensor. Furthermore,
the method does not require a reference setpoint and works in a large operating range.
The method has shown real Plug and Play potential and convergence can be improved by
proper tuning of the PI control parameters, and the amplitude and period of the excitation
signal. The speed of the feedback loop is limited by the excitation signal frequency and
the method is therefore mostly useful for relatively calm systems. However, there is a big
potential in connection with fault tolerant control in case of pressure sensor dropout.
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1 Introduction

Abstract

Superheating of refrigerant in the evaporator is an important aspect of safe op-
eration of refrigeration systems. The level of superheat is typically controlled by
adjusting the flow of refrigerant using an electronic expansion valve, where the su-
perheat is calculated using measurements from a pressure and a temperature sensor.
In this paper we show, through extensive testing, that the superheat or filling of the
evaporator can actually be controlled using only a single temperature sensor. This
can either reduce commissioning costs by lowering the necessary amount of sensors
or add fault tolerance in existing systems if a sensor fails (e.g. pressure sensor). The
solution is based on a novel maximum slope-seeking control method, where a pertur-
bation signal is added to the valve opening degree, which gives additional information
about the system for control purposes. Furthermore, the method does not require a
model of the system and can be tuned automatically.

1 Introduction

Refrigeration systems are a big part of our society. Typical examples range from small
fridges and freezers in our homes to residential air conditioning systems and supermarket
systems with multiple display cases. All these systems typically rely on a vapor compres-
sion cycle where refrigerant is evaporated in an evaporator, while extracting heat from
the surroundings. Details of the refrigeration cycle is not given here (the reader is re-
ferred to references such as [1, 2]), but the cooling capacity of the system is in general
increased in two ways: either by lowering the evaporation temperature or by having as
much liquid refrigerant in the evaporator as possible [3]. However, lowering of the evap-
oration temperature requires more compressor work and care must be taken not to let
liquid refrigerant enter the compressor, as this can increase the wear and possibly damage
it. After all refrigerant is evaporated into gas it will start to superheat and the level of
superheat, Tsh, is an indirect measure of the filling of the evaporator. The superheat is
calculated using a temperature sensor located at the outlet of the evaporator, Te,o, and
a pressure measurement that can be converted to the evaporation temperature, Te, and
it is typically controlled using an electronic expansion valve (EEV), where the opening
degree (OD) of this valve determines the refrigerant flow (see e.g. [3, 4]). This is shown
in Fig. 7.1, where the input/output (I/O) map shows the qualitative connection between
OD and temperature. Alternatively, the superheat can also be controlled with the com-
pressor speed as in [5] or a combination as in [1, 6]. However, using the compressor to
control the superheat is not done in multi evaporator systems (they each have different
flow requirements).

Pressure sensors are expensive to buy and install compared to temperature sensors;
especially in multi evaporator systems with different evaporation pressures as multiple
sensors are needed. An alternative is to use two temperature sensors instead (Te,i and
Te,o), since temperature transducers are cheaper. However, this also requires installation
of at least two sensors and they could be placed incorrectly. Additionally, control relying
on multiple sensors introduces multiple possible points of failure (sensor malfunction).
We have therefore investigated the possibility of controlling the filling using only a single
temperature sensor and an EEV. This could provide fault tolerant control possibilities in
existing systems and potentially reduce commissioning costs by requiring fewer sensors.
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The challenge is to extract enough information out of the single temperature measure-
ment to be able to control the valve and the refrigerant flow. One possibility would be
simply to use a fixed temperature reference. However, a suitable reference will depend on
operating conditions, the type of refrigeration system in question, and disturbances, which
is why a fixed reference is not a suitable solution (finding a suitable reference superheat in
conventional two-sensor control is also a challenge). An alternative is to use qualitative
knowledge about the system and the behavior of the evaporator outlet temperature. A
variance-based control method was investigated in [7], where it was discovered that the
variance of the outlet temperature increased at low superheat, which can be used for feed-
back purposes. This is also closely related to the automatic variance control method [8],
which in some cases has been used in the conventional two-sensor superheat control to
adjust the reference. A problem with the variance-based method is its sensitivity to oper-
ating conditions and to large disturbances, as this can change the variance level.

One can also use continuous excitation to gain the required knowledge to control the
system. Extremum- and slope-seeking control are examples of this, where the objective is
to drive the output to an extremum or certain slope in the system I/O-map. These methods
are well covered in [9] and [10]. Furthermore, [11] and [12] provides examples of faster
observer-based extremum-seeking and there exist multiple examples of the applicability
of extremum- and slope-seeking control. A refrigeration system example is given in [13],
where the total sum of cooling tower and chiller power consumption is minimized in
a chilled water cooling plant, by optimization of the condenser water temperature with
extremum-seeking (the I/O-relation between power consumption and condenser water
temperature is concave). A similar example is given in [14].

As we will show in this paper, the I/O-map between evaporator valve OD and outlet
temperature can be approximated by a smooth function, with sigmoid function properties,
which is differentiable, and has a bell shaped non-positive first derivative (see Fig. 7.1).
Additionally, a suitable operating point is located at the point of maximum negative slope
in the I/O-map, as this corresponds to a good filling level of the evaporator. Slope-seeking
and not extremum-seeking control should therefore be used, but the maximum slope is
time-varying and unknown, and providing the slope-seeking control with the maximum
slope as reference makes it unstable, as the slope reduces in both directions of the I/O-
map.

We previously introduced the idea of searching for a maximum in the derivative or
slope of an I/O-map in [15] and [16]. The novel solution named Maximum Slope-Seeking
(MSS) control is closely related to extremum- and slope-seeking control, since they all
rely on continuous excitation of the system. This excitation provides a means of getting
gradient information about the I/O-map in the extremum- and slope-seeking case and cur-
vature information in the MSS case. At the place of maximum slope, the mean curvature
will be zero producing no second harmonic and the second harmonic flips 180 degrees
around this point also reflecting the sign of the curvature. This information can be used
to drive the system toward the maximum slope of the I/O-map. The proposed method is
highly non-standard and perhaps non-intuitive and we will need to accept that the super-
heat will oscillate due to the constant perturbation, which is required to gain the missing
information for control purposes in the single sensor setup. However, we are applying a
controlled oscillation.

This paper presents the MSS control and provides new single sensor evaporator con-
trol results for three widely different refrigeration systems. This includes tests on a super-
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Figure 7.1: Evaporator steady state I/O-map and typical superheat control using a pressure
transducer, a temperature transducer, and an EEV.

market system, and evaluation of the performance compared to a conventional two-sensor
superheat control. Procedures for system identification and controller tuning is also pro-
posed.

The paper is organized in the following way. Section 2 presents the MSS control
method with a simple example simulation and Section 3 describes three different refrig-
eration system test facilities, which have been used to verify the method. Tuning of the
MSS control for refrigeration systems is then treated in Section 5 and the final control
setup including necessary safety logic is presented in Section 6. Finally, test results and
discussions are presented for each of the test facilities in Section 7 and conclusions are
drawn in Section 8.

2 Maximum Slope-seeking Control

Fig. 7.2 illustrates the MSS control concept applied to a continuous time process or
system with input dynamics Fi(s), an I/O-map with sigmoid function properties, and
output dynamics Fo(s), constituting a Wiener-Hammerstein model structure (R → R).
The goal of the MSS control is to find the desired control signal u∗ that brings the system
output f(u∗) to the place of maximum slope in the unknown I/O-map.

This is achieved by first of all applying sample S and hold H on the system and
then filtering the sampled system output y with two separate time-invariant linear FIR
filters F1(z) and F2(z), which extracts the coefficients of the first and second harmonics
H1 and H2 generated by the perturbation sine signal Aexsin(ωexn) at the input with
amplitudeAex and angular frequency ωex. The cross product of vectors in R2, formed by
the coefficients of the harmonics, are then taken and the result is normalized with respect
to the first harmonic in M , which gives a normalized error signal ξn. This error signal
will be zero at the desired operating point f(u∗), where the mean curvature is zero, since
this gives no second harmonic in the output. The signal will also be positive and negative,
respectively, on each side of this point due to the curvature of the I/O-map, which is
illustrated in [16]. An integral controller C(z) is then used to drive the control signal ū
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Figure 7.2: MSS control structure applied on a process with a Wiener-Hammerstein
model structure.

toward u∗. The equations involved in the MSS controller are given in Eq. (7.1), (7.2),
(7.3), and (7.4).

F1(z) =
2

N

N∑
n=1

zn−N (cos (ωex (n−Nd))− jsin (ωex (n−Nd))) , (7.1)

F2(z) =
2

N

N∑
n=1

zn−N (cos (2ωex (n−Nd))− jsin (2ωex (n−Nd))) , (7.2)

M =
|H1| |H2| sin (θ12)

|H1|2
=
|H2| sin (θ12)

|H1|
, (7.3)

C(z) =
Kts
z − 1

, (7.4)

where N = Tex/ts is the number of samples in one perturbation period Tex of ωex, ts
is the sample time, Nd is estimated amount of samples equivalent to the delay in the
system, θ12 is the angle from the first to the second harmonic, and K is the integral gain.
The sample time is assumed to be small relative to the perturbation period.

If the dynamics in the system are negligible, compared to the perturbation period Tex,
then it is enough to only consider the real part of the second harmonic and use that alone
as error signal. In other words, if the phase shift on the second harmonic exceeds 90
degrees, then we would have to change the sign of the feedback. However, avoiding this
either requires that the system has fast dynamics or that Tex is very large resulting in a
slow feedback loop. Taking the cross product between the harmonic coefficients relates
the second harmonic to the first, which means that it is enough to guarantee that only
the difference in phase shift, between the first and second harmonic ∆θ12, is less than 90
degrees (there is already 90 degrees phase shift due to the properties of the harmonics).
This means that the time separation between the dynamics and Tex can be lowered. Fur-
thermore, it is possible to compensate for the phase shift introduced by system delay by
aligning the cosine and sine terms in Eq. (7.1) and (7.2) with the output by shifting them
with the estimated delay samples Nd. This is particularly useful in systems with large
delays. For a more detailed description of maximum slope-seeking see [15] and [16].

Simulating an academic example system gives the response shown in Fig. 7.3. Here
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we have used Eq. (7.5) to describe the steady state I/O-map

y =− k1atan (k2u) , (7.5)

where y is the dimensionless output, k1 = 6 determines the gain in the system, k2 = 0.5
determines the nonlinearity of the system, and u is the dimensionless input. Furthermore,
fast first order dynamics are used in Fi(s) with a time constant of 2 seconds and first order
plus dead time (FOPDT) dynamics are used in Fo(s) with a time constant of 30 seconds
and a relatively large delay of 15 seconds. The perturbation signal amplitude Aex was set
to 4 and the period Tex was set to 3 times the dominant time constant in the system (90
seconds). Finally, the integral gain was manually tuned and set to K = 0.05, with sample
time chosen to be ts = 1. Fig. 7.3 illustrates how the response starts to circle around
ū = −10 in the I/O-map and converges to zero at the maximum slope.

-20 -15 -10 -5 0 5 10 15 20
-10

-5

0

5

10

Input u

O
ut

pu
t 

   
(-

)
y

S.s. I/O-map
Sim. response

0 500 1000 1500 2000
-15

-10

-5

0

5

Time (s)

In
pu

t (
-)

u u

    (-)

_

Figure 7.3: MSS control applied to a steady state I/O-map with sigmoid function proper-
ties. The simulation is started at ū = −10 and converges to the desired operating point
u∗ = 0.

Normalizing the error signal ξ is not a requirement, but using the amplitude of the
first harmonic to normalize the error signal gives a way of compensating for changes in
system gain. In Eq. (7.3) we have normalized with the squared amplitude, however, other
normalizations such as |H1|−1 or |H1|−3 could have been used as well. Fig. 7.4 shows
the error signal using different normalization at different input offsets or control signals
ū, with the example system presented in Fig. 7.3. The error signal is all positive to the left
and all negative to the right of the middle point where the gain in the system is highest. At
ū = 0 the amplitude of the second harmonic is also zero and the amplitudes are very small
when ū gets far from the middle point. The drop in amplitude or system gain could make
the control method unstable due to noise and modeling errors, which is also why |H1|−2

in some case is a better normalization than |H1|−3, since the error signal decreases again
when the amplitude decreases and thus better resembles how well the Fourier analysis can
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offsets, together with the corresponding amplitude of the first and second harmonic.

be trusted. However, remark that Eq. (7.1) and (7.2) acts as a powerful way of filtering
out unwanted noise.

3 Test Facilities

Three refrigeration system test facilities have been used. The first is a residential air con-
ditioning system, with a max capacity of approximately 11 kW, shown in Fig. 7.5(a).
This system uses refrigerant R410a and has a finned tube evaporator with a pulse-width
modulation (PWM) controlled Danfoss EcoflowTM valve (10 s period). The second sys-
tem, shown in Fig. 7.5(b), is a water chiller system with an approximate capacity of 4 kW.
This system uses refrigerant R134a and has water on the secondary side of the evaporator
and interchangeable valves (either stepper motor EEV or Thermostatic Expansion Valve
(TXV)). The last system, shown in Fig. 7.5(c), is a supermarket refrigeration system with
the possibility of connecting a water chiller as additional load. This system uses refrig-
erant R404a, has PWM controlled valves (6 s period), and has up to two Type 1 and two
Type 2 display cases connected. Each display case has a night cover and defrost heater.
The compressor rack consists of three compressors, which are controlled separately to
keep a setpoint evaporation temperature Te and the condenser unit is also set to keep a
setpoint condensation temperature Tc.

These test facilities constitutes a wide variety of refrigeration systems and thus gives
a good basis for test of the MSS-based single sensor evaporator control. The air condi-
tioning system and the water chiller system is monitored and controlled using the Matlab
XPC toolbox for Simulink and the supermarket system uses MiniLog software. They are
all sampled at 1 Hz and further information can be found at http://www.es.aau.
dk/projects/refrigeration/.
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Figure 7.5: Simplified schematics of the air conditioning system (a), the water chiller
refrigeration system (b), and the supermarket refrigeration system (c) test facilities with
indication of sensors and control signals.

4 Qualitative Behavior of Evaporator Outlet Temperature

We are interested in control of the evaporator filling using only the valve OD and the
evaporator outlet temperature measurement Te,o. Therefore, the steady state I/O-map is

135



Paper D

found using a slow sweep in the input OD from low to high value. This sweep should
be stopped when Te,o flattens out again at high OD, when the superheat is low, in order
not to let unevaporated refrigerant enter the compressor. However, a small amount of
refrigerant spray is tolerable and extra evaporation in the suction line and/or manifold
also allows us to have a short period with superheat close to 0◦C. The result for each
refrigeration system is shown in Fig. 7.6.
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Figure 7.6: Evaporator I/O-map revealed by a slow sweep in the input for the air condi-
tioning system (a), the water chiller refrigeration system (b), and the supermarket display
case (c). The input is the valve OD and the output is the evaporator outlet temperature
Te,o. Ambient temperatures are also shown.

All three evaporators show the same qualitative behavior of the outlet temperature
Te,o; it has two horizontal asymptotes determined by the temperature of the surrounding
medium (Tair,i, Tw, Tdc,o) and the evaporation temperature Te, and a middle temperature
where the slope in the system is lowest (negative gain). This point also corresponds
to a good superheat or filling level of the evaporator and shows that it is reasonable to
search for the point of maximum slope in the I/O-map. Note here that if the surrounding
temperature or the evaporation temperature changes then it will result in a change in the
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suitable outlet temperature, which is the main reason for not using a fixed reference. Note
also that the typical lumped parameter model used in the literature (see e.g. [1]) does not
have a smooth S-shape, but rather a sharp corner when Te,o reaches Te. However, actual
evaporator behavior does not exhibit sharp corners because of refrigerant spray and sensor
dynamics, because of superposition of separate evaporator sections (investigated in [17]),
and because it is a distributed parameter system.

For simulation and controller tuning purposes, models for the steady state I/O-map of
each refrigeration system is identified. An atan function similar to Eq. (7.5) is used with
the expression

Te,o =− k1atan (k2 (OD +OD∗)) + T ∗e,o, (7.6)

since this equation satisfies the sigmoid function properties and because it is relatively
easy to fit. The input and output offsetsOD∗ and T ∗e,o also represent the desired operating
point and the temperature T ∗e,o is determined as

T ∗e,o =
(Te,o,max + Te,o,min)

2
, (7.7)

where Te,o,max and Te,o,min are the maximum and minimum temperatures during the
OD sweep shown in Fig. 7.6. The valve opening degree OD∗ corresponding to T ∗e,o is
then found and the gain k1 is given as

k1 =
(Te,o,max − Te,o,min)

π
k3, (7.8)

where k3 is an optional scaling factor set to 1.1, to add 10% to the gain k1 in order to
account for the fact that Te,o has not reached the horizontal asymptotes yet during the
OD sweep. However, conservativeness in controller gain can also account for this model
uncertainty, which is why k3 is optional. The last parameter k2 is used to fit Eq. (7.6)
to the test data. This is done by using the bisection algorithm on k2 with an Euclidian
error measure. The resulting parameters are listed in Table 7.1 and the fit is shown in
Fig. 7.6. If the I/O-map is not well approximated by a sigmoid function (does not have a
unique point of maximum slope), then there is a possibility of having multiple equilibria.
However, this has not been experienced with any of the three test setups.

System T ∗e,o OD∗ k1 k2

Air con. 9.08 33.02 5.68 0.50
Chiller 12.41 50.78 4.89 1.31

Supermarket 0.71 38.15 5.59 1.07

Table 7.1: Evaporator model parameters for the air conditioning, water chiller, and super-
market refrigeration systems.

5 Controller Tuning

As an overall guideline, the time scales in the controlled system should be:
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• Fastest - system dynamics.

• Medium - periodic perturbation.

• Slow - integral control.

The perturbation signal period Tex should be large enough to ensure that any possible
change in system dynamics will not result in a difference in phase shift between the two
harmonics of more than 90 degrees and large enough to ensure that the perturbation is
detectable in the output. The double frequency should also not be a persistent frequency
in the noise, since this will directly add to the second harmonic. A suitable large ampli-
tude of the perturbation signal can, however, compensate for the noise. Furthermore, the
Fourier analysis implemented with the two filters in Eq. (7.1) and (7.2) are intended for
periodic signals, which means that the integral control closing the feedback loop should
not be tuned too aggressively. Additionally, if the I/O-map has a non-positive first deriva-
tive (as in the cases shown in Section 4) then the integral gain K should be positive and
negative in the other case. Previously, in [15] and [16], we used PI control instead of just
integral control, which made it more difficult to tune the control and the P term can also
make the output look less periodic due to jumps in the input signal, which results in a
poorer estimation of the first and second harmonic.

A method to tune the MSS controller for control of the evaporator filling in a refriger-
ation system will be given in the following, since the above guidelines are general in their
statements. For this purpose a Wiener-Hammerstein model structure, as shown in Fig.
7.2, is used. It is assumed that the input dynamics Fi can be approximated as being fast
and thus negligible compared to the output dynamics (time constant set to 2 seconds in
this paper). Since we already identified the nonlinear I/O-map, in Section 4, using anOD
sweep on the system, we are left with identifying the output dynamics Fo. A simple way
to do this is to perform a relay feedback test around the desired point of operation and
approximate the dynamics with a FOPDT model (this approximation is derived in [18]).
However, note that the parameters can vary up to 50% and possibly more [18], depending
on the characteristics of the used components in the system and the changes in operating
conditions. Furthermore, as it can be difficult to separate system nonlinearity from dy-
namics, we are left with a very rough estimate of the system parameters. Better models
could be obtained and more sensor data could be used, but importance have been put in
deriving a model with little effort based only on valve input OD and the measured evap-
orator outlet temperature Te,o. Additionally, importance have been put in only using tests
that can be automated to ensure that the control setup has a high degree of plug and play
(easy to move from system to system).

A biased relay feedback test was performed on each of the three refrigeration systems.
The test starts with a low OD to ensure that Te,o is high. However, the starting OD
should be high enough to ensure that the compressor does not turn on and off all the
time in one-to-one systems (one compressor, one evaporator). A large step up in OD
was then made to make the evaporator outlet temperature Te,o drop and OD was stepped
back afterward. In order to know when to step back in OD, the rate of change of the
temperature Te,o was calculated and filtered and the step was made when a clear peak in
the rate of change was detected. A suitable middle temperature was then determined and
used as reference for the biased relay feedback test. This test first had three large steps in
OD, with the purpose of estimating an OD offset to center three additional relays with
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smaller amplitude around, providing a better parameter estimate. The last three relays
had an amplitude ±10 in OD and a hysteresis on the temperature of 0.5 degree. Note
that only the last relay in the series was used for system identification and one could have
taken an average and/or performed more steps.

The ultimate gain Ku is given as (see e.g. [19])

Ku =
4Ai
πAo

, (7.9)

where Ai is the input step amplitude and Ao is the amplitude of the oscillation in the
output. Furthermore, the ultimate period Tu is the time of one relay period. This together
with the input and output measurements can be used to calculate the system gain Ksys

and the system time constant Tsys using Eq. (7.10) and (7.11) (see e.g. [19]).

Ksys =

∫ Tu(Te,o(t)− Te,o,ref (t))dt∫ Tu(OD(t)−ODoffset(t))dt
, (7.10)

Tsys =
2π
√

(KuKsys)
2 − 1

Tu
, (7.11)

Finally, there are multiple ways of determining the delay Td in the system. In this paper
we have taken the average time from a step in the input to a change is visible in the
output. A detailed review of the biased relay feedback method will not be given in this
paper, however, the reader is referred to e.g. [19] or [20] for more details.

Fig. 7.7 shows the relay feedback tests performed on the test facilities. The air con-
ditioning system parameters are Tsys = 23.07 and Td = 15, the water chiller parameters
are Tsys = 31.51 and Td = 26, and finally the supermarket display case parameters are
Tsys = 59.52 and Td = 29.

The estimated delay can be used for delay compensation (Nd = round(Td)) and the
estimated dominant system time constant Tsys can help determine a suitable perturbation
time constant Tex. A reasonable value for Tex depends on the confidence in the estimated
Tsys. With our relatively simple system identification and the large operating point de-
pendence, we will use values between 3 and 5 times the estimated system time constant
Tsys. The perturbation amplitudeAex should be as large as possible for robustness, while
not exceeding the acceptable level of output excitation. The identified system model can
be used to find a suitable Aex and we have used the FOPDT model and iterated Aex until
the amplitude of the first harmonic |H1| is approximately 3, which is acceptable for the
three considered refrigeration systems. Finally, we are left with the last MSS control pa-
rameter, which is the integral gain K. A possible way to tune K is to use the identified
Wiener-Hammerstein model and iterate K until the desired response is achieved. In this
paper a convergence test is used and K is iterated until the response have an overshoot of
10%. If the starting value of ū is 10 larger than the value at the desired operating point
u∗, then it corresponds to allowing 1% OD overshoot. Both a negative and a positive
convergence test is made and half of the smallest K value is used to account for model
uncertainty. Additionally, the stability limit on the gain K is checked when the system is
started at the desired operating point u∗, where the system gain is highest.

The chosen control parameters and identified control gains for the three refrigeration
systems are listed in Table 7.2. The perturbation signal period Tex is approximately five
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Figure 7.7: Relay feedback test on the air conditioning system (a), the water chiller re-
frigeration system (b), and the supermarket display case (c).

times, four times, and three times the system time constant for the air conditioning system,
water chiller system, and the supermarket display case system, respectively. This gives in
all cases a difference in phase shift much lower than the limit of 90 degree. Furthermore,
the stability limit on K is much higher than the value obtained in the convergence tests
and correspondingly the value used in the tests presented in Section 7.
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6 Control Setup and Safety Logic

Par. Air con. Chiller Display
Tex 120 130 180
Aex 8.5 10.8 8.0
∆θ12 17.13 15.12 12.17

K (neg. start) 0.160 0.136 0.084
K (pos. start) 0.158 0.135 0.085

K (limit) 0.960 0.645 0.468
K (used) 0.079 0.067 0.042

Table 7.2: Chosen perturbation signal values, difference in phase shift between first and
second harmonic ∆θ12, and integral control gain values.

6 Control Setup and Safety Logic

The MSS setup applied to a refrigeration system for single sensor evaporator control is
illustrated in Fig. 7.8. The valve OD input is limited between 0 and 100 %, which means
that the control signal must be within the limits Aex ≤ ū ≤ 100−Aex, to leave space for
the perturbation. Anti-windup is therefore added to the integral control.

Integral control
w. anti-windup

Harmonic 
analysis

Safety
logic

Evaporator

+ ξn

ξn,offset |H |1

Te,oOD+A   sin(ω  k)

u

usl

ex

_

_

ex

Figure 7.8: MSS control setup with safety logic applied to a refrigeration system evap-
orator. The harmonic analysis block includes the filters F1 and F2 and the normalized
crossproduct operation (see e.g. Figure 7.2). When the safety logic is activated ū is
replaced by ūsl.

The normalized error signal ξn is calculated based on measurement of the excited
evaporator outlet temperature Te,o. An offset ξn,offset can be added to lift or lower the
outlet temperature if the point of maximum slope lies too close or too far away from a
suitable filling of the evaporator. In the air conditioning system and the supermarket sys-
tem a small offset has been added to lift Te,o one to two degrees. ξn,offset was set to -0.1
and -0.05 for the air conditioning system and the supermarket display case, respectively.
The value can e.g. be determined based on the same simulation that was used to find the
integral gain K.

An important note to make is that the cost of adding an offset is that the system will
not stabilize at the desired operating point if the input gets far from the desired operating
point, which can be deduced from Fig. 7.4. Lowering the error signal means that low
values of ū will not result in a positive error signal as required. Safety logic is therefore
added in order to solve this problem, which occurs when the amplitude of the first har-
monic is low. The role of the safety logic is to monitor the amplitude of the first harmonic.
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If this amplitude is consistently below a threshold, a step back in ū is made to ensure that
we are in the low flow situation and ū is then ramped up until the amplitude gets above
an upper threshold again. A flow diagram is shown in Fig. 7.9 which illustrates the safety
logic. Another benefit of having the safety logic is that low refrigerant flow or evaporator
overflow is quickly detected and taken care of, even if the feedback loop is tuned conser-
vatively. The outlet temperature is monitored when a step back in ū is made to determine
if the low amplitude was caused by a low flow or an overflow situation. In the low flow
situation ū can be stepped back up and ramped from there instead.

|H1| < |H1|t,low
consistently?

Apply MSS 
(state=0)

= 0.5  
Wait Tex (state=1)

Ramp 

Te,o
<Te,o,old+  Te,o,t?

Ramp u  while 
waiting Tex

u

= start
while waiting Tex

NO

Use  from  state 
0 while waiting Tex

(state=2)

u

YES

YES

NOu> umax?

YES

|H1| > |H1|t,high?

NO

YES
NO

Normal operation
Recovery states

START

|H1| <|H1|t,verylow ?

Keep
unchanged

YES

NO

uu 

u  

u u  

_

_ _

_ _

_ _

_

_

_

Figure 7.9: Safety logic illustrated with a flowchart. State 0 indicates normal operation,
state 1 is recovery from evaporator overflow and state 2 is recovery from low refrigerant
flow situation. A sine signal is always superimposed on the control signal ū giving the
applied valve OD.

The wait periods that allows the system to settle after steps in ū are dependent on the
particular perturbation period Tex. The thresholds |H1|t,verylow, |H1|t,low, and |H1|t,high
depends on the amplitudeAex, which was adapted to give the same excitation in the three
systems. The thresholds were set to 0.33, 1.5, and 2, respectively, for the air conditioning
and the water chiller systems, which are one compressor one evaporator systems. The
values for the supermarket system was set a little lower at 0.33, 1 and 1.5. Furthermore,
the amplitude |H1| was considered consistently low after 0.67Tex and the ramp rate was
set to 0.5Aex/Tex. Finally, the temperature threshold Te,o,t used to detect low flow sit-
uations was set to 4◦C. The safety logic parameters can be adjusted to give the desired
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7 Results and Discussions

sensitivity toward low flow or overflow situations, but they are not that important if the
error signal offset is zero and the control can be tuned non-conservatively.

7 Results and Discussions

The single sensor MSS control with safety logic has been tested on each of the three
refrigeration systems.

Water Chiller Refrigeration System Test

Fig. 7.10 shows the test result from an 8 hours and 20 minutes test conducted on the water
chiller refrigeration system. The condensation pressure was controlled separately with a
PI controller on the condenser fan, with the reference Pc,ref = 9 bar. The compressor
frequency was changed in steps between the four levels 60, 45, 40, and 35 Hz. This
gives large disturbances in the evaporation temperature and the heat load was additionally
changed between approximately 2.8 kW and 3.6 kW with a constant water mass flow of
0.31 ls−1. The chosen disturbance pattern is based on the test description in [18] and
equal to the test conducted in [15]. This makes it possible to compare the proposed MSS
control setup and safety logic with previous results and the TXV result obtained in [15],
which is also shown in Fig. 7.10.
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Figure 7.10: Test result with MSS applied on the water chiller refrigeration system for
single temperature sensor evaporator filling control. Average superheat obtained with the
TXV instead of MSS is shown for comparison.

The top graph in Fig. 7.10 shows the control signal ū, which was stepped back four
times during the test by the safety logic. The first time was in the start because the
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starting OD was too low giving a low flow situation. Then two overflow situations were
detected after the largest step down in compressor frequency and approximately 5.5 hours
into the test. Finally, the largest step up in compressor frequency caused a low flow
situation. A safety logic activation causes a period of approximately 15 minutes with
higher superheat before the control converges again, however, the average superheat for
the whole test was T sh,mss = 12.90◦C, which is very close to the superheat obtained
with the TXV valve T sh,txv = 12.68◦C. If comparing the superheat when the safety
logic is not activated with the TXV result, then lower superheat is obtained with the
single sensor MSS controller.

An important thing to remember is that the single sensor MSS control maintains a
low average superheat during the entire test without actually measuring the superheat. A
requirement though is that the system is continuously perturbed, which results in higher
fluctuations in the superheat. However, this fluctuation is not visible in the water temper-
ature Tw (or in the air temperature in the following tests on the other two systems). Using
a fixed outlet temperature reference would not be possible as the average outlet temper-
ature varies between 6◦C and 12.4◦C in the test. This is mainly because of changes in
water temperature, which were Tw = 14.65 and Tw = 20.8◦C in the two cases.

A small part of the 8 hours and 20 minutes test is shown in Fig. 7.11. The top graphs
shows the excited evaporator outlet temperature Te,o in between the water temperature
Tw and the evaporation temperature Te. The bottom graph shows how the step down in
compressor frequency results in a change in the normalized error signal that decreases ū,
which is the correct response, since the refrigerant mass flow is lowered.
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Figure 7.11: Small part of the test result shown in Fig. 6.10. Two periods before and five
periods after a step down in compressor speed.
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Air conditioning System Test

Fig. 7.12 shows a similar test conducted on the air conditioning system. The condensation
pressure was again controlled separately to the reference Pc,ref = 24 bar. In this test the
compressor frequency was stepped up and down between the levels 50, 42.5, 35, and 25
Hz and the heat load was changed between 4.5 and 9 kW with the air flow across the
evaporator set to approximately 66% of max.
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Figure 7.12: Test result with MSS applied on the air conditioning system for single tem-
perature sensor evaporator filling control.

The average superheat for the whole test was T sh,mss = 7.90◦C and the safety logic
was only activated once when the compressor frequency was stepped down to the low-
est level. This is an improvement compared with the result obtained in [15], where the
safety logic was activated 5 times and the average superheat was 10.31◦C. This is mainly
achieved by lowering the perturbation period from 180 to 120 s made possible with the
delay compensation and the small offset in the normalized error signal.

Supermarket Refrigeration system Tests

The condensation pressure was controlled separately in all the tests on the supermarket
refrigeration system giving an almost constant condensation temperature Tc = 35◦C.
Additionally, a controller on the compressor rack ran with an evaporation temperature
reference Te,ref = −15◦C. The compressor rack consists of three compressors with max
power consumption of 4, 6, and 13 kW (delivered power to compressor). The controller
switches the total power consumption of the rack in steps of approximately 1.1 kW. This
gives large variations in evaporation temperature Te.
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Fig. 7.13 shows the test result of a test conducted on the supermarket refrigeration
system. Single temperature sensor MSS control was applied on one Type 1 display case
(see Fig. 7.5(c)) and another Type 1 display case had a conventional two-sensor superheat
controller with temperature control. The valve on/off behavior of the second display case
gives large disturbances in the evaporation temperature, which is shown in the bottom
graph. This causes the compressor rack to shift between five levels (approx. 1.1-5.5 kW).
However, in spite of the disturbances an average superheat of T sh,mss = 8.81◦C is still
maintained.
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Figure 7.13: Test result with MSS applied on the supermarket refrigeration system dis-
play case for single temperature sensor evaporator filling control. Valve (on/off) refers to
a secondary display case running conventional two-sensor superheat control with temper-
ature control, which gives large evaporation temperature disturbances.

Four low flow situations are encountered in the middle of the test between 5 and 6
hours, but they are handled by the safety logic. A gradual frost build up in the evaporator
causes the control signal ū to slowly decrease, since the defrost algorithm is deactivated,
which causes a decrease in heat transfer.

Two tests have been conducted in order to compare the performance of the single sen-
sor MSS control against the conventional two-sensor superheat control (both controllers
use an EEV). Only one display case was connected to the supermarket refrigeration sys-
tem during the test and each test included two different operating conditions (with and
without night cover). The superheat during the tests is presented in Fig. 7.14. The average
superheat during the period without cover is T sh,mss = 6.83 for the single sensor control
and T sh,conv = 11.56 for the two-sensor control and with cover it is T sh,mss = 7.54 and
T sh,conv = 12.19. The superheat is considerably lower in the MSS case, which means
a better utilization of the evaporator and potentially higher cooling capacity. This does
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Figure 7.14: Superheat and average superheat during two separate but equivalent tests on
the supermarket refrigeration system with MSS and conventional control, respectively.
The average values are calculated between 1 and 1.5 hours (no cover) and 2-2.5 hours
(cover).

not necessarily give a better COP and longer tests in a climate controlled chamber with
power measurements would be required, before a conclusion can be made about any long
term economic difference in the two methods. However, preliminary tests have indicated
that the methods are comparable in terms of efficiency.

Finally, the single sensor MSS is tested together with valve on/off temperature control.
The on/off control is implemented so that it opens the valve fully for a short period after
an off period in order to quickly refill the evaporator. The full opening is stopped and
MSS control is started when a clear peak in the rate of change of Te,o is detected (same
procedure as in the start of the relay test, see Section 5). Fig. 7.15 shows the control
signal ū, the valve OD, the achieved superheat Tsh, and the display case temperature Tdc
(hysteresis 0-5◦C). The on versus off period is approximately equal and the on period is
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Figure 7.15: MSS with valve on/off control on the display case temperature in the super-
market refrigeration system.
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barely long enough for the single sensor MSS control to take effect, but it does optimize
and maintain a reasonable superheat when the valve is on. Better performance can be
obtained if the on period is made longer.

8 Conclusion

Tests on three widely different refrigeration systems have shown, that it is possible to
control the superheat or filling of the evaporator to a suitable level, using only a single
temperature measurement combined with an EEV. A novel MSS method has ensured
that this level could be obtained and the method relies on continuous perturbation of the
system. This perturbation generates higher harmonics in the output due to the curvature
of the I/O-map and these harmonics can then be used to drive the system toward the point
of maximum slope, where the mean curvature is zero. Additional safety logic was added
to ensure faster recovery from low flow or overflow situations.

Long tests with disturbances have shown the robustness of the method. The single
sensor solution had a considerably lower average superheat, which can give a higher
cooling capacity. A final test showed that the display case temperature in a supermarket
refrigeration system can be controlled simultaneously.

A tuning approach for the MSS controller has also been provided. The tuning relies on
an slowOD sweep together with a relay feedback test. These tests only have to be run the
first time the control is used and can be implemented to run automatically. Furthermore,
the control method does not rely on a system model and is believed to have a high degree
of plug and play potential. The only requirement is that the system under consideration
can be approximated by a sigmoid function, and that the desired operating point is located
at the point of maximum slope.
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1 Introduction

Abstract

In this paper, a fault tolerant control (FTC) strategy is proposed for evaporator
superheat control in supermarket refrigeration systems. Conventional control uses a
pressure and temperature sensor for this purpose, however, the pressure sensor can
fail to function. A contingency control strategy, based on a maximum slope-seeking
control method and only a single temperature sensor, is developed to drive the evap-
orator outlet temperature to a level that gives a suitable superheat of the refrigerant.
The FTC strategy requires no a priori system knowledge or additional hardware and
functions in a plug and play fashion. The strategy is outlined by means of procedural
steps as well as a flow chart that also illustrates the process of automatic tuning of
the maximum slope-seeking controller. Test results are furthermore presented for a
display case in a full scale CO2 supermarket refrigeration system.

1 Introduction

Maintaining temperature of the foods within predefined intervals has the highest priority
in the refrigeration systems of supermarkets/stores as it has direct impact on quality and
safety requirements. In addition, enrolling maintenance people, when a fault occurs in
the system, will increase the operation costs substantially. These are some of the natural
incentives for the attempts to develop fault-tolerant control (FTC) strategies. In super-
markets, goods are stored in display cases/freezers until they have been purchased by the
customers. Fig. 8.1 conceptually illustrates the basic functionality of such units: The inlet
air traverse over the evaporator, by means of fans, and exchanges heat with the refriger-
ant that flows inside the evaporator. The resulting cold air maintains the cold air curtain
and hence the goods temperature at a desired level. The cooling process in each of these
refrigeration units is regulated by means of controlling the mass flow of the refrigerant in
the corresponding evaporator unit using an electronic expansion valve (EEV). The objec-
tive of controlling the mass flow into the evaporator is to fill the evaporator and thereby
maximize the heat transfer between the air and the refrigerant inside the evaporator. At
the same time, flooding the evaporator, such that there exists refrigerant in liquid state at
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r o
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Figure 8.1: Conceptual illustration of a refrigeration unit (display case / freezer).
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the outlet of the evaporator, should be avoided as it could harm the compressors. To be
able to measure the distance of the liquid/gas boundary from the outlet of the evaporator,
two sensors are predominantly used: a temperature sensor which measures the refrigerant
temperature at gas state at the outlet of evaporator and a pressure sensor that provides
the evaporation pressure (and hence evaporation temperature). The difference between
these two temperatures is called superheat and can be used as an indication for how far
the liquid/gas boundary is from the outlet. Ideally, the superheat (SH) should be small
(positive). A SH = 0 indicates that the evaporator is flooded.

Loosing the ability of appropriately controlling the mass flow will have: a) dire conse-
quences on the quality of goods in the corresponding refrigeration unit, and b) possibility
for degrading the compressor unit’s performance. Therefore, there is a need for a con-
trol strategy that can be activated as a contingency control option when a sensor fault
occurs. The areas of fault diagnosis and fault-tolerant control has been subject to intense
research in the past three decades resulting in a large amount of well-developed and well-
documented theoretical methods and approaches ( [1–4]). In [5] we initially proposed an
evaporator unit of a residential air condition (RAC) as a benchmark for FTC. This paper
provides an innovative FTC solution that will be utilized as contingency control for refrig-
eration units in supermarkets/stores so that the control functionality is preserved even in
the case of a (pressure) sensor failure. Our approach is based on maximum slope-seeking
(MSS) control, where the basic idea is to utilize the inherent nonlinear characteristics of
the outlet temperature behavior at the vicinity of the evaporation temperature, which can
be detected by actively perturbing the system dynamics. This is done instead of trying to
estimate the evaporation temperature in a reliable and robust manner, which is a difficult
task and requires full system knowledge. Estimating the temperature is also challenging
since each system is different, subject to changing operating conditions, and nonlinear.

MSS was first presented by the authors in [6] and applied with success to different re-
frigeration systems in [7] and [8]. Stability was later studied in [9]. In this paper we will
investigate automatic tuning of the controller due to the fact that evaporators and refrig-
eration systems in supermarkets are of different shape and sizes and hence differ in their
dynamics. Therefore, the developed controller has to function in a plug and play [10]
fashion by identifying the underlying system dynamics and determining its own param-
eters. Further requirements that must be fulfilled are: flooding avoidance, maintaining
low superheat, and being robust against changes in operating conditions (such as suction
pressure, load, and ambient temperature).

The paper is organized as follows: A short description of supermarket refrigeration
systems is provided in Section 2 and the problem associated with sensor fault is explained.
Section 3 provide a short introduction to the MSS control method. Section 4 provides
strategies for immediate reaction to a flooding situation. In Section 5 we describe the
procedure that is used to automatically tune the controller. Test results of the developed
method on a display case in a full-scale supermarket system is finally presented.

2 CO2 Supermarket Refrigeration System

Supermarket refrigeration systems typically have a physical configuration as shown in
Fig. 8.2. The refrigerating units are divided in two zones - a low temperature zone and
a medium temperature zone. Low temperature zones typically include the freezers and
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2 CO2 Supermarket Refrigeration System

the medium temperature zones include refrigerators. Furthermore, dedicated compressor
racks are employed to maintain an appropriate suction pressure in each zone. The display
cases/freezers in each zone operate either individually or in an "island" configuration, i.e.
a group of refrigeration units that share some sensors like a pressure sensor.

CondenserValve

Bypass valve

Medium temp.
compressor

Reciever

Low temp.
compressor

EEV

EEV

Medium temp. evaporator

Low temp. evaporator

Figure 8.2: Typical configuration of a medium-sized supermarket refrigeration system.
Only one medium and one low temperature evaporator is shown out of many in parallel
(each having its own valve and superheat control).

The Control Challenges

Measurements from pressure sensors are instrumental for calculating the superheat de-
fined as:

Tsh = Te,o − Te (8.1)

where Te,o is the temperature of the refrigerant in gas form measured at the outlet of the
evaporator and Te = fe(Pe) is the evaporation temperature obtained with the measured
evaporation pressure Pe. fe is an injective function and is commonly realized by means
of dedicated thermodynamic tables. The common approach to superheat control is to
compare the calculated Tsh (based on the Te,o and Pe measurements) with a predefined
Tsh,ref and manipulate the opening degree (OD) of the related EEV by means of a dedi-
cated control strategy (PI(D) controllers are commonly used). When the pressure sensor
measurements become faulty then the calculated Tsh will become erroneous and, hence,
the control algorithm will fail to function.

Pressure Sensor Failure

The evaporation pressure sensor may fail to operate due to a combination of oil and im-
purities/dirt blocking a passage in the device. When the fault occurs the measurement
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signal "freezes". This phenomenon can be described as:

Pe,m(t) ≡ Pe,0 for t ≥ t0

where Pe,0 is the last healthy measurement signal at time t0.

Detection Procedure

As mentioned the faulty sensor will deliver a constant signal. The only variations in the
measurements will be due to the digitizing accuracy in the A/D converters. In this case
the following hypothesis can be established:

H0 : σ2(t) > σ2
0 no fault,

H1 : σ2(t) ≤ σ2
0 fault,

where σ2(t) is the variance of the test signal and σ2
0 is defined based on the used A/D

converters digitalization precision. The test signal is obtained by first high pass filtering
the signal and then using a statistical detection method such as CUSUM to identify the
relevant hypothesis.

3 Maximum Slope-seeking Control

The purpose of MSS control is to drive a nonlinear system towards a maximum in the
slope of the system’s steady state I/O-map. The method is therefore applicable if such an
extremum is also a desired/optimal operating point. A requirement is that the maximum
slope point is unique in the operating range, which is ensured if the static nonlinearity is
smooth and has a bell shaped first derivative, which is either non-positive or non-negative.
Functions having these properties are called sigmoid functions.

The MSS method relies on perturbation of the system and is closely related to the
more general slope-seeking control presented in e.g. [11]. Fig. 8.3 illustrates the structure
of MSS control. It is assumed that the system to be controlled can be adequately approx-
imated by a Hammerstein model structure with a static nonlinearity f(u) with sigmoid
function properties and linear output dynamics Fo. The desired operating point is denoted
(u∗, f(u∗)) and the objective is to drive the input offset ū towards the unknown optimal
input u∗. This is achieved by perturbing the system with a sine signal Aex sin(ωexk) and

+

y

A     sin(ω  k)

u

 

f (·)2ξn

 F  (s)o

f (·)1

H2

H1

Process

C(z) M(·)

u

H S

(u*,f(u*))

ū

ex ex

f(u)

Figure 8.3: Structure of MSS control applied to a nonlinear system.
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sampling the output y. The sampled signal is then filtered with periodic FIR filters f1(k)
and f2(k), with k being the discrete time index. These filters are periodic with period
Tex = 2πts

ωex
and they extract the first and second harmonic (H1 and H2) of the pertur-

bation signal in the output y. The second harmonic (and higher harmonics) is generated
by the curvature of the I/O-map. If we assume that the I/O-map is symmetric around the
maximum slope point, then the mean curvature experienced by the perturbation will be
zero in this point and positive and negative to each side, respectively, which can then be
used for feedback purposes. The convergence will be offset if the function is not sym-
metric around the maximum slope point, however, if the perturbation amplitude is chosen
sufficiently small, then this potential offset will become negligible. The real part of the
complex second harmonic could in principle be used as a feedback signal alone. How-
ever, if the phase shift caused by dynamics in the system is larger than 90 degrees, then the
sign of the feedback signal should be changed. The cross product defined in R2 between
the first and second harmonic is therefore taken so that we will only have to ensure that
the difference in phase shift between these two frequencies is less than 90 degrees, which
is easier to ensure, since they are only an octave apart. Furthermore, a normalization of
the resulting error signal, with respect to the first harmonic, is performed giving ξn. This
signal is then integrated in C and with proper choice of integral gain then ū → u∗ as
k → ∞. The periodic FIR filters, the normalized cross product, and the integral control
are defined as

fp(k) =
2

N

N∑
n=1

y(k −N + n)

(cos (pωex (n+ k −Nφ))− j sin (pωex (n+ k −Nφ))) , (8.2)

M(H1, H2) =
|H1| |H2| sin (θ12)

|H1|2
=
|H2| sin (θ12)

|H1|
, (8.3)

C(z) =
Kts
z − 1

, (8.4)

where p = [1, 2] is the harmonic, N is the number of samples in one period Tex, θ12

is the angle from the first harmonic to the second, K is the integral gain, and ts is the
sample time. Nφ is an optional phase shift compensation, which is useful if the delay in
the system is large. Anti-windup in the integral control is necessary if the input u has
saturation limits and the integral control should not be activated before a full period of N
samples of y is available after startup.

As a general guideline, the control should be tuned so that the system dynamics is
faster than the periodic perturbation, which at the same time should be faster than the
integral control. More detail on the MSS control method and tuning of it can be found in
our previous work [6–9]. In this paper we will tune the control by acquiring an approx-
imate Hammerstein model of the system, which can be used to find appropriate control
parameters through simulation. The procedure is explained in Section 5, however, be-
fore that a simulation example is given using parameters identified from the supermarket
refrigeration system described in Section 2.

Fig. 8.4 shows the simulation result using (8.5) and (8.10) as system model, with the
system and control parameters given in Table 8.1. The input u to the system is the valve
opening degree OD in percentage, the output y is the evaporator outlet temperature Te,o
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Figure 8.4: Simulation example showing convergence using maximum slope-seeking.
The top graph shows the steady state I/O-map, the simulation response, and the maximum
slope point (OD∗, T ∗e,o). The bottom graph shows the time evolution of the input and
output in the same simulation.

and the input is perturbed with a sinusoidal signal. The offset OD (corresponding to ū in
Fig. 8.3) starts 20% away fromOD∗ and has converged after about 55 min. The top graph
in Fig. 8.4 also shows how the output ends up circling around the desired operating point
(OD∗, T ∗e,o) due to the continouos input perturbation and the system dynamics. Note that
the MSS controller does not use the system model and does not know where the desired
operating point (maximum slope point) lies, but does converge to this point, which gives
a superheat that corresponds to a close to optimal filling of the evaporator. This means
that the evaporator filling can be controlled by only measuring the outlet temperature Te,o
in cases where the pressure sensor measurement is faulty.

4 Safety Logic

The proposed MSS is a relatively slow adaptive control method. Safety logic is therefore
added in the evaporator filling control case, since it is important to react fast if large
changes in compressor speed or load suddenly occurs. These changes can quickly flood
the evaporator, which should be avoided. The compressor speed is assumed unknown.
However, the amplitude of the first harmonic of the perturbation signal measured at the
output gets small when the evaporator floods and if it has a very low filling, see e.g. Fig.
8.4.

The safety logic switches to a recovery mode if the amplitude of the first harmonic is
consistently small. A step back in OD is made, when entering recovery mode, to ensure
that the evaporator is not flooded. A check is then made to see if the low amplitude was
caused by a low flow situation or a flooding situation. This is detectable by looking at Te,o,
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5 Autotuning Procedure

which will only have a large change after a step back in OD from the flooding situation.
The input offset ū (in this case ŌD) is then slowly ramped up until the amplitude of the
first harmonic is above an upper threshold. If it was a low flow situation, the ramping can
start from the original OD before a step back was made. The safety logic is described in
more detail in [8] and also shown in Fig. 8.5.

5 Autotuning Procedure

A procedure is proposed in the following for automatic tuning of the MSS control. The
control parameters, which have to fit the particular system, are the perturbation period
Tex, which should be chosen relative to the system time constant, the phase shift com-
pensation Nφ, which can be set to match the system delay, and finally the integral gain
K, which has to match the nonlinearity of the system. The perturbation amplitude Aex
is not highly critical. Multiple tests have shown that a fixed value of Aex = 10 gives an
adequate perturbation on different refrigeration systems compared to the noise level and
disturbances.

An model giving the relationship between the inputOD and the output Te,o is derived
to be able to choose a suitable integral gainK through simulation. A good approximation
of the static nonlinear I/O-map is given as

Te,o =− k1atan (k2 (OD +OD∗)) + T ∗e,o, (8.5)

where k1, k2, T ∗e,o, and OD∗ should be fitted so that the model matches the real system.
This approximation have shown to fit well with measurements (see e.g. [8]) and (8.5) has
sigmoid function properties with horizontal asymptotes determined by the evaporation
temperature (lower bound) and the temperature of the air flowing across the evaporator
(upper bound). A slow ramping of the input reveals the static I/O-map and the parameters
are fitted in the following way:

k1 =
(Te,o,max − Te,o,min)

π
, (8.6)

where Te,o,max and Te,o,min are the maximum and minimum temperature, respectively,
encountered during the slow ramp test going from a low OD to a high OD. The offset
temperature T ∗e,o is calculated as

T ∗e,o =
(Te,o,max + Te,o,min)

2
, (8.7)

and the offset opening degreeOD∗ corresponding to T ∗e,o is determined by going through
the measured data during the ramp test. These two values are also a good estimate of the
real maximum slope point in the system. Finally, a range of k2 values is simulated and
the one with best match to the test data is used. Using the 1-norm (instead of 2-norm) as
error measure between model and data gives a good indication of fitness in cases with a
lot of disturbances.

The ramp test needs to be stopped before the evaporator is fully flooded. This can be
achieved by calculating the rate of change of a filtered version of the outlet temperature
Te,o denoted RoC. The maximum slope point is passed when a clear negative peak in
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RoC is detected, which means that the test can be stopped. The equations involved are;

Te,o,f (k) =Te,o,f (k − 1)
τ − ts
τ

+ Te,o(k)
ts
τ
, (8.8)

RoC(k) =
Te,o,f (k)− Te,o,f (k − 1)

ts
, (8.9)

where Te,o,f is the filtered Te,o with filter coefficient τ and sample time ts. Te,o also
needs to drop at least 4-5 K from the starting value at low OD, in order to remove false
detections of a peak in RoC and a maximum time horizon from the last detected peak is
used to know when to stop searching for the peak. Note that the RoC is also used as a
quick evaporator refill algorithm during control of the display case air temperature Tdc,
which is controlled using conventional valve on/off hysteresis temperature control. The
evaporator is emptied for refrigerant due to the valve off period and when Tdc reaches the
upper temperature threshold, where the valve switches on again, the refill algorithm will
run first with high OD to quickly fill the evaporator and to maximize the heat transfer.
When the RoC peak is detected the normal PI(D) or MSS control takes over and ensures
a suitable superheat level in the valve on period.

The dynamics of the system are also approximated. As suggested in [5], a simple
FOPDT model is used and identified using the biased relay feedback method, see e.g.
[12, 13]. The FOPDT model is given as

Fo(s) =
1

(Tsyss+ 1)
e−sTd , (8.10)

where Tsys is the system time constant and Td is the delay. The delay can be determined
as the time from a step in the input is made to a change in the output is observed, and it
is detectable in the transition from the ramp test to the relay feedback test, where we start
by stepping OD down. Three relays are made before the ultimate gain Ku and period Tu
is determined. These values can be used to determine the system time constant and Ku is
given as

Ku =
4Ai
πAo

, (8.11)

where Ai is the input amplitude of the relay and Ao is the output amplitude. Tu is the
total time of one relay (one low plus one high OD period). The time constant is then

Tsys =
2π
√

(KuKsys)
2 − 1

Tu
, (8.12)

Ksys =

∫ Tu(Te,o(t)− Te,o,ref (t))dt∫ Tu(OD(t)−ODoffset(t))dt
, (8.13)

where Te,o,ref = T ∗e,o and ODoffset is OD value where the relay is centered around.
The gain Ksys accounts for the nonlinearity and Ksys is therefore set to 1 in (8.10) when
both the static nonlinear model and dynamic model are used.
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The system dynamics should be faster than the perturbation and the identified system
specific Tsys can therefore be used to determine a suitable Tex. The perturbation should
at the same time not be too slow, however, to also account for parameter uncertainty Tex
is set to four times Tsys.

The final parameterK can now be determined based on the identified models given in
(8.5) and (8.10). Here we make a convergence test, where the system is started away from
the desired operating point and K is then iterated using the bisect algorithm to a value
which gives exactly 5% overshoot. K is finally divided by two to account for model
uncertainty. A flowchart of the code implementation is shown in Fig. 8.5.

6 Test Results

The automatic tuning procedure and MSS control is tested by inducing a pressure sensor
fault in software. Nominal PI control of the superheat with on/off temperature control
on the display case air temperature Tdc is first carried out and after 30 min the fault is
induced. This starts the automatic tuning procedure and the test result is shown in Fig.
8.6.
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Figure 8.6: Result from 3 hour test. Only Te,o and Tdc are used in the code, however, Te
and Tgoods,surf are shown as well for comparison.

The ramp test is performed after the pressure sensor fault. A zoomed graph shows
Te,o and the fitted static nonlinear model. The data does not show a smooth S-shaped
curve due to disturbances in the evaporation pressure, but the model does show a good fit.
The ramp test also stops before the evaporator gets fully flooded as expected and the relay
feedback test takes over. The identified parameters are presented in Table 8.1. The MSS
control then takes over approximately 71 min into the test (41 min after sensor fault). The
display case air temperature Tdc is not controlled during the automatic tuning procedure
and therefore reaches approximately -3 degree. However, the surface temperature of the
goods in the display case Tgoods,surf stays between 0-5 degree. The valve on time is
only 4-5 min before Tdc reaches the lower limit, due to a relatively aggressive evaporator
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6 Test Results

Table 8.1: Identified system model and autotuned control parameters.

Parameter Value
Static model k1 (-) 4.02
Static model k2 (-) 0.44
Static model T ∗e,o (◦C) -2.10
Static model OD∗ (%) 71.04

FOPDT model Tsys (s) 96.95
FOPDT model Ksys (-) -0.40
FOPDT model Td (s) 87

Ctrl. par. Nφ (s) 87
Ctrl. par. Tex (s) 388
Ctrl. par. Aex (-) 10
Ctrl. par. K (-) 0.0285

and refrigerant. This means that only the refill evaporator algorithm runs and the MSS
control does not have time to run. The Tdc control is therefore deactivated 125 min into
the test to see how the MSS controller performs. The last part of the test shows how the
MSS controller adapts the averageOD from 71% to roughly 50% giving a better Te,o and
more appropriate filling of the evaporator. The superheat during the test is shown in Fig.
8.7. The nominal control first brings the superheat to the typical reference at 12 K and the
Tdc temperature control then kicks in giving an average superheat of approximately 18 K
during the first 30 min of the test. The same average superheat is also obtained with MSS
with Tdc control (71 to 125 min into test). An average superheat of 6 K can be maintained
with MSS without Tdc control, which gives a high efficiency of the evaporator.
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Figure 8.7: Valve OD and superheat Tsh during 3 hour test.

The superheat control challenge and performance benchmark outlined in [5] is mostly
valid for a one compressor one evaporator systems. However, the proposed contingency
control have shown to fulfill the outlined objectives. Potential improvements could in-
volve having more relays and thus taking an average of the identified parameters if there
are a lot of disturbances in the system. However, only an approximate model is needed
for tuning purposes.
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7 Conclusion

Pressure sensors are expensive and in refrigeration systems they sometimes experience
freezing or could break. This can give problems because the evaporator filling or super-
heat level is conventionally controlled with this sensor and a temperature sensor placed at
the outlet of the evaporator. We have shown how a novel MSS controller can be used as
an FTC method, when a pressure sensor fault occurs, which can prevent deterioration of
the foodstuff in the display cases. An automatic tuning procedure is proposed and tests
have shown the effectiveness of the MSS method in keeping a low superheat and thus
a high efficiency. The method does not require additional hardware or a priori system
knowledge and also has potential as a cheap one sensor alternative to the conventional
two-sensor solution. Future work include tests on other refrigeration systems for longer
periods of time.
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1 Introduction

Abstract

A non model-based maximum slope-seeking control method is proposed and the
potential use of this method is investigated for a general class of nonlinear systems,
where a suitable reference setpoint is unknown but qualitatively located at the point
of maximum slope in the input/output-map. The control method ensures conver-
gence to the maximum slope point by extraction of curvature information obtained
through continuous perturbation of the system and harmonic filters. Stability and
convergence conditions for the feedback control are provided together with tuning
guidelines. These results are further strengthened through simulation on representa-
tive models of three different refrigeration system evaporators used as case studies.
Test results from these systems finally show the applicability of the control method.

1 Introduction

Reference tracking is an important aspect of control, such as for optimizing the perfor-
mance of a system or process. The identification of a suitable reference setpoint is not
always trivial and optimality can be hard to quantify. Advanced model-based and super-
visory control can help to operate processes optimally. However, the process of obtaining
models and verifying them is usually costly and time consuming. Additionally, identifi-
cation of a model and an optimal reference setpoint might still be required for systems
which are similar in construction, since they do not necessarily have the same parameters.
Time-varying and nonlinear systems can result in further difficulties, as the model might
only be valid for certain operating ranges.

An alternative to model-based approaches and identification of a suitable reference
value is the use of qualitative properties of systems for control purposes. This could be
the case if there is a concave or convex input/output (I/O) relationship and the extremum
of this relationship is a favorable operating point. Continuous perturbation revealing the
nonlinear relationship could then provide the needed information for optimal control of
the system rather than the use of model-based control. Extremum-seeking (ES) control is
such a perturbation-based adaptive real-time optimization method, which does not require
a model of the system. [1] is believed to be the first appearance of ES control, while a
resurgence of interest was sparked with more rigorous assessment of stability in [2]. The
method could be seen as gradient estimation where appropriate feedback control ensures
convergence toward the zero slope point in the I/O-map (extremum). The generalized
slope-seeking (SS) control method can then be used if a certain slope (other than zero)
corresponds to a suitable operating point. Thorough books on the subject of ES and SS
include [3, 4] and a survey of the literature is given in [5].

The use of ES control is beginning to emerge in optimization of refrigeration pro-
cesses. In [6] a tunable thermoacoustic cooler is optimized using ES. The chilled water
setpoint temperature in a cooling tower is optimized in [7] to a value giving the lowest
total power consumption of the chiller compressors and cooling tower fans, which are the
main power consumers in these heating, ventilation, and air conditioning (HVAC) sys-
tems. The same strategy as in [7] is pursued in [8] except that the fan speed is perturbed
instead. Possible energy savings using ES control in HVAC systems is also investigated
in [9], where outdoor air damper opening is optimized in air-side economizers. The use
of ES for optimization of vapor compression cycles is also demonstrated in [10]. Here
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the evaporator fan speed is perturbed, resulting in convergence to a setpoint which opti-
mizes the total power consumption of the fan and the compressor. Furthermore, in [11]
an alternative periodic FIR filter extracting first harmonic information is used as gradient
estimator showing better performance than the traditional IIR filters used in ES and SS.
The ES/SS control setup is shown in Fig. 9.1 for an example system. Here u∗ denotes
the system input at the desired reference slope f ′ref and the objective is to drive the input
offset ū(k) towards u∗, where the integer k is the discrete-time index. ū(k) is superim-
posed with a perturbation signal Aex sin(ωexk), with amplitude Aex and period defined
by ωex. By applying sample and hold (S/H) it is possible to extract gain/gradient infor-
mation about the system in the current operating point using the gradient estimator filter.
Potential phase shift in the dynamics fo(t) can be compensated for with the variable Nφ
in the demodulation. If the perturbation is applied in the extremum point of the convex
(or concave) I/O-map, where the slope is zero, then the first harmonic disappears, the
error signal ξ(k) becomes zero, and it will be positive and negative, respectively, to each
side of the extremum. An integral controller can then ensure that ū(k) converges to u∗.
Finally, a function r(f ′ref ) can be used to offset the error signal ξ(k) according to the
desired reference slope f ′ref . If r(f ′ref ) = 0 (corresponding to tracking a slope equal to
zero) then the result will be ES control, since f ′ref = 0 occurs at the extremum of the
I/O-map. Further detail and stability analysis can be found in e.g. [3, 11].
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Figure 9.1: ES/SS control scheme.

The recent research in control and optimization of refrigeration systems using non
model-based methods have led to the development of a maximum slope-seeking (MSS)
control method. The idea is to use curvature information in the feedback loop, rather
than gradient information as in ES and SS, and adapt the reference setpoint toward a
maximum in the slope of the I/O-map. MSS control is intended for systems having an
s-shaped nonlinear relationship between the input and the output (see Fig. 9.1) and when
the maximum slope point is also a suitable operating point. The s-shaped I/O-map can
also be described with sigmoid function properties, i.e. two horizontal asymptotes and
a non-positive bell shaped first derivative. This ensures that there is a unique maximum
slope point and that the curvature changes sign around this point. By use of a continuous
perturbation signal and harmonic analysis of the resulting output signal, it is possible to
extract the curvature information and converge toward the maximum slope point. Note
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that SS control would not be able to use the maximum slope point as operating point,
since the gradient decreases in both directions leading to instability. Additionally, one
would have to estimate what the maximum slope is, which is especially problematic in
time-varying systems. However, a reference slope is not required in MSS control, making
it easier to implement, in cases where the maximum slope is a good operating point.

The MSS method has previously been introduced in [12] with simulations comparing
MSS with SS and suggestions for automatic adaptation of the perturbation amplitude were
given. The applicability of MSS was then shown in [13] in two refrigeration systems,
where evaporator superheat was controlled to an unknown near optimal level using only
a single sensor as opposed to the typical setup with two sensors. This was extended to
include tests on a supermarket refrigeration system and tuning guidelines in [14]. Finally,
in [15], an automatic tuning procedure was proposed, and tests on a fourth system showed
the fault tolerant control possibilities of the method in case of pressure sensor failure.

This paper gives a more thorough presentation of MSS with clearly stated system
assumptions, with motivation of the chosen filter through derivation. More importantly,
conditions for closed-loop stability and convergence are provided. Furthermore, a method
of estimating an upper limit on the feedback gain K is given and Monte Carlo simulations
show the robustness of the method towards system parameter variations. Finally, the
applicability of the method is shown on three evaporator systems. As with ES and SS
control, the amplitude and frequency of the perturbation signal and the gain in the integral
controller still need to be derived despite MSS being a non model-based method. Tuning
guidelines are therefore provided for MSS. The intent of this paper is to promote the use
of non model-based MSS control to engineering problems, where the reference setpoint
is unknown but qualitatively located at the point of maximum slope in the I/O-map.

The paper is organized in the following way: The MSS scheme is explained in Sec-
tion 2. This includes an outline of the control problem assumptions, conditions for con-
vergence, and an upper bound estimate on the feedback gain. Section 3 then introduces
the control of evaporator superheat in refrigeration systems as a motivating example for
development of the MSS control method and models of such systems are used throughout
the rest of the paper as simulation examples. Simulation results in Section 4 then illustrate
convergence and instability based on the results from Section 2. This is then followed by
a modified MSS scheme, which is more robust toward system dynamics, in Section 5, and
Monte Carlo simulations in Section 6 shows the robustness of the MSS controller toward
parameter uncertainty using the different example system models. Finally, test results
from refrigeration systems are discussed in Section 7 followed by concluding remarks in
Section 8.

2 Maximum Slope-seeking Control

Preliminary System Assumptions

In the following only SISO systems are considered, which can be represented with a
Hammerstein model structure;

y(t) =(fo ? f(u(·)))(t), (9.1)

where u is the input, y is the output, f(·) is a static nonlinear function, fo(·) is the output
dynamics function (with Laplace domain transfer function Fo(s) = L{fo(t)}), and ? is
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the convolution operator. The assumptions are further elaborated in the following.

Assumption 1: The system under consideration either have a monotonic decreasing or monotonic
increasing smooth bounded static time-invariant nonlinear I/O-map f(·) ∈ R defined on an input
set u ∈ U ⊂ R. Furthermore, the first three derivatives with respect to u are also bounded and
continuous, where f ′ is either non-positive or non-negative bell shaped with a unique extremum
defined within the set U .

The assumption states that there is exactly one time-invariant maximum slope point
(u∗, f(u∗)) and that the second derivative f ′′ with respect to u has a unique zero cross-
ing, see Fig. 9.2 for an example with a monotonic decreasing I/O-map. Practical ex-
perience shows that f(·) does not need to be smooth, in fact not even differentiable, as
the approach has been shown also to work for a piecewise affine function. However, the
analysis provided here would not apply for that situation as the required derivatives are
not well-defined.

f(u)

f’(u)

f’’(u)

(u*,f(u*))

u0

Figure 9.2: Illustration of the qualitative relationship between input and output in the
static nonlinearity.

Assumption 2: The output dynamics (described in the Laplace domain by Fo(s)) are assumed to be
linear, time-invariant, and asymptotically stable. Furthermore, it is assumed that there are no zeros
in the origin (equivalently at the point (1,0) on the unit circle in the discrete case).

Maximum Slope-seeking Control Problem and Design

If a system is qualitatively defined by Assumptions 1 and 2, with unknown parameters,
but where the maximum slope point (u∗, f(u∗)) is a good operating point, then it is
proposed to use the MSS control scheme illustrated in Fig. 9.3. The objective is to make
limk→∞ ū(k) = u∗ by only sampling the output y and without knowing what (u∗, f(u∗))
or the maximum slope is.

A perturbation signal Aex sin(ωexk) is added to the input offset ū(k). The curvature
of the s-shaped nonlinear map will distort the perturbation signal, which produces second
(and higher) harmonics in the output. A curvature estimator is therefore applied to the
sampled output y, which is implemented using a periodic FIR filter, which extracts the
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Figure 9.3: MSS control scheme.

Fourier Coefficient of the real part of the second harmonic. The output is defined as

ξ(k) =
2

N

k∑
n=k−N+1

y(n) cos (2ωex (n−Nφ)) , (9.2)

where N = Tex

ts
is the number of samples in one perturbation period Tex = 2πts

ωex
using

the sample time ts (assumed small relative to the perturbation), and Nφ is an optional
phase shift compensation given in samples. An additional assumption is formulated due
to the necessary sampling of the system and the filter implementation.

Assumption 3: The chosen sample time ts ∈ R>0 is sufficiently small compared to the chosen
perturbation period Tex (ts << Tex) and the number of samples in one perturbation period is
contained in the set of natural numbers (N = Tex/ts ∈ N).

Remark 1: To motivate the use of the curvature filter let us first approximate the static nonlinearity
under Assumption 2 with a second order Taylor series expansion in a small neighborhood around
an operating point ū anywhere in the set U :

f(u(k)) ≈f(ū) + f ′(ū)(u(k)− ū) +
f ′′(ū)

2
(u(k)− ū)2. (9.3)

Note that the approximation includes the curvature information of the I/O-map. Inserting u(k) =
ū+Aex sin(ωexk)) in (9.3) and trigonometric identities gives

f(u(k)) ≈f(ū) +
A2
exf
′′(ū)

4
+Aexf

′(ū) sin(ωexk)− A2
exf
′′(ū)

4
cos(2ωexk). (9.4)

By including the individual gain and phase shift caused by Fo(s) to each frequency in the signal
one gets

y(k) ≈co
(
f(ū) +

A2
exf
′′(ū)

4

)
+ c1Aexf

′(ū) sin(ωex(k −Nφ1))

− c2
A2
exf
′′(ū)

4
cos(2ωex(k −Nφ2)), (9.5)
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where

cl = |Fo(jlωex)| , (9.6)

Nφl =
∠Fo(jlωex)

lωex
, (9.7)

are the individual gain and phase shift of Fo(s) on each frequency component l = 0, 1, 2 contained
in the output from the static nonlinearity. The curvature estimator filter involves multiplication with
a cosine term with the second harmonic frequency and summation over one period of ωex. This
gives a filter magnitude response of zero for all harmonics and only leaves a DC term. The error
signal can therefore be reduced to

ξ(k) ≈− c2A
2
exf
′′(ū)

4
cos(φ− φ2), (9.8)

where the phase shifts in radians φ and φ2 are determined by Nφ and Nφ2 , respectively. If As-
sumption 1, 2, and 3 hold and if the I/O-map is monotonic decreasing (f ′(u) < 0 for all u ∈ U ,
c2 > 0) and |φ− φ2| < π

2
, then

ξ(k) =0 for f ′′(ū = u∗), (9.9)

ξ(k) >0 for f ′′(ū < u∗), (9.10)

ξ(k) <0 for f ′′(ū > u∗), (9.11)

for sufficiently smallAex > 0 andK > 0. A smallAex andK is needed in the analysis because of
the small neighborhood assumption in the Taylor series expansion and because the closed-loop will
change ū, which adds low frequency content to the input signal. If the low frequency content is well
separated from 2ωex then it will be filtered away by the periodic FIR filter defined in (9.2). The
feedback integral gain K also needs to be small due to stability reasons (treated in the following
subsections) and the sign should in general match the system under consideration and thus reflect
the sign of the gain in the static nonlinearity (monotonic decreasing or increasing) and the sign of the
gain in the linear dynamics (c2 > 0 or c2 < 0). Furthermore, the requirement |φ−φ2| < π

2
can be

achieved by picking ωex small compared to the dynamics in Fo and states that any uncompensated
phase shift, at the second harmonic frequency, should be less than 90 degree. If the phase shift
φ2 is known then the optional phase shift compensation φ can be set equal to φ2. An additional
requirement is that 2ωex is not a persistent frequency in the disturbance, since this will give an
offset in ξ(k).

The output from the curvature filter ξ(k) in (9.8) becomes a good estimate of the
curvature if it is scaled by− 4

c2A2
ex

and if φ ≈ φ2. However, it is only the sign change that
is interesting for feedback purposes. Furthermore, the discrete integrator in the feedback
loop, denotedC(z), should in general match the particular system. However, C(z) can be
chosen to match a relatively large class of systems; experience from refrigeration systems
has shown that a simple integral controller can be used here, where the assumptions are
that the system is open-loop asymptotically stable and that it does not have zeros in the
origin (equivalently at the point (1,0) on the unit circle in the discrete case). Finally, the
error signal ξ(k) should not be used before N samples of the output y(k), needed to
initialize the periodic FIR filter, are acquired.

Closed-Loop Convergence

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold and that the perturbed open-loop
system in serial connection with the periodic FIR filter is in periodic steady state at time
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k0 (loop opened before the integrator with zero as input and initial condition ū(k) ∈ U ,
see Fig. 9.3). Furthermore, assume that the closed-loop is formed at time k0. Then, this
system is asymptotically stable and there exists δ ∈ R, such that the dynamic response of
the input offset ū satisfies

lim
k→∞

ū(k) = (1− δ)u∗ (9.12)

for sufficiently small ωex, Aex, and K. Additionally, δu∗ < Aex.

Theorem 1 states that there exist a set of control parameters, which can ensure that
the closed-loop system input ū(k) converges to the point where the perturbed input expe-
riences a zero mean curvature due to the static nonlinearity. Furthermore, the zero mean
curvature point will be offset from the maximum slope point u∗ by a small constant δu∗,
if the nonlinear I/O-map is not symmetric around u∗ (if the map is symmetric then δ = 0)
and the offset can not exceed the size of the perturbation. The following lemma can be
used in the proof of asymptotic stability and convergence in Theorem 1.

Lemma 1. The system described in (9.1) under Assumptions 1 and 2 followed by the
periodic FIR filter defined in (9.2) is uniformly globally asymptotically stable (UGAS)
and bounded for all fixed u(t) ∈ U ⊂ R and for all t ≥ 0.

A formal proof of Theorem 1 can be carried out along the lines of [11]. The proof
is omitted for brevity reasons. However, the intuition for Theorem 1 is as follows. Per-
turbation of the system in Fig. 7.2 results in an error signal ξ with the sign properties in
Remark 1. Stability and convergence can then be ensured by choosing a sufficiently small
feedback gain K. In more detail, the input at the maximum slope point u∗ can, without
loss of generality, be assumed to be 0, since any offset does not change the analysis. A
condition for asymptotic stability and convergence can then be formulated for ū(k) > 0
∀k as:

ū(k) >ū(k + 1) > 0⇔
ū(k) >ū(k) +Ktsξ(k) > 0⇔

0 >Ktsξ(k) > −ū(k). (9.13)

An integral feedback gainK that satisfy this only exist if ξ(k) is bounded, the sign of ξ(k)
is constant, and ξ(k) goes to 0 as ū(k) goes to 0. Boundedness of ξ(k) follows directly
from Lemma 1. The output of the nonlinear part, f(·) is bounded by Assumption 1. Since
the dynamics is an IIR filter with kernel fo, this has a finite L∞ induced norm. Thus, also
the output of this part is bounded. Forming the finite sum in the FIR filter, clearly also
yields a bounded signal ξ(k). The sign properties of ξ(k) were shown in Remark 1 for
a monotonically decreasing I/O-map and (9.8) shows that ξ(k) goes to 0 as ū(k) goes to
0, since f ′′ is continuous and bounded with a unique zero crossing (Assumption 1). Note
that the assumptions made in Remark 1 only holds if higher order terms in the Taylor
series expansion approximation are negligible and if low frequency content added to the
input, due to changes in ū, is well separated from the second harmonic frequency and
filtered away by the periodic FIR filter, which has zero DC gain. These assumptions
therefore require that Aex and K are small. The same analysis can be made for initial
input offset ū(k) < 0. Finally, any potential asymmetry in the I/O-map does not change
the continuity and boundedness of f ′′ or the existence of a stable K.
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Upper Bound Estimate on the Integral Gain

A discrete system with state vector x(k) ∈ Rn and state transition matrix A ∈ Rn×n
defined as

x(k + 1) = Ax(k), (9.14)

is stable if and only if the eigenvalues of A are within the open unit disc. Furthermore, the
monodromy matrix ΨA(k) = ΦA(k + T, k) can be used to analyze stability in systems
where A is periodic with period T . ΦA(k + T, k) is the transition matrix for one period
defined as

ΦA(k + T, k) =A(k + T − 1)A(k + T − 2)...A(k). (9.15)

The monodromy matrix eigenvalues does not depend on k and the system is stable if and
only if the eigenvalues (characteristic multipliers) are contained in the open unit disc [16].

The FIR filter defined in (9.2) is periodic and the eigenvalues of (9.15) can therefore
be used to analyze stability of the closed-loop system. The integral controller C(z) gives
a single eigenvalue at (1, 0). In general, marginal stability is obtained if and only if the
eigenvalues are within the closed unit disc, and any eigenvalue on the unit circle is semi-
simple [17]. This is satisfied if the system has a single eigenvalue with multiplicity one
on the unit circle (for z = 1). This makes every operating point a stable equilibrium
and the perturbation ensures that the system converges toward the maximum slope point.
Furthermore, since the desired operating point is at the maximum slope (gain) of the
system and the nonlinearity f(·) is assumed smooth, then it is possible to limit the analysis
to this point and use max(f ′(u)) ∀u as system gain. Stability here means that the closed-
loop system stays at the maximum slope point (u∗, f(u∗)) ∀k > 0 if ū(0) = u∗ with the
perturbation set to zero (Aex → 0). Thus, by analyzing the eigenvalues of the monodromy
matrix an upper bound on K can be found, where the eigenvalues are still within the unit
disc. A higher K will not be stable, when the perturbation amplitude is small, and limit
cycles will occur since the system gain decreases away from u∗.

Note that the gradient filter in SS control also gives periodic coefficients and the eigen-
value stability check, with the monodromy matrix, can also be applied here.

3 Motivating Example - Superheat Control

Refrigeration systems are used in a multitude of applications ranging from small fridges
and freezers in our homes to larger chillers, air conditioning systems, and supermarket
refrigeration systems with display cases. Refrigeration systems typically transfer heat
from one place to another by continuous vaporization and compression of refrigerant in
a cycle, which is basically maintained by a compressor, a valve, an evaporator, and a
condenser. A full description of a refrigeration system and the required control loops are
not given here (see instead references such as [18, 19]). However, in the following, more
detail is provided regarding the control of the valve opening degreeOD at the evaporator,
in the case that an electronic expansion valve (EEV) is used.

When the refrigerant evaporates at low pressure in the evaporator it takes heat from the
surroundings and thus delivers the desired cooling. The refrigerant enters the evaporator
as a mixture of liquid and gas (two-phase); it is important to have as much liquid refriger-
ant in the evaporator as possible to maximize the heat transfer and thus the efficiency of
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3 Motivating Example - Superheat Control

the system. It is also important that only gaseous refrigerant enters the compressor, since
two-phase refrigerant increases the power consumption and wear of the compressor, or in
the worst case damages it. When the refrigerant is fully evaporated, it starts to superheat
and the level of superheat, denoted Tsh, is defined as

Tsh ≡Te,o − Te = Te,o − fe(Pe), (9.16)

where Te,o is the temperature at the outlet of the evaporator and Te is the evaporation
temperature. The evaporation temperature is typically calculated using refrigerant prop-
erty tables and a pressure measurement Pe. It could also be approximated by measuring
the evaporator inlet temperature Te,i. A control objective is the regulation of the amount
of superheat, which in most cases is done by controlling the flow of refrigerant using the
expansion valve [19–21]. Fig. 9.4 shows the qualitative input/output (I/O) relationship
between valve OD and temperature. The qualitative behavior of Te,o approximately fol-
lows an s-shaped curve when OD is slowly increased from a nearly closed position to a
high position. The horizontal asymptotes are governed by the temperatures Tamb and Te
and the gain is highest (negative gain) at the middle temperature, which also corresponds
to a good superheat or filling level of the evaporator.
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Figure 9.4: Example steady state I/O-map between valve opening degree OD and evapo-
rator outlet temperature Te,o and typical superheat control using pressure and temperature
transducers.

Test results from three different evaporators are shown in Fig. 9.5. These systems
are not described here; further detail can be found at http://www.es.aau.dk/
projects/refrigeration/test-facilities/ and in [14]. All tests show
that the outlet temperature Te,o approximately follows an s-shaped curve when OD is
slowly increased. The nonlinear behavior has sigmoid function properties, with two hori-
zontal asymptotes and a non-positive bell shaped first derivative. The system is therefore
approximated by a Hammerstein model using a sigmoid function to describe the nonlin-
earity (arctan function) and then a first order plus dead time (FOPDT) model to describe
the system dynamics, which is also suggested in [19, 22]. The equations are;

f(u) =− k1 arctan (k2 (u− u∗)) + f(u∗), (9.17)

Fo(s) =
1

Tsyss+ 1
e−sTd , (9.18)

where, in the evaporator case, the input u is the OD, f(u) is Te,o, k1 and k2 are system
specific gains, and (u∗, f(u∗)) denotes the offset (also the maximum slope or symmetry
point). The Laplace domain transfer function for the dynamics are given by the system
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Figure 9.5: Evaporator I/O-map revealed by a slow input sweep for an air condition-
ing system (a), a water chiller refrigeration system (b), and a supermarket display case
(c). The input is the valve OD and the output is the evaporator outlet temperature Te,o.
Ambient temperature Tamb and evaporation temperature Te are also shown.

time constant Tsys and the delay Td. When using a Hammerstein model it is assumed that
the input dynamics are fast and thus negligible. Also note that the Hammerstein model is
only an approximation of the real system for a given set of operating conditions, where
the output y = f(x, u, w, t) is a function of both the state x, the input u, the disturbances
w, the time t, and the nonlinearity and dynamics are not separable. However, the model
approximation has shown to fit well enough for simulation purposes and MSS is a non
model-based control method, which can adapt to changes in system parameters as long
as the qualitative shape of the I/O-map remains. The model parameters, from the tests
shown in Fig. 9.5, were derived in [14] and are summarized in Table 9.1.

A known challenge in controlling the evaporator superheat temperature is that the
pressure sensor can fail to function properly, which could lead to compressor malfunction
and the inability to run the system. For example, dirt or oil could choke the sensor and
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4 Simulation Examples

Parameter Air con. Chiller Display
k1 5.68 4.89 5.59
k2 0.50 1.31 1.07
u∗ 33.02 50.78 38.15

f(u∗) 9.08 12.41 0.71
f ′(u∗) -2.84 -6.41 -5.98
Tsys 23.07 31.51 59.52
Td 15 26 29

Table 9.1: Evaporator model parameters for the air conditioning, water chiller, and super-
market refrigeration systems.

thus "‘freeze"’ the output or it could break. An alternative would be to use a temperature
sensor giving Te,i (see Fig. 9.4), however, this sensor is not normally installed. This
means that an alternative control method is needed when the pressure sensor fails. The
idea is to adapt the OD to a level which gives a suitable superheat while only using the
Te,o measurement. Another reason for using the MSS control method is that the pressure
sensor is expensive and it would be possible to reduce the superheat control installation
costs substantially if it could be removed. Note also that if the surrounding temperature or
the evaporation temperature changes, then it will result in a change in the suitable outlet
temperature; this is the main reason for avoiding the use of a fixed Te,o reference. The
evaporator superheat control problem and the three identified models will be used in the
following as examples showing the applicability of the MSS control method.

4 Simulation Examples

The air conditioning system (see Table 9.1) is investigated in the following using ts = 1
second and Tex = 120 seconds. The monodromy matrix, derived in the appendix, is used
to find an upper bound estimate for K. Fig. 9.6 shows the steady state I/O-map and the
simulation response in the stable simulation with convergence of ū(k) to u∗. The output

20 25 30 35 40 45
0

5

10

15

20

Input u

O
ut

pu
t y

Steady state I/O map
Simulation response
Maximum slope point

Direction of convergence

Figure 9.6: Steady state I/O-map for the air conditioning system model and convergence
from ū(0) = u∗ − 5 using perturbation amplitude Aex = 2 and integral gain K = 0.04.
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circles around the I/O-map due to the continuous perturbation of the input and the system
dynamics, which is intentional. The simulation response would follow the I/O-map back
and forth if there were no dynamics. Fig. 9.7 shows the eigenvalues using both a stable
and an unstable integral gain K. The eigenvalues show that the system is unstable if
K is chosen too high. Stability and instability resulting in limit cycles is also shown in
Fig. 9.8. The top graph shows how the system converges to the maximum slope point
u∗ = 33.02 when a perturbation signal is added and that limit cycles occur near this point
if the gain is chosen too high. The bottom graph shows the same simulation without a
perturbation signal. Here the high gain drives the system away from the maximum slope
point to a smaller slope and stabilizes here (it will not converge back because Aex = 0).
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Figure 9.7: Eigenvalues of ΨA(k) for the air conditioning system model for different
integral gains K.
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5 Modified MSS for Systems with Dynamics

5 Modified MSS for Systems with Dynamics

System dynamics can change the sign of the feedback error signal ξ(k) if the phase shift
of the second harmonic is larger than 90 degrees, which would result in divergence from
the desired operating point. The phase shift can be compensated for using the parameter
Nφ in (9.2). However, the exact phase shift is typically unknown and time-varying, which
is permissible if guarantees on parameter bounds can be made or if a sufficient time scale
separation between perturbation and dynamics is ensured (thereby reducing the phase
shift). A disadvantage of this approach is that low frequency perturbation results in a
rather slow feedback loop. A modified MSS control setup is therefore introduced and
shown in Fig. 9.9. The difference is that the cross product between the first and second
harmonic is now taken. The equations are

Hp(k) =
2

N

k∑
n=k−N+1

(cos (pωex (n−Nφ))− j sin (pωex (n−Nφ))) y(n), (9.19)

M(H1, H2) =
|H1| |H2| sin (θ12)

η
, (9.20)

where the harmonics Hp(k) are found using two separate filters with p = {1, 2} being
the number of the harmonic, η > 0 is an optional normalization function, and θ12 is the
angle from the first harmonic to the second.
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Figure 9.9: Modified MSS control scheme.

Remark 2: The same analysis as in Remark 1 can be used to motivate the modified curvature

181



Paper F

estimator in Fig. 9.9. The normalized error signal ξn(k) (normalized curvature estimate) is now

ξn(k) =
a1(k)b2(k)− a2(k)b1(k)

η

≈1

η

([
2

N

k∑
n=k−N+1

cos(ωex(n−Nφ))y(n)

]
[

2

N

k∑
n=k−N+1

sin(2ωex(n−Nφ))y(n)

]

−

[
2

N

k∑
n=k−N+1

cos(2ωex(n−Nφ))y(n)

]
[

2

N

k∑
n=k−N+1

sin(ωex(n−Nφ))y(n)

])
, (9.21)

where a1(k), b1(k), a2(k), and b2(k) are the Fourier coefficients of the first and second harmonic.
Using (9.5)-(9.7) and trigonometric identities it is possible to reduce (9.21) to

ξn(k) =
c1c2A

3
exf
′(ū)f ′′(ū)

4η
cos(φ1 − φ2 + φ), (9.22)

where 1
η
> 0. If assumption 1, 2, and 3 hold and if the I/O-map is monotonic decreasing (f ′(u) < 0

for all u ∈ U , c1 > 0, c2 > 0) and |φ1 − φ2 + φ| < π
2

, then

ξn(k) =0 for f ′′(ū = u∗), (9.23)

ξn(k) >0 for f ′′(ū < u∗), (9.24)

ξn(k) <0 for f ′′(ū > u∗), (9.25)

for sufficiently small Aex > 0 and K > 0. This setup is thus a more robust solution for systems
with dynamics, in the sense that only the difference in phase shift between the first and second
harmonic frequencies needs to be below 90 degrees. Ensuring this is easier, since there is only an
octave in-between.

The optional normalization in (9.20) can help to compensate for changes in system
gain. Fig. 9.10 shows different normalizations and the effect on the error signal in open-
loop using the same simulation parameters as in the test shown in Fig. 9.6. In the simula-
tions the first harmonic is used to normalize and η is here;

η0 = 1, η2 = |H1(k)|2, η3 = |H1(k)|3. (9.26)

The cubed amplitude of the first harmonic gives an almost linear relationship between
input offset ū and error signal ξn. However, tests have shown that using η2 as normaliza-
tion gives a good weighting factor on the error and it performs better in noisy systems,
because the decrease in error signal far from the desired operating point corresponds to
the very low amplitudes and the resulting trust that can be put in the Fourier analysis. η2

is thus used as normalization in the following.
The design parameters are the integral gain K, the perturbation angular frequency

ωex = 2πts/Tex, and the amplitude Aex. An tuning approach was suggested in [14] and
test on the three mentioned refrigeration systems showed good results. Moreover, this
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Figure 9.10: Open-loop error signal as a function of input offset ū using different nor-
malizations (right) and amplitude of harmonics (left). The maximum slope point is
u∗ = 33.02.

procedure was automated in [15]. In summary, a slow ramp test is performed in the pro-
cedure to identify the steady state nonlinear I/O-map (as was shown in Fig. 9.5), which
is followed by a biased relay feedback test. The result of this is provided in Table 9.1 and
gives an approximate Hammerstein model of the system, which can be used for simula-
tion purposes. Better results could possibly be obtained using system identification for
Hammerstein models (e.g., see [23]) or using the Matlab R© system identification toolbox
and the nlhw function. If parameter bounds are known, then the worst case parameter set
could also be used to give limits on the design parameters.

The dominant system time constant can then be used to find an appropriate perturba-
tion period Tex, which based on test experience should be 3-5 times the time constant for
refrigeration systems. With a model it is also possible to choose Tex to give a difference
in phase shift less than a design criteria (should as a minimum be <90 degrees) and the
parameter Nφ can also be used to compensate for phase shift. A way to choose Nφ is
to set it equal to the estimated system delay, since delays in refrigeration systems can
be large and introduce a large contribution to the phase shift difference between the two
harmonics.

The perturbation amplitude Aex is not highly critical. However, it should be large
enough to give distinguable perturbation in the output. The model could be used to it-
eratively find a good amplitude. Another possibility is to limit the amount of system
excitation using an Automatic Gain Controller (AGC), since the amount of excitation is
measurable through the first harmonic; this approach was presented in [12].

Having the simulation model and the perturbation signal in place, then a suitable K
can be identified iteratively, e.g. using a bisection algorithm search, where K is iterated
until a prespecified overshoot (or some other performance criteria) is obtained in a con-
vergence test. The upper bound estimate on K provided in Subsection 2 can also be used
if the simple MSS control without the normalized cross product is employed.

Finally, standard integral control anti-windup is necessary if there are saturation limits
on the input u.
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6 Simulation of the Modified MSS Control

Monte Carlo simulation results are presented in this section to show the robustness of the
modified MSS controller toward uncertainty in parameter values on the three identified
models from Section 3.

The same MSS control parameters as were used on the real system (see [14]) are
used in the Monto Carlo simulations. These parameters are listed in Table 9.2 for the air
conditioning system, the water chiller, and the supermarket display case.

Parameter Air con. Chiller Display
Tex 120 130 180
Aex 8.5 10.8 8.0
K 0.079 0.067 0.042
Nφ 15 26 29

Table 9.2: Chosen perturbation signal values, integral control gain, and phase shift com-
pensation used in tests on the refrigeration systems.

It is assumed that the input dynamics are negligible. However, quantization on the
input valve opening degree OD of 1% and measurement noise with standard deviation
2σ = 0.1 ◦C is added to make the simulation more realistic. Furthermore, a spread on the
parameters Tsys, Td, k1, and k2 of ±50% with a uniform random distribution is used to
simulate the uncertainty in the estimation of the system model. A spread of up to ±50%
was also suggested in [22] for the system dynamics. Finally, the initial input offset ū(0)
(initial average opening degree) is chosen uniformly in the range ±20% from the desired
value.

Fig. 9.11 shows the simulation result from 100 simulations with different system
parameters using either the air conditioning system model, the water chiller system model,
or the supermarket display case system model. The input offset ū converges in all cases
toward the desired value u∗ listed in Table 9.1, even with up to ±50% spread in system
parameters, while keeping the control parameters fixed. This indicates the robustness of
the control method toward parameter uncertainty. However, the robustness depends on
the severity of the nonlinearity and the specific case.
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Figure 9.11: Time evolution of ū in the 100 simulations using either the air conditioning
system model (a), the water chiller system model (b), or the supermarket display case
system model (c).

7 Evaporator Superheat Control Test Results

Results from tests on the water chiller refrigeration system, air conditioning system, and
supermarket display case were presented in [14]. Zoomed graphs of some of the results
are presented in Fig. 9.12-9.14 showing the performance of the MSS control.

A step in the compressor frequency gives a disturbance in the evaporation temperature
Te, which results in a change in the desirable Te,o and the appropriate opening degreeOD.
The error signal in Fig. 9.12 and 9.13 changes after the step, which results in adaptation
of ū to match the new operating conditions (new location of the maximum slope point).
There is a small delay before the error signal changes, which can be related to the length
of the FIR filter N . The delay before the control reacts is less than half a perturbation
period, which is considered acceptable. The superheat defined in (9.16) reaches in average
a good level using MSS control, which is achieved by only ensuring that the average Te,o
(only available measurement) is maintained near the maximum slope point. Note that the
Monte Carlo simulations in Section 6 also showed that the model parameters could easily
be change up to ±50% while still reaching the maximum slope point, which corresponds
to a suitable filling of the evaporator, where only a few more % opening of the valve will
flod the compressor.

Fig. 9.14 shows the result from the supermarket refrigeration system where it was not
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Figure 9.12: Test results showing MSS performance during a step up in compressor fre-
quency on the air conditioning system (a) and the water chiller refrigeration system (b).
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Figure 9.13: Test results showing MSS performance during a step down in compressor
frequency on the air conditioning system (a) and the water chiller refrigeration system
(b).
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Figure 9.14: Test results showing MSS performance during large evaporation pressure
disturbances on the supermarket display case.

possible to make a compressor frequency step. However, a moment with a large distur-
bance in Te is captured and the result shows how the MSS controller adapts ū up until the
disturbance is gone and then adapts back down, in order to maintain the average Te,o near
the maximum slope point and thus a good average superheat level. For a comparison of
the obtained superheat with conventional two sensor control strategies see [14].

The test results indicate that MSS control works in the refrigeration system case and
also shows that MSS control works in systems where u∗ is not constant, but changed with
a disturbance step, where the compressor frequency can be seen as a disturbance input to
the evaporator system with OD as input and Te,o as output.

8 Conclusion

A maximum slope-seeking (MSS) controller has been proposed. This non model-based
control method is beneficial if a suitable reference setpoint is unknown but qualitatively
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8 Conclusion

located where the slope (gain) has an extremum in the I/O-map. If the system under
consideration has sigmoid function properties then there is exactly one maximum slope
point. The control method also has potential in systems with discontinuities and when the
I/O-map is not symmetric around the maximum slope point, since the control converges
toward a point with zero mean curvature. Conditions for closed-loop stability and conver-
gence of the basic MSS scheme has been derived and an improved MSS setup has been
proposed, which is more robust toward phase shift introduced by system dynamics. A way
to estimate an upper bound on the feedback gain has also been provided. Furthermore,
Monte Carlo simulations have shown convergence for models of three vapor-compression
refrigeration systems even when all model parameters were varied up to ±50% and tests
on these systems have shown that evaporator superheat can be controlled with MSS us-
ing a reduced set of sensors. Without a model, additional sensors are usually required to
gain the same information needed for control. However, MSS control can extract more
information from each sensor due to continuous perturbation of the system and by ex-
ploiting the nonlinear relationship between input and output. Refrigeration system tests
also showed that the MSS controller was able to adapt when the operating conditions
were changed.
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A Derivation of Monodromy Matrix for Periodic Systems

The monodromy matrix ΨA(k) is derived here for illustrative purposes for a system with
linear FOPDT dynamics (Psys), a FIR filter, and integral feedback control (C). The
system is shown in Fig. 9.15 using the discrete time notation and it is assumed that the
sample time ts is small (good approximation of continuous system). The equations are

Psys(z) =z−Nd
bsys

z + asys
(9.27)

ξ(k) =
2

N

k∑
n=k−N+1

y(n) cos

(
p

2π

N
(n−Nφ)

)
(9.28)

C(z) =
Kts
z − 1

, (9.29)

where Nd, asys and bsys are given by the system, N = Tex/ts is the number of samples
used in the filter, p = 1, 2, ... is the harmonic of interest, Nφ is phase shift compensation,
Ξ(z) is the z-transform of (9.28), and K is the integral gain. Using the one step back in
time shift operator q−1, the system can be redrawn as shown in Fig. 9.16. The update of
the state vector x(k) = [x1(k), x2(k), .., xN+1+Nd

(k)]
T is given as

x(k + 1) = A(k)x(k), (9.30)

where the periodic matrix A(k) can be derived from Fig. 9.16. An example with a dead
time delay Nd = 2 gives the matrix in (9.31).

Y(z)

{f    (k)}Ξ(z)

P  (z)

C(z)

U(z)
sys

p

Figure 9.15: Example system.
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b  (k)0 b  (k)1 b  (k)2 b      (k)N-1

q -1 q -1 q -N q -1 q -1 q -1 

1 -a sys

K 
x (k)1 x (k)2 x  (k)2+N x     (k) x    (k) x    (k)N+1+N

++

+ + +

b sys

Integral controller System FIR filter

d
dd 3+Nd 4+Nd

Figure 9.16: Discretized example system with two IIR filters (C(z) and Fo(z)) and a
periodic FIR filter.

A(k) =



1 0 0 Kb0(k) Kb1(k) · · · KbN−2(k) KbN−1(k)
bsys −asys 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 1 0


(9.31)

The diagonal from A3,2 to AN+3,N+2 contain ones (due to the FIR filter) and the
periodic coefficients bi(k) in the FIR filter for i = [0, 1, .., N − 1] are

bi(k) =
2

N
cos

(
2

2π

N
(N − i+ k −Nφ)

)
. (9.32)

The monodromy matrix for one period T is then

ΨA(k) = A(k + T − 1)A(k + T − 2)...A(k). (9.33)
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1 Introduction

Abstract

In this paper, learning/repetitive control is proposed for improvement of existing
feedback control loops for temperature regulation in buildings. A single zone office
building is used as an example, with real weather data for Phoenix Arizona and re-
alistic occupancy load schedules. Simulations have shown a decrease in the average
setpoint tracking error of more than 50%, even without additional energy consump-
tion. This can be achieved in situations where the load disturbances have enough
repeatability and a repeatable-to-nonrepeatable ratio can be computed to determine if
learning should be used and at which frequencies. Furthermore, the increased tight-
ness in reference tracking could be used to lower energy consumption by moving the
reference setpoint closer to the boundaries of the allowable temperature range.

1 Introduction

Temperature control in buildings is important for various reasons. It could be used to im-
prove occupancy comfort in commercial and residential spaces, to maintain good quality
of products in cold storage rooms or for safety reasons in pharmaceutical processing facil-
ities. The temperature is often controlled with a heating ventilation and air-conditioning
(HVAC) system using either on/off type hysteresis control or variations of PI/PID control
due to their simple implementations [1, 2]. However, they seldom perform well at all
possible operating conditions because the control is typically tuned only for a selected
nominal situation; also the control might not be tuned properly in the first place [2–4].

Model-based control can improve the performance over on-off or PID control, but
obtaining a sufficiently accurate model of the building and the HVAC system is a time
consuming and costly process and the uncertainty of these models can be quite severe due
to several reasons. Firstly, certain parameters are expected to be time-varying, such as the
thermal capacities, and therefore are hard to obtain. Secondly, there will be uncertainty in
the estimation of load disturbances, which are dictated by several factors such as weather
conditions, occupancy, appliances, lighting, etc. Although weather can be included in the
control [5], the exact contribution of factors such as occupants, appliances, and thermal
infiltration is difficult to predict accurately.

This paper investigates the use of learning type control such as iterative learning con-
trol (ILC) and repetitive control (RC) for improvement of existing feedback controllers in
buildings such as the ones mentioned above. A survey on ILC is provided in [6] and RC
is covered in references such as [7, 8], which also show the similarity of these methods.
The basic concept of these types of learning control methodologies is that feedforward
signals are generated and updated based on previous errors and they do not require the
costly process of identifying system models. However, they do need repetitiveness in the
tracking error and disturbances.

Buildings experience repetitiveness in load disturbances on a daily and a seasonal ba-
sis due to the weather. A good prediction of the weather tomorrow is that it will most
likely be close to what it was today. Also, the occupancy and appliance loads will often
repeat themselves on a daily basis governed by actions such as people going to work,
having lunch, supermarkets opening and closing, etc. The assumptions about the repeti-
tiveness of various disturbances will not always hold true, but the idea in learning is that
the control adapts to changes based on past experience. This means that we only need

195



Paper G

nearly periodic disturbances, in the sense that they are allowed to change, but on aver-
age they will show periodicity. The authors in [9] have provided a way to calculate the
Repeatable-to-Nonrepeatable Ratio (RNR), which can be used to determine if the repeat-
able part of the tracking error or disturbance is larger than the nonrepeatable part for each
frequency. A ratio above zero means that there is potential for applying learning type
control.

A single zone office building is provided as an example case study to show the
possible tracking performance improvement with learning/repetitive control. A MAT-
LAB Simulink model of this building is derived using lumped parameter modeling with
resistive-capacitive networks and quasi periodic disturbances such as real weather data
and occupancy load schedules are used. This model allows us to simulate an entire year
or even longer and makes it possible to compare different control strategies, which would
not be possible in a real building. The proposed steps to improve tracking performance in
an already existing stable feedback system are to: (i) Collect error data for an appropriate
time window. (ii) Calculate RNR. (iii) Use RC or ILC to design a learning filter that
corresponds to the RNR findings and thus improve tracking performance at appropriate
frequencies.

This paper first introduces a simple modeling framework for buildings and provides
a description of the model of a single zone office building. A temperature controller
is then designed in Section 3, which provides a comparative case for analysis. Then,
the learning/repetitive control design is described in Section 4, followed by results in
Section 5, from simulations on the single zone building spanning an entire year. Finally,
conclusions are drawn in Section 6.

2 Modeling

Lumped Parameter Modeling of Buildings Using Resistive-Capacitive
Networks

A commonly used method of modeling the thermal dynamics of buildings is using lumped
resistive-capacitive networks [10–12]. In this paper, each room (zone) is considered as
a single capacitance and each wall is represented with 3 resistors and 2 capacitors also
referred to as the 3R2C modeling approach [11]. Fig. 10.1 illustrates the 3R2C network,
where Rwo,i is the thermal resistance between the outer wall surface of wall i and am-
bient, Rwi,i is the resistance between the inner wall surface and ambient, and Rww,i is
the resistance between the inner and outer wall surfaces. The states in the model are

Rwo,i

Connection
to ambient

Connection
to ambient

Rww,i Rwi,i

Cwo,i Cwi,i

Two,i Twi,iTao,i Tai,i

Figure 10.1: 3R2C network model of a wall.
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the temperatures of the inner wall surfaces Twi,i, the outer wall surfaces Two,i, and the
room/zone temperatures. The ambient temperatures Tao,i and Tai,i could be zone tem-
perature, outside air temperature, or ground temperature, where outside air (Tair,o) and
ground (Tgnd) temperatures are considered inputs to the system.

The zones have controllable inputs, which are the heat transfer rates Q̇hvac supplied
by the HVAC system (positive when heating and negative when cooling). A discrete state
space model representation of this system is shown in (10.1).

[
Tw
Tz

]
(k + 1) =

[
Aww Awz
Azw Azz

] [
Tw
Tz

]
(k) +

[
0

Bz

]
Q̇hvac(k)

+

[
Bair Bgnd Bdw 0

0 0 0 Bdz

]
Tair,o
Tgnd
dw
dz

 (k) (10.1)

The vector Tw contains all the wall surface temperatures (both inside and outside) and
the vector Tz contains all the zone temperatures. Tair,o, Tgnd, dw, and dz are considered
as disturbances to the system, where dw is a vector of lumped Long Wave Radiation
(LWR) and Short Wave Radiation (SWR) heat transfers affecting each wall and dz is a
vector of the thermal load applied directly on each zone (e.g. occupants, appliances, and
lighting). These are further described in Subsection 2.

Single Zone Office Model

In this paper, we use a single zone office building with four walls, a ceiling, and a floor
as an example, which is assumed to be located in Phoenix, Arizona. Using a standard
medium office building construction template provided in the OpenStudio tool [13] devel-
oped by the National Renewable Energy Laboratory (NREL) an EnergyPlus [14] model
of this building was created, which uses a weather file for Phoenix, Arizona. A Google
SketchUp illustration of the building is shown in Fig. 10.2.

Figure 10.2: Google SketchUp illustration of single zone EnergyPlus model created in
OpenStudio.

The 3R2C framework described in Subsection 2 was used to construct a simplified
resistive-capacitive network model in MATLAB. This model is based on the EnergyPlus
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model, where the resistances corresponding to the heat transfer between the zone and
wall surfaces, and the zone capacitance were obtained using a least squares based system
identification procedure applied on data generated using EnergyPlus. The capacitances
for the inner and outer wall surfaces, and the resistances between them were computed
based on physical properties of the wall construction layers. The resistances correspond-
ing to thermal interactions of the wall surfaces with the ground and ambient air were
obtained by averaging the corresponding heat transfer coefficient data obtained from a
yearlong EnergyPlus simulation. The floor is modeled with only one state Twi,6 as the
ground temperature under the floor (Two,6) is considered constant.

The thermal load disturbances acting on the eleven wall surfaces are collected in a
single vector dw(t) = [dwi,1(t), dwo,1(t), ..., dwi,5(t), dwo,5(t), dwi,6(t)]T consisting of
the disturbance on the inner wall surfaces (i ∈ 1, 2, ..., 6)

dwi,i(t) = σAi

6∑
j=1

Fi,j
(
T 4
wi,j(t)− T 4

wi,i(t)
)

︸ ︷︷ ︸
LWR from wall surfaces

, (10.2)

and the outer wall surfaces (i ∈ 1, 2, ..., 5)

dwo,i(t) = εiσAiFgnd,i
(
T 4
gnd(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from ground

(10.3)

+ εiσAiFsky,i
(
T 4
sky(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from sky

+ εiσAiFair,i
(
T 4
air,o(t)− T 4

wo,i(t)
)︸ ︷︷ ︸

LWR from air

+αiAiqSWR,i(t)︸ ︷︷ ︸
SWR

,

where i is the wall number, σ is the Stefan-Boltzmann constant, Ai is the surface area,
F ∈ R6x6 is a matrix of Script-F factors [15], Fgnd,i, Fsky,i, and Fair,i are view factors
for the outer surface of wall i, Tsky is the sky temperature, εi is the thermal absorbtance
of wall i, αi is the solar absorbtance of wall i, and qSWR is the incident solar radiation
per unit area on wall i. These values, together with Tair,o and Tgnd, can be obtained
directly from EnergyPlus for an entire year and (10.2) and (10.3) emulate how EnergyPlus
calculates the disturbances (short and long wave radiation).

The zone load dz is pseudo randomly generated for each day for an entire year. Each
day we assume that five Gaussian probability density functions (PDF) govern how many
people arrive for work, how many hours each person works, when each person work
(midpoint of working hours), when each person has lunch (midpoint), and how long that
person’s lunch is. The PDF parameters are mean x̄ = {45 people, 9 hours, 13:00 hours,
12:30 hours, 0.75 hours} and standard deviation σstd = {3 people, 1 hour, 0.5 hours,
0.25 hours, 0.1 hours}. Each occupant in the office corresponds to 0.6 kW (0.1 kW
body heat, 0.4 kW appliances, 0.1 kW lighting) and 0.3 kW when they are at lunch (0.2
kW appliances, 0.1 kW lighting). For simplicity there is no distinction of weekends,
however, one could just turn the learning off during weekends or even have different
learning controllers for weekdays and weekends.

In this case study, the controllable heat transfer rate to the zone Q̇hvac is assumed
to be bounded between -35 and 17.5 kW. This will result in controller saturation during
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3 Office Building Temperature Control

some hot summer days and thus requirement for integrator anti-windup. Furthermore, the
zone temperature reference Tz,r is set to 22.5◦C. A reference that varies during the day
could also be used, as long as it repeats itself daily.

3 Office Building Temperature Control

The air temperature in office buildings can be controlled in different ways, e.g. with
simple on/off hysteresis-based control, PI/PID control, or more advanced model-based
control. In most cases one of the first two methods is used [1–4], primarily due to their
simple implementations and relatively simple tuning procedures. Fig. 10.3 shows the
closed-loop feedback system, where the zone air temperature Tz tracks a reference tem-
perature Tz,r. The system is denoted by G and has the heat transfer rate provided by an
HVAC system, Q̇hvac, as input. The disturbances to the system are the thermal loads on
the walls dw and the thermal load on the zone air dz . The system model and disturbances
in the single zone building case study are defined in Subsection 2 and are assumed to be
unknown to the feedback controller.

G

Memory

Memory

RC

C
Q      hvac

T      z,rm

T      z,rm

T    z,r T z·

e

e      

+ -

+

+
-

e   m

GC
Q      hvacT    z,r T z·

+ -
e

d z d  w

d z d  w

Figure 10.3: Closed-loop feedback control structure for temperature control.

Sensing of the zone air temperature with a digital sensor (thermostat) and its com-
munication with the controller C is performed in discrete time. A realistic sample time
for buildings is somewhere between 1 to 15 minutes depending on the size of the zones
among other factors. Here a 5 minute sample time ts is used. This sampling rate is faster
than that of the underlying system dynamics and slow enough to allow the HVAC system
to meet the desired Q̇hvac before the demand is changed again. For comparison, the open-
loop zone temperature time constant is about 27 minutes and the wall surface temperature
time constants are much larger.

PI control is used in the feedback loop in this case study, since it performs better than
just having hysteresis-based control and because it is commonly used as mentioned ear-
lier. There exist various different PI tuning methods ranging from step response analysis,
relay feedback, robust synthesis, etc. However, robust control methods require a nominal
model of the system and uncertainty models, which can be difficult to obtain as men-
tioned earlier, and are usually not available to the control engineer. The step response
method is therefore proposed, which gives different results depending on the particular
load on the system. Critical regions of operation correspond to high and low load situ-
ations, which should be considered in order to design a robust PI controller. Fig. 10.4
shows closed-loop step responses using three different discrete-time test controllers C1,
C2, and C3 (10.4) for a high load situation (Fig. 10.4(a) and 10.4(b)) and a low load
situation (Fig. 10.4(c) and 10.4(d)). The high load situation is generated based on the air
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Figure 10.4: Closed-loop step response with different controllers Cn during high load
(a,b) and low load (c,d).

and sky temperature at 1 pm July 1 with zone load dz = 25 kW and the low load situation
is generated based on conditions at midnight on January 1 and with zone load dz = 0 kW.

Cn =Kp,n +Ki,nts
z

z − 1
, n ∈ {1, 2, 3} , (10.4)

where Kp,1 = 25,Ki,1 = 0.025,

Kp,2 = 15,Ki,2 = 0.015,

Kp,3 = 5,Ki,3 = 0.005.

The step up in reference at high load and the step down at low load determines how
fast a controller we can design. In these situations, the controller C1 is too aggressive,
giving a large overshoot in just one time step. Controller C3 on the other hand is too
conservative, whereas C2 provides a good balance with a maximum overshoot of 6% and
a minimum rise time of approximately one time step (300 seconds). This corresponds to
Fig. 10.4(a) and 10.4(d). The slowest responses are observed in Fig. 10.4(b) and 10.4(c),
where the rise time is between 900-1200 seconds. This confirms that a fixed gain PI
control is not ideal under all operating conditions and therefore motivates the development
of a learning/repetitive type control for improvement of tracking performance.

4 Learning/Repetitive Control for Improved Reference Tracking

Fig. 10.5 illustrates the proposed addition of RC to the feedback control loop shown in
Fig. 10.3. The RC block modifies the original temperature reference Tz,r based on the
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Figure 10.5: Existing feedback loop (black) with additional RC (blue).

tracking error one trial back in time e (one trial is a repetitive cycle, e.g. 24 hours), which
will lower e as the number of trials goes to infinity, if the load pattern is repetitive enough.

Collecting past errors e and reference modifiers Tz,rm in vectors, Tz,rm = [Tz,rm(k−
2N + 1), ..., Tz,rm(k − 2), Tz,rm(k − 1)] and e = [e(k − 2N + 2), ..., e(k − 1), e(k)],
where k is the current time step, and using buffers (memory blocks in Fig. 10.5) of size
2N − 1, where N is the number of discrete samples in one repetitive trial, we can define
a repetitive controller as

T̂z,rm =Q(Tz,rm + Le). (10.5)

The vector T̂z,rm = [T̂z,rm(1), T̂z,rm(2), ..., T̂z,rm(2N−1)] is the output of the learning
algorithm and it contains updated reference modifiers. However, we are only interested
in T̂z,rm(N + 1) since this is the updated version of the reference modifier during the last
trial (N samples back in time) to be applied in the next time step k + 1. Therefore, the
reference modifier for the next time step is

Tz,rm(k + 1) =T̂z,rm(N + 1). (10.6)

The calculations are repeated at each time step and L and Q can be causal/non-causal
filters with low-pass, band-pass or high-pass characteristics depending on the frequencies
of the repetitive part of the error. Choosing L and Q as filters is also the reason why
vectors are used in (10.5).

The proposed RC is similar to a serial structure ILC implementation, with the only
difference being that the reference modifier is calculated in real-time at each time step k,
whereas in ILC, all reference modifiers are calculated after a trial has ended for the entire
subsequent trial. The benefit of RC is that it does not require the same initial condition
each trial. For more detail on discrete RC see [7, 16, 17].

In order to determine the cutoff frequencies for the learning filter L we propose to
calculate the Repeatable-to-Nonrepeatable Ratio (RNR) for all frequencies. This method
is shown in [9] and calculated as

RNR =20log

(
|FFT [ē]|2

1
Nt

∑Nt

j=1 |FFT [ē− ej ]|2

)
, (10.7)
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where Nt is the number of trials used in the analysis, FFT is the Fast Fourier Transform,
and the repeatable error is

ē =
1

Nt

Nt∑
j=1

ej , (10.8)

where ej is a vector of all the errors in trial j. Equation (10.7) calculates the power of
the repeatable signal versus the power of the nonrepeatable signal and converts it to dB.
If this number is larger than 0 dB for a particular frequency it means that there is more
repetitiveness in the error than nonrepetitiveness. The learning filter L should then be
applied only on these frequencies, which can be achieved by picking appropriate cutoff
frequencies for a band-pass filter or an upper cutoff frequency for a low pass filter. The
filter Q can then e.g. have cutoff frequency above L in the low-pass case and is there
to ensure that the condition for stability is met. Stability can be checked using (10.9)
(derivation in [7]), which must be satisfied for all frequencies.

‖Q(1− zLP )‖∞ <1 (10.9)

The transfer function P is the complementary sensitivity transfer function from reference
to output defined as

P =
GC

1 +GC
. (10.10)

5 Case Study - One Year Simulation

The previously described single zone office building is used here as a case study, to show
the reference tracking performance improvement of RC when applied to a system with
nearly periodic load disturbance. The repetitive trial length is identified as one day starting
from midnight, where the occupancy load is small.

Fig. 10.6(a) shows the tracking error for each day in January (blue) for the feedback
control without RC and the corresponding repeatable error (red), calculated using (10.8),
where Nt = 30. Furthermore, for comparison, the error for each day in an entire year is
also shown (cyan). Based on the tracking error, the RNR is calculated for January and
also for an entire year. However, we assume that only data from January was available
as training set for the design of the learning filter L. The uncertainty of not having each
month in the year will get assigned to the nonrepeatable part of the signal. More data
could be used if available.

The RNR in Fig. 10.6(b) indicates that L should be a low-pass filter in this particular
case study and the cutoff frequency was set to 0.000223 Hz. The MATLAB command
butter was used to design a first order Butterworth low-pass filter and the command
filtfilt was then used to make a non-causal zero phase filter. The Q filter was also
chosen to be a non-causal zero phase filter with a cutoff frequency of two times 0.000223
Hz. This satisfies the stability condition in (10.9). Additionally, the reference modifier
Tz,rm was limited between -1 and 1. This means that in worst case, if today does not look
like yesterday, we will only end up following a reference of minimum 21.5 or maximum
23.5 degrees, which should still be acceptable for the occupants. Tighter constraints can
be used if necessary.

202



5 Case Study - One Year Simulation

0 5 10 15 20
-0.5

0

0.5

Time (hours)

Tr
ac

ki
ng

 e
rro

r e

0 0.2 0.4 0.6 0.8 1
x 10-3

-100

-50

0

Frequency (Hz)

R
N

R
 (d

B
)

One year
January

RNR > 0 dB
RNR < 0 dB

(a)

(b)

Figure 10.6: The top graph (a) shows the daily tracking error e during January (blue), the
repeatable error (red), and the daily error for an entire year (cyan). The bottom graph (b)
shows the RNR at different frequencies based on the January errors (blue) and the entire
year (cyan).

After the training period, RC can be added to the system. Fig. 10.7 shows the infinity-
norm, 2-norm, and 1-norm of the error for each day from the 1st of February to the 31st
of December plotted in a histogram. The same simulation is repeated without RC for
comparison. All error norms show that RC improves the reference tracking performance.
This is also indicated in Fig. 10.8 where the 2-norm is plotted for May, June, and July.
However, there are a few days where the RC performs worse (e.g. trial 152). These
outliers are caused by hot summer days where the HVAC system is saturated, which is
also visible in Fig. 10.6 with larger errors around the hot hours of the day between 1-
5pm. If there is saturation one day (e.g. trial 151), the RC will learn a reference that
compensates for this effect, but the next day might be colder resulting in worse tracking
that following day. However, the control has converged again the day after (trial 153). The
outliers, both with and without RC, can potentially be avoided by increasing the systems
saturation bounds.

Fig. 10.9 shows the reference signal and the modified reference signal for two consec-
utive trials, indicating the continuous modifications to the reference signal for the inner
PI control, which results in better tracking of the original reference Tz,r. The modified
reference goes down during the morning hours when people arrive for work and increases
after they leave in the afternoon. Furthermore, the lunch break causes a modification of
the reference starting at around 11 am until 2 pm. This also correlates with the repeatable
error shown in Fig. 10.6(a), when RC is not applied.

Fig. 10.10 shows the energy charge in U.S. dollars for each month of the year with
and without RC using a time-of-use tariff effective in 2010 from the Arizona Public Ser-
vice Company [18]. The expected energy consumption was estimated by assuming a
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Figure 10.8: 2-normed error for the days (trials) in May, June, and July with and without
RC.

constant heating efficiency of 1 and cooling efficiency of 2. The figure shows that there is
negligible difference in energy charge with and without RC. Although there may be some
uncertainty in the estimation of total consumed power since constant efficiencies are used,
the importance is not in estimating the correct bill amount, but rather in comparing the
control with and without RC under the same tariff schedule.

204



5 Case Study - One Year Simulation
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Figure 10.9: Reference signal Tz,r and modified reference signal for December 30th (red)
and 31st (black) with j = 334 indicating the trial number.
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Figure 10.10: Total energy charge each month with and without RC.

Table 10.1 summarizes the results and gives percentage improvements. We can con-
clude that the reference tracking performance was significantly improved with RC and
this performance improvement came at no increase in energy consumption or spending
cost. The tracking performance improvement could also be used to change the tempera-
ture reference setpoint to a value that requires less energy in terms of cooling or heating,
while still staying within tolerable temperature bounds. This could be used in applications

Table 10.1: Summary of case study results for simulation from 1st of February to the 31st
of December.

quantity without RC with RC % improvement∑334
j=1 ‖ej‖∞ 115.28 55.43 51.91∑334
j=1 ‖ej‖2 1357.70 475.87 64.95∑334
j=1 ‖ej‖1 29037.42 9584.77 66.99

Total energy (kWh) 50612 50450 0.32
Total cost (U.S. $) 2926.31 2915.54 0.37
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where we are mostly concerned with staying below a certain upper temperature bound,
e.g. a food processing/storage facility or in a pharmaceutical processing facility. As a
result, this could provide significant electricity savings.

6 Conclusion

In this paper, the use of repetitive control is studied in the context of building tempera-
ture regulation. Improvements of more than 50% in setpoint tracking performance were
achieved with no additional energy consumption, when the proposed RC procedure was
applied to an existing feedback controller in a single zone office building simulation. No
extra hardware is required and the proposed procedure is to use closed-loop data from an
appropriate time window, such as the previous year or month, and use that to calculate
the repeatable-to-nonrepeatable ratio of the tracking error for each frequency. This is then
used to design a repetitive controller with a learning filter that improves performance at
frequencies where the repeatable part of the error is larger than the nonrepeatable part.
The single zone case study used as an example is a simplified version of a true system,
but detailed enough to give a realistic picture of the potential of learning control in build-
ing systems. Furthermore, the lumped parameter resistive-capacitive network modeling
framework is applicable on larger buildings as well.
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1 Introduction

Abstract

Maintaining foodstuff within predefined temperature thresholds is important due
to legislative requirements and to sustain high foodstuff quality. This is achieved us-
ing a refrigeration system. However, these systems might not be dimensioned for
hot summer days or possible component performance degradation. A learning-based
algorithm is proposed in this paper, which precools the foodstuff in an anticipatory
manner based on the saturation level in the system on recent days. The method is
evaluated using a simulation model of a supermarket refrigeration system and sim-
ulations show that thermal energy can be stored in foodstuff to cope with saturation
in refrigeration equipment. Additional hardware or a system model is not required,
making it easy to implement the method in existing systems.

1 Introduction

Cooling equipment is installed in many places to preserve foodstuff/goods and to maintain
room temperatures within desired bounds on hot days. Usually foodstuff must be main-
tained at temperatures determined by legislative requirements and divergence of room
temperatures from a setpoint leads to discomfort for occupants. Saturation in the cooling
equipment can result in violation of the predefined temperature bounds and can occur
if e.g. the installed system is too small to deal with very hot outside temperatures, if a
component fails (e.g. a compressor in a compressor rack), if the refrigerant charge in the
system changes, or due to component wear leading to degradation of performance.

Sizing up equipment in order to have spare capacity to deal with any thinkable outside
temperature and possible component malfunction is costly. Also, more extreme weather
due to global warming could make a perfectly sized system inadequate in the future. Fi-
nally, higher peak power demand is costly and could require expansion of transmission
lines and transformers for large systems such as supermarket refrigeration systems, ware-
houses, and office buildings. Thermal storage tanks could be installed to overcome this
problem and to utilize changes in utility price, which provides the possibility of shifting
loads to off peak hours where energy is cheaper and outside temperatures are lower.

In [1–4], to reference a few, building thermal capacity and/or thermal storage tanks
are used to store energy for later use. However, adding a thermal storage tank adds an
additional capital investment.

Research has also been invested in precooling of foodstuff and the use of foodstuff as
thermal storage. Load shifting strategies are investigated for four different low tempera-
ture warehouses in [5], where the authors show significant cost savings, possible due to
the relatively large thermal capacity of these buildings and the large quantity of foodstuff.
The use of Model Predictive Control (MPC) for precooling of foodstuff in supermarkets
is investigated in [6] and [7]. They showed the potential of storing energy in the individ-
ual display cases in order to cope with high loads on hot summer days, but also to provide
ancillary services to the Smart Grid. Furthermore, [6] and [8] have looked at food quality
loss as a function of temperature and the thermal storage potential of different foodstuffs.

All references, known to the authors, either use a MPC approach, due to its ability to
handle constraints, or just a predefined schedule. However, deriving a suitable model and
parameters for prediction purposes can be cumbersome and costly, especially since each
refrigeration system is often composed of different components and has different sizes.
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As with the heuristically chosen schedule, a model-based MPC approach is often tailored
to a specific system and lack modularity, flexibility, and robustness towards changes.
These changes can be large changes in operating conditions, changes in load patterns,
changes in system parameters due to e.g. component wear or reduction in refrigerant
charge, and faulty components. Furthermore, the amount and type of foodstuff changes
the storage capacity for each individual display case and could change during the year.

Instead, we have investigated the possibility of using a learning-based control method
to precool, with the objective of reducing the risk of having to discard refrigerated food-
stuff on hot days due to system saturation, which can be very costly. A certain amount of
precooling might even be favorable cost-wise when the system is not saturated, because
energy consumption can be shifted to a time with lower outdoor temperature and energy
price. However, there will also be a higher heat loss from the precooled foodstuff and
the general practice today is not to precool. This paper therefore only considers avoiding
system saturation.

Iterative Learning Control (ILC) and Repetitive Control (RC) are two examples of
learning-based control, see e.g. [9–11] for more details. These methods are often used
in batch processes where the same task is repeated, which makes it possible to learn a
performance improving feedforward signal or a reference modifying signal for the next
repetition of the same task referred to as a trial (see parallel and serial ILC in [10]).
The relation to refrigeration systems is that there is a certain amount of repeatability on
a daily basis, e.g. a good estimate of the weather tomorrow is the weather today and
the load from customers in a supermarket or occupants in an office will also be similar.
The repeatability can be checked by calculating the repeatable-to-nonrepeatable ratio for
different frequencies as done in e.g. [12, 13]. However, this is not included in this paper.

Changing the reference signal to force the refrigeration system to precool when the
system is already saturated does not help. An optimization based constrained ILC is pro-
posed in [14] to handle constrained linear systems. However, this method does not try
to reduce the saturation by precooling, it only ensured that the ILC converges. In this
paper we propose a precool algorithm inspired by ILC, which learns how much precool
is needed and when it is needed based on previous experience and does not require extra
hardware or system model knowledge as MPC. The method is tested on a realistic simu-
lation model of a supermarket refrigeration system, where it is possible to change the air
temperature thresholds for the display cases controlled by on/off relay feedback on the
refrigerant inlet valve. In other words, precooling is performed by lowering the tempera-
ture thresholds for a while. This also ensures that we will never precool the foodstuff to a
temperature lower than what we allow.

The paper is organized in the following way. Section 2 describes the learning-based
precool algorithm and provides a simple simulation example. A simulation model of a
supermarket refrigeration system is then presented in Section 3. Automatic tuning pro-
cedures for refrigeration systems are then provided in Section 4 followed by simulation
results without precooling, with constant precooling and with the proposed precool algo-
rithm in Section 5. Finally, conclusions are drawn in Section 6.
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2 Learning-Based Precool Algorithm

We have a system controlled with the relay feedback

u(k) =


u if y(k) > y(k)
u if y(k) < y(k)

u(k − 1) otherwise,
(11.1)

where u(k) is the control input at time k in the discrete time-domain taking the value u
if the system output y(k) reaches an upper threshold y(k) and u if the output reaches a
lower threshold y(k). This is a very simple controller and also a widely used method of
maintaining the temperature of a medium within predefined bounds.

We will in the following assume that both thresholds can be modified by a learning
controller, which at the end of each trial updates a vector of threshold modifying values
to be used in the next trial allowing us to precool if necessary. The threshold vectors are
given as

yj =y0 + ym,j (11.2)

y
j

=y
0

+ y
m,j

, (11.3)

where y0 and y
0

are the initial time-invariant thresholds and ym,j and y
m,j

are the thresh-
old modifying vectors for the trial denoted by j. The modifiers are generated based on
the length of the current precool period ∆j and the specified end-time for the precool pe-
riod tend. For simplicity it is assumed that each ym(k) can only take the value 0 (do not
precool) or α (precool) and that the end-time tend is chosen manually. An automatic way
of determining tend for each trial is proposed later in Section 4. The controlled system in
the trial domain is shown in Fig. 11.1.
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Figure 11.1: Trial domain representation of a relay feedback controlled system P with
learning-based adaptation of the thresholds.

The length of the precool period at trial j is determined based on an ILC inspired
learning algorithm given as

∆j =∆j−1 + δj−1, (11.4)

where ∆j−1 is the length of the previous precool period and δj−1 is the update. This
update is determined by

δj−1 =

{
l1∆ if ||ûj−1||∞ ≥ û
l2∆ otherwise,

(11.5)
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where ûj−1 is the estimated capacity of the control input (or duty cycle) during the pre-
vious trial j − 1 and û is a threshold that indicates if precooling is needed or not. l1 and
l2 are the learning and de-learning gains, respectively. A gain l1 < 1 means that the full
precool period ∆ (maximum allowed precool time) is not reached in one trial and low
values gives slower convergence.

The estimated capacity ûj−1 can be calculated by filtering the control input;

ûj−1 =Fuj−1, (11.6)

where F can be a zero phase low pass filter that provides a mean value or duty cycle of
the on/off based input vector uj−1 during the previous trial.

If the system output settles between the new modified thresholds within the precool
period, then it does not make sense to extend the precool period anymore, as it will only
increase the power consumption. The precool period is therefore limited by a predefined
maximum length ∆;

∆j =

∆ if ∆j > ∆
0 if ∆j < 0

∆j otherwise.
(11.7)

The maximum length should depend on the storage potential of the system and is therefore
further treated in Section 4.

In the serial ILC the error in the previous trial is used to update the reference. The
proposed precool algorithm instead uses the saturation level of the input to determine
how long to precool the system and consequently how much energy to store in the system
before the saturation.

Simple Thermal Storage Example

The learning-based precool algorithm is demonstrated using a simple thermal storage ex-
ample. Assume that the temperature Tgoods of a lumped mass of foodstuff has to be con-
trolled indirectly by controlling the heat transfer rate Q̇e out of an air volume surrounding
the foodstuff. Q̇e is controlled with relay feedback between Q̇

e
if the air temperature

Tdc < 2◦C and Q̇e if Tdc > 5◦C. The load on the system Q̇air,i−dc is a square signal

which repeats itself on a daily basis and has a maximum value above Q̇e. This means that
the system goes into saturation and the temperature of the foodstuff will go above 5◦C if
energy in the form of coldness is not stored in the foodstuff before the saturation occurs.

The system is illustrated in Fig. 11.2. The governing differential equations for the
temperature of the goods Tgoods and the air Tdc are

dTgoods
dt

=
Q̇dc−goods

mgoodsCp,goods
, (11.8)

dTdc
dt

=
Q̇air,i−dc − Q̇dc−goods − Q̇e

mdcCp,dc
, (11.9)

Q̇dc−goods =UAdc−goods(Tdc − Tgoods) (11.10)

where UAdc−goods is the overall heat transfer coefficient between the air and the goods,
mdc is the mass of the air, mgoods is the mass of goods, Cp,dc is the specific heat of the
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Qair,i-dc
.

Qe
.

Qdc-goods
.

Tgoods

Tdc Foodstuff
Air volume

Figure 11.2: Example system with goods surrounded by an air volume. The controllable
input to the system is the heat transfer rate out of the system Q̇e and the disturbance load
is the heat transfer rate into the system Q̇air,i−dc.

air, and Cp,goods is the specific heat of the goods. These equations can be formulated in
state space as [

Ṫdc
Ṫgoods

]
=

[ −UAdc−goods

mdcCp,dc

UAdc−goods

mdcCp,dc
UAdc−goods

mgoodsCp,goods

−UAdc−goods

mgoodsCp,goods

] [
Tdc
Tgoods

]
+

[ −1
mdcCp,dc

0

]
Q̇e +

[ 1
mdcCp,dc

0

]
Q̇air,i−dc. (11.11)

For simplicity the load Q̇air,i−dc is assumed to be state independent. However, in a more
elaborate model it should be a function of the temperature difference between the ambient
and the air. Table 11.1 shows the system and control parameters used in the simulation.
The filter F is implemented as a zero phase Butterworth low pass filter with the Matlab
commands butter and filtfilt and a cutoff frequency ωF = 8.7e−4 rads−1. This
gives an estimate of the required cooling ˆ̇Qe and the precool period is increased when
ˆ̇Qe > 0.99Q̇e and decreased otherwise.

Table 11.1: Parameter values used in thermal storage example.

System par. Value Ctrl par. Value
UAdc−goods 300 (WK ) ∆ 4 (hours)

mdc 50 (kg) l1
1
4 (-)

Cp,dc 1 ( kJ
kgK ) l2 − 1

12 (-)
mgoods 500 (kg) ωF 8.7e−4 ( rads )

Cp,goods 4 ( kJ
kgK ) ˆ̇Qe 0.99Q̇e (W )

Q̇e 2850 (W ) tend 9 (hours)
Q̇
e

0 (W ) ym -3 (◦C)
y
m

-2 (◦C)

Fig. 11.3 shows the simulation results with a max load of 3000 W. Without precooling
the temperature increases to 6.6◦C because of the saturation kicking in at 9 in the morning
every day. With precooling the maximum temperature is lowered to 4.5◦C after four days,
which is the time it takes to reach the maximum allowed precool period with the chosen
learning gain l1.

Fig. 11.4 shows the simulation results with a max load of 2800 W. The algorithm
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Figure 11.3: Heat transfer rates and goods temperature with and without precool algo-
rithm applied. Limit is the upper bound on the controllable input.
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Figure 11.4: Heat transfer rates with precool algorithm applied. Cool limit is the upper
bound on the controllable input.

shifts between ∆ = {0, 60, 120, 100, 80, 60, 120, 100, 80, 60, ...} minutes of precool
time in this second simulation with smaller saturation. The precool time that eliminates
saturation in the simulation is approximately 70 minutes.

Convergence of ∆ in the Trial Domain

Fig. 11.4 showed that the precool algorithm will cycle between levels of precool time.
These levels are determined by l1 and l2. If we decrease the learning and de-learning
rates then the jump between levels will be smaller, but we will also converge slower. Let
the repeatability between trials be perfect and ∆∗ be the smallest possible precool time
that avoids saturation, i.e. ∆∗ = inf

{
∆ : ||û||∞ < û

}
, then the precool time ∆j at trial
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j will converge to the interval

∆∗ + l2∆ <∆j ≤ ∆∗ + l1∆, (11.12)

when ∆∗ + l2∆ ≥ 0 and ∆∗ + l1∆ ≤ ∆. If ∆∗ ≤ 0 then ∆j → 0 (no precooling) and
if ∆∗ > ∆ then ∆j → ∆ (max precooling). Furthermore, increasing l1 and decreasing
l2 numerically improves robustness towards hot days. On the other hand, decreasing l1
and increasing l2 optimizes the cost of running the system (assuming that no precool is
cheapest).

3 Supermarket Refrigeration System Model and Control

A supermarket refrigeration system model with control is presented in this section and
illustrated in Fig. 11.5. The purpose of this model is to provide a realistic simulation to
be able to evaluate the performance of the precool algorithm and compare it with other
control strategies under the same conditions, which would not be possible on a real sys-
tem. The first version of the model was derived in [15] and has been slightly modified
in [16–18]. The model presented in this paper is again a slightly modified version that also
takes into account the effect of changes in outside air temperature and corresponding con-
denser pressure, which can saturate the system on hot days due to higher required com-
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Figure 11.5: Supermarket refrigeration system with multiple fridge display cases, a cold
storage room, and additional mass flow from freezers ṁfr. The compressor rack controls
the suction pressure Psuc, the condenser fan controls the condenser pressure Pc, and
finally the temperature of the display cases are controlled with hysteresis control and
learning-based adaptation of the thresholds.
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pressor work. The model is implemented in Matlab Simulink R© and available for down-
load at www.es.aau.dk/projects/refrigeration/simulation-tools.

Simplified Supermarket Refrigeration System model with Display Cases

The display cases are assumed to be of the open shelf type with night covers as shown
in Fig. 11.6. A lumped temperature model is used and the constant circulation of air
provides the heat transfer rates between the air and the evaporator wall Q̇dc−wall and
the air and the goods Q̇dc−goods. Furthermore, heat is transferred between the evaporator
wall and the refrigerant Q̇e and between the ambient air and the air inside the display case
Q̇air,i−dc. Heat transfer from infiltration of air is assumed to be included in Q̇air,i−dc by
choosing a higher overall heat transfer coefficient.
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Figure 11.6: Model of an open shelf type display case with night cover.

The differential equations for the temperatures are

dTgoods
dt

=
Q̇dc−goods

mgoodsCp,goods
, (11.13)

dTwall
dt

=
Q̇dc−wall − Q̇e
mwallCp,wall

, (11.14)

dTdc
dt

=
Q̇air,i−dc − Q̇dc−goods − Q̇dc−wall

mdcCp,dc
, (11.15)

where m and Cp denotes mass and specific heat capacity, respectively. The heat transfer
rates are

Q̇dc−goods =UAdc−goods(Tdc − Tgoods), (11.16)

Q̇dc−wall =UAdc−wall(Tdc − Twall), (11.17)

Q̇e =UAwall−re(Twall − Te), (11.18)

Q̇air,i−dc =UAair,i−dc(Tair,i − Tdc). (11.19)
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3 Supermarket Refrigeration System Model and Control

The heat transfer coefficient between the wall and the refrigerant UAwall−re is a
function of the amount of liquid refrigerant in the evaporator mre given as

UAwall−re =UAwall−re
mre

mre
. (11.20)

whereUAwall−re is the maximum value of the heat transfer coefficient when the evapora-
tor is fully filled (it is assumed that the superheat is controlled separately and maintained
at an average value of Tsh = 10K) and mre is the maximum mass of the liquid refriger-
ant. The rate of change of the mass of the refrigerant mre is

dmre

dt
=


mre−mre

τfill
if valve = 1,

− Q̇e

∆hlg
if valve = 0 and mre > 0,

0 otherwise.

(11.21)

where ∆hlg is the specific latent heat of the remaining refrigerant, τfill is the time it takes
to fill the evaporator from empty, and valve is the control signal to the valve (either on or
off).

The flow of refrigerant out of the evaporator of display case i into the suction manifold
is approximated by

ṁi =
Q̇e

∆hlg
. (11.22)

Since the suction pressure Psuc should be a state in the model to enable suction pressure
control, we define the time derivative of the suction pressure as

dPsuc
dt

=

∑n
i=1 ṁi + ṁfr − V̇cpρsuc

Vsuc
dρsuc

dPsuc

, (11.23)

where ṁfr is additional unmodeled mass flow from freezers, V̇cp is the volume flow out
of the suction manifold due to the compressor work, Vsuc is the volume of the manifold,
and ρsuc is the density in the manifold.

The compressor power Ẇcp is approximated by

Ẇcp =
Ccap
100

Ẇ cp =
V̇cpρsuc (his − he,o)

η
(11.24)

where Ccap is the requested capacity in %, Ẇ cp is the power consumed when the com-
pressor runs at maximum capacity, his is the specific enthalpy out of the compressor
with isentropic efficiency, he,o is the specific enthalpy out of the evaporator, and η is the
efficiency from an isentropic process to the electrical power consumed by the compressor.

In order to solve the above equations a set of refrigerant specific relations are needed.
They can be computed using e.g. the software RefEqns [19]. However, (11.25)-(11.29)
are polynomial and regression fits to the tables provided in RefEqns for the refrigerant
R404A (all-round refrigerant good for both fridge and freezer) and the toolbox is therefore
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not needed.

ρsuc =4.669Psuc + 0.3672, (11.25)
dρsuc
dPsuc

=4.669, (11.26)

his =(3.6436− 0.00968Psuc + 0.0343Pc

− 0.0000495PsucPc + 0.000373P 2
suc

− 0.000629P 2
c )105, (11.27)

he,o =(0.000332P 3
suc − 0.00853P 2

suc + 0.0953Psuc

+ 3.3467)105 + ∆hTsh
, (11.28)

∆hTsh
=9 (Tsh = 10K assumption),

Pc =0.00307T 2
c + 0.1839Tc + 6.0826, (11.29)

Tc =Tair,o + 5.

The condenser unit and the condenser control dynamics are assumed stable and fast com-
pared to the rest. They are therefore approximated by the static relation given in (11.29),
where the condensation pressure Pc is held at a reference corresponding to a temperature
Tc which is 5◦C above the outside air temperature Tair,o.

On/Off Hysteresis Based Temperature Control of Refrigerated Display
Cases

The temperature in each display case is controlled with an on/off valve and the relay
feedback control is given as

valve(k) =

 1 if Tdc(k) > T dc,
0 if Tdc(k) < T dc,

valve(k − 1) otherwise,
(11.30)

where T dc and T dc are the upper and lower thresholds for the temperature of the air in
the display case.

Compressor Rack Control

The suction pressure typically track a reference pressure Psuc,ref with a PI controller
on the compressor rack. The control equations with anti-windup and dead-band DB are
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3 Supermarket Refrigeration System Model and Control

provided in (11.31)-(11.36) (see also [16]).

e(k) =Psuc,ref − Psuc(k), (11.31)

eDB(k) =

{
e(k) if |e(k)| > DB,

0 otherwise, (11.32)

I(k) =I(k − 1) +
Kp,cpts
τi,cp

eDB(k) + w(k), (11.33)

Ccap(k) =Kp,cpeDB(k) + I(k), (11.34)

Ccap,s(k) =

 Ccap if Ccap(k) > Ccap,
Ccap if Ccap(k) < Ccap,
Ccap(k) otherwise,

(11.35)

w(k + 1) =
ts
τi,cp

(Ccap,s(k)− Ccap(k)). (11.36)

Weather Data

A yearlong weather data file for Phoenix, Arizona with 1 minute samples is used to sim-
ulate real outdoor temperatures. Fig. 11.7 shows the seasonal change in temperature.
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Figure 11.7: Outdoor air temperature Tair,o from 1st of January to 31st of December in
Phoenix Arizona based on typical meteorological year (TMY) 2 weather data.

Foodstuff Storage Potential Considerations

Refrigerated foodstuff has different thermal storage potential mainly determined by the
overall heat transfer coefficient, total surface area, mass, and specific heat capacity of
the product. Another important quantity is the Biot number, which indicates if a lumped
or nonlumped temperature analysis is appropriate. The Biot number B is the ratio of
internal temperature difference required to move energy within a product to temperature
difference required at the surface to add or remove the same energy given as [20]

B =
U V
A

k
, (11.37)
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where U is the surface heat transfer coefficient, V is the volume, A is the surface area
exposed to convective heat transfer, and k is the products thermal conductivity. A small
number (< 0.1) means that the temperature will not vary significantly in space inside the
body [20]. However, a nonlumped analysis would be more appropriate if it is large.

Biot numbers for different foodstuffs are provided based on experiments in [8]. Even
though they in general are above 0.1, a lumped analysis is often performed, because it
does not require solving complex multidimensional partial differential equations. The
lumped approach is also taken here. However, it is possible to activate the entire mass of
the foodstuff during precooling and the system also gradually becomes more saturated,
due to increasing outside temperature, which means that the average air temperature in
the display case only changes slowly over several hours.

Due to the night cover in open shelf type display cases there will be a large increase in
the overall heat transfer coefficient between the ambient air and the air inside the display
case during the opening hours of the supermarket. This is also when there is customer
activity and it gives a high increase in heat load and will be modeled in the simulations
conducted in Section 5. Furthermore, in order to evaluate the thermal storage potential of
different foodstuffs, different combinations of mass times specific heat mCp and overall
heat transfer coefficient times surface area UA are used in the simulated display cases.
These parameters determine the main time constant for the foodstuff temperature and a
step in air temperature is made from 3.5◦C to 1◦C using (11.13) to determine how long
it takes to precool the foodstuff from the initial value to 90% of the step size. The time
is 166 min for Display Case 1, 250 min for Display Case 2, 500 min for Display Case 3,
and 300 min for the cold storage room.

4 Precool Algorithm Tuning Guideline for Refrigeration Systems

Learning gains l1 and l2: These are tuning parameters with a value between 0 and 1
(-1 for l2) and they are also discussed in Subsection 2. The choice should be relative to
how changeable the weather is expected to be. The safest option is l1 = 1 and l2 small.
However, this will also result in more precooling than necessary. Simulations have shown
that l1 = 1

4 and l2 = − 1
12 are suitable with the representative weather data presented in

Subsection 3.
Filter parameters ωF and v̂alve: The low pass filter that converts the on/off signal

to the valve to a duty cycle (utilized capacity) will depend on the switching times. The
switching period usually lie somewhere between 5-15 minutes for display cases and the
cutoff frequency ωF = 8.7e−4 rad

s is chosen, which correspond to a frequency period of

about two hours. The threshold duty cycle v̂alve is set to 0.99, which means that if the
utilized capacity of the display case reaches 99% of maximum we will start to precool.

Max precool time ∆: This value is individual for each display case and should cor-
respond to the time it takes to cool the foodstuff from an initial temperature using normal
temperature thresholds to the steady state temperature using precool thresholds, see Sub-
section 3. It can either be chosen based on experience or experiments. In cases where the
foodstuff temperature is not measured, a step down in the air temperature thresholds can
reveal the time constant of the foodstuff. This can be achieved by monitoring how long it
takes the valve duty cycle to settle again after the step, which happens when the foodstuff
temperature has settled (longer precool will not store any additional thermal energy). The
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experiment could potentially be performed automatically during the night or once just
after the controller is installed.

Precool end-time tend: This could be set manually based on supermarket opening
hours, energy tariff, experience, etc. It can also be set and updated automatically based
on the estimated duty cycle output from the filter F , which indicates when the system
went into saturation on the previous day. The precooling should take place before this
saturation. In the simulation results presented in Section 5, tend is determined as the
time when the longest saturation period started the day before. The low thresholds in
the precool period are also extended beyond tend to include the saturation period. This
ensures that the stored thermal energy is not lost immediately but kept for as long as
possible.

5 Simulation Results

Table 11.2 shows the parameter values used in the simulation. The compressor size is
dimensioned so that the foodstuff temperature stays below 5◦C the whole year with the

Table 11.2: Parameter values used in supermarket system simulation. Subscript 1 − 3
denotes display cases and cs is cold storage.

System par. Value Ctrl par. Value
UAair,i−dc,l 75 (WK ) ∆1 166+60 (min)
UAair,i−dc,h 150 (WK ) ∆2 250+60 (min)
UAair,i−dc,cs 110 (WK ) ∆3 500+60 (min)
UAdc−goods,1 450 (WK ) ∆cs 300+60 (min)
UAdc−goods,2 300 (WK ) ωF 8.7e−4 ( rads )

UAdc−goods,3 150 (WK ) v̂alve 0.99 (−)
UAdc−goods,cs 600 (WK ) l1

1
4 (−)

UAdc−wall 500 (WK ) l2 − 1
12 (−)

UAwall−re 900 (WK ) Tm -3 (◦C)
Cp,goods 3917 ( J

kgK ) Tm -2 (◦C)
Cp,dc 1000 ( J

kgK ) T dc,0 5 (◦C)
Cp,wall 385 ( J

kgK ) T dc,0 2 (◦C)
mwall 180 (kg) Psuc,ref,l 4.4 (bar)
mdc,1−3 50 (kg) Psuc,ref,h 4.1 (bar)
mdc,cs 125 (kg) DB 0.1 (bar)
mre 0.6 (kg) Kp -10 (−)

mgoods,1−3 500 (kg) Ti 220 (s)
mgoods,cs 1200 (kg) ts,cp 60 (s)
τfill 40 (s) ts,ilc 5 (s)
Tair,i 22 (◦C)
η 0.5 (−)

Ẇ cp 7985 (W )
ṁfr 0.05 (kgs )
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representative weather data, if the thresholds are constantly kept on low settings. No pre-
cool would result in some days where the foodstuff goes above 5◦C, which is used as a
benchmark and precooling all the time is expensive energy wise. The precool algorithm
is therefore compared with these two extremes in terms of energy consumption and tem-
perature. The heat transfer coefficient UAair,i−dc,l is used for the display cases when the
night cover is on when the supermarket is closed and UAair,i−dc,h is used when the night
cover is off in the opening hours from 9 am to 9 pm. A variation with a factor of two
is used and this also includes the extra load due to exchange of foodstuff during the day.
Zero mean Gaussian noise is also added to the simulation. The standard deviation for the
noise added to UAair,i−dc,l, UAair,i−dc,h, and UAair,i−dc,cs during the opening hours
is 5 and 1 during closed hours. Noise is also added to the mass flow from freezers ṁfr

with a standard deviation of 0.0032. It is assumed that the supermarket is open the same
hours all week and all year and that the customer load is even during the day. Individual
learning controllers could be activated for each day or maybe for weekdays and week-
ends, if some days look different. Finally, note that one hour is added to ∆ to account for
uncertainties and the sample time for the precool algorithm ts,ilc is set to 5 seconds.

Fig. 11.8 shows the simulation result with and without precool algorithm activated for
four days during the summer period out of the 365 day long simulation. The compresser
capacity Ccap saturates during the supermarket opening hours. This results in an increase
in the suction pressure, which gets worse as the outside temperature increases. The valve
duty cycle also saturates and the air and foodstuff temperature goes up. The foodstuff
temperature goes beyond 5◦C during day 177 and 178, if precooling is not performed.

Fig. 11.9 shows the precool time for each day during the simulation with the precool
algorithm. Precool is mostly activated during the hot summer period as expected and
goes to ∆ for each of the storages. By defining the accumulated errors in temperature
constraint satisfaction γcon as

γcon =

n∑
i=1

εTi
ts (11.38)

εTi
=

Ti − T i if Ti > T i
T i − Ti if Ti < T i

0 otherwise,

we get a measure of how much the constraints 0 and 5◦C for the foodstuff are violated
during the simulations. Furthermore, the energy charge is calculated based on a 2010
time-of-use tariff for Phoenix, Arizona [21]. Table 11.3 sums up the results. The temper-
ature threshold is violated in Display Case 1 in five days and in Display Case 2 in four
days when precooling is not used. The cost increase from no precool to constant precool
is 4.24% and 1.21% from no precool to variable precool, which shows the advantage of
the precool algorithm. Even though the precool algorithm costs 1.21% more to run, it
also approximately maintains a 0.3◦C lower average foodstuff temperature, which will
result in a small decrease in bacteria growth.
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Figure 11.8: Compressor capacity, suction pressure, valve duty cycle (approximated),
air temperature (filtered), and foodstuff temperature in Display Case 2 with and without
precool algorithm applied for selected days.
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Figure 11.9: Precool time in hours for each day in the simulation with precool.

Table 11.3: Summary of case study results for simulation from 1st of January to the 31st
of December.

Quantity No Variable Constant
precool precool precool

γcon (Tgoods,1) 7481 0 0
γcon (Tgoods,2) 3679 0 0
γcon (Tgoods,3) 0 0 0
γcon (Tgoods,cs) 0 0 0

Avg. Tgoods,1 (◦C) 3.44 3.12 1.33
Avg. Tgoods,2 (◦C) 3.35 2.97 1.31
Avg. Tgoods,3 (◦C) 3.24 2.68 1.31
Avg. Tgoods,3 (◦C) 3.26 2.93 0.88

Tgoods,1 above lim. (days) 5 0 0
Tgoods,2 above lim. (days) 4 0 0
Tgoods,3 above lim. (days) 0 0 0
Tgoods,cs above lim. (days) 0 0 0

Total energy (kWh) 54742 55401 57235
Energy charge (U.S. $) 3089 3126 3220

6 Conclusion

Foodstuff has thermal storage capabilities. A learning-based algorithm has been proposed
that automatically starts to precool the foodstuff at the appropriate time if the refrigeration
system becomes saturated during hot days or because of component performance degra-
dation and can thus help prevent deterioration of foodstuff. A model of a supermarket
refrigeration system with multiple display cases was derived and simulations for an entire
year showed that precooling could prevent violation of an upper temperature threshold
during the hottest days. The cost of running the algorithm was also less than if precool
was applied all the time.

The learning-based algorithm does not require any additional hardware nor a sys-
tem model. Furthermore, the experience based approach ensures that the precool control
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adapts to load changes, e.g. due to the seasonal temperature differences and to system
changes, e.g. component wear. This means that it can easily be plugged into existing sys-
tems and thus provides an interesting alternative to model-based approaches such as MPC
and precooling based on fixed schedules. The method could potentially be used in other
applications as well such as warehouses, refrigerated transports, freezers, ice production,
building air conditioning, etc. The only requirement is that there is enough repeatability
in the load pattern to allow the learning to converge. The precool might not last all day,
but it is considerably better than doing nothing.
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1 Introduction

Abstract

Refrigeration is important to sustain high foodstuff quality and lifetime. Keeping
the foodstuff within temperature thresholds in supermarkets is also important due to
legislative requirements. Failure to do so can result in discarded foodstuff, a penalty
fine to the shop owner, and health issues. However, the refrigeration system might
not be dimensioned to cope with hot summer days or performance degradation over
time. Two learning-based algorithms are therefore proposed for thermostatically con-
trolled loads, which precools the foodstuff in display cases in an anticipatory manner
based on how saturated the system has been in recent days. A simulation model of a
supermarket refrigeration system is provided and evaluation of the precool strategies
shows that negative thermal energy can be stored in foodstuff to cope with saturation.
A system model or additional hardware is not required, which makes the algorithms
easy to implement in existing systems.

1 Introduction

Supermarkets require refrigeration systems in order to maintain a high quality and life-
time of foodstuff, which is achieved by keeping the food at low temperatures. These
refrigeration systems have multiple fridge and freezer display cases each equipped with
local control of the air temperature inside the display case. A refrigerant is used to ensure
transport of heat, which is achieved by proper control of pressures and mass flows inside
the refrigeration system using compressors, valves, and fans. Further description of re-
frigeration systems is given later and examples of modeling of such systems can be found
in [1–6].

Depending on the type of foodstuff there will be different legislative temperature
thresholds, that must be maintained. In Denmark the Danish Veterinary and Food Admin-
istration (DVFA) conducts yearly checks of the supermarkets to ensure that regulations
are met and that the legally required self-checks have been performed. The thresholds
and inspection rules can be found in [7, 8] and depending on the type of food the fridges
should typically be operated below 5◦C and freezers should be operated below -18◦C. If
the DVFA inspects the supermarket and some of the foodstuff is maintained outside the
limits, then that could result in discarded foodstuff and possibly a fine depending on the
severity. Apart from regulatory requirements, proper temperature control avoids bacteria
growth and resulting food safety risk, which is very important to the overall society.

The main contributors to changes in the load on supermarket refrigeration systems
are the outside air temperature, which determines the high pressure setpoint for the con-
denser unit, and the daily opening and closing of the supermarket, which changes the load
on the individual display cases. Refrigeration systems are therefore usually dimensioned
to cope with all weather conditions and loads in order to guarantee that the foodstuff
can be maintained within the prescribed temperature bounds independent of the ambient
temperature. A negative aspect of over-dimensioning a system is higher peak power de-
mand, which is costly and could require larger transformers or extensions of transmission
lines for large systems such as warehouses and supermarkets. An interesting alternative
to over-dimensioning the system is to store energy in terms of "coldness" for later use.
It is possible to use the refrigerated food to store energy during the lightly loaded hours
of the day; e.g. at night or early morning. In other words, precooling of foodstuff can
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be used to temporally shift some of the load on the refrigeration system to reduce the
peak loads. Precooling can also help if the refrigeration system capacity changes such
as becoming less efficient due to component wear or changes in refrigerant charge. The
number of display cases might also have increased since the commissioning phase which
puts further stress on the system.

Installation of thermal energy storage tanks can help solve capacity problems and
provides a way to shift loads to off peak hours with cheaper energy and to hours where
the outside temperature is lower. Examples of utilization of thermal storage tanks and/or
building thermal capacity is given in [9–11]. However, a considerable additional capital
investment is also associated with installation of thermal storage tanks.

Research has been invested in the use of foodstuff as thermal storage. The authors
in [12] showed significant cost savings in four low temperature warehouses using load
shifting strategies, where the foodstuff and building was cooled more during the night and
less during the day. Model Predictive Control (MPC) has also been investigated as control
strategy for predicting when precooling of foodstuff in supermarkets is required. MPC
was e.g. used in [13] to store energy in the display case to cope with capacity problems
during hot summer days and in [14–16] to provide ancillary services to the Smart Grid.
Further, thermal storage potential of different foodstuffs has been investigated in [17].

To the knowledge of the authors, previous work has used either a predefined precool
schedule or a MPC approach, due to its constraint handling capabilities. In Denmark,
with a population of 5.6 million, there are roughly 4500 supermarkets and the refrigera-
tion systems in these supermarkets are seldom completely similar. This potentially gives
thousands of different systems and, as with the heuristically chosen schedule, a model-
based MPC approach is often tailored to a specific system where deriving a suitable model
can be cumbersome and costly. Changes in load patterns, operating conditions, and stor-
age capacity will also occur during the year. Finally, system parameters also change due
to e.g. reduction in refrigerant charge, faulty components, or component wear. These
approaches therefore often lack flexibility, modularity and robustness towards changes.

Two alternative model-free precool strategies are investigated in this paper in order
to reduce the effect of system saturation on hot days. The first precool strategy was first
introduced in [18], where precooling is applied individually to each fridge display case.
The second strategy applies the precooling to the freezer section, since the freezers have
slower dynamics and a wider dynamic range and thus higher storage potential. The strate-
gies are inspired by learning-based control methods, where Repetitive Control (RC) and
Iterative Learning Control (ILC) are two examples of such methods. These methods are
well covered in the literature (see e.g. [19–21]) and are often used in batch processes
where a task is repeated. This makes it possible to learn a performance improving ref-
erence modifying signal (Serial ILC/RC) or a feedforward signal (parallel ILC/RC) for
the next repetition of that task. Analysis of data from a Danish medium size supermarket
system have shown that there is also a certain amount of daily repeatability in the op-
eration of refrigeration systems. The proposed strategies are therefore devised to learn
how much precool is needed and when it is needed based on data from previous days.
The precooling can then be applied in the next day by temporarily lowering the air tem-
perature thresholds within permissible bounds for the display cases controlled by on/off
hysteretic control. The solutions do not require system model knowledge as MPC. They
can be applied directly to existing lower level control without additional hardware, and
they are tested on a realistic simulation model of a supermarket refrigeration system.
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2 Analysis of Medium Size Supermarket Refrigeration System Data

Data from a Danish supermarket is analyzed in Section 2 and a simulation model of a
supermarket refrigeration system with typical control loops is provided in Section 3. The
precool strategies are then derived in Section 4 and simulation results are presented in
Section 5. Finally, concluding remarks are given in Section 6.

2 Analysis of Medium Size Supermarket Refrigeration System Data

Data from a Danish medium size supermarket refrigeration system has been available
through the ESO2 project [22]. The supermarket is open every day between 8 am and 9
pm and the main components of the refrigeration system are seven medium temperature
(MT) storage evaporators, four low temperature (LT) storage evaporators, two compres-
sors for the MT storages, two compressors for the LT storages, a bypass valve (BP), a
gas cooler/condenser, and a receiver. The refrigerant in the system is CO2 (R744) and
data are logged with a sample time of 60 seconds. A schematic of the system is shown in
Fig. 12.1. The work done by each of the two compressor racks can be estimated from the
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Figure 12.1: Simplified schematic of the medium size supermarket refrigeration system.
The numbers on the valves are used as reference.
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available data by

Ẇcp =
Ccap
100

V̇ cpρsuc (hcp,o − hcp,i) , (12.1)

where Ccap is the requested capacity and V̇ cp is the volumetric flow rate at maximum
capacity, which is approximated by a constant value. The refrigerant density in the suction
line ρsuc, specific enthalpy out of the compressor rack hcp,o, and the specific enthalpy into
the compressor rack hcp,i is determined based on temperature and pressure measurements
and refrigerant property tables (Software package RefEqns is used [23]). The collected
cooling loads from the MT section, the LT section, and the BP valve are estimated as

Q̇ =ṁre∆h, (12.2)

where Q̇ is the heat transfer rate (cooling load), ṁre is the refrigerant mass flow rate
(measured by mass flow meters individually for the MT section, the LT section, and
the BP valve), and ∆h is the specific enthalpy difference between the refrigerant at the
receiver and either the outlet of the evaporators or the BP valve. The enthalpies are again
based on temperature and pressure measurements.

The compressor works, cooling loads, and valve opening degreesOD for a fridge and
a freezer display case are shown for six consecutive days from 18. of September 2011 in
Fig. 12.2. The variation in the data is large and Matlab’s smooth function has therefore

0

5

10

C
om

p.
 w

or
k 

(k
W

) Wcp,mt Wcp,lt

0

5

10

C
oo

lin
g 

lo
ad

 (k
W

) Qe,mt Qe,lt Qbp

0 1 2 3 4 5 60

20

40

60

Time (days)

O
pe

ni
ng

 d
eg

re
e 

(%
)

OD40B (fridge) OD25B (freezer)

. .

. . .

Figure 12.2: Filtered supermarket data for six consecutive days in September 2011. The
top graph shows the estimated work of the compressor racks. The middle graph shows
the estimated cooling loads. The bottom graph shows the opening degree OD of a fridge
and a freezer display case.
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2 Analysis of Medium Size Supermarket Refrigeration System Data

been used to filter the data to reveal the average tendency during the day. 60 samples are
used to filter the compressor work and 120 samples are used to filter the cooling loads
and the valve opening degree. Fig. 12.3 shows the mean and standard deviation for 20
days. The graphs only indicate the spread in the mean value between days, since the data
is filtered. A high degree of repeatability is seen and there is an increase in the load in the
opening hours during the daytime, which is not surprising. The repeatability is mostly
visible in the MT section and in open shelf type display cases. The refrigeration system
does not saturate. However, if saturation would occur it would most likely be mid day,
mid opening hours, and on hot summer days.
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Figure 12.3: Mean and standard deviation of filtered supermarket data based on 20 days
of data from September and November 2011. The top graph shows the estimated work
of the MT compressor rack. The second graph shows the estimated MT cooling load.
The third graph shows the opening degree OD of a fridge display case and the last graph
shows the OD for a freezer.
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3 Supermarket Refrigeration System Model and a Standard
Control Approach

Making yearlong tests and introducing saturation on the refrigeration system in an op-
erating supermarket is not practically feasible. A benchmark model of a typical super-
market refrigeration system is therefore derived for simulation purposes with a focus on
simulating air and foodstuff temperature. The typical control of such systems is also im-
plemented and an overview of the simulation environment is provided in Fig. 12.4. This
model makes it possible to evaluate the performance of different precool strategies and
compare them under the same conditions, which would also not be possible with a real
system. The model was first presented in [18] and represents a slightly modified version
of a benchmark model widely studied in the literature, see [1, 2, 24, 25]. The major mod-
ification made is that the effect of changes in the outside air temperature can now result
in saturation of the system on hot days due to a higher required compressor work. The
model implemented in Matlab Simulink is available at www.es.aau.dk/projects/
refrigeration/simulation-tools.
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Figure 12.4: Overview of supermarket refrigeration system model with multiple display
cases and a cold storage room. The freezer section is simulated by an additional mass
flow ṁfr and controllers are used to regulate pressures and temperatures as indicated.
Only one of the valve hysteresis controllers are shown in the figure.

Fridge Display Case model

A model of an open shelf type display case with night cover is illustrated in Fig. 12.5
with indication of heat transfer paths. The heat transfer rates are between the evaporator
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Figure 12.5: Open shelf type display case model with night cover.

wall and the refrigerant Q̇e, between the air that circulates over the evaporator and the
evaporator wall Q̇dc−wall, between the air and the foodstuff Q̇dc−goods, and between the
ambient air and the air in the display case Q̇air,i−dc. Heat transfer caused by infiltration
of air into the display case is assumed to be included in Q̇air,i−dc and a lumped temper-
ature model is used for simplicity. This gives the following differential equations for the
temperatures:

dTgoods
dt

=
Q̇dc−goods

mgoodsCp,goods
, (12.3)

dTwall
dt

=
Q̇dc−wall − Q̇e
mwallCp,wall

, (12.4)

dTdc
dt

=
Q̇air,i−dc − Q̇dc−goods − Q̇dc−wall

mdcCp,dc
, (12.5)

where m is mass, Cp is the specific heat capacity, and the heat transfer rates are given as

Q̇dc−goods =UAdc−goods(Tdc − Tgoods), (12.6)

Q̇dc−wall =UAdc−wall(Tdc − Twall), (12.7)

Q̇e =UAwall−re(Twall − Te), (12.8)

Q̇air,i−dc =UAair,i−dc(Tair,i − Tdc). (12.9)

Here, Te is the evaporation temperature of the refrigerant and UA denotes the overall heat
transfer coefficient.

The heat transfer coefficient UAwall−re, between the evaporator wall and the refrig-
erant, is predominantly a function of the mass of liquid refrigerant mre in the evaporator
given as

UAwall−re =UAwall−re
mre

mre
, (12.10)
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where mre is the maximum mass of liquid refrigerant and UAwall−re is the heat transfer
coefficient when the evaporator is fully filled and maintained at a superheat level of Tsh =
10K (it is assumed that the superheat is controlled to this level when the valve is on). The
rate of change of the mass of the refrigerant dmre

dt is simulated as

dmre

dt
=


mre−mre

τfill
if valve = 1,

− Q̇e

∆hlg
if valve = 0 and mre > 0,

0 otherwise.

(12.11)

where valve is the control signal to the valve (either on or off), τfill is the time it takes
to fill the evaporator from empty to full, and the specific latent heat of the remaining
refrigerant is denoted ∆hlg.

Supermarket Refrigeration System Model

The mass flow from each display case, the suction pressure, and the compressor power is
simulated to observe the effect of system saturation and precooling.

The dynamics of the condenser unit and the control on the condenser are assumed
stable and fast compared to the rest of the system. A static relation is therefore used for
the condensation temperature Tc = Tair,o + 5, where it is kept at a reference 5◦C above
the outside temperature Tair,o.

The mass flow of refrigerant from each display case i into the suction manifold can
be formulated as

ṁi =
Q̇e

∆hlg
. (12.12)

The time derivative of the suction pressure is then defined as

dPsuc
dt

=

∑n
i=1 ṁi + ṁfr − V̇cpρsuc

Vsuc
dρsuc

dPsuc

, (12.13)

where Vsuc is the volume of the suction manifold, ρsuc is the density, V̇cp is the volume
flow out of the manifold caused by the compressor work, and ṁfr is additional mass flow
from the freezer section.

The electrical power consumed by the compressor Ẇcp is finally approximated by

Ẇcp =
Ccap
100

Ẇ cp =
V̇cpρsuc (his − hcp,i)

η
, (12.14)

where the controllable input Ccap is the requested capacity in %, Ẇ cp is the power con-
sumption at maximum capacity, hcp,i and his are the specific enthalpies in and out of
the compressor assuming an isentropic compression, and η is the efficiency from an isen-
tropic process to the actual electrical power consumed.

A set of refrigerant specific relations are needed in order to solve the above equa-
tions. Software packages such as RefEqns [23] can be used for this purpose. However, to
make the simulation independent of this package, a set of polynomial and regression fits
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3 Supermarket Refrigeration System Model and a Standard Control Approach

to the refrigerant tables in RefEqns are provided here for refrigerant R404A (all-round
refrigerant good for both fridges and freezers):

ρsuc =4.669Psuc + 0.3672, (12.15)
dρsuc
dPsuc

=4.669, (12.16)

∆hlg =(0.00184P 2
suc − 0.0683Psuc + 2.0339)105, (12.17)

his =(3.6436− 0.00968Psuc + 0.0343Pc

− 0.0000495PsucPc + 0.000373P 2
suc

− 0.000629P 2
c )105, (12.18)

hcp,i =(0.000332P 3
suc − 0.00853P 2

suc + 0.0953Psuc

+ 3.3467)105 + ∆hTsh
, (12.19)

∆hTsh
=9 (Tsh = 10K assumption),

Pc =0.00307T 2
c + 0.1839Tc + 6.0826. (12.20)

The specific enthalpy ∆hTsh
is the average increase in enthalpy when the refrigerant is

superheated 10 degree and Pc is the condensation pressure. The fits are made for the
operating ranges used in the simulations.

Suction Pressure Control

A PI controller with anti-windup is typically used to maintain the suction pressure at
a specified reference Psuc,ref . This is achieved by changing the capacity Ccap of the
compressor rack to meet the mass flow demand and a dead-band DB and a slow update
time ts,cp is often used to reduce the mechanical stress on the compressors by reducing the
number speed changes required. It is assumed that Ccap can be changed in a continuous
fashion, i.e. the compressor rack has at least one variable speed compressor. The control
equations are given in (12.21)-(12.26) and also provided in e.g. [2].

e(k) = Psuc,ref − Psuc(k), (12.21)

eDB(k) =

{
e(k) if |e(k)| > DB,

0 otherwise, (12.22)

I(k) = I(k − 1) +
Kp,cpts,cp
τi,cp

eDB(k) + w(k), (12.23)

Ccap,s(k) = Kp,cpeDB(k) + I(k), (12.24)

Ccap(k) =

 Ccap if Ccap,s(k) > Ccap,
Ccap if Ccap,s(k) < Ccap,

Ccap,s(k) otherwise,
(12.25)

w(k + 1) =
ts,cp
τi,cp

(Ccap(k)− Ccap,s(k)). (12.26)

The tunable PI control parameters are Kp,cp and τi,cp and k is the discrete time index.
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Relay Feedback Control of Display Case Air Temperature

Refrigerated air is circulated over the foodstuff to cool it down and the air temperature
Tdc in each display cases is controlled with an on/off valve and relay feedback control
(hysteretic control) given as

valve(k) =

 1 if Tdc(k) > T dc,
0 if Tdc(k) < T dc,

valve(k − 1) otherwise,
(12.27)

where T dc and T dc define the upper and lower thresholds for the temperature and 0 and 1
corresponds to a fully closed or fully open valve, respectively. This type of control is very
simple and a commonly used control method for regulating the temperature of a medium
within bounds. The foodstuff temperature is usually not measured in supermarkets.

Representative Weather Data

A weather file for Phoenix, Arizona is used to simulate realistic high outdoor temperatures
and load profiles on the refrigeration system. This data is based on typical meteorological
year 2 (TMY2) weather data and shown in Fig. 12.6 for a year, which reveals the seasonal
changes in temperature. The higher outdoor temperature during the summer period will
also result in a higher load on the refrigeration system as the difference in condenser and
suction pressure needs to be higher.
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Figure 12.6: Outdoor air temperature Tair,o in Phoenix Arizona based on TMY2 weather
data from 1st of January to 31st of December.

4 Precool of Refrigerated Foodstuff

The potential for precooling of refrigerated foodstuff in supermarkets is investigated in
this section, to be able to handle capacity saturation problems better. As stated in Subsec-
tion 3, relay feedback (hysteretic control) is used as temperature control. In the following
it is assumed that the thresholds on the output Tdc can be shifted up or down within some
legislative hard constraints. This is also the only possible way to apply precooling, if
assuming that the foodstuff temperature Tgoods is unknown and that the precool control
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4 Precool of Refrigerated Foodstuff

should not change the original setup, but only modify the references/thresholds to the
lower level controllers. Two precool algorithms are outlined at the end of the section,
which are both based on a general learning-based precool concept.

Learning-Based Precool

A general way to apply precooling to thermostatically controlled systems is shown in Fig.
12.7, which illustrates the proposed solution using a trial domain notation, where the input
and output vectors contain all the discrete samples in one trial j (for trial domain notation
see e.g. [20]). The system is denoted P and it is disturbed by unknown disturbances dj
during trial j. These disturbances have some repeatable part from trial to trial (e.g. day
to day). This repeatability was also presented in Section 2. A memory block is used
to save previous valve input signals valvej−1 and an estimate of the load on the system
is obtained by filtering this signal giving the vector v̂alvej−1. The idea is then to use
this data to modify the initial air temperature threshold vectors Tdc,0 and Tdc,0 with the
reference modifying vectors Tm,j and Tm,j ;

Tdc,j =Tdc,0 + Tm,j (12.28)
Tdc,j =Tdc,0 + Tm,j . (12.29)

By lowering the thresholds for a period of time it is possible to precool the foodstuff,
since the air flowing across the foodstuff is colder in this period. Note that F can have
zero phase shift properties and by low pass filtering the on/off signal a mean value or duty
cycle is obtained. If this duty cycle reaches an upper limit during the trial j−1 it is likely
to assume that it will happen again in trial j and preemptive action is taken by precooling
in advance.
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Figure 12.7: Relay feedback controlled system P with adaptation of the thresholds using
a learning-based approach. The trial domain is denoted j.

The reference modifying vectors are recalculated each trial and contain zeros except
for the precool period where the values are set to Tm or Tm, which are the allowed
modification of the upper and lower thresholds. The precool period is determined by a
length ∆ and an end-time tend. The end-time could either be based on when the duty
cycle went into saturation in the previous trial, when it came out of saturation, or based
on some known schedule like the opening hours of the supermarket. The length of the
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precool period is determined based on a serial ILC inspired learning algorithm;

∆j =∆j−1 + δj−1 (12.30)

δj−1 =

{
l1∆ if

∣∣∣∣∣∣v̂alvej−1

∣∣∣∣∣∣
∞
≥ v̂alve

l2∆ otherwise,
(12.31)

where δj−1 is the update and v̂alve is the upper threshold on the duty cycle, which in-
dicates if the system was saturated in the previous trial and if more or less precooling is
required. The gains l1 ∈]0, 1] and l2 ∈ [−1, 0[ are the learning and de-learning gains,
where e.g. l1 = 1 means that the maximum allowed precool time ∆ is reached in one
trial and lower values mean slower convergence.

The upper limit on the precool time ∆ should approximately correspond with the time
it takes to precool the foodstuff, since a longer precool time only results in an increase in
power consumption. The precool time is therefore limited as

∆j =

∆ if ∆j > ∆
0 if ∆j < 0

∆j otherwise.
(12.32)

Potential ways of determining a suitable maximum precool time is further discussed in
Subsection 4.

Remark that the reference update is based on the error in the previous trial in serial
ILC, whereas it is based on the saturation of the input in previous trials in the proposed
solution. This strategy is chosen, because it does not help to change the reference signal
to force precooling in the refrigeration system when the system is already saturated. Note
also that valve and Tdc could be replaced by other inputs and outputs in other types of
storage control problems, e.g. buffer tank level control or building indoor temperature
control.

Simple Thermal Storage Example

A simple thermal storage example is presented in the following, to demonstrate the pre-
cool algorithm under perfect repeatability in load pattern and without multiple display
cases. Fig. 12.8 shows a model of the system, which is essentially a very simplified re-
frigeration system. Relay feedback control was applied on the air temperature Tdc with
the heat transfer going out of the system Q̇e as an on/off type input with Q̇e and Q̇

e
as

Qair,i-dc
.

Qe
.

Qdc-goods
.

Tgoods

Tdc Foodstuff
Air volume

Figure 12.8: Simple thermal example system model. The load disturbance is the heat
transfer from the surroundings Q̇air,i−dc and the controllable input is the heat transfer
Q̇e.
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the on and off signals, respectively. The load on the system Q̇air,i−dc was simulated as a
square signal that repeats itself daily. The upper value is higher than the possible cooling
Q̇e, which will result in input saturation and thus temperature deviation. The objective is
to keep the foodstuff temperature Tgoods below 5◦C.

A state space representation of the system illustrated in Fig. 12.8 can be derived from
(12.3), (12.5), and (12.6) giving

[
Ṫdc
Ṫgoods

]
=

[ −UAdc−goods

mdcCp,dc

UAdc−goods

mdcCp,dc
UAdc−goods

mgoodsCp,goods

−UAdc−goods

mgoodsCp,goods

] [
Tdc
Tgoods

]
+

[ −1
mdcCp,dc

0

]
Q̇e +

[ 1
mdcCp,dc

0

]
Q̇air,i−dc, (12.33)

and system and control parameters used in the simulation are collected in Table 12.1.
The low pass filter F is implemented using the Matlab command butter with a cutoff
frequency ωF = 8.7E−4 radians/s. Furthermore, filtfilt is used to make the filter

have zero phase shift properties and this gives a good estimate of the average load ̂̇Qe.
The precool time is then increased if ̂̇Qe > 0.99Q̇e (99% of maximum capacity).

Table 12.1: Parameter values used in the simple thermal storage example.

System par. Value Ctrl par. Value

UAdc−goods 300 (WK ) ∆ 4 (hours)

mdc 50 (kg) l1
1
4 (-)

Cp,dc 1 ( kJ
kg·K ) l2 − 1

12 (-)

mgoods 500 (kg) ωF 8.7E−4 ( rads )

Cp,goods 4 ( kJ
kg·K ) ̂̇Qe 0.99Q̇e (W )

Q̇e 2850 (W ) tend 9 (hours)

Q̇
e

0 (W ) Tm -3 (◦C)

Tm -2 (◦C)

The results using a maximum load of 3 kW is shown in Fig. 12.9. The foodstuff
temperature increased to 6.6◦C without precooling, because the load became too large at
9 in the morning each day. This was lowered to 4.5◦C after four days, when precooling
was applied with the chosen learning gain.

A similar simulation was performed with a maximum load on the air of 2.8 kW and the
results are shown in Fig. 12.10. The algorithm cycled between different values of precool
time on a four day basis. The precool times are ∆j = {0, 60, 120, 100, 80, 60, 120, 100,
80, 60, ...}minutes of precool and the required precool time that just exactly removes the
saturation is approximately 70 minutes. This value can not be reached with the chosen
learning gains, since the they discretize the obtainable precool times.
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Figure 12.9: Simulation results without and with variable precool using the simple exam-
ple model with a max load of 3 kW and an upper limit on Q̇e of 2.85 kW.
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Figure 12.10: Simulation results without and with variable precool using the simple ex-
ample model with a max load of 2.8 kW and an upper limit on Q̇e of 2.85 kW.

Convergence of the Precool Time in the Trial Domain

The precool period will cycle between levels of precool time as indicated in Fig. 12.10
and the levels are determined by l1 and l2. The jump between levels can be made smaller
by decreasing the learning and de-learning rates (l1 and l2), but that will also result in
slower convergence.

If there is total repeatability between trials and if ∆∗ denotes the smallest possible

precool time that avoids input saturation, i.e. ∆∗ = inf

{
∆ :

∣∣∣∣∣∣v̂alve
∣∣∣∣∣∣
∞
< v̂alve

}
, then

the precool time ∆j will converge to the interval

∆∗ + l2∆ <∆j ≤ ∆∗ + l1∆, (12.34)
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when ∆∗ + l2∆ ≥ 0 and ∆∗ + l1∆ ≤ ∆. Furthermore, if no precooling is required
(∆∗ ≤ 0) then ∆j → 0 and if maximum precooling is required (∆∗ > ∆) then ∆j → ∆.

Since no precool is cheapest in terms of energy, then l1 should be small and l2 should
be large numerically (removes precool quickly again). However, if robustness towards
hot days is more important, then it should be the opposite.

Foodstuff Storage Potential Considerations

The temporal thermal storage potential of different refrigerated foodstuffs is predomi-
nantly determined by the foods total surface area, mass, overall heat transfer coefficient,
and specific heat capacity. The Biot number B is also an important factor and it is the ra-
tio of internal temperature difference required to move energy within a product compared
to the difference required at the surface to add or remove the same energy. The Biot num-
ber therefore gives an indication of the appropriateness of a lumped versus a non-lumped
temperature analysis and defined as [26]

B =
U V
A

k
, (12.35)

where A is the exposed surface area of the product, V is the volume, U is the surface heat
transfer coefficient, and k is the thermal conductivity. A lumped analysis can be applied
if the Biot number is small (B < 0.1), which means that the temperature will not vary
significantly inside the product and a non-lumped analysis is more appropriate if B is
large.

[17] provides experimentally obtained Biot numbers for different type of foods,
which indicate that they are generally above 0.1. However, a lumped analysis is often
performed despite of this, because it does not involve solving complex multidimensional
partial differential equations. The lumped approach is also taken here for two additional
reasons; because the entire mass of the foodstuff can be activated during precooling and
because the system only gradually becomes more saturated, due to a slowly changing
average air temperature, caused by the increasing outside temperature, which changes
slowly over several hours.

A large increase is seen, in the overall heat transfer coefficient between the air in the
store and the air inside the display case, when the supermarket is open, since the insulating
night cover in open shelf type display cases has to be removed in this period. This also
coincides with customer activity, which gives an increased heat load and the behavior
is included in the simulations presented in Section 5. The constant flow of foodstuff
from store to display cases to the customers (out of the store) is therefore included in the
behavior of the overall heat transfer coefficient, since no specific data was available on
how much food is moved during the day due to confidentiality. Additionally, since foods
have different thermal storage potential, different combinations of UA values and mass
times specific heat mCp is used in each display case. This gives different time constants
and a step in the air temperature from 3.5 to 1◦C using (12.3) is performed in order to
determine how long it takes to precool the food. The time is measured as the time from
the step to when 90% of the step is reached and the result is shown in Fig. 12.11. This
gives 166 minutes for Display case 1, 250 minutes for Display Case 2, 500 minutes for
Display Case 3, and 300 minutes for the cold storage room. They therefore represent
different time constants and storing potentials.
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Figure 12.11: Food temperature during a step in the air temperature.

Precool Algorithms and Tuning Guideline

Ad hoc tuning guidelines are provided here based on simulations and experience with
supermarket refrigeration systems. The parameters can also be tuned after installation if
needed.

Learning gains l1 and l2

Tuning of these parameters was discussed in Subsection 4 and they should have a value
in the intervals l1 ∈]0, 1] and l2 ∈ [−1, 0[. Setting l1 = 1 and l2 small gives the safest
option, but will often result in more precooling than necessary. The choice should reflect
how changeable the weather can be expected to be. Simulations with the weather data
presented in Fig. 12.6 have shown that l1 = 1

4 and l2 = − 1
12 gives a good tradeoff

between ensuring precooling when needed and energy consumption.

Filter parameters ωF and v̂alve

A zero phase shift low pass filter is used to convert the valve on/off signal to a duty cycle
(utilized capacity). The filter therefore depends on the approximate switching period of
the valves, which is usually between 5-15 minutes in display cases. A cutoff frequency
of ωF = 8.7E−4 radians/s is used in the following, which corresponds to a period of two

hours. The duty cycle threshold v̂alve is set to 0.99. Precooling is thus activated when
the utilized capacity reaches 99% of maximum on previous days.

Maximum precool time ∆

The maximum precool time is individual for each display case and could either be based
on experiments or experience. It should approximately be the time it takes to cool the
foodstuff down from the normal steady state temperature to the steady state value using
the precool thresholds, see also Subsection 4. A potential way to reveal the time constant
of the foodstuff temperature, when this temperature is not measured, could be to make
a step down in the air temperature thresholds and then monitor how long it takes the
valve duty cycle to settle after the step. This is possible because the valve duty cycle
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settles when the foodstuff temperature has settled. The test could either be performed
during initial startup, as part of an automatic night procedure, or it could be based on the
previous precool cycle.

Precool end-time tend

The placement of the precool period could be based on supermarket opening hours, en-
ergy tariffs if they are known in advance, experience, etc. An alternative is to update it
automatically, since the estimated duty cycle also gives an indication of when the system
was saturated on the previous day. The precool period should then be placed before this
period and should be extended into the saturation period to ensure that the stored thermal
energy is kept for as long as possible in the local fridges. The automatic approach is used
in the simulation in Subsection 5 and a fixed tend corresponding to the opening of the
supermarket is used in the simulation in Subsection 5.

The two precool strategies are outlined in the pseudocode denoted algorithm 1 and 2.
The first algorithm applies precool individually in each fridge display case and finds tend
automatically. An algorithm is needed for each of the fridges:

1: Initialize ∆ = 0, n = 0, Tm = 0, Tm = 0, tend = 0
2: Wait until midnight (start of new trial)
3: function ALGORITHM_1(valve)
4: if n has reached 24 hours of data then
5: Reset n
6: Filter valve to get v̂alve
7: Find longest saturation period in v̂alve
8: if system is saturated then
9: Set tend at start of long saturation period

10: end if
11: Update ∆ according to (12.30), (12.31), and (12.32)
12: Set Tm = 0 and Tm = 0
13: Insert precool in Tm, Tm using ∆, tend, Tm, Tm
14: Extend precool to include saturation period
15: else
16: Increment n
17: end if
18: Set new temperature thresholds in fridge display case: T dc = Tdc,0(n) + Tm(n),

T dc = Tdc,0(n) + Tm(n)
19: Save valve(n) = valve
20: end function
The second algorithm determines if any of them number of fridges are saturated and then
applies precooling in the freezer section instead and uses a fixed tend. An algorithm is
needed for each individual freezer display case or room:

1: Initialize ∆ = 0, n = 0, Tm = 0, Tm = 0, tend = 0
2: Wait until midnight (start of new trial)
3: function ALGORITHM_2(valve1,valve2,...,valvem)
4: if n has reached 24 hours of data then
5: Reset n
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6: for i = 1,m do
7: Filter valvei to get v̂alvei
8: end for
9: Update ∆ according to (12.30), (12.31), and (12.32)

10: Set Tm = 0 and Tm = 0
11: Insert precool in Tm, Tm using ∆, tend, Tm, Tm
12: else
13: Increment n
14: end if
15: Set new temperature thresholds in freezer: T dc = Tdc,0(n) + Tm(n), T dc =

Tdc,0(n) + Tm(n)
16: Save valve(n) = valve
17: end function
Both Algorithm 1 and 2 should run with the same sample time as the valve signal being
updated.

5 Simulation Results

First, Algorithm 1 is simulated, for an entire year starting from 1st of January using the
weather data shown in Fig. 12.6. The size of the compressor is dimensioned so that the
temperature of the foodstuff stays below 5◦C in all display cases and in the cold storage
room even during the hottest day in the year, if the air temperature thresholds are kept on
the low settings constantly (constant precool). This is the most costly scenario in terms of
energy and if there is no precool, then there will be some days where the temperature of
the foodstuff exceeds 5◦C. The precool algorithm is therefore compared with these two
extremes in terms of both keeping the energy consumption and the temperature low.

Algorithm 2 is also simulated for a year. The difference here is that precooling is
applied to the freezer section. A small extension of the model presented in Section 3
is therefore required. All freezer section foodstuff is lumped together and represented
by the temperature of the foodstuff Tgoods,fr and simulated using (12.3). The load heat
transfer rate is calculated as in (12.6) and the cooling heat transfer rate is calculated
using (12.12), where the specific latent heat ∆hlg,fr is approximated with a constant,
since it is assumed that the low temperature pressure can be maintained at a constant
level. The controllable input is the mass flow from the freezer section, which is allowed
to vary ±30% around the nominal value ṁfr = 0.05 kg/s. The nominal value is the
value used in the first simulation and corresponds to the required mass flow for keeping
Tgoods,fr at the setpoint -18◦C in steady state. This makes the simulations comparable
and does not require modeling and simulation of multiple freezer display cases and an
additional compressor rack. A simple PI temperature controller is used to control the
mass flow to make the freezer food temperature follow the setpoint reference and has
control parameters Kp,fr and Ti,fr.

All simulation parameters are shown in Table 12.2 and the system parameters are
in the same range as values used in the benchmark models presented in [1, 2, 24, 25].
The supermarket is assumed to be open from 9 am to 9 pm all days in the year and
the customer load is evenly distributed during the day. Although not incorporated here,
individual learning algorithms could be activated for weekdays and weekends, if there is a
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Table 12.2: Parameter values used in supermarket system simulations. Subscript 1 − 3
denotes display cases, cs is cold storage, and fr is freezer section.

System par. Value Ctrl par. Value

UAair,i−dc,l 75 (WK ) ∆1 226 (min)

UAair,i−dc,h 150 (WK ) ∆2 310 (min)

UAair,i−dc,cs 110 (WK ) ∆3 560 (min)

UAdc−goods,1 450 (WK ) ∆cs 360 (min)

UAdc−goods,2 300 (WK ) ∆fr 480 (min)

UAdc−goods,3 150 (WK ) ωF 8.7E−4 ( rads )

UAdc−goods,cs 600 (WK ) v̂alve 0.99 (−)

UAdc−wall 500 (WK ) l1
1
4 (−)

UAwall−re 900 (WK ) l2 − 1
12 (−)

UAfr 137.5 (WK ) Tm -3 (◦C)

Cp,goods 3917 ( J
kg·K ) Tm -2 (◦C)

Cp,dc 1000 ( J
kg·K ) T dc,0 5 (◦C)

Cp,wall 385 ( J
kg·K ) T dc,0 2 (◦C)

Cp,fr 2000 ( J
kg·K ) Psuc,ref,l 4.4 (bar)

mwall 180 (kg) Psuc,ref,h 4.1 (bar)

mdc,1−3 50 (kg) DB 0.1 (bar)

mdc,cs 125 (kg) Kp,cp -10 (−)

mre 0.6 (kg) Ti,cp 220 (s)

mgoods,1−3 500 (kg) ts,cp 60 (s)

mgoods,cs 1200 (kg) ts,ilc 5 (s)

mgoods,fr 4000 (kg) Kp,fr -0.2 (−)

τfill 40 (s) Ti,fr 1800 (s)

Tair,i 22 (◦C)

η 0.5 (−)

Ẇ cp 7985 (W )

ṁfr 0.065 (kgs )

ṁfr 0.035 (kgs )

∆hlg,fr 110 (kJkg )
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discrepancy in loading patterns. UAair,i−dc,h is used in the open period and UAair,i−dc,l
is used when the night cover is down during the closed hours. The factor two variation
includes the extra load due to exchange of foodstuff during the day and correspond to
the supermarket data shown in Section 2. Gaussian noise is also added to UAair,i−dc,l,
UAair,i−dc,h, and UAair,i−dc,cs with a standard deviation of 5 W/K during the opening
hours and 1 W/K during the closed hours, which gives realistic variations in the load
disturbances. Furthermore, noise with a standard deviation of 0.0032 kg/s is added to the
freezer mass flow, the precool algorithm sample time ts,ilc is set to 5 seconds (sampling
of the valve signal), and ∆ is extended by one hour to account for uncertainties.

Local Precool Control in Fridge Display Cases

Simulation results with and without the precool algorithm are shown for four summer
days in Fig. 12.12. The compressor capacity goes into saturation when the supermarket
is open due to the high condenser pressure (hot outside temperature). The result is that the
suction pressure control can not keep the suction pressure at the reference and the largest
deviation is during the hottest hours of the day. This also means that the valve duty
cycle for the display cases saturates at 100%, which gives an increase in the average air
temperature T̂dc (low pass filtered). Finally, this makes the foodstuff temperature exceed
5◦C during day 177 and 178 without precooling. The precool time is shown in Fig. 12.13.
Precooling is mostly applied in the hot summer months as expected and limited by the
individual ∆ for the storages.

The total energy charge can be calculated based on the simulated compressor power
combined with an energy tariff. Here a 2010 time-of-use tariff [27] is applied for Phoenix,
Arizona, which corresponds with the weather data file.

The simulation results are compared in Table 12.3. Display cases 1 and 2 violate
the 5◦C threshold in five and four days, respectively, if precooling is not applied. The
precool algorithm increases the energy charge cost by only 1.21% compared to 4.24% if
the display cases are precooled all the time, showing the advantage of the precool learning
algorithm.

Table 12.3: Summary of case study results for simulation from 1st of January to the 31st
of December with and without precool locally in each fridge.

Quantity No Variable Constant

precool precool precool

Tgoods,1 above lim. (days) 5 0 0

Tgoods,2 above lim. (days) 4 0 0

Tgoods,3 above lim. (days) 0 0 0

Tgoods,cs above lim. (days) 0 0 0

Total energy (kWh) 54742 55401 57235

Energy charge (U.S. $) 3089 3126 3220

Note that the proposed algorithm does not guarantee the temperatures will be held
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Figure 12.12: Simulation results with and without precool in each fridge for selected days
during the summer period. The air temperature (filtered) and foodstuff temperature are
shown for display case 2.

within the constraints, but only keeps the foodstuff temperatures as low as possible when
the system saturates and thus increases the robustness of the system. The limit of 5◦C for
some fridge products might be different elsewhere, but most bacterial growth stops below
this temperature [7].
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Figure 12.13: Precool time used in the three display cases and in the cold storage room
for each day in the simulation starting from 1st of January.

Precool in the Freezer Section

Simulation results with and without the precool in the freezer section are shown for four
summer days in Fig. 12.14. The saturation in the display case valve duty cycle is much
less when compared with the result presented in Fig. 12.12. The suction pressure is
also kept at the reference much longer and the compressor works more during the non-
saturated period resulting in an overall higher power consumption. This is due to the
increased refrigerant mass flow in the freezer section during the precool period until 9
am, where the foodstuff temperature Tgoods,fr reaches the lower reference at −23◦C and
the lower mass flow after when the temperature increases to −18◦C again. The freezer
section parameters used in the simulation gives a relatively fast time constant compared
to an average freezer display case. However, approximately the same performance is
achieved in terms of keeping the maximum foodstuff temperature in the fridge display
cases below 5◦C and no days went above the limit. This indicates that there could be a
high potential in placing the precool in the freezers instead. The precool time applied to
the freezer section is shown in Fig. 12.15.
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Figure 12.14: Simulation results with and without precool in the freezer section for
selected days during the summer period. The air temperature (filtered) and foodstuff
temperature are shown for display case 2 along with the freezer foodstuff temperature
Tgoods,fr.
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Figure 12.15: Precool time used in the freezer section for each day in the simulation
starting from 1st of January.

6 Conclusion

Two learning-based algorithms have been proposed for storage of thermal energy in food-
stuff. They automatically find the appropriate amount of precool time to be applied and
when the precooling should be started in the current day. The first method applies the
precooling directly to the individual fridge display cases and the second method instead
applies it to the freezer section to lower the total system load later in the day. A super-
market refrigeration system model with multiple display cases has been derived and year-
long simulations showed that precooling of the foodstuff could prevent upper temperature
thresholds from being violated during the hottest days of the year with both algorithms.
Precooling the fridge display cases constantly demonstrated that intelligent precooling
was less costly. Additionally, there could be a high potential in combining precooling
in fridges with precooling in freezers, if coordinated correctly. Finally, the methodology
presented could easily be extended to handle operation of ice storages for supermarkets,
which is currently being introduced in some larger supermarket chains.

The proposed precool algorithms provide interesting alternatives to MPC and fixed
precool schedules, since no system model is required and because the learning-based ap-
proach ensures adaptation to changes in load patterns. Furthermore, no additional hard-
ware is required and the algorithms can easily be plugged into existing systems. The
primary additional effort would be tuning but good initial guidelines are given in Section
IV. Potential uses of this approach could also extend to ice production, warehouses, re-
frigerated transports, building air conditioning, etc. The primary requirement is that there
is sufficient repeatability in the load pattern.
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