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Abstract

This thesis concerns methods for developing control soéiviar autonomous
systems with a high level of modularity, striving towards ecldrative control
paradigm, where the control system is able to solve contrdlestimations tasks
based on system and objective descriptions alone. Thisr&ied on the basis
of Quantised State Systems (QSS) which is a recent formdtismorking with
systems of ordinary differential equations in an compugngironment based on
discrete interactions between model entities.

At first; Quantised State Systems are introduced togethtr theé Discrete
EVent Systems (DEVS) formalism used to implement them. Amamative study
on simulation performance compared to traditional timsegite methods is given
for an autonomous underwater vehicle.

Next, a novel Extended Kalman Filter (EKF) variation is deped which
utilises the QSS approach to allow Jacobian free estimatitin discrete event
inputs. This approach is compared to a traditional EKF immgetation on an
example concerning attitude determination for a deepespaabe.

Two different control strategies are thereafter developased on the QSS
approach; an optimising general controller that uses liméaimation to provide
an input signal that minimises a user supplied objectivetion of the state, and a
controller based on sliding mode control which is highly miad and also allows
configuration by supplying an objective function.

The aforementioned QSS based estimator and control digwiare evalu-
ated in a closed-loop control setting with a high-fidelitynaiation model sim-
ulating a Deep Space Probe conducting a Jovian fly-by. Thétsefsvours the
sliding mode controller in terms of both performance andisbbess.

A simulation architecture for Hybrid System models are ttgyed, allowing
translation from XML specifications of hybrid models intanrtime representa-
tions. Itis demonstrated how the tools developed for hybidiel simulation can
be combined with the aforementioned algorithms for comtirsucontrol to imple-
ment hybrid supervisory control systems. Finally, it isgweed how the different
algorithms and tools can be combined into a declarativercbsystem.






Synopsis - Danish Abstract

Neerliggende afhandling omhandler metoder til udviklingsaftware til kon-

trol at autonome systemer med en hgj grad af modularitet. ikdiidlgen sigter

imod et deklarativt kontrol paradigme, hvor kontrol sysétiliver i stand til Igse
estimations- og kontrolopgaver baseret pd modelbeskevalg malbeskrivelser.
Denne malsaetning forfalges pa basis af Kvantiserede SyaterSer (KSS), som
er en ny formalisme for behandling af ordineere differeligjainger i et comput-

ersystem baseret pa diskrete interaktioner imellem koepien.

Indledningsvis beskrives Kvantiserede State Systememsmmed en speci-
fikation af Discrete EVent Systems (DEVS), som er en formadisder imple-
menterer KSS systemer. Et simuleringstudie sammenligiss &imulering med
traditionelle tidsdiskrete metoder for et eksempel omkamik en autonom un-
dervandsbad.

Derefter udvikles en ny variation af den kendte Extendedriéal Filter (EKF)
algoritme baseret pa KSS systemer. Denne tilgangsvirkaler estimering uden
kendskab til Jacobian matricen for systemet og understatéat baserede malinger.
Den nye algoritme sammenlignes med den traditionelle Ekgbriine pa et ek-
sempel omhandlende en interplanetarisk probe.

To forskellige reguleringsalgoritmer er herefter udvikleed base i KSS til-
gangen; en optimerende regulator, som benytter lokal nmétion til at udlede
et styresignal der minimerer en brugerdefineret malfunktay en modulzer op-
bygget controller baseret pa teorien om glidende manifpltem ogsa styres af
en brugerdefineret malfunktion.

De fgrnaevnte KSS baserede veerktgijer til estimering og d&oetrevalueret
pa et reguleringsproblem omhandlende en interplanetprisiie der flyver forbi
Jupiter.

En simuleringsarkitektur for modeller af hybride systerseudviklet, som
tillader overseettelse fra XML specifikationer til softwaniejekter. Det er demon-
streret hvordan disse veerktgjer for hybrid simulering kamkineres med farnaevnte
algoritmer og implementere hybrid control systemer. Eigtlebr det forelsaet
hvordan resultaterne kan videreudvikles henimod et datiakontrol system.
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Introduction

This thesis concerns development of methods and tools hieedeclarative so-
lutions to control problems, i.e. the development of genaljorithms that can
easily adapt to problem specific model descriptions. Thiptdr provides moti-
vation for the work and an overview of the thesis and its ¢buations.

1.1 Background and Motivation

Control problems relating to human artifacts date back tciesm times when
Egyptian inventor Ctesibius invented the float valve as d-fesck device in wa-
ter clocks to help keep a constant pressure and hence ieaeasracy. As civil-
isation entered the industrialised age more industriatgsses needed to be con-
trolled and in 1788 James Watt developed his famous fly-lusdemor to control
the shaft speed in steam engine powered equipment.

Until this time all control inventions were based on phykicaight and in-
genuity rather than mathematical analysis, and the coimyehtions were imple-
mented by mechanical modifications to the system to be d@drdHowever, the
19th century saw the development of the first mathematicallyais tools for con-
trol problems, pioneered by names such as James C. MaxwéllReuth, and A.
M. Lyapunov.

At the start of the 20th century the invention of flight andtéyeid deployment
of combustion engines inspired increased research inagmoblems. Also in
these years the development of electronics allowed cdertsaio be implemented
in electric circuits as an alternative to mechanical dexic&requency design
methods, well suited for implementation using operatiorpléfiar technology,
were developed during the time with H. W. Bode and H. Nyqussteading re-
searchers.
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fhics

Figure 1.1: Advances in control engineering and digital computers en-
abled the Apollo missions to the Moon during the sixties aaesties.

Following the second world war advances in control engingdsecame nec-
essary for the super powers in support of the raging spaee Téuis time saw the
development of state-space methods, Kalman filtering, ptichal control theory
among others.

Since then there has been a continued research effort talprimcreasingly
complex algorithms to deal with challenging control prabtesuch as e.g. non-
linearity or embedded discrete behaviour. One trend thabeadentified is that
the role of the digital computer continues to be more domtinroughout all
phases from analysis and modelling to implementation ofrobtaws. Recent
methods such as e.g. non-linear model predictive contrphdicle filtering em-
phasises this trend.

1.1.1 The Gap Between Theory and Application

As argued above there exists today a large body of advanesdytho address
challenging control problems. However, it is reasonabladk if this theory is
being applied in applications today? It is a well known sgyin the control
community that "In industry they always implement PI€bntrollers anyway".

A good motivation for why this might be true to a large exteadhat PID
control is available out-of-the-box from e.g. Programnaedbbgic Control (PLC)

*Proportional Integral Derivative control
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units, which can be installed by an electrician, who can &ls® the control
parameters by himself. On the other hand application of mement and advanced
control theory require domain experts and control experta/drk together for
extended time during which they will gradually progressrirproblem definition
to implementation of a control system.

In other words the investment required to apply modern cbigchniques at
typical industrial fabrication facilities can be prohilé&. Hence, in order to make
advanced control methods more cost effective, we must lookags to make
them easier to apply to real-life problems without exteasixpert assistance. The
price that is paid for not implementing the advanced contrethods is increased
resource consumption, reduced process quality and irexteasar in machinery.

As an analogy, consider the advancement in computer gaphier the last
decades; here also a very large body of theory has been gededmd the methods
also rely on digital computers for implementation. Howead of this research
is available to the mainstream consumer in software packsigeh as GIMPor
Photoshop, where the consumer can apply the latest results in waveysis
and related methods, when enhancing family photos. The kisevs nothing
about what is going on but is simply presented with a dialolgoe with some
intuitive parameters to adjust (e.g. sharpness). Withekésnple in mind the fol-
lowing ultimate goal is presented for the research pursoékis thesis:

Ultimate Goal 1: "Application of advanced control theory to real-life cowitr
challenges is as easy as enhancing family photos in Phagbtdsho

The next subsection will elaborate this goal into more cetgcterms.

1.1.2 A Declarative Control System

In Computer Science; programming languages are often mdded as support-
ing one or multiple programming paradigms, for example Cs-said both to be
a procedural and object-oriented programming languagéhedhighest level one
can distinguish betweemperative programmin@nddeclarative programming
The first concept is the most well-known and refers to langaaghere the pro-
gram elements describe ways to manipulate data, e.g. tHerimeptation of an

thttp://www.gimp.org
*http://www.adobe.com/products/photoshop
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algorithm. This way of thinking is typical in languages suhC/C++, Pascal,
and Java.

Declarative programming on the contrary focuses on dexjatie problem
rather than specifying solutions in terms of algorithmsr &mample the XSLT
language is used to describe transformations between éedeévlarkup Language
(XML) documents by describing relations-ships rather thestedures for trans-
formation. Other examples of declarative languages ar® [E&ibel, 2005] and
Prolog [Callear, 2003]. With this terminology from compugeience we are in-
spired to develop a system that can solve control probleriaiddively:

Definition 1.1 (Declarative Control System (DCS))

A Declarative Control System is a system capable of comipla plant based
on a description of the plant and a description of the perémre that must be
obtained.

Certainly if the advanced control theories that exists yarkn be packaged in
a DCS such that the algorithms automaticallyuat-timecan adapt to the supplied
models then these methods are much easier to apply for thei¢em in the field.

Declarative
Control
System

Performance

Plant Model —» Model

Control

Signals Measurements

Plant Interface

Figure 1.2: The concept of a declarative control system - accepting plan
and performance models as basis for computation.

Figure 1.2 depicts this graphically; the DCS is fed with a eladescription
(including all available sensors and actuators) and a peeoce specification.
Based hereupon; the DCS is able to control the plant in need-accepting mea-
surements from the plant and supplying control signals. tBigure 1.3 provides

SExtensible Style-sheet Language Transformations
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Figure 1.3: The different architectural elements in an implementatibn
a declarative control system.

a general overview of the software modules that must be dpedlin order to
implement the DCS functionality. The following gives a Wriscussion of each
module:

Model this module must implement software which can represenpldng and
performance model as described by the user. This entailwa@f represen-
tations for integrators, function maps, and other modehelgs.

Estimation  this module must implement various estimation algorithivet t
can be used to filter data from plant sensors.

Control  here various control algorithms must be implemented geakyisuch
that they can be bound to the user supplied model without adiffoations
to the algorithms.

Configuration this module is responsible for analysing the user supplied
models and set up relations (at run time) between model eltsnaad algo-
rithms, both estimation and control. This includes chogsitnich algorithms
are best suited to the problem.

Executive  based on the relations set up between components by thewanfig
tion module the executive module is responsible for exagutie algorithms
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and interacting with the plant.

Deploying the DCS architecture fully is beyond the scope sfrgle PhD
project and the next subsection will limit the scope of thespnt study and present
specific research objectives pursued in this thesis. Foilisarmn methodologies
that can support the idea of a DCS system.

1.1.3 Scope of this Study

Control and estimation algorithms such as e.g. sliding nmomidrol and Kalman

filtering replicate parts of the plant model in their struefufor example in Kalman

filtering the plant dynamics is used to propagate states avatiance, and a slid-
ing mode controller will use the plant control matrix to derinput signals. Typi-

cal implementations therefore combine model and algor#hements in the same
sequential code.

To enable the DCS architecture the algorithms must be imgieéed in a
generic manner that allows them to be composed with any mbdelthe user
may supply. This is expressed in the following objective:

Research Objective 1:"To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be diésct independently and
then be composed at run time"

Today control system software is often developed and v&ian a simula-
tion environment, e.g. Matlab/Simulink and then at the ehthe development
cycle the solution is hand-implemented on the target systernde or the control
software is auto-generated by the tool and then adaptecettathet system. In
both cases the programming paradigm used in the implen@mizade is that of
structured programming.

For the framework to be developed this approach will be wgmavith an Ob-
ject Oriented (OO) implementation philosophy. There are tgasons for this. 1)
for a framework that will grow over time the OO approach wi lmore main-
tainable and flexible and 2) the OO approach allensapsulationmeaning that
when parts of the system have been validated (perhaps ext#fiedefor safety-
critical applications), these parts can remain fully escégted and further de-
velopment on these parts of the system can be based on nmgdifghaviour in
derived classes. These ideas have led to the formulationeo$e¢cond research
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objective:

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-lirecetion"

The elements in the framework must be able to communicatestruatured
manner during run-time where the elements together impiethe control sys-
tems functionality. Most control system implementatioaly on a sample driven
approach. However, recent research [Kofman, 2002] hagqmbito Quantised
State Systems (QSS) as an alternative approach to dealystns dynamics in a
computing environment. With this approach communicatietwieen model en-
tities are based on events, which are dispatched when eaghoo@nt undergoes
a significant internal state change. This approach pronisks more efficient in
terms of required computing resources than the typical fadnven approach.
Therefore it has been chosen to use this QSS approach fangternentation of
the framework:

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typgzahple driven imple-
mentations”

With the formulation of these research objectives most efftimctionality of
the DCS system described in the previous subsection is saltteexcept for the
functionality in theConfiguration module. However, the result of the work
to be presented in this thesis will be a good starting poirttkdress the issues of
automatic model analysis and coupling to relevant algarith

1.2 Related Work

It has been noted by other researchers that most contrehsgstre first developed
on a mathematical foundation using tools such as Matlah/gikto analyse,

design, and verify the algorithms of the control system, nehfter the design
is implemented on the target platform with little regard fbe inherent timing

issues involved with consistent implementation of consadftware on embedded
computing platforms.

Discussions in [Horowitz et al., 2003, Henzinger et al., 30foints to the
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same issues regarding implementation of control softwadgeoposes a platform
approach where a special purpose kernel, dubbed Giottdengmts the interface
to the specific real time operating system of the control aaerp

In [Koo et al., 2005] a framework called@eachLahs presented which allows
hybrid dynamical models as well as analysis algorithms taléscribed in an
abstract language: Hybrid System Analysis and Design Lagg(HADL). The
framework allows such models to be translated to the langwig number of
computational kerneJsvhich are independent environments for analysis of hybrid
models.

During the nineties NASA launched a number of independeap dpace ex-
ploration probes and noticed that almost no control so#waas reused from
mission to mission, and that the implementations lackechanoon methodology
to help avoid implementation mistakes [Dvorak et al., 2000]is led to the for-
mulation of themission data system (MDS) vision for future control software,
which emphasises a number of themes to be addressed, of miaiah are rele-
vant to the present thesis; the most relevant themes agd lilow by their short
descriptions from [Dvorak et al., 2000]:

1. Construct subsystems from their architectural elemeras the other way
around

2. Design interfaces to accommodate foreseeable advantashnology
3. System state and models form the foundation for inforongpirocessing

4. Express domain knowledge explicitly in models rathentimaplicitly in pro-
grams

5. Operate missions via specifications of desired staterdtfan sequences of
actions

Of these the first two are relevant in connection with the cbpgiented ap-
proach that will be taken in this thesis and the latter thedates to the concept
of declarativity as described in the previous section. Witket in the MDS it is
demonstrated [Dvorak et al., 2004] that object orientetivak written in Java is
suited for real-time execution for a Mars rover platform.

Many of the themes in the MDS were motivated from the Deep &fie
(DS1) spacecraft launched by NASA on the 24th of October 1888h featured
the Remote Agent eXperiment (RAX) [Bernard et al., 1999]wits an experi-
mental flight software which featured intelligent on-linkeqming and execution.
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Figure 1.4: An artist's conception of the Deep Space One spacecraft,
which featured the Remote Agent eXperiment (RAX).

One of the software modules was the Mode Identification antbirRey (MIR)
system [Williams and Nayak, 1999]; this system was a detl@aystem which
was able to fulfil configuration goals, set by the planner congmt of RAX, by
using models of the spacecraft. Further, it was able to ifyefatults in hardware
and autonomously plan around them to the extent possibleeiAzr, the system
only considered discrete models and discrete switchestaatars.

Despite the fact that an evaluation of the RAX experimentrijided et al.,
2000] concluded that the technology could be applied toréutnissions this has
not happened as of yet. However, parts of RAX have seen futtie®retical
development, e.g. described in [Williams et al., 2003].

1.2.1 Declarative Algorithms

Focusing on specific algorithmic approaches to automatidralber synthesis
there have been significant results in recent times. Oneadelbgy is Model

Predictive Control (MPC) [Maciejowski, 2002], where optaation is used to de-
rive optimal input sequences based on a specified perfoenadex. MPC can
be applied to a large class of systems, e.g. hybrid systesrapBrad and Morari,
1999], and results in either an explicit controller deriafiline for simple sys-

tems or an implicit controller that solves the optimisatimoblem on-line, e.g.
for non-linear systems. However, MPC in its implicit versican often be too
computationally intensive to support on-line implemeiotafOort et al., 2006].

MPC methods are not researched in this thesis, but MPC Higwiare clearly
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candidates for inclusion in the proposed DCS framework.

Other automatic synthesis methods focus on complete rafdiynthesis of
controllers, where the results is a bank of Piece-Wise-Af{ilAWA) control laws
that each apply to a constrained polytopic subset of the-sgadce. For instance,
in [Rodrigues and How, 2003] general non-linear systemsiat@matically trans-
formed into a number of local PWA models that approximateotfiginal system.
From these local models local PWA control laws are generatiith is shown
to satisfy a global piece-wise-cubic Lyapunov function.[Habets et al., 2006]
a PWA approach is taken to provide automatic controllertsssis for hybrid au-
tomata where the models in each discrete location are PWAels.od

1.2.2 Event Based Control

Another theme in this thesis is the use of Quantised State@gs(QSS) to rep-
resent dynamics, which is in contrast to typical discreteetrepresentations. Pre-
vious work concerning QSS will be reviewed throughout thestk, while this
subsection will discuss other event-based approaches}i8&n

In [Sandee et al., 2005, Arzén, 1999] it is shown through &tians that for
a regulation problem the processor load can be reducedisantly by enabling
event driven sampling in the vicinity of the set-point, centrol updates are only
performed when an error threshold is exceeded. This appro@as validated
experimentally in [Sandee et al., 2006]. Theoretical wakda on this approach
[Sandee and Heemels, 2006], has established ultimate bdoess criteria for
the solution trajectories, which are similar to resultsdaantised state systems,
which are used in this thesis.

Other work [Lunze, 1994, Philips et al., 2003, Heemels et24l06] focuses
on the effects of quantisation of sensors and actuatomrsc{efbf analogue to dig-
ital conversion and digital to analogue conversions, sgargil.5). In [Heemels
et al., 2006] a method is presented that minimises the effébe quantisation on
closed loop performance. [Philips et al., 2003] and [Saredex., 2006] both ap-
proach this problem by abstracting the continuous dynaintosa discrete event
automata where each state represents a small hypercube state-space of the
continuous system. These abstractions are then treatduhefising discrete
event methods for assessing reachability of the automata.

10
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——> Continuous System

Physical World
----1{ DA |--------===— = - — AD |-----
Control Computer

L ——
Discrete Controller ri

Figure 1.5: Closed loop system with digital to analogue and analogue
to digital converters to interface between a continuoust@ad discrete
controller.

1.3 Contributions

The contributions of this thesis can be summarised in tHeviihg main points.
Citations are provided for contributions which have beeblished.

e A comparison of performance and robustness between Qedr8isite Systems
(QSS) and usual time discrete simulation for a model of aarearhous under-
water vehicle, which is the first reported study on using Q&&et simulation
for simulation of non-linear systems with a high-dimensilstate-space (to the
author’s knowledge).

¢ A novel generalisation of the well-known extended Kalmaeifibased on QSS
models, which eliminates the need to analytically derivaB&n matrices and
allows the algorithm to be used declaratively. The filteregts incoming mea-
surements as events rather than equidistant samples. ®hksisvpublished
in [Alminde et al., 2007a].

e A novel declarative control strategy which utilises an m@lQSS model of
the system under control to effectively derive small-signadels that is used
for local minimisation of a convex control objective furmti This work is
published in [Alminde et al., 2007b].

e A generalisation of sliding mode control based on QSS maoafelke system
under control with a guidance control based on minimisatioa user supplied

11
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performance function. The algorithm implementation ishbygmodular and
can be composed with models in a declarative manner

e The estimators and controllers developed for QSS have beréied in a com-
prehensive study of a deep space probe example completeevethation of
the effect of uncertainties and disturbances.

e A specification of hybrid systems defined to reflect typicahtonl systems
and problems in contrast to many verification oriented d$jppations. This
specification in various states of development is publishgdiminde et al.,
2006a, Alminde et al., 2006b].

e A QSS approach for simulating hybrid systems as defined bglioge speci-
fication and a mechanism for directly translating a spediticawritten in eX-
tended Markup Language, into an executable software objeatly version
published in [Alminde et al., 2006a].

e Throughout the thesis methods are developed and demaustasupport the
idea of a declarative control system. These results arédggther in a software
framework based on discretely interacting components.

An international journal publication is under preparatishich summarises
the results concerning the use of quantized state systerosritrol and estimation
purposes.

1.4 Thesis Outline

The following gives a chapter by chapter overview of the eats of this thesis.

Chapter 1: Introduction
Provides motivation for the thesis and an overview of itacitire and results.

Chapter 2: Discrete Event Simulation

This chapter introduces the Discrete EVent Specificatida(B) which is utilised
throughout the thesis as a framework for simulating/exagudiscrete event mod-
els.

Chapter 3: Quantised State Systems
The concept of Quantised State Systems (QSS) is centrabtthsis and is de-

12



Chapter 1: Introduction

scribed in this chapter in the context of simulation of contius system models.
A comprehensive simulation study is conducted using a maofdeh autonomous
underwater vehicle.

Chapter 4: Kalman Filter Estimation in QSS

Here it is shown how quantised state systems can be used tenrapt the ex-
tended Kalman filtering algorithm and how this approach makelytical evalu-
ation of Jacobians for covariance propagation unnecesghgeyconventional and
QSS filters are demonstrated and compared on a model of a daep probe,
which must determine its attitude from vector observations

Chapter 5: Optimising Control of QSS Systems

This chapter develops a control strategy based on local ima@dea non-linear
multiple-input-multiple-output plant generated by the £8pproach. At each
control calculation a change in control signals is foundrfian optimisation prob-
lem based on the local model. The control strategy is evaduanh a model of an
autonomous underwater vehicle.

Chapter 6: Sliding Mode Control in QSS Systems

Here a sliding mode controller for state stabilisation igad@ped within the QSS
framework and demonstrated on a deep space probe exampiepatad to the
control strategy of the previous chapter the sliding moge@ach provides better
stability and robustness properties.

Chapter 7: Evaluation of Estimation Based Control

This chapter wraps up the work from the previous three chsytte providing a
performance evaluation of the two proposed control stiasegith the QSS based
estimator in the loop. The evaluation uses the deep spabe pa case study.

Chapter 8: QSS Simulation of Hybrid Systems

Hybrid systems features both continuous state evolutiamedisas discrete events
affecting the state evolution. This chapter describes hagh systems can be
simulated using quantised state systems and providesaseftivat can translate a
hybrid system model described in a dedicated language isdft@are entity that
can be used for simulation or control.

13
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Chapter 9: Towards Declarative Hybrid Supervisory Control

In this chapter the work on controllers for continuous systeand the work on
hybrid models are combined to demonstrate how one can ingoleenhybrid su-
pervisory control system with the tools developed. Furthéas discussed what
future work is required to utilise the results for a methadidal approach to
declaratively specifying control systems.

Chapter 10: Conclusions and Perspectives
The final chapter wraps up the results and points to areastbefuvork.

Figure 1.6 provides a graphical overview of how the indialdchapters con-
tribute to the proposed DCS architecture from Subsectitr21As can be seen
all of the architectural elements will be addressed througithe thesis although
only limited emphasis will be put on tH@onfiguration module.

Figure 1.6: Mapping from chapters to the DCS structure. Chapter num-
bers in parenthesis signify minor contributions.

14
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1.5 Chapter Summary

This introductory chapter proposed the development of tadstve control sys-
tem to enable advanced control and estimation algorithnsetoised as solu-
tions to real-life challenges with reduced developmerarefiThis idea was trans-
formed into three research objectives that are pursueddghaut this thesis. The
three objectives are restated here:

Research Objective 1:"To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be dibsdt independently and
then be composed at run time"

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-lirecetion”

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typsaahple driven imple-
mentations"

Further, an overview of related work was presented and tlietate of the
thesis and its scientific contributions were summarised.
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Discrete Event Systems

This chapter introduces the Discrete EVent Specificatida\(B), which is a frame-
work for simulating and executing systems characteriseithéiy discrete interac-
tions. This specification and associated software provitigoathat will be used
to implement the algorithms developed in the remainderisfdissertation.

2.1 Background and Motivation

This dissertation concerns methods for declarative amtgnohese methods are
based on the notion of Quantised State Systems (QSS), whictnraduced in the

next chapter. In short; the QSS approach transforms canitsidynamics into a
discrete event system. In order to implement, on a compsiéutions based on
QSS it is necessary to have a software framework that cauexttese discrete
event systems consistently.

Such a framework was introduced in [Zeigler, 1976] undemnti®e "Discrete
EVent Specification" (DEVS) and has seen a number of re\gséon extensions
since then, see e.g. [Zeigler et al., 2000]. The specificadiefines an abstract
view of model components and their discrete interactionsuijh message pass-
ing, and in addition algorithms for consistent model ex@euare specified.

Section 2.2 presents the DEVS specification and associffedthms, while
section 2.3 provides an overview of the software implenteniaof DEVS, which
was developed as an execution platform for the algorithros tbeveloped through-
out this dissertation. Further, details on the softwamm&aork, than given in this
chapter, are available in Appendix B on page 187. The DEVi&dkaork devel-
opment is published as part of [Alminde et al., 2006a].
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2.2 DEVS - Discrete Event Specification

The Discrete EVent Specification (DEVS) was formalised byned P. Zeigler

[Zeigler, 1976] as a language formalism for discrete evesiiesns. In contrast to
more widely adopted discrete event system descriptionsg&adras and Lafor-
tune, 1999], which enumerates all possible system configasainto a number
of discrete states with associated transitions betweeN,3takes an alternative
view and considers a number of units, called DEAt&mic modelsThese can im-

plement complex processing, but interacts with other carapts through discrete
interactions. DEVS has been applied for a wide range of nlindeind simulation

applications spanning from protocol verification to neurals, see [Sarjoughian
and Cellier, 2001] for an overview. A large number of DEVSiaions have

been presented throughout the years; This dissertatiosnae of the DEVS
specification in [Zeigler et al., 2000] dubbed "ClassicaM3Ewith Ports".

The core entities in a DEVS model are model components cattedic mod-
els Each atomic model is a self-contained system with an iatestate and the
ability to receive and send messages to/from other competiemough a number
of enumerated input- and output ports respectively. Eachgam be used to com-
municate one object, e.g. a real, a vector, or matrix. Thediehr of each atomic
model is specified by a function describing behaviour wheants/are received
and another function that describes internal autonomauis sansitions.

Atomic models can be connected to foomupled modelst is the responsi-
bility of the coupled model to handle message passing betwess of the atomic
models contained in the coupled model and the in- and outms$ f the cou-
pled model to/from the contained atomic models. The couphedel has the
same external interface as an atomic model meaning that alrhzfarchy can
be established, see Figure 2.1.

Runner

I
Coupled

Atomic Atomic Coupled
—_— .
Atomic  Atomic

Figure 2.1: An example of a DEVS model hierarchy composed of
atomic and coupled sub-models.
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Chapter 2: Discrete Event Systems

A stand alone atomic model or a coupled model is executedgreaer object
which is in control of advancing time and mapping inputs antpots from the
outside (i.e. outside of the DEVS model) to the top level ni@denponent. The
following subsections describe the three model componatisic, coupled and
runner objects in more detail.

2.2.1 Atomic DEVS Models

At first we define a messag#y! , used for communicating events between differ-
ent model components:

M={m=(i,v)|ieZ" veR>

that is a setM consisting of pairsyn, described by a port identifierand a value,

v. The value can represent a real, vector or matrix (deperafirtye dimensions:

a, b). In the followinge will be used to denote the time since the last event in the
atomic model. A general atomic DEVS model is specified as aupk:

D= (S, X7y7 5int7 5e:vtv Avta)

where:

S: are internal states, representation is up to the user

X ={x € Z*|1 <z < p,}: is the set of input portg;, the number of inputs
Y ={yeZ"1 <z <p,}: is the set of output portp, the number of outputs

dint(e,S) : RT x § — &'t is the state transition function

Sezt(€e, M, 8) : Rt x M x 8§ — &'t is the external event function € X)

Ae,S) : RT x & — M: is the output mapping (€ ))

ta(e,S) : Rt x & — R is the time advance function i.e. time to next internal
event.

The behaviour of a given model is implemented in the two ftems func-
tions ;.. () andde..(+), while the outputA(-), and time advanceq(-), functions
are used by the coupled model or runner driving the atomicemiod extracting
output and scheduling information, respectively.
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2.2.2 Coupled DEVS Models

Atomic models can be coupled as specified in a coupling spatidh. Consider
Figure 2.2, which shows two atomic models that are couplederd are three
model entities in the figureg; andas are internal atomic models andis the
coupled model. There are connections between the two oeatanodels and
also connections between the contained models and theanplubutput ports of
the coupled model.

Figure 2.2: Coupled DEVS model consisting of two atomic sub-models,
their interconnections and connections to the outside.

In the following ¢ will mean the coupled model and, ..., a; will denote
atomic models that make up a coupled model. The couplingfagion consists
of three distinct sets with elements of the fofmn,p1), (m2,p2)), wherem;
specifies a model component apda port associated with that component. The
three sets defining a coupled model are [Zeigler et al., 2000]

EIC external input coupling, withn; being the coupled modal, with p; € X,
andmsy € {al, . ,al} with p2 € XmQ.

EOC external output coupling coupling, withy € {a1,...,a} andp; € X, ,
andmg € {c} with ps € Y,

IC internal coupling, withn, € {a1,...,q;} andp; € X,,,, andms € {ay,...,
an} with P2 € XmQ.

Further, a coupled model must adhere to the definition of amiatmodel as
defined in the last section; this means that coupled modelbeinternal parts of
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other coupled models.

6int():
t, < least m.ta(-) where m={a1,...,an}
I — set of all {m : m.ta(-) = t;}

forall m € I call m.din:(-)
forall m € I call m.\(-) and store messages in P
Generate new messages from P according to EOC and IC:
if (p€ P)e EOC store as output of c
if (pe€ P)eIOC add to target to distribution set D
forall d € D call det(-) On receiving model

dexts(P): P is incoming messages
Generate new messages from P according to EOC and IC:
" if (p€e P)e€ EOC store as output of c

if (pe P)eIOC add to target to distribution set D
forall d € D call §c.¢(-) ONn receiving model

A0):
Return stored output messages

ta(e): e is time since last event

tn, <« least m.ta(-) where m = {a1,...,an}
return ¢, —e

Algorithm 2.1: Behaviour of coupled models

The behaviour of a coupled model is described in Algorithfn &hich gives
an overview of how a coupled model interacts with other medebth with regard
to internal models and to the outside world through the samehamisms as for
an atomic model.

2.2.3 Root Coordinator and Execution

In order to execute a model all components, both atomic nsoaletl coupled
models, must be contained in one coupled model, which isdhiean by a single
software entity called Runner The runner is responsible for global time keeping
and input/output management to/from the DEVS model. Deffierunners can be
implemented to e.g. perform stand-alone executions orutixes with input and
output to local hardware or e.g. a network. Algorithm 2.2egian example of
how such a runner could work together with external input@utgut (referred to
as "ext.").
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t < startTime
while (¢t < endT'ime)
T tp —t+etal)

if (ext. input before tn)
call c.deat(:)
t «—(time of ext. input)
continue

t—tn

call c.dine ()

call c¢.A\(-) and write to ext.

Algorithm 2.2: A simple runner algorithm with external 1/0O

2.3 A Software Framework for DEVS

DEVS has mainly been used in academical projects and theréharefore no
widespread commercial software packages for DEVS. Howevemumber of
DEVS tools have been developed at university centres aritnengorld of varying
levels of maturity. An overview of available tools can berseahttp://www.sce.-

carleton.ca/faculty/wainer/standard/tools.html

For this project an implementation of the DEVS core functidy as de-
scribed above was implemented in order to support the reisednjectives with
a maximum degree of flexibility. The software was implemdriteJavd. The
following will provide an overview of the developed DEVS ilementation and
more details can be found in Appendix B on page 187 which desall the
software developed for this dissertation.

The DEVS implementation is implemented in thevsCore package and an
overview can be seen on the class diagram of Figure 2.3DEksAtomic class
is an implementation of the atomic model specification giveBubsection 2.2.1
andDevsCoordinator  is an implementation of the coupled model specified in
Subsection 2.2.2, likewise tHgevsMessage class is an implementation of the
message construct introduced in Subsection 2.2.1 andyfitm@DevsRunner
is a simple stand-alone runner as described in Subsecob. 2.

The DevsAtomic class is abstract and must be inherited in order to imple-
ment specific behaviour by overriding the abstract funstion,;(-) andde.(-).
Default behaviour foi(-) (calledoutput() )andta(-) (calledtimeAdvance() )
is implemented in the class for convenience but can likeweseverrided to suit

*Java Standard edition version 1.5
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[ ]
+ DevaRunmer{coordinator : DevaCoordnalr :mme doubie)
+ run(fle : String, mode int) : &

- evsContext, name : SUing, Nputs : Nt outputs : Int, NoSys : )
DevsAtomic o  Devshtomic)

+ DevsAtomi ttexd : DevsContexd, Siring, nolnputs : int, noOulputs : Int, priorfty : In) 'lﬂdﬂlﬂm‘dmhm DevsAtomic]])

e e e ooy o0 ot ol prerty =Y |, 2aGonnection(romSys - DeveAlomic, romPrt: n, oSy : DevsAtomic, toPor: it

+ deltaint(eventtime : doul fouble + ﬂﬂO utpul(fromSys : DevsAlomic, fromPort : int, toPort : int)

+ oulput() : DevsMessage + dnpul(komPort: In foSys : DeveAtom foPor: )

+ imeAdvance(eventtime : double) : double - * ys : DevsAtomic, fromPort : int)

I]
inputs{obiect : Object])
ventime : double) : double

+ : double, message :
\ . + timeAdvance(eventime : double) : double

\ DevaPort ~
N + DevsPori(syslem : DevsAtomic, port : inf) -
\ + hashCode() : int —
\ + equals(o : Object) : boolean T
DevsP

+ + DevsPort): int —
ey AN d - DevsPoriVaiue
- double, + double, q : boolean) \ -
+ addConstant(cons : String) \ / *+ DevsPoriValue(system : DevsAlomic, port : I, value : doubie)

+ String, infunc: \ e + DevsPortValue(system : DevsAlomic, port : Int, value o bie, ob] : Object)
+faluro(on : Objoct, mas - Sring) \ +10String() : String

+fallure(ob : Oblect, mes : Siring, & : Exception) \ -~

+ Deveifessage(eystem : DevaRlomi)
evsAtomic, port : . int)
+ D /sAtomic, port :
+ push(port : DevsPortValue)
+pop(): DavePortvas

getList() : List<DevsPortV
* SesoisaLiiy LiteDev SPortvalue>

Figure 2.3: Class diagram in UML for the DevsCore package imple-
menting DEVS core functionality.

individual needs.

The DevsContext class is not part of the DEVS specification, but it is in-
cluded as a class to contain attributes and helper functimetscan be shared
between a number ddevsAtomic objects, for example numerical constants,
definitions of mathematical functions, and functions fqrasing errors and diag-
nostic information.

A DEVS model is constructed by defining a number of concbetesAtomic
objects and adding them toRevsCoordinator  object using theaddAto-
mic() call. Hereafter, connections are declared between the Insodgonents
within the coordinator using the following functions calieldConnection() ,
addinput() ,addOutput() , andterminateConnection() . Finally, a
runner object is constructed with the coordinator as arguiraed the model can
then be executed by thlan() method of the runner object.

Figure 2.4 provides an example sequence showing how a rainjest per-
forms one simulation/execution step for a configuratiomdsated on Figure 2.2;
As can be seen the coordinator is in charge of calling all atarmodel compo-
nents, while the runner only interacts directly with the aator as the top-level
component in the model.

To enable real-time execution on an embedded platform thaemobject
should be implemented as a real-time thread constantlhydstihg its next execu-
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. 1]
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Figure 2.4: Sequence diagram showing how classes interact during a
simulation. One simulation step.

tion at the next event time in the model. For such a scheme tk thie underlying
scheduler should use a dynamic scheduling principle, eagiest deadline first
scheduling.

2.3.1 Associated DEVS Tools

The software implementation described above constititesore functionality
required to execute DEVS components. The remainder of thgedation will
develop various simulation, estimation and control alons, which are imple-
mented on top of the DEVS implementation described above.

In addition a set of DEVS components have been developedhvdrie not
described in detail, but is used throughout the exampldssrdissertation. These
tools are standard tools to provide such functionality agkample:
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¢ Reading and writing data to files during simulation/exemuti
¢ Plotting data at the end of simulation/execution runs
e Time discretisation of signals (sample-and-hold)

An overview of these tools can also be seen in Appendix B oe 483 .

2.4 Discussion

A few points concerning the DEVS specification and impleragon are found
worthy of further discussion.

Push and Pull Communication in Devs

The DEVS specification, and its implementation as descrédgale, is a very
operational mechanism to implement discrete event badédase entities that
communicate on a subscription basis, or in Object Orierdegbjy; components
that are updated through theserverpattern [Gamma et al., 1994].

For model components that must always react to changesiipit$s imme-
diately the subscription based communication is very adtguHowever, as will
be seen in the coming chapters, some model components maynipaxs that are
only used occasionally and therefore do not need to trigggemputation in the
component. This is easily adopted in the DEVS scheme by wsibgcription,
and then just storing the input received from these portavéver, from a point
of view of performance this is not ideal and the coming chapiéll show how
mechanisms can be implemented to support this kind of cortation outside
the DEVS specification.

As a consequence on can argue the need to extend the DEV #csiieci
with descriptions of data bindings between componentsishabt based on sub-
scription in order to keep intact a clear link between a fiomal specification in
DEVS and the corresponding implementation.

Compositionality of DEVS Components

The behaviour of a component in DEVS, i.e. the ability to sithe internal dy-
namics in the component and react to external events is uailas to the way
control software is typically implemented on an embeddethpater: as a pe-
riodic thread and associated interrupt handler that haeslernal inputs (e.g.
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samples from the analogue-to-digital-converter or pustobs), which can re-
schedule the periodic process if e.g. a change of contrpesmmeters has been
ordered.

Therefore, in our view, it is a strength of DEVS that it captuthis behaviour
in a model that is not bound to an implementation. Faener mechanism in
the implementation of DEVS is here very important, becabgeniodel can be
composed with different runners.

For example if the model is of a specific controller for a giy@oblem the
DEVS implementation can be composed with a runner objedtitherfaces it
to a simulation environment for a first evaluation and thearléhe exact same
controller implementation can be composed with anothemeunbject that inter-
faces to the system calls of the Real Time Operating Systetheotarget control
computer.

This philosophy has much in common with how software is dgwed for
business applications; here software components are sulasga using tech-
nologies such as for exampterprise Java BearfSun_Microsystems, 20074a],
whereafter it can be deployed in different contexts withthanging the compo-
nent itself. In this work we pursue this approach of encagigui and composi-
tion for control systems software, as described in the rebezbjectives defined
in Subsection 1.1.3 on page 6.

2.5 Chapter Summary

This chapter introduced the DEVS formalism, which will bedshroughout the
dissertation to implement the methods and algorithms todveldped. In sum-
mary; a DEVS model is made up of atomic and coupled modelsagwd in a
top-level coupled model that is executed by a runner object.

A software framework was developed in Java which implemémsspeci-
fied DEVS capabilities and an overview of this work was giv&rther, issues
concerning the communication model used in DEVS were dészlis

The merit of the DEVS approach as a platform for implementiogtrol sys-
tems software is the encapsulation and compositionalay ithcan provide for
software components, such that they can be reused in vazaniexts with no
changes.
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Quantised State
Systems

This chapter describes Quantised State Systems (QSS) ecificgily the QSS2
algorithm for propagating ordinary differential equatisnMathematical proper-
ties are discussed and illustrative examples are givenalRina comprehensive
simulation study of an autonomous underwater vehicle isrgio demonstrate
the benefits over traditional methods.

3.1 Motivation for Quantised State Systems

Complex autonomous systems often require that models apagated on-line
for use in state estimation (e.g. extended Kalman filterBgefval and Andrews,
1993)), feed-forward control (e.g. Model Predictive CohfAlamir, 2006]), as

well as other usages. Typically, numerical integratiorhitegues used for on-
line model propagation are based on quantisation of timgenlg distributed in-

tervals. Examples include forward-Euler integration ongerKutta integration,
which are often applied for such applications.

The sample-based approach is challenged in complex nearlgystems where
it can be difficult to select a reasonable sample-rate wisiéast enough for worst
case conditions and at the same time computationally efficieder nominal cir-
cumstances. In networked systems information may be redaver a network
arriving with non-uniform intervals making it difficult taxcorporate using a sam-
ple based approach.

An alternative approach is to consider quantisation of thleies axis rather
than the time axis, consider Figure 3.1. The (a) graph depictypical ideal
time quantised solution (red line) that approximates ainanus trajectory(: =
f(z), x € R). The (b) graph shows an ideal state quantised solution where
value axis is quantised. It is noted that in the value quedtisajectory, discrete
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(a) Time guantisation (b) State quantisation

Figure 3.1: Time and state quantisation. The black line is the contisuou
state evolution and the red line is the discretised statkiton.

value changes appear at a rate that is proportional to tiet dé\change of the
continuous trajectory, whereas the rate is constant fotirtie quantised approxi-
mation.

In other words; a state quantised approach allows the catipoal effort
required to propagate the model to be adjusted to the cuainbf change in the
system. This overcomes the problem of selecting an aptepsample rate for
non-linear systems as discussed above.

A practical implementation of the scheme described abonebeabased on
the forward-Euler method but with the modification that @&t of calculating
value increase over a sample period, the interval until #d guantised level
is reached is calculated based on the chosen quantisaitandg,AQ, and the
current derivativeg (see also Figure 3.2):

AQ
t=+
& (tk))|
Then when the time interval elapses, the state is updatextding to:

z(ty + At) = x(ty) + sgn(@(t)) AQ

(3.1)

whereupon the derivative is evaluated and the next intésvahllculated using
Equation (3.1). This scheme is easily formulated in the DE)&rete event
formulation as described in the previous chapter. Alsmaigie external event
functiond...(-), new information can be injected into the model at arbittanes

- e.g. information in arriving network packages.

This way of thinking and associated DEVS formulations foem@ional algo-
rithms can be found in early work by Bernard P. Zeigler [Zeigl976]. However,
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Figure 3.2: lllustration of the calculation of the time until the nextes\.

with these methods it was known that for some pathologicah®tes the propa-
gation of the system would require an infinite number of disetransitions in a
finite time interval - rendering the problem non-computable

Recently Ernesto Kofman extended the algorithm to inclutigsteresis level
that ensures a minimum time between transitions [Kofman.£2@01] and also
developed a second order algorithm [Kofman et al., 2001 ]revtige quantisation
is related to the second derivative of the each state tmjecthe first and second
order algorithms are called QSS1 and QSS2 respectivétglated work on the
development of multi-point integration schemes for queedisystems have been
published [Nutaro, 2005], but will play no role in this dission.

The QSS2 algorithm forms the basis for most of the work in dissertation
and is described in Section 3.2. In Section 3.3 mathematicglerties are dis-
cussed and some simple illustrative examples are giverall§im section 3.4 a
more comprehensive simulation study is performed usingralinear model of
an autonomous underwater vehicle. To the author's knowlelig study is the
first comprehensive study of the QSS2 algorithm applied tigh-tdimensional
non-linear system.

3.2 The QSS2 Method - First Order Quantisation

This section describes the QSS2 method for propagatinghamdidifferential
equations and provides details on how this method is mappdetDEVS speci-
fication introduced in the previous chapter. Consider eesystpecified by a gen-

*In this dissertation the abbreviation 'QSS’ will be used emdted quantised state methods in
general
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eral time-invariant non-linear ordinary differential egon with a time-invariant
non-linear output map:

x = f(x,u) (3.2)
y = h(x) (3.3)

wherex € R"™ is the state vector of dimensien u € R™ is the input vector of di-
mensionm andy € R? is the output vector of dimensign f(-) is a differentiable
mappingf : x x u — x andh(-) is likewise a mapping : x — y.

Recall that any time-varying equatidiix, u,t) can be put on the form of
Equation (3.2) by augmenting the system with an extra sigtewith derivative
i, = 1, hence no loss of generality is inferred by the time invarélimitation of
Equation (3.2).

The QSS2 algorithm integrates the state and produces tipaitdutx) by
decoupling the system into event-communicating DEVS campts representing
functions and integrators, respectively - see Figure 3.3.

(u, 1) (1, %1) (21, 41)
—_—r

h(X) (y1, %)

f(x,u)

(&2, &2) (Zo, &)

Figure 3.3: Structure of a QSS2 simulation. This figure is an example
for a system with two states, one input and one output.

The objects that are communicated between the objectsdeeedrpairga €
R, b € R) representing a specific block output variable and its daviva The
following two subsections describe how the integrator amtfion blocks process
information, respectively.

3.2.1 QSS2 Integrators

Each integrator block represents a single statef the state vectox of the system
as described by Equation (3.2). The integrator maintainstdider and second
order internal model of this state respectively:

Ti(t) = Ti(ti) + @t — t;) (3.4)
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wilt) = milte) + it o) + inlt — o) (3.5)

wheret; is the time of the last DEVS internal event of the integratock’ andt,
is the time of the last DEVS external event, i.e. new denreatireceived from the
function block.

When a new external event is received theft.) is reset tar;(¢) - meaning
that the second order model is a piecewise parabolic taajecthe condition for
updating the first order model, i.e. Equation (3.4), is gilsgra quantum separa-
tion principle between the two models:

1Z:(t) — z:(t)| > AQ (3.6)

where AQ is the chosen quantisation. When this expression becomesttre
first order model is reset to the value of the second order moee

Ti(t) = i(t) N @i(t) = @4(t) (3.7)

Equation (3.6) can be seen to be related to the curvatureeadddbond order
model, which equals the second state derivative. The abmhen® is sketched
in Figure 3.4, which provides an example trajectory. Hdreain be seen how the
models forz;(t) andx;(t) are allowed to evolve independently whereafter upon
reaching the differencA(Q are reset to the same condition.

With this formulation one can think dfz, %) as an operating point, or rather
anoperating trajectory with the guarantee that it is correct to within the chosen
guantum within the time interval until the next event.

At any time the time until the next internal event of the imtggr can be
found by solving Equation (3.6), which is the result retutiy the time advance
function ¢a(-)) of the integrator. It is worth to note that near linear tcijeies
result in very few events, while the rate of events increasproportion to the
magnitude of the second derivative of the state trajectory.

3.2.2 QSS2 Function Maps

In the following we will discus€(x, u), but the discussion is the same fdx) as
well. The block representinf(x, u) receives working state and input trajectories

fcorresponding to the last time the block produced an output

33



Section 3.2: The QSS2 Method - First Order Quantisation

Figure 3.4: Sample QSS2 trajectory; showing when internal events oc-
cur (blue stars) and linear trajectories of the quantisatestbetween
events (dashed lines).

and is tasked with producing first and second state dereati¥or the function
block there is no difference if the block inputs are from ex&t inputs or from
states, therefore with no loss of generality we consideirtpat vector:

z=[x"ul]" =[z ... znom)"
and input derivative vector:
z=[x"al)" =4 ... Zoew)t

Further, we consider the vector valued functfoams an ordered set of scalar func-
tions, i.e.

f:(flv"'vfn)

We let a matrixD € R™*("+™) describe connections from inputs; : j <
n + m) to outputs off such that; selects a column id which has entries, ;,
which are one if the corresponding outpitdepends on the input and zero if
there is no dependence. Finally, we define the Jacobianxdifi

0f1(z) 0f1(z)
0z1 te 8Zn+m

Je = SR (3.6)
021 U O0zZndgm
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The total internal state of the function block is made up esthquantities,
e.g.z, z, D andJ¢. The following will describe how input events are processed
and how outputs are generated, respectively.

Input Processing
When an external event occurs the function block first ugdtte internal state
according to:

z(t) =z(ty) +2- (t —tg) (3.6)
wheret is the current time antl, is the time of the last event. Hereafter the input
message set (see Section 2.2.1 on page 21) containing new inp(ts, 27) :

j € X} are processed in the following manner one by one; first thivatee
information is copied to the internal state:

ek
Z]—Zj

Hereafter the j'th column irD is selected and for each non-zero eleméht,
corresponding terms il are calculated using the numerical difference:

O f; i(z) — [i(z" .

Oh _ 1) = Ji@) g 20} (3.5)

0z zj — Z;

wherez* is the originalz vector but with the j'th element replaced by the new in-
formation, i.e.z; = 2. Itis important to realize that the above difference caleul
tion, due to the integrator quantisation, is always perfmiwith the denominator
satisfying:

|2 — 2j| = AQ;
meaning that the accuracy of the calculation of the Jacdbiam, Equation (3.2.2),
is controlled by the choice of the quantum.

Output Calculation

The function block is memaryless in the sense that as soomwsniormation

is received then outputs must be produced. This means thawiiog an exter-
nal event we havea(-) = 0, meaning that an output is produced immediately.
Consider the first order Taylor expansionf¢z):

% = f(z(ty)) + Je(te)z(t — tr)

wherety, is the time of the just processed external event. From tlpamsion we
identify that:

x = f(a(ty))
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X = Je(tr)z(tr)
hence output pairgz, &) can be evaluated for any output indeéxas:

(n+m)

0 i\Z t .
(fi(z(tk))a > szj(tk)> (3.1)
= 74
in other words; the second derivative is the directionalvdére of f;. Outputs
are only produced for outputs that depended on the inputivest in the last

external event, i.e. indexgsc M. This entails the index-set:

i€ U{s:d&j;«éO\/lgsgn} (3.1)
JEM

The fact that QSS2 produces new outputs based on coupliogmiafion of
the system means that the method is able to utilise sparsityei system and it
therefore reduces the number of required function evalnati

3.2.3 Software Implementation

This subsection provides an overview of how the QSS2 algarihas been im-

plemented in the software framework described in Secti@nod. page 24. Al-

gorithm 3.1 shows how the QSS2 integrator functionalitycdeed in Subsec-

tion 3.2.1 maps the DEVS specification of functions. Likesfisr Subsection 3.2.2
describing the functionality of QSS2 map blocks; AlgoritBm2 describes how it
is implemented in the DEVS specification.

Figure 3.5 is a class diagram for the QSS2 package implehéntee used
with the DEVS package described in Section 2.3 on page 24r&émthe imple-
mentation is th&@ss2Integrator andQss2Map which implement the QSS2
integrator and function respectively, they are both caeci@plementations of
the abstracDevsAtomic .

Communication between the integrators and functions alegdted to the
Qss2Port class which is a representation of the pairs consisting @fl@evand
its derivative. TheQss2Map class delegates responsibility for representing a set
of equations through thEquationSet interface.

The RpeEquationSet is a concrete implementation &quationSet
which use the external library "Java Equation Parser 2.BXJEwhich manages

i Available from http:///iwww.singularsys.com/jep/
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6int():
integrate Equation (3.5) to current time
T<«—x, T T

dezt(P): P is a set of messages
integrate Equation (3.5) to current time
update z and Z with new values from P

)\_():

return (z, z)

ta():

return solution to Equation (3.6)

Algorithm 3.1: DEVS implementation of a QSS2 integrator

6int ()
return

dext(P): P is a set of messages
update internal state, Equation (3.2.2)
select row in D and calculate Jacobian terms, Equation (3.2.2)

A0):
foreach index, 4, in the set given by Equation (3.2.2):
calculate outputs, Equation (3.2.2)

ta():
return oo

Algorithm 3.2: DEVS implementation of QSS2 function map

parsing and evaluation of equations based on a represengatitext strings. JEP
also allows custom functions and constants to be utilisedalgorithm has also
been developed which analyses the equations, represeytsttiry input from
the user, and derives the coupling maiidx

The delegation of equation representation through thefate allows a great
deal of flexibility; for example one might use tRpeEquationSet  implemen-
tation throughout the whole analysis and design phase objagtrand then for
implementation on an embedded processor the equationsecaarti-coded as
(Java) functions in order to minimise processing time neguents.
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Qss2Integrator - Qss2Port RpeEquationSet

N [
| |
| |
| |
| |

: v

«interface»

DevsAtomi < Qss2Map Equati

Figure 3.5: Classes that implement the QSS2 approach and their inter-
dependencies.

3.3 Properties and Benefits of QSS2

This section provides an overview of the mathematical mta®e of the QSS2
algorithm and discusses how these properties match uphetbroperties of other
integration methods. Hereafter some benefits specificalbted to the work in
this dissertation are summarised. Finally, a few illugteaéxamples are presented
to demonstrate the points.

3.3.1 Mathematical Properties

Important properties of the QSS2 algorithm are derived ioffikan, 2003] based
on a perturbation analysis approach. The following givesef bverview of the

main idea in the analysis and the results. It is noted thatdmgttuction of the
QSS2 algorithm the difference between the quantised andamtiged state:

Ax=x—X
is bound by the choice of quantisation:
|Ax| < AQ

therefore properties relating to the QSS2-simulated systan be analysed by
analysing the perturbed dynamical system:

x =f(x + Ax,u)

Based on this approach, the following properties have beemed! in [Kofman,
2003]:
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1. QSS based solutions approach analytical solutions lgxascthe quantisation
approach zero (Theorem 4.1 in [Kofman, 2003]).

2. Stable equilibrium points in the systedifx, u) are preserved in the quantised
system (Lemma 4.1 in [Kofman, 2003]).

3. It is always possible to find a sufficiently small quani@atAQ, such that
states in the quantised systems converge to a small regitnedeat the
corresponding stable equilibrium point of the continuoystam (Theorem
4.2 [Kofman, 2003]).

To summarise; QSS solutions are qualitatively consistetit analytical so-
lutions in terms of equilibrium points, but solutions corge not to equilibrium
points exactly, but instead to regions near those pointg dtways possible to
find a sufficiently small quantisation that the quantisagffects are negliable for
any practical problem.

From a functional level the use of QSS methods is analogousdimary
time-discrete methods such as forward-Euler integratioimtegration using the
Runge-Kutta algorithm; if we choose a reasonably small tisetion of time then
the algorithm provides a simulated trajectory that is sigffity consistent with
the analytical solution.

As is often the case with analysis of numerical algorithmsdier and Pet-
zold, 1998] then when considering Linear Time Invariantljldystems the extra
structure can be used to derive useful properties that tesextend also can
describe how the algorithm copes with non-linear systerysarialysing LTI sys-
tems it has been found [Kofman, 2003] that the QSS2 algorjihopagates LTI
systems with a global error bound that can be derived froneipenvalues.

This is a stronger guarantee than what is provided by forsizadér integra-
tion and Runge-Kutta integration; in general this kind oagntee is only pro-
vided by implicit methods for numerical integration. Ingilimethods are not
suited for on-line implementation due to their non-caugatiowever. Also QSS2
copes consistently with stiff systems, which are typicalallenging for explicit
time discretised methods like forward-Euler or Runge-&(#tscher and Petzold,
1998].

In summary; QSS2 is a method for numerical integration thatdome advan-
tages over explicit methods, which are usually only foundon-causal implicit
methods, but introduces a residual perturbation in thetisoldrajectory.
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3.3.2 Discussion of the QSS2 Algorithm

In this dissertation the QSS2 algorithm will be utilisedViBaand we shall briefly
list some of the benefits of QSS2 that will be exploited in thekwduring the
remainder of the dissertation:

e The use of the coupling matri® allows for exploitation of inherent sparsity in
systems with loosely coupled subsystems.

e The Jacobiad; is maintained throughout the propagation and can be ergloit
for control and estimation purposes.

e The event formalism inherently supports changes at arpitimes. This will
be utilised in connection with hybrid systems, which is thbject for Part Il
of this dissertation.

The main drawback is that budgetting of computer time isaliffiwith QSS2,
whereas required computer time is usually deterministierwhsing fixed step
algorithms. Secondly, it should be mentioned that the cetepitate of a QSS2
simulation consists not only of the state values, but alsiy tterivatives and event
times, whereas the state only consist of the state valuetirmeadiscrete method.
This means that QSS2 state representation requires moegstand are more
computationally expensive to make copies off.

3.3.3 lllustrative Examples

This subsection provides a few examples of simple systemgagated using
QSS2 in order to discuss some of the phenomena describe@.alddwe next
section will provide a comprehensive case study of a compystem. Consider
the following system, a lightly damped oscillator:

il = X9
ig == —0.95$1—0.1$2

This system has been simulated with the QSS2 method withtg@a\ () =
0.01 for both states. Results are shown on Figure 3.6 for a sifoalatith initial
conditions,z; = 2 andxzy = 0.

The (a) graph shows initially an exponentially decayingedope for the sys-
tem, as expected. However, at the end of the simulation ie& ¢hat the residual
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Attenuated Spring Model Attenuated Spring Model
T T T T T T v

States
States

Time [s] Time [s]

(a) Trajectories over time (b) First seconds with marked integrator events

Figure 3.6: Lightly damped oscillator showing decaying oscillations.

oscillation is not decaying any further, as predicted indsésection. The residual
oscillations can, however, be made arbitrarily small byucéeg the quantum.

The (b) graph is a zoom of the initial 8 seconds where the fpiaeh dia-
monds indicate integrator outputs of the correspondinggimattor. i.e. when new
output trajectories are generated, cf. Equation (3.7).aft lse seen that events
occur frequently where each state trajectory is most cuaretithat when it is
near to a straight line then there are only a small number erfitsv

As a second example; consider the following non-linearesgstwhich is char-
acterised by a change of time-scale from the initial respdnsthe prevailing
response:

1 = —100(z1 4 sin x2)

o = 1

This system has been simulated with initial conditiors= [1 0] using QSS2
with quantaA@Q; = 0.001 and AQ, = 0.1. The result forz; can be seen on
Figure 3.7.

The figure shows the simulated trajectoryagfas the blue line and the inte-
grator output event times as green diamonds. It is clear ffmfigure how the
QSS2 algorithms adapts to the changing dynamics by scingdulore integrator
events when the trajectory has a high curvature, while timeben of integrations
decrease as the trajectory resembles a straight line.
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A Stiff System
04 T T T T T T

state: X,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
time[s]

Figure 3.7: Example of a system with different response time-scales and
the resulting internal integrator events.

3.4 Simulation of an Autonomous Underwater Vehicle

This section describes the application of the QSS2 algurith simulation of
an Autonomous Underwater Vehicle (AUV). The purpose of ttase study is
threefold:

e To demonstrate the QSS2 algorithm on a complex non-line@amycal system

e To evaluate the consistency and accuracy of QSS2 simulatiorpared to an
explicit method

e To evaluate the execution speed of QSS2 relative to an @xpliegration
method at the same level of accuracy

To facilitate the comparison between QSS2 and an explicihateon equal
terms the forward-Euler integration method has been imetded in the DEVS
framework. The QSS2 simulation will be performed using thiéveare described
in Subsection 3.2.3. The forward-Euler integration appihoaas chosen due to
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its simplicity which facilitated quick implementation inEYS/Java.

The AUV model which will be used for the study is known as they&ld@ost-
graduate School Autonomous Underwater Vehicle (NPSAUM)iarthoroughly
described in [Healey and Lienard, 1993]. The following vaitlfirst provide an
overview of the model of the NPSAUV, whereafter evaluatiesults for three
simulation cases are given.

3.4.1 Model Description

Figure 3.8 depicts the NPSAUV. The craftigm long and has a mass 6f47.
The model is described on basis of [Healey and Lienard, 1928]is formulated
in the standard marine notation of [Fossen, 2002a].

Q-\‘.M

I z “\\ J-\

f/?“\ = N

X —
‘Top-Bottom Plan: Starboad bow plan Stern plane

Figure 3.8: A sketch of the Naval Postgraduate School Autonomous
Underwater Vehicle [Healey and Lienard, 1993].

The vector of controllable inputs to the system is given by:
u =6, Gps Opp s O 1"

where the different actuators aré; - Rudder,é,, - Starboard bow planey,, -
Port bow planeg, - Stern planeg;, - Top-Bottom plane, and - propeller speed.

The rudder and control planes all saturatet&0° and the propeller can run at
between 0 and 1500 RPM.

The model contains 12 states, six of which are described wdg-Exed co-

ordinate system and six described in an assumed inertighMNiast-Down frame
(NED). The body fixed states are:

V:[uvaqr]T

43



Section 3.4: Simulation of an Autonomous Underwater Vehicle

which respectively represent: surge speed, sway speede lspaed, roll rate,
pitch rate, and yaw rate. The state variables in the NED frarae

n=lryz¢0y"
which respectively represent: x-, y-, and z-position,-rgitch-, and yaw-angle.
The dynamical/kinematical model is of the form:
MWV)V+COV)V+DWV)V +g(n) = 7(u,V,n)
no= JnVv
where the terms describe:
M(V)V : Rigid body mass and added mass due to hydrodynamics

C(V)V: Coriolis and centripetal forces and torques including dddass effects
D(V)V: Hydrodynamic dampening forces and torques

\1

(u,V): Propulsion forces and torques

g(n): Gravitational and buoyancy forces and torques

(
J(n)V: Transformation between body and NED frame

A Matlab implementation of the model can be found as part ef'tlarine
Control Toolbox (MCC)" [Fossen, 2002b]. This implemeraathas been used as
reference for the implementation for the QSS2 algorithme Tbomplete model
contains around 120 constants and consists of 30 non-letgetions and 4 inte-
grals (cross-flow drag coefficients) to be solved numesidall each simulation
step. The model has singular pointdlia= -7 due to Euler-angle formulation of
kinematics and the thrust model is singulawie= 0.

3.4.2 Evaluation Results

This subsection presents simulation results for threéndistases. Case 1 will
compare performance between QSS2 and forward-Euler aitegr Case 2 and
3 will investigate the capabilities of QSS2 to adapt to vagyinitial conditions.

Case 1 - Slow Turn

In this case we compare the simulated trajectory generatédnvard-Euler and
QSS2 integration respectively. During the simulated 10@&s4UJV will maintain
a near constant surge speed and perform a slow turn. Thel iatditions are a
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surge speed ai = 0.5 m/s and an initial pitch angle ¢f = —0.2 rad, all other
states are initially zero. The rudder is set to a constaneck&sh ofé, = 0.1 rad
and the propeller shaft is setito= 400 RPM. Results can be seen in Figure 3.9.

3D position plot of the AUV Translational velocity

05

—_—w

Speed [mis]

s —

m - [] 0 10 20 30 40 50 60 70 80 90 100
y[m] x [m] Time [s]

(a) Translational position (b) Translational velocity

Angular position Angular velocity
T T T T T T

-

—0| 0.025

-_0p
—_—4q

—

Angular position [rad]
Angular rates [rad/s]

-0.01 7\

4 50 60 70 80 90 100 0 10 20 30 40 5 60 70 80 90 100
Time [s] Time [s]

(c) Angular position (d) Angular velocity

Figure 3.9: A slow turn. Except for (a) dashed lines indicate QSS2
trajectories and full lines are forward-Euler trajecteridt can be seen
that the two simulated trajectories are equivalent.

The forward Euler integration is performed with a time-sté.2 s, which
was found by decreasing the step-size until further deergase no visible im-
provement in the simulated trajectory. The quanta for th&2S&mulation were
chosen such that the solution trajectory is as near to theafok-Euler solution as
possible. The quanta can be seen on Table 3.1.

The results on Figure 3.9 show that the two trajectories lanest identical.
The endpoint difference of the translational position4s3 cm. The main differ-
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State u, v, W P, Ty, 2 ¢ 0,
Quantum (AQ) | 10 °m/s | 10 ®rad/s| 5-10*m | 10 ®rad | 10 ° rad

Table 3.1: Quanta selection for QSS2 simulation

ence, as is evident from the graph of the angular velocityd)the graph of the
angular position (c) is that the two methods handle osoifjabehaviour differ-
ently; the forward-Euler method in general generates adtajy that reaches a
larger amplitude than the QSS2 method does.

Execution timé for forward-Euler is 0.23 s and for QSS2 it is 0.17 s. QSS2
therefore performs approximately 35% better than forwEumter integration in
this case. During the simulation the forward-Euler caltedeb00 sample points.
The QSS2 methods generates a number of output trajectorieac¢h state which
can be seen on Table 3.2.

State U v | w | p q r x y z ¢ 0 [
#Outputs | 23 [ 24 [ 37 94| 70| 49| 43|59 | 27| 88| 117 | 17

Table 3.2: Number of outputs for each state during QSS2 simulation

In total this amounts to 648 output events for QSS2, whichghér than the
500 samples for the forward Euler method, but each QSS2 evéyntrequires
recomputation of a subset of rowsfi(+), whereas forward-Euler integration re-
quires all rows to be calculated at each sample-time, hérceetiuced execution
time.

Case 2 - QSS2 Adaptability

As described previously, in Subsection 3.2.1, QSS2 scheduategrator updates
according to the level of deviation from linearity of the ividual state trajecto-
ries. If another simulation is performed where the ruddputrand engine RPM
input is set to zero and the decay from initial conditionsiisudated then QSS2
executes in 0.11 s, while forward-Euler still takes 0.23 s.

Case 3 - QSS2 Robustness

When one selects a time-step for a numerical integratiorhodegpplied on a
non-linear system one must make some assumptions on thiblpaedial states.

If these assumptions do not hold, the integration may egpee numerical prob-

Son a contemporary lap-top computer, 1.6GHz
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lems.

Consider Case 1 presented above; we change the engine epeeddt RPM
(i.e. no energy is added to the system) and set the initiehp#te tog = 0.45
rad/s. The outcome of this simulation is presented in Fi§uté.

Translational position Angular velocity
T T T T

10

05

-y

Angular rates [rad/s]

o 10 20 30 40 50 60 70

(a) Translational position (b) Angular velocity

Figure 3.10: Non-nominal initial conditions; forward-Euler (full lirs}
integration is inconsistent, while QSS2 remains (dasheb)i consistent

It is clear from the (a) graph that the QSS2 and forward-Euw&ectories di-
verge. Looking at the (b) graph it can be seen that after 1@ $atward-Euler
solution begins to develop oscillations with increasingplitmde for the roll and
yaw state - eventually leading to numerical instability troe forward-Euler solu-
tion. Meanwhile the QSS2 method performs consistentlyoaliih the number of
integrator outputs have increased to 2063 to cope with ttre@sed dynamics of
the system, which also causes an increase in executiondithé s.

3.4.3 Discussion of Simulation Study Results

The results presented above demonstrates that the QSS@chttimpetes well
against forward-Euler integration on the AUV problem. Thbenfard-Euler in-
tegration approach was chosen due to its simplicity whidiifated quick im-
plementation in DEVS. Algorithms such as e.g. Runge-Kutta @lso be imple-
mented in DEVS, but would require more effort.

Comparison between Matlab based Runge-Kutta integratisadon the model
in the "Marine Control Toolbox (MCC)" [Fossen, 2002b] shosisiilar perfor-
mance between the two, but it is hard to tell if the perforneaiscdue to the
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method or the time it takes for function evaluation in the sxecution environ-
ments (Matlab vs. DEVS/Java). In these simulations the Bigita algorithm
requires a step-size of 0.5 s.

An important point is the robustness properties demorestrat Case 3; all
traditional explicit time-discrete integration methods/é a limited stability re-
gion [Ascher and Petzold, 1998] meaning that one can imagae-locations
where not all poles can be inside the stability region. Thishe case for the
forward-Euler algorithm in Case 3, where it cannot cope \ilith fast roll and
yaw dynamics at the same time as the relatively slow pitchathios. Since the
qguantised solution is able to handle each state indivigudlican adapt to the
situation. This property is desirable when implementinigusi control systems.

Applying a code profiler in Case 1; it was measured that 16%e$imulation
time is overhead in the sense that it is spent by the DEVS fnaie i.e. the
software classes described in Section 2.3 on page 24, 2% ¢intle is spent in
the Qss2Integrator class and finally 82% of the time is spent evaluafi(g
in the Qss2Map class.

3.5 Chapter Summary

Initially it was argued that numerical simulation algorith are an important part
of many advanced control and estimation approaches, antesnadive to well
known discrete-time methods was presented which reliesuantggation of the
states. The merit of this approach is automatic adjustnfagheaequired number
of integration steps to the level of change experienced égthution trajectory -
and further a decoupling of states in the calculations thatexploit sparsity.

A specific QSS based algorithm, the QSS2 algorithm, was preden de-
tail. The algorithm relies on a first order quantisation af #tate and maintains
internally Jacobian matrices for the system being progabat

The properties of the QSS2 algorithm were discussed andmgrated through
both simple illustrative examples and a more intensive kitian study of an au-
tonomous underwater vehicle. It was demonstrated that 8@2algorithm has
performance and robustness features that makes it inteydst use in control
applications. To the author’s best knowledge the simutasitudy currently is
the most comprehensive study of a higher dimensional maaii system being
simulated with the QSS2 algorithm.
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Kalman Filter Estimation
In QSS

This chapter introduces the well-known Extended KalmateiF@igorithm for
quantised state systems within the DEVS framework. Hetlebyalgorithm can
provide Jacobian free estimation using the partial derivatmatrices generated
by the QSS2 algorithm. The new and original algorithm are garad on an
attitude determination example.

4.1 Introduction

Kalman filtering and Extended Kalman Filtering (EKF) areuwsily the most
widely applied methods for state-observation in linear aod-linear systems re-
spectively. This chapter contributes with a formulatiord amplementation of
the algorithm for quantised state-system, which providkhtional benefits over
traditional EKF implementations by being asynchronous ature and by pro-
viding Jacobian-free estimation using Jacobian estinggesrated by the QSS2
algorithm when propagating the state.

Section 4.2 reviews the classic EKF algorithm for non-limaetems, whereas
Section 4.3 describes how the algorithm has been implemiémteuantised state
system models. Finally, Section 4.4 provides a comparatige-study of attitude
determination for a deep space probe. The QSS/EKF filterlal@veent and a
similar simulation study as presented here is publishedliminde et al., 20074a].

4.2 Review of Extended Kalman Filtering

The EKF algorithm estimates the mean value of the systerasstaitd associated
covariance matrix. The state estimate and covariancexmatpropagated in in-
tervals where no measurements are available and when amaeesu is available
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the algorithm calculates a state update and updated cogariaatrix. Contrary
to the linear Kalman filter the EKF uses small-signal modateund the current
estimation for covariance propagation and Kalman gainutation.

Under the assumption that process and measurement noéseglapendent
multi-variate Gaussian distributions with zero mean, tid=Es optimal in the
sense that it minimises the covariance of the predictiooreifhe following re-
views the important equations for a typical time discret@lamentation, based
on [Grewal and Andrews, 1993]. The starting point is a cardirs non-linear
model:

x(t) = f(x,ut)+w(t) w~ N(0,Q()) (4.1)
y(t) = h(x,t)+v(t) v~N(OR(®) (4.2)

wherew(t) € R™ andv(t) € R™ represent process noise and measurement
noise respectively, both of which are assumed to follow ivadiate Gaussian dis-
tributions with zero mean and covariance paramef@is € R"*" andR(t) €

R™ ™, respectively. A covariance matrRy(t) > 0 is associated with the pro-
cess and describes the expected estimation error:

Pox(t) = E ([x(t) — B (x(t))] [x(t) - B(x(®)]") (4.3)

Between points in time where measurements are availablstale estimate
x(t) = E(x(t)) is propagated using Equation (4.1) (using some numerita in
gration algorithm) and the covariance matrix is propagatetiscrete time (time
stepr) using the relation:

Pxx(tkz—f—l) = q)(tk, T)Pxx(tk)q)T(tk, 7') + Q(tk) (44)

where®(t;,7) € R™ " is the state transition matrix of Equation (4.1) and is
found from the Jacobian matrix of the system:

B of(%,u,t)
- oxT

from which the state transition matrix for the interval afi¢gh ~ can be found as:

Af(x,u,t) (4.5)

o0 A k A’ ,t k
R I @6)
k=1 '

52



Chapter 4: Kalman Filter Estimation in QSS

which is usually evaluated to only the first few powerskin The discrete time
process noise, required for evaluating Equation (4.4)r twe interval between
two samples;, andt; ; is calculated from:

tr+1
Qltis) = / (1, 7)Q11) " (14, 7) dr @.7)

tk

When a new measuremey(t;,) is available at some discrete time, the state esti-
mate is updated according to:

Xt (tr) = %(te) + K(tr) (y(tr)—gX(tk))) (4.8)

where superscript "+" indicates the value after the updaspplied andl is the
Kalman gain, which is calculated according to:

K (t)= Prc(tr)Cn(X(tr)) (Cn(R(t)) P (t) Cn (X(t4)) + R(tx))

(4.9)
where the Jacobian of the output equatib(x, ¢), is:
. oh(x,t)
Cu(x,t) = 9T

after the state correction, i.e. Equation (4.8), the cevare matrix is updated to
represent the increased knowledge of the state inferred tihe measurement:

Pl (tr) = I — K(t)Ch(X(tr))] Pxx(tr) (4.10)

4.2.1 EKF Temporal Flow

Typical implementations of the EKF algorithm assume a @amtssample time
with measurements arriving precisely at these sample tiffiles propagation of
the state and the covariance in time is sketched on Figure 4.1

As time progresses the covariance and state equations guagated using
Equations (4.1) and (4.4) respectively. At sample times n@masurements are
processed according to Equations (4.8), (4.9), and (4i0)a state correction
is calculated and applied and the covariance is updatedlexiréhe increase in
information about the state values.

In practical applications of the EKF algorithm the processe,Q(t) is often
used as a tuning parameter in order to ensure proper filteatigpe considering
inaccuracies in state-propagation, inexact process letye, and inaccuracies
due to the linearised models utilised in the filter [Zarchad Blusoff, 2000].
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Figure 4.1: Propagation of state (red) and covariance (blue) in the EKF
algorithm. New measurement arrive at sample times.

4.3 Extended Kalman Filtering in Quantised Systems

This section describes an implementation of the EKF algorifor the quantised
state systems framework introduced in the previous chaptieich utilises the

Jacobian matrices as estimated as part of the QSS2 algdsterequation 3.2.2
on page 35). The benefits of this approach are:

e a Jacobian-free declarative estimator
e support for measurements arriving at arbitrary times

The first point is due to the QSS2 algorithm and the secondt [widue to
the formulation as a discrete event system (i.e. using DEVBgre exist other
Kalman filter formulations, for non-linear systems that daa require the avail-
ability of an expression for the Jacobian.

In [Schei, 1997] the Jacobian is estimated on-line usingrdrakdifference
calculation for each element in the Jacobian matrix, wHeggbints at which the
function is evaluated are determined from the covariande method is shown
to be marginally more accurate than the standard EKF algorit
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The Unscented Kalman Filter (UKF) [Wan and Merwe, 2000] rtairs an
ensemble set dIn + 1 state vectors that are propagated through the non-linear
process and measurement models in order to estimate theaswe- the UKF
reaches a higher degree of accuracy than the EKF, becadfeziively estimates
the distribution up to the fourth moment. A similar approasiaken in [Quine,
2006] where the presented algorithm only propagates 1 state vectors and
provides the same accuracy as the EKF.

The drawback of these methods is that they require a largdeuaf function
evaluations for each update step which for complex modeibeacomputation-
ally expensive. It will be shown in the following that usingetQSS2 algorithm
for state propagation and Jacobian estimation providedfiaieat means to im-
plement extended Kalman filtering, when it is intractabl@énoonvenient to derive
an analytic expression for the Jacobian.

4.3.1 Data Flow and Block Diagram of the QSS/EKF Filter

As mentioned before, typical implementations of the EKFoatgm are sample-
based, i.e. all discrete timeg, are spaced equally. However, this is not required;
with proper time-keeping non-equal time-steps can be implged using the
eqguations presented in Subsection 4.2. The algorithm wiitthbe described

in the following implements the EKF equations with prop@ngikeeping in the
DEVS specification on top of an existing QSS2 model. The tasud generic
EKF block that can be used declaratively with any systemrieest by its QSS2
model.

Consider Figure 4.2; here covariance propagation and merasiat process-
ing are decoupled. The covariance is propagated at a geathmtaximum sample
time (black dashed vertical lines) and when measuremerit® asynchronously
(green dashed vertical lines). The state trajectory amtaged output trajectory
is propagated by the QSS2 algorithm.

The Quantised State Systems Extended Kalman Filter (QS9/Eka DEVS
block that can be added to an existing QSS2 simulation m&dblock diagram
with all elements is presented in Figure 4.3.

The structure of a normal QSS2 simulation (cf. Figure 3.3 agep32 for
comparison) is augmented with the QSS/EKF block which vecgieasurements,
Jacobian estimates from QSS2 function blocks, state amuibtrajectories. The
QSS/EKF block outputs state corrections and optionallycthariance matrix in
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Figure 4.2: Propagation of state (red) and covariance (blue) in the-asyn
chronous QSS/EKF algorithm. Green vertical lines are nreasent
events.

order to track filter performance.

Arrows originating in a small circles indicate data-flowttienot controlled
by the DEVS specification, but througtall-backsfrom the destination to the
source of the arrow; this is due to the fact that the QSS/EKEKbnly needs
information on the state and outputs (including the Jacobfar(x)) when new
measurements are received, hence passing DEVS messalgdisisvibformation
on all state updates is redundant - see discussion in S&c#am page 27.

4.3.2 State and Covariance Propagation

The state is propagated by the QSS2 based algorithm as e $ethe last chap-
ter. This is decoupled from the QSS/EKF block, except tha¢éeives a new
Jacobian estimateél¢ (X, @), whenever the QSS2 algorithm updates one or more
entries in this matrix. In other words; the QSS/EKF evalsidgquation (4.5) by
setting it equal to the last received QSS2 estimate of thebiaa:

~ 0f(x,u,t)

Af(ia u, t) aXT

~ Ag(X,0)
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Covariance
Measurements L —_
——————— —»]
QSS/EKF o ____
SN I
| « — — — |
| |
- - | —

Af(X, 11) | | Ag(X) |
| State | |
| corrections |
! o |

(u, 1) (1, 1) . (7, 71) D_[!,];_J,d J'
A
f(x,u) . h(x) ,
(9, ) (Z2, §2) (y1,91)
/
P (y2: )

Figure 4.3: Block diagram for a QSS based EKF implementation.
Dashed lines are vector/matrix signals. This example hasstates, two
outputs, and one input.

When the QSS/EKF block receives a new Jacobian matyiik, @) it first
calculates the state transition matrix, Equation (4.6hagishe old Jacobian for
the time interval from the last event until the current tinmel 2hen solves Equa-
tion (4.7) and Equation (4.4) in order to propagate the dawae to the current
time. In case Jacobian updates are rare, e.g. if the systemas (only one initial
update), a user specified maximum time between covariamgagation ensures
proper numerical integration. After updating the covacethe new Jacobian is
stored for use in the next propagation step.

4.3.3 Measurement Processing

When a new measurement is available a measurement updatéoisyed, which
entails:

1. The covariance is propagated to the current time, as isestibn 4.3.2
2. The Kalman gain is calculated using Equation (4.9)

3. State correction is performed using Equation (4.8)

4. The covariance is updated due to the measurement, i.atiq4.10)
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Kalman gain calculation and state correction require mfaion about the
current state trajectory, current output trajectory, drarmeasurement Jacobian
A} (%) to be available. The QSS/EKF acquires this information gisive call-
back functions during processing of the external eventtfands.,.(-)) triggered
by the measurement. State correction requires an additigqna in each integra-
tor block, which resets the states to the value estimatetidKF.

Referring to Subsection 3.2.1 on page 32 which describe@ 8%2 integrator
block; when a reset is receivedt.) in Equation ( 3.5 on page 33), the state is
reset to the value from the EKE;*. Hereafter the quantum criteria is applied
(Equation ( 3.6 on page 33), restated here):

(1) — 2" (1)) > AQ

If this inequality holds the integrator behaves as desdribé&Subsection 3.2.1
on page 32 meaning that the time until the next internal eiefdund. On the
other hand, if it is violated, the integrator sets its tintixance function to zero
(ta(-) = 0), which causes the integrator to produce a new output imetelgli
and hence update all first and second derivative outputseo€dnnected func-
tion block (representind(x, u)), which causes all integrators to be updated with
current information following the measurement update.

4.3.4 QSS/EKF Implementation Details

The implementation of the quantised state filter requireS&2simulation to be
setup, see Figure 3.3, with the process model as the drivingtibn, f(x), and
the sensor model as the output functidrix), with such a model in place (see
e.g. Chapter 3 on page 29) the call for constructing the fdter

EKF(doubl e cT, i nt nM, Matrix P, Matrix Q, Qss2Map mMap,
Qss2ResetIntegrator|] ints);

wherecT is a guaranteed maximum time between covariance propagatibis
the number of associated measuremeRts the initial covariance matrixQ is
a matrix of continuous time process noise variancelslapis a reference to the
function,h(x), andints  are references to the reset-able integrators.

The Qss2ResetIntegrator is a class that extends tiEss2Integra-
tor class defined in Section 2.3 on page 24) with the reset furality described
in Subsection 4.3.3. Measurements are registered usiriglkheing call for each
measurement:
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addMeasurement( i nt nM, int[] rows, Matrix R);

wherenMis the measurement numbegws are row-indexes foh(x) for the
corresponding measurement aRds an associated matrix of measurement noise
variances. In this way measurements from multiple sensorde supported.

In addition to these calls then DEVS connections betweerblbeks must
be set-up using the standard calls for connecting blocksciougled model (see
Section 2.3 on page 24).

The discussion of the function calls above serves to demaiagtow simple
it is to add estimation to a QSS2 model; This allows a user teeotrate on the
modelling part of the task rather than implementation afidéad algorithms.

TheMatrix type that is used to represent matrices in the software idaima
public available matrix library for Java developedMathWorksand theNational
Institute of Standards and Technolodies

During operation of the filteaddMeasurement() can be called again to
update measurement descriptions. If e.g. in an industdak g sensor is replaced
with a more accurate one.

4.4 Simulation Case Study: Attitude Determination

Inspired by deep space missions such as Cassini [JohnsdBrawd, 1998] and
New Horizons [Stern and Spencer, 2003] the following presenDeep Space
Probe (DSP) attitude control case study that will be usede¥atuating the de-
veloped filter (and which will be revisited in subsequentptbes). The next sub-
section will provide an overview of the case and the follagvsubsection will
provide simulation results for the QSS/EKF algorithm aggblon the case and
compare performance against a standard EKF implementation

4.4.1 Model of a Deep Space Probe

The DSP is a single body spacecraft for deep space exploraigeneric mis-
sion profile with operational phases following spacecrafinch is indicated in
Figure 4.4.

* Available from http://math.nist.gov/javanumerics/jdma
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Cruise

N De-spin NS Three-axis

Figure 4.4: A deep space mission scenario with three autonomous atti-
tude control modes depending on distance to target.

In the Cruise phasehe probe is spinning around its major axis of inertia at
5 RPM with the main dish pointing towards the sun. Except farasional spin-
axis adjust manoeuvres the craft is not actively controlled

As the DSP reaches a certain distance from the target plammtforms a
de-spinmanoeuvre using pulse-controlled thrusters, whereditectaft enters a
three-axiscontrolled mode utilising precision thrusters and wheee ISP must
maintain inertial pointing at the target attitude with nmival disturbances rates.

This chapter will consider only the cruise mode where thk &$0 estimate
the attitude of the craft using the QSS/EKF algorithm dritagrsimulated sensor
data.

Kinematical Model
The kinematical description of the DSP is based on Eulerean(f-2-1 rotation
order) and the kinematical equation is described by [Wa&&Z3]:

cosfly sinfisinfy;  cos by sinby
0 cosficosfy —sinfycosfy | w
0 sin 64 cos 01

1
cos Oy

£ (67 W) =6 =
(4.11)

Dynamical Model
The time invariant dynamical model of the DSP described indylzentred coor-
dinate system has the following form:

fo([07 wT)") =& =T (—[wx]Iw + Neon + Ngist) (4.12)
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wherew = [w1 wo w3]” are the body rates.., is the vector of control torques,
ny;: IS the vector of disturbance inputs, and the parameierthe inertia matrix
with nominal values:

300 -05 —1.0
J=| -05 300 -—15 (4.13)
1.0 —15 500

and wheréw x| is a skew symmetric matrix representing the gyro-scopipliog
[Wertz, 1978].

0 —ws w2
wx] =] ws 0 —w
—w9 w1 0

During cruise mode, the DSP is spinning about its major aikis mominal
rate of 5 RPM and there is no actuation, e,, = 0. The DSP is affected by
unmodelled disturbance torques originating from e.g. :

e Solar radiation pressure
e Material out-gassing
e Propellant sloshing in propellant tanks
e Magnetic induced torques
It will be assumed that these disturbance effects can beuatkdy regarded

as zero mean torgues with Gaussian distributions with sta@ndeviations of
ogist = 1074 for each axis.

Sensor Model
The DSP utilises a simple sun-sensor and simple star-sansise mode which
are mounted on the Earth facing side of the spacecraft, geea4.5.

A sensor model for both sensors can be described by theorglati

X -X arge
y = h(6) = Ca (9) - Qxiii_xi g;) y
arge

whereX pgsp is the position of the probeX;,,4.; is the position of the sun or
guide star respectively, ards,; (6) is the direction cosine matrix corresponding
to the rotation specified by the Euler angles. Noisdor both sensors is Gaussian
distributed with zero mean and with the following standagdidtion on all axes
and the stated update frequency.
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... Guide-star vector

Sun vector

Figure 4.5: The DSP gets its attitude information in cruise mode by
measuring the angle to the sun and a bright guide star resggct

e SUN-Sensorsg,, = 1° @ 2 Hz
e Star-sensorsgi,, = 0.1° @ 0.2 Hz

It should be noted that each sensor by itself does not prduibstate observ-
ability since the rotation around the boresight of a singetor sensor cannot be
inferred.

4.4.2 Implementation of the Standard EKF Algorithm

In order to compare results of QSS/EKF filtering with resiitsn the standard
EKF algorithm, an EKF filter was implemented Matlab, based on Section 4.2
and the model in Subsection 4.4.1. The challenge in impléngethe filter is the
derivation of expressions for the required Jacobians. Aklaa for the dynamical
mode, i.e. Equation (4.12), can be derived by direct diffeagion [Bhanderi,
2005]:

ofy

Jayn (07w™]T) = D[07TT]

=J 1 ([Jwx] = [wx]J)

The Jacobian for the kinematical equation, i.e. e.q. (4 ¥ derived using
the Maple software package for computer assisted analytical mattiesn@(-)
andc(-) are short fosin(-) andcos(-) respectively):
ofy

Jein([0TWT]T) = 0T T] =
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s(02)(c(01)wz — s5(01)ws)/c(B2)  (s(01)wa + c(01)ws)/c(62)* O
—8((91)(4}2 - C(Gl)w;g 0 0
(c(01)wz — s(01)ws)/c(B2)  s(02)(s(61)wz + c(01)ws)/c(62)* 0
L s(01)s(62)/c(02) c(61)s(02)/c(62)
0 0(91) —8(91)
0 s(01)/c(62) c(6h)/c(02)

Finally, a Jacobian is required for each measurement; Algaiple has been
utilised to analytically evaluate the Jacobian of the mesrment modelh(-):

3,67 = g =

0 —sbOacl3uy — ...
(cO1802c03 + s01503)u1 + (cO1502503 — s01c03)uz + ch1chaus s01chzcl03u1 + . ..
(7891892093 =+ 691893)’11,1 + (7891892893 — 691693)’!1,2 — s61claus  cliclzaclzur + ...

s602s03us — chous —chas03u1 + caclszus 0O 0 O
s01c02s03us — s01s02us  (—s01502503 — cOi1ch3)ug + (s61502cl3 — cH1s03)uz 0 0 O
chich2s03us — ch1s62)us  (—ch1s02503 + sO1c03)ui + (ch1502¢03 + s61s03)uz 0 0 O

whereu = [u; w2 us]is @ unit vector to the target, i.e. the sun or a chosen guide-
star, ands andc is short forsin(-) andcos(-) respectively. The derivation of these
Jacobians clearly demonstrate that even for a relativatyplsi system the results
can be quite complex.

The EKF algorithm was implemented with a sample-time of Gp%hich
was found by observing that no improvement in the estimadimuracy resulted
from decreasing the sample-time further. Measurementtepdae performed for
each of the sensors at appropriate multiples of the sampideuconsistent with
the sample interval for the sun-sensor and star-senscectsgly.

4.4.3 Simulation Results

In order to evaluate performance, a model based on Subsectdal, was imple-
mented inSimulinkand it is used to generate measurement data sequences and a
sociated state values. The QSS/EKF filter implemented in ®BRd the normal
EKF implemented irMatlab have been tested with the generated data sequences
and the results are presented in the following.

For the case to be presented here, the initial conditionghierstate were
w = [000.21)7 rad/s and) = [0 0 0] rad. Each filter was initialised with initial
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state = [0 — 0.03 0.15]7 rad/s andd = [0.1 — 1 0]” rad. The covariance
matrix was initialised with standard deviationscof= 0.05 rad for attitude states
ando = 0.001 rad/s for angular velocity states.

Simulated Attitude Simulated Angular velocities

0.2

Y
£

@

wE NE
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w
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, |
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(a) Attitude (b) Angular velocities
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Figure 4.6: "Truth model" state and measurement values as simulated
by Simulink

Figure 4.6 shows the resulting state trajectories and meamnts produced
by the simulation irBimulinkfrom the stated initial values. It can be seen how the
behaviour is dominated by the slow rotation around the majc of inertia with
a small amount of precession due to the off-diagonal terntisaiinertia matrix.

EKF Results

On Figure 4.7 the result using the normal EKF algorithm casd®n in terms of
error signals between the estimated states by the EKF argirth#ation results
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presented in Figure 4.6.
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Figure 4.7: EKF filter performance. Note the small bias on thestate.

The (a) and (b) graphs show the error plots for attitude amilan velocity
states respectively, while the (c) and (d) plots show howvether fits with the pre-
dicted covariance for each state. The filter converges inoxppately 50 seconds
and it can be seen that after convergence there is good pon@snce between
estimation errors and their associated covariances. Hawig\can be seen from
the (c) plot that the; state suffers from a small bias in the estimate, however, it
is known [Grewal and Andrews, 1993, Zarchan and Musoff, 200&t the EKF
is not an unconditionally unbiased estimator - performarareto some extent be
recovered by introducing extra process noise [Zarchan amsbif] 2000].

The behaviour of the EKF filter as illustrated in these plstsdnsistent, qual-
itatively, with other runs of the filter with different indl state estimates;.
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QSS/EKF Results

The QSS/EKF filter was initialised with the same initial caiwhs as described
above for the EKF. The QSS2 implementation of the DSP modadag quanta
of AQ = 10~° rad for the attitude states ams) = 10~ rad/s for angular ve-
locity states. A maximum covariance propagation delag.0% s was chosen to
make the QSS/EKF filter perform as similar as the EKF as plessib

On Figure 4.8 the result using the normal QSS/EKF algoritamlwe seen in
terms of error plots between the estimated states by theE)}$FSdnd the simula-
tion results presented in Figure 4.6.
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Figure 4.8: QSS/EKF filter performance. Results are qualitatively équa
to the conventional EKF filter.

Again it can be seen that the filter converges in approximd&@lseconds, as
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for the EKF, and if one compares the error trajectories taufeigt.7 it is clear
that the two filters provide almost identical filtering. Hovee in the QSS/EKF
filter the small bias on sta#® has disappeared, but instead a small bias has now
become apparent on thg state (which again can be reduced by introducing more
process noise). The results are consistent with othealimitinditions.

The execution time for th#atlab based EKF is 2.3 s and 1.1 s for the DEVS
based QSS/EKF filter. However, these numbers cannot be cethdaectly as it
would be as much a comparison of execution platforms asidiigoperformance.
From the plots presented it is concluded that the QSS/EK¥iges an quantised
state systems alternative to the sample-based extendethKdilter.

Effect of Increased QSS2 Quanta

It is interesting to investigate the influence of the quangire selection on the
filter performance; Figure 4.9 shows results for the QSS/EKér on the same
problem as before, but with increased quanta, now all equAl@ = 1073,

Attitude Error vs. Predicted Covariance Angular Velocity Error vs. Predicted Covariance
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Figure 4.9: QSS/EKF Performance with increased quantum. Periodic
oscillation is evident.

It can be seen that the filter does converge to the correet tsgectories, but
that the estimation error is no longer consistent with thedjoted covariances.
Generally speaking the oscillations that can be seen inroe tajectories are
on the same magnitude as the chosen quantum. The reduceth dpgae also
decreased execution time from 1.1 s to 0.7 s as less integrstieps are carried
out in the QSS2 model.

Based on this example and others, it is stated that as a ruleuofb one
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should chose quanta for each state that are at least a ndgyhitrer than the
expected covariance in steady-state operation in ordah&QSS/EKF filter to
operate consistently.

4.5 Chapter Summary

This chapter introduced the QSS/EKF filter which is an extendalman filter
implemented for use with quantised state systems. A cadg sfiattitude deter-
mination for a deep-space probe demonstrated that the G&Siler performs
almost identically to the conventional sample-based EKBlémentation.

Contrary to the original EKF algorithm, the QSS/EKF altéiveadoes not
require analytical expressions for the state and measutsniacobians respec-
tively, but instead Jacobians are provided at no additionadputational cost by
the QSS2 algorithm used for state propagation. For systemesent is imprac-
tical or impossible to analytically derive expressions thug Jacobian, or where
such expressions becomes very computationally expenst&v€@ES/EKF algo-
rithm provides an interesting alternative to the converaidKF algorithm.

Secondly, the QSS/EKEF filter is a reusable implementatiat dffectively
encapsulates the algorithm and only requires the user tifgfee model of the
system and associate measurements as a QSS2 model. TheK@Z®Bj&rithm
and the model can then be composed at run-time.
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Optimising Control of
QSS Systems

This chapter contributes with an optimisation based cdraigorithm that can be
composed with quantised state system models to providet@lenfor a given
plant. The algorithm is presented, stability propertieg discussed, and finally
the algorithm is evaluated on an example involving an automas underwater
vehicle.

5.1 Event Based Control and Quantised State Systems

In this chapter, and the next, controllers are sought whismfa description of
the system and a description of the control objective cargea input signals
which drives the system’s states towards fulfillment of tbetml objective. The
controllers will utilise QSS2 models of both plant and olijgxs in the process.

u Yy

—»  Continuous System

Physical World
== DIA |- AD |-----
Control Computer

L QSS2 Based Controller [¢——

4 »

Asynchronous

Events sampling

Figure 5.1: Feedback control structure for a system being controlled by
a control computer executing a QSS2 implemented control law



Section 5.2: A Simple Optimising QSS2 Controller

In [Kofman, 2003] it is shown that the feedback-coupling ebatinuous sys-
tem and a quantised state system (See Figure 5.1) resultsasexd loop which
fulfils similar ultimate boundedness criteria as for whenugating a QSS system,
see Section 3.3 on page 38. This means that any feedbacloltamtiesigned
for a continuous system, which can be described as a set iokoydifferential
equations, can be implemented as a QSS2 model on the cootnputer. The
drawback is, as in the simulation chapter, small osciltetim the solution trajec-
tories. However, it is always possible to find a sufficient Bepgantisation which
makes these oscillations insignificant compared to systserthat is inherent to
any control system.

Further, in [Kofman, 2003], it is shown that if controllersrfLinear Time
Invariant (LTI) systems are designed and then implementethe control com-
puter as QSS systems and asynchronous sanipsingilised, significant savings
in computation time is obtained, when compared to impleat@nis of the same
controller using a sample-based approach.

In this chapter QSS2 models will be used to provide localairedbstractions
of the system which is to be controlled. The control algonishpresented in this
dissertation utilises these local linear models and findatsywhich minimise a
control objective function chosen by the system designer.

This chapter contributes with one such algorithm wheregaswn simplicity
of the required calculations, while the next section déssia more evolved ap-
proach. Section 5.2 presents the development of the ctantr8lection 5.3 anal-
yses stability of the method, and Section 5.6 demonstrétesugh simulation,
the applicability of the controller to the autonomous umdgser vehicle presented
earlier.

The algorithm and simulation study involving the autonosianderwater ve-
hicle was published in [Alminde et al., 2007b]. Estimati@sed control based on
the controller developed here is presented in Chapter 7 ga p@9.

5.2 A Simple Optimising QSS2 Controller

This section presents a control algorithm developed wighaim to provide an
algorithmicly simple control algorithm using an on-line 5model of the plant
to be controlled and a control objective function. The idetipresent an on-line

*using a second or first order quantum separation principlietermine event times
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algorithm that works well for a large class of systems ancttvioinly requires the
user to specify models defining the system and objective.

5.2.1 A Control Algorithm for Single Objective Control

For control purposes we will augment the system descrip#iith a control ob-
jective in the form of a scalar convex control objective fmie which maps the
state to a scalar value. The control problem is defined byuhetions:

% — f(x,u) (5.1)
ve = ve(x) (5.2)

wherex € R" is the state vector of dimension u € R™ is the input vector
of dimensionm, f(-) is a differentiable mag : R x R™ — R" representing
the system dynamics, ang(-) : R* — R! is the control objective function
defined by the user. The control problem is to find input sigthht minimise
Equation (5.2).

At this point we will require the control objective functido be a convex
function with a single minimum point at the point where therusish to stabilize
the system. The next section will derive more stringent ireguents orv. that
will guarantee stability of the system.

The QSS2 algorithm provides the Hessiiiz(t;,)) with z = [xT aT)T (see
Subsection 3.2.2 on page 33), which can be divided into twinicea A (X, @) ~
g—f( andB(x,q) ~ % representing state sensitivity and input sensitivitypees
tively.

Similarly for v.(x) the QSS2 algorithm provides a state sensitivity matrix
E(x) ~ %ﬁg, which is the Jacobian of Equation (5.2)These matrices are com-

municated to the controller, and the controller outpus fed to the plant through
a set of integrators, see Figure 5.2.

The choice of letting the controller control the input slegerather thanu
directly, is due to the fact that the matrices used in theutalion are based on a
fixed operating pointx, @), so any immediate change in the control signal would
cause these matrices to be updated and hence cause thdl@otudrperform an-
other control calculation. To avoid this algebraic loop tbhatrol slopes are taken

fIn fact a row vector since. is scalar, but we leave the matrix symbol for future extemsm
multiple objective control
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(@, t) (%) f (Xp%)

(v, V)

(%2%,) f (*X2%)

Figure 5.2: QSS Control structure. Thick lines are vector signals.
Dashed lines are matrix signals. This figure has two statdsoanm in-
put.

as outputs from the controller which thereby leaves the Q8&¢hanism for au-
tomatically switching operating points intact.

The control strategy chosen is to provide an input signal thaintainsa,
negative. In order to do this with only information about thatricesA, B andE
we neglect the autonomous response of the system and ordideothe forced
response, implications for stability will be addresseddato this end we need to
see howi, is affected by the control vectar over a time horizom = t51 — tx,
which corresponds to the time until the next scheduled Q$8&teThis change
is given by the expression:

Agte(%,1,7) = B®)(X, @, 7)a (5.3)

where Ay0.(X,1,7) is to be read as "the change @f(x, 1, 7) due tou over
the time-horizonr", and wherel'(X, @, 7) is the input transition matrix [Gene
F. Franklin and Emami-Naeini, 1994]:

I'x,a,7) (5.4)

I
%
El

Based on the limited information herein we will constructadgorithm that
seeks to minimise.(x) by choosing appropriate control actiain, As Figure 5.2
introduces integrators for control signa) we also need to penalise this state in
the control objective function in order to ensure that colrgignals approachs
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as the control objective function is minimised. To this erelwge a quadratic cost
term for the control state:

vy (u) = %(u - uf)TP(u —ur)

with parameters given by the matix= PT > 0, and possible preset input levels
(feed-forward),us. We now introduce the joint performance function:

v(x,u) = ve(X) + vy (u) (5.5)
and introduce a term for the input cost in Equation (5.3):
Agd(X, T, 11, 7) = (E(x)r(i, G, 7) + r(u — uf)TP) o (5.6)

it is noted that the expression between the outer parestiegsiuates to a row
vector which we will denote, i.e. :

Aph(X,T,1,7) = cit

The minimisation will be performed over a control horizomattltorresponds
to the next scheduled integrator output event in the QSSARlatian. Further-
more, since it is not possible to evaluate the infinite sumaidtion (5.4), it is
evaluated using the first terms, wheren is the number of states in the system.
This choice ensures that minimisation includes full infation about state con-
trollability. The minimisation problem can now be stated as

minimize Ay0(X, @, 0, 7) = ci (5.7)
subject to:
U = Umax
a = Umin
u = Umax
u = Umin
where the constraintmax and tmin are due to rate limiting andmax and umin
are due to actuator saturation. Denoting the optimal ifiguit can be seen that
due to the simple dot-product form of the problem, each corapt index:, of
u* can easily be found:
Uming  1f¢; >0 A u; < umaxi
Ui = Umaxi If ¢ <0 A U > Umin (5.8)
0 otherwise
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Section 5.3: Stability Analysis

Described in words the control algorithm finds a control slé@r each con-
trol signal which based on local information of the model aodtrol objective
simultaneously seeks to minimise the functiansandv,,. The control slopes
are recalculated whenever the QSS2 model informs the dlemttbat either the
model matricesA, B, or the objective matriE has changed.

In practise the control signal slope limitg,ax andimax can be chosen from
physical insight representing the physical limits of theuators.

5.3 Stability Analysis

We are investigating the stability properties of the foliogycontinuous system,
wherek(x, u) represents the control law (cf. Equation (5.7)):

X = f(x,u) (5.9)
0 = k(x,u) (5.10)
v(x,u) = ’UC(X)+%(U_Uf)TP(u—Uf) (5.11)

Due to the formulation wittf(-) andwv.(-) being general non-linear functions
andk(-) a controller exhibiting switching behavior, stability fiive general case
is difficult to prove. The following analysis will show thdie proper framework
for analysing stability of the system is within stabilityetbry for hybrid systems,
and sufficient conditions for (exponential) stability Wik formulated.

5.3.1 Equivalent Switched System Model

The system described above can alternatively be described the extended
state-spacé = [x? (u—ug)?]”. Furthermore, we introduce the notatig(¢) =
[f(x,u)” k(x,u)"]T and V(&) = v.(x) + vy(u):

g(6) (5.12)
v=V(¢) (5.13)

It is noted that the control law, i.e. Equation 5.7, resuita icontrol vector of
discrete valued components each corresponding to a maximimmum or zero
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value of a given input signali{). Therefore we can realiggas a switched system
of vector fieldsg; € U = {g1,...,g3m } where:

s©=| 5V ]+ ] (5.14)

Vi

herev; is one of the3" possible input vectors th&i(x, u) can switch between.
By viewing the control problem in this light we see Equatiéril@) as a variable
structure system where the controller switches betwederdift realisations with
the goal of stabilising the system&t= 0.

To introduce the quantised state approach we note that ¢bretrol calcu-
lation the controller is presented with a local affine modgbplace of the general
non-linear model, i.e.:

.| f(x, @) A(x,u) B(x,0) 0
5—-[ 0 ]4—[ 0 L €=+ (5.15)

In principle we can think of the right hand side as a set of iptssealisa-
tions of the system’s dynamics and control input. Each tineeQSS2 algorithm
switches to a new realisation of the system model the cdetrelvitches to an
appropriate realisation of the input signal.

For a simple linear system there would & possible systems to switch be-
tween and for a general non-linear system there could beteifirmany. The
choice of quantisation vectah Q is a parameter adjusting how often the system
model is switched and hence how fine-masked the QSS2 algoafproximates
the underlying non-linear system.

In the following we will discuss stability of the continuogsgstem described

by Equation (5.12-5.13). We thereby assume that the useshitaen a quantiza-
tion AQ that approximates the continuous equations closely.

5.3.2 Hybrid Stability

To discuss stability of the switched system described ab@meed to define what
is meant by stability for such a system. Consider an autongrswitched/hybrid
system on the form:

x = f(x,q(t)) = f4)(x) (5.16)
whereq : R — {1,..., M} assigns a specific realisation of the vector field to
the system at a given time(t) is piecewise continuous from the right implying
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that there can only be a finite number of switches per unitrokti For each
f; we associate a Lyapunov like function (definition belaw)and region in the
state-space€); where the vector field is switched on.

Definition 5.1 (Lyapunov Like Function [Branicky, 1994])
A Lyapunov-like functionv; associated with a regiofl; satisfies the following
two conditions withx € ;:

e v;(0) = 0 andv;(x) > 0 for x # 0 (positive definiteness)

o U;(x) = agix) fi(x) < 0 (negative definite derivative)

With this notation and definition in mind we can state a theogiving suf-
ficient conditionsfor stability of a switched/hybrid system (proof in [Brakyc
1994)):

Theorem 5.2 (Stability of Hybrid Systems [Branicky, 1994])

Given the M-switched non-linear system of Equation (5.$8ppose each vector
field f; has an associated Lyapunov-like functignin the regiont);, each with
equilibrium pointx = 0, and suppose,;2; = R"™. Letq(t) be a given switching
sequence such thatt) can take on the valueonly if x(t) € Q;, and in addition:

vi(x(ti k) < vi(x(tig-1)) (5.17)

wheret; ;. denotes theéth time that vector field; is "switched in", i.e.q(t; ) #
q(t;,) = i. Then Equation (5.16) is Lyapunov stable.

If in Definition (5.1) condition two and in Theorem (5.2) Edioa (5.17)
the less-than-or-equal sign is replaced with a stricthg-an then the system
is asymptotically stable in the sense of Lyapunov.

In words; Each time a new vector field is selected the assatiagapunov
like function must be less than or equal to the same functiafuated last time
the same vector field was exited. Furthermore, the Lyapuikevflinction must
be non-increasing while the associated vector field is thore

ConsiderV(¢) a candidate Lyapunov like function for the system given by
Equation (5.12) with the associated regiop ) = R"™*™ meaning that’(¢) is
associated with all realisationgs € U. Let ¢(¢) be the sequence of realisations
g; that is chosen by the controller (Equation (5.7)) then trstesy is stable if the
conditions of Theorem (5.2) are satisfied from any initiahdition.
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As the controller always chooses the realisaiggrihat will contribute most
negatively to)(¢) stability is now a question of if the user supplied functig(x)
together with the chosen matrRR that in fact provides &(¢) that is a global
Lyapunov function for the switched system described by Eqnd5.12).

As a general declarative controller this is insufficienttgdaces the respon-
sibility on the user. Practical experience, however, shuat for some systems
it is relatively easy to select a good control objective fimt and input cost ma-
trix that provides a satisfactory response. The type ofesystwhere the control
strategy works well are systems with stable or marginallstdnamics and free
kinematic variables.

It should be noted that Theorem (5.2) represents only seffficionditions,
hence it is possible to have a response wh&i@ grows locally but still decays
to zero in finite time. In fact there are some versions of $tgltheorems for
hybrid systems that are more general than Theorem (5.2) llvasahis type of
behavior (in models with a finite number of realisations) [Crlo et al., 2000]).

5.3.3 Quadratic Performance and Min-Skew-Projection
If we restrictv.(x) to be a quadratic performance index:
ve(x) = x1 Qx (5.18)

with Q > 0 a positive definite matrix parameter thi2(¢) also becomes a quadratic
performance index:

V(e =¢" [ P } £ =£The (5.19)

The controller can now be described as the optimisationlenotof choosing
the vector field that gives the most rapid decrease of thergtiagperformance
function:
gi = argmin ¢ Pg;(¢) (5.20)
g.€0

With this formulation the control problem is equivalent ke min-skew-pro-
jectionstrategy (MSP) proposed in [Pettersson and Lennartsor7).18afficient
stability conditions are given by the following theorem hwjiroof in [Pettersson
and Lennartson, 1997].
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Theorem 5.3 (Stability of MSP strategy [Pettersson and Lenartson, 1997])
If for all states¢ € R"t™:

Jgi(€) € U such thate"Pg(€) < 0 (5.21)

then the closed-loop system is stable usingrtfie-skew-projectiorcontrol strat-
egy. Specifically, if for all state$ € R"™™ there exists & > 0 (independent of
&) and:

38:(6) € O such thate Pa(6) < — o€l (5.22)

then the closed-loop system is exponentially stable usiegnin-skew-projection
strategy

With the MSP approach it is understood that the controllégcse the vector
field g; which is the largest projection on the vectelP£. This is depicted in
Figure (5.3) below.

&
A

> G

Figure 5.3: The MSP strategy chooses the vector field that is the largest
projection on—P¢, in this caseg; overg;.

While the MSP formulation provides more insight into how tentroller
operates and what the conditions for stability are, it ibgti to the user to select
parameter® andQ such that the conditions of the stability theorem holds.

In other works where a similar control strategy is used, éng[Pettersson
and Lennartson, 1997, Rodrigues and How, 2003], it is pregds search off-
line for proper parameters for the Lyapunov like functiosgng a linear-matrix-
inequality (LMI) approach to determine either a global Lyapv like function
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(cf. [Pettersson and Lennartson, 1997]) or multiple Lyapulike functions each
valid in some domain (cf. [Rodrigues and How, 2003]).

5.4 Extension to Multiple Objective Control

For many Multiple-Input-Multiple-Output (MIMO) controlpblems it is often
possible to separate the system into a number of looselyledgpbsystems and
then design controllers for each subsystem while neglgdtia cross couplings,
as done in e.g. [Healey and Lienard, 1993] for the AUV modeCbéapter 3 on
page 29. The following describes how the just describedrigtgo can be formu-
lated to support this approach.

An extension to multiple objective control is possible iseawhere the actu-
ators can be divided in complementary sets assigned to antiMg function. For
multiple objectives the control objective function will tanger be scalar, but:

Ve,1(%)
ve(x) = :

Ve,l (X)

where each scalar functian ;(x) is assigned an actuator sgtsuch that:
l
Max =10
k=1

For multiple objective control Equation (5.7) and Equat{®®B) are solved
independently for each control objective function with eqiate sub-matrices
extracted fron1'(x, @, 7), E(X) andP. This way single objective control can be
seen as a special case of multiple objective control withgne control objective
function to which all actuators are assigned.

5.5 Control Algorithm Summary and Implementation

The controller is implemented as shown on Figure 5.2 by arabalass that cal-
culates control input slopes and a number of integrators kbep track of the
integrated control signal. Algorithm 5.1 summarises thefionality of the con-
troller class described by its DEVS interface.
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67Lnt():
7« the least ta(-) in the set of model integrators
evaluate Equation (5.4)
foreach control objective, index k:
evaluate Equation (5.6)
foreach actuator i € ax
u; «— Equation (5.8)

dext(P): P is a set of messages

Receive one or more new matrices from P:. A /BE
newFlag — true

A():

return {dq,...,up}

ta():

if newFlag

" newFlag — false
return O

return oo

Algorithm 5.1: The Controller Block

The methods necessary to set-up a controller is briefly pteddan the fol-
lowing. At first a controller must be constructed:

MinimizingController(DevsContext context, String name, i nt
noControlObjectives, i nt controlDepth,
doubl e[] uDotMax, doubl e[] uDotMin,
doubl e controlCost(]);

wherecontext andname provides a context object associated with the DEVS
environment and a hame for the controller (cf. 2.3 on page @d4Lontrol-
Objectives  declares the number of control objectives the controlleukh
handle,controlDepth declares how many terms in Equation (5.4) should be
evaluateduDotMax anduDotMin specify limits on the control slopes, and fi-
nally controlCost  specify diagonal values for the control cost maiix

The following method is then called to provide the controliéth references
to integrators in the QSS2 model from which the control hawizr, should be
derived.

voi d registerStatelntegrators(Qss2Integrator ints[]);

Similarly, to keep track of the control states referencethéocontrol signals,
integrators are provided:
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voi d registerinputintegrators(Qssinputintegrator intsf[]);

The QsslInputintegrator class provides integrators which take the first
derivative as input, as opposed to fRes2Integrator class, and updates its
output whenever the state has changed by a specified quafitein®-order quan-
tisation as opposed to the first order quantisation of theZxdgrithm).

The following method binds control signals, described hgirtmdexes in
theu vector, to specific control objectivespntrolObjective

voi d registerinputsToControlObjective( i nt controlObjective,
i nt[] indexes);

This method can also be used during run-time in order toceaté actua-
tors, e.g. if new actuators are plugged into the system an dictuator becomes
unavailable because of a fault. Finally, if control signegd-forward (i.en¢) is
desired the feed forward vector can be set with the followimeghod:

voi d registerinputOperatingPoints( doubl e[] operatingPoint);

The control objectives are declared ias2Map object (cf. Subsection 3.2.3
on page 36) and is then connected to the controller objentjaseaddConnec-
tion() method of theDevsCoordinator  class (cf. Section 2.3 on page 24).

5.6 Control of an Autonomous Underwater Vehicle

This section will provide simulated results for controll®raluation of both the
Single Objective Control (SOC) and Multiple Objective Quh{MOC) approach
applied on the Autonomous Underwater Vehicle (AUV) modgidduced in Sec-
tion 3.4 on page 42. The control objective pursued here tsofhdepth and head-
ing tracking under constant forward surge speed.

First the MOC approach will be presented, followed by the S&p@roach
which will use the sum of MOC objective functions as its singbjective func-
tion. Of the six available actuators the Top-Bottom plank mat be used (it has
virtually no influence due to its position and its controltoad be set to infinity).

Actuator saturation limits are as specified previously (Section 3.4 on
page 42) and the rate constraints have been sef{@ = — 1, = [0.2 0.2 0.2
0.4 0 1.2] with units of rad/s for the rudders and RPM/s for the propedieaft. A
control cost matrix has been found = diag([0.2 0.1 0.1 0.1 oo 0.001]). The
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input integrators have been setup with quanta of 0.01 rathécontrol surfaces
and 0.1 rad/s for the propeller shaft.

The AUV system is subject to dynamic dampening due to frickietween the
AUV and the water. This means that all dynamical states wiibtto zero if no
control is active, in order to fulfill the control objectivé constant forward surge
speed and the conditions required for stability of the mebttsee Section 5.3, it
is necessary to include a feed-forward term as introducdequmtion (5.5). In
order to move the open-loop equilibrium point of the systerdincide with the
control objective.

The simulation case shown in the following graphs is for aloied maneu-
ver where the AUV should dive 20m, while turning 0.9 rad, amtéase the surge
speed from 1.1m/s to 1.5m/s.

Multiple Objective Controller

For the MOC case the control objectives and associatedtactedts are described
in the following. Variables with subscript are reference values for the corre-
sponding states.

Speed Control objective function for surge speed: = 10(u — u,.)? and is as-
signed the actuator-set; = {n}

Heading Control objective function for headingy = 2(1,. —)? and is assigned
the actuator-setus = {0, }

Depth A control objective function for depth and pitch stabilisat: v3 = (z —
z)? + 3(g)? and is assigned the actuator-set:= {Js, dps, Opp}

The third control objective is designed to control the degutld at the same
time avoid oscillations of the lightly dampened pitch axiglee AUV. With the
above choice of control objectives, way point tracking canabcomplished by
a guidance controller that supplies new referenags:v,., and z,. each time a
way-point is reached.

The same decoupling into controllers for speed, headingdepth is seen
in [Healey and Lienard, 1993], where single input contrsllare designed for
linearised system models. Here we retain the non-linearetsahd can assign
multiple actuators to e.g. the depth control objective.

Figure 5.4 shows results for the states of the AUV for the 88§ seconds. It
can be seen that the surge speed does stabilise at 1.5 mapbn(g), the heading
stabilises in roughly 55 s on graph (d), and the depth readbes to 20 m also in
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Figure 5.4. MOC results for AUV states and control signals - it can be
seen that the control objectives are met.
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55 s on graph (c), but it takes further 100 s before it finalljileg The remaining
states responds to the maneuver as expected.

From the (e) graph it is seen that initially both the stermpl|d,, and the bow
planes,d,s anddy,, are active in order to perform the dive. The two bow-planes
perform the exact same actuation. It can also be seen thaudaer is active
at first and then settles at zero as the correct heading ibegdadven after the
control objectives have been met the switching nature ofdiméroller can be seen
in the control signals, especially for the stern plane.

The (f) graph shows that initially the surge speed contrafiereases the pro-
peller shaft speed to gain surge speed and then as the headinigpth objectives
are met the surge speed controller reduces the shaft spdeslfeed-forward op-
erating point of 125 rad/s.

Finally, Figure 5.5 shows the three control objective fiored and how they
are minimised throughout the simulated execution. It casdsn that both the
surge speed controller and depth controller experienoas pariods where it is
not possible to prohibit growth of the objective functionits influenced in a
positive direction by the autonomous response of the syatadrthe disturbances
introduced by the other controllers.

ccccccccccccccccccccccc ve Heating Control Objective

1
200 250 30 o 50 100 150 200 250 30

150 150
Time 5] mels T ime ]

(a) Surge speed objective (b) Heading objective (c) Depth objective

Figure 5.5: MOC results for AUV control objective functions.

Single Objective Controller
Now results for the SOC controller is presented the contibjgative function is
the sum of objective functions for the MOC controller to féiate comparison:

Vsoe(X) = v1(X) + va2(x) + v3(x) (5.23)
And the set of actuators is:

Qsoc = a1 MNazMNag = {57“7 s, Ops, 5bp, n}
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Figure 5.6 shows results for the states of the AUV under SQt@rab Again
it can be seen that the states converges to the commandpdirsest- However,
compared to the MOC case, convergence is not as rapid.

It is clear from both (e) and (f) compared to (e) and (f) on Féyb.4 that the
SOC scheme result in more conservative use of the actudtoisis particularly
clear for the stern plane and the rudder.

Finally Figure 5.7 shows the objective function for the SQiteoller, i.e.
Equation (5.23), and also, for comparison, the sum of the M@@ormance
functions (Figure 5.5) is plotted on the same graph. Aga@mehs a short pe-
riod where the objective function is increasing, but coredaio the MOC case
this period is shorter for SOC.

It can be seen that the MOC approach is somewhat faster tleaSB@C in
achieving the commanded set-points for the controller.

Discussion

Table 5.1 shows the number of control events for each actuago how many
times the corresponding input integrator has updated ifsubuo the model. It
can be seen that the stern-plane actuator is the most dtibsdoth the SOC and
MOC case. In general the MOC case requires slightly feweatgsdto perform
the control. This is reflected in the execution time whichN®C is 8.47s and
8.63s for SOC.

[ Events]] SOC | MOC |

Or 523 385
05 8842 | 8769
Obp 1428 | 1308
Ops 1428 | 1308
n 167 135

Table 5.1: Actuator signal updates to the model.

In conclusion it can be said that both algorithms lead tcstattory perfor-
mance on the AUV problem. The MOC approach provides slighéiter per-
formance and is also slightly faster to execute for the abriomputer for this
problem.
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Figure 5.6: SOC results for AUV states and control signals - it can be
seen that control objectives are met.
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Figure 5.7: SOC objective function vs. MOC summed objective func-
tions - It can be seen that the MOC approach is more effective.

5.7 Chapter Summary

This chapter introduced two algorithms for control of a slasnon-linear multiple-
input-multiple-output systems based on QSS2 models ofythieis and a QSS2
description of a control objective function which is minged by the choice of
control input slopes by the controller.

It was shown that stability of the proposed method must bevedkein the
framework of switched/hybrid systems and depends on ths gkeice of control
objective function and control cost matrix. Further, it vgaswn that if a quadratic
control objective function is chosen the control strateggquivalent to thenin-
skew-projectiorstrategy described in [Pettersson and Lennartson, 1997].

In practice the method can be applied to a large number oésygste.g. mo-
tion control system with inherent dynamical dampening, igtiee control objec-
tive is to guide the kinematical states to a given set-point.

The method was demonstrated using simulations of an autom®@ommderwa-
ter vehicle, based on a nominal model and full state knovdednd it was demon-
strated that the method was successful in controlling tiseesy. Both the single
objective and multiple objective control variant of the hua were demonstrated
successfully.
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Sliding Mode Control in
QSS Systems

This chapter contributes with a highly configurable contstducture based on
sliding mode control theory, which is developed for commsiwith quantised
state models and offers adaptability by being implemensea mumber of object
oriented components that can be replaced or extended dhdilly. Simulation
results are presented for a case involving a deep-spaceeprob

6.1 Introduction

The concept of Sliding Mode Control (SMC) originates in thedry of variable
structure systems (Cf. [Utkin, 1977] for an early surveyqrap The idea is to
have a discontinuous input which drives the system towardsuifold, called a
sliding surface, which defines the desired system dynarfiiog. great advantage
of the SMC approach is that on the sliding surface the staikiton is indepen-
dent of the system model and can be made robust against lbundertainties.
On the other hand SMC suffers from a phenomena caltedtering due to the
discontinuous nature of the feedback.

Sliding mode control has been applied for many applicatierts autonomous
underwater vehicles [Healey and Lienard, 1993] and spabilegemotion con-
trol [Wiesniewski, 1998]. This chapter introduces a SMM#isation scheme for
Multiple-Input-Multiple-Output (MIMO) systems, which isased on the design
procedure introduced in [Khalil, 2000], and develops anlemgntation of this
approach using quantised state systems and DEVS basedsonigxecution.
The main contribution of the chapter is a generic SMC colardbr quantised
systems that easily can be re-used for various applicakigrspecifying the rele-
vant functions describing the plant to be controlled.

Section 6.2 describes the SMC approach for continuousragsaad discusses



Section 6.2: Sliding Mode Stabilisation of MIMO Systems

relevant properties, the subsequent section, Sectiondésgribes how this ap-
proach was adopted to the QSS/DEVS framework, and, finadlgti& 6.4 pro-
vides simulation results of a deep space probe using a nbmiodel with full
state knowledge. The next chapter provides results inofutlie effects of uncer-
tainty and running an estimator in the loop.

6.2 Sliding Mode Stabilisation of MIMO Systems

The following introduces and analyses the SMC stabilisadipproach for non-
linear MIMO systems introduced in [Khalil, 2000]. The stagt point is a control
affine system on regular form representing a nominal modélthe origin ¢ = 0
and¢ = 0) being an open-loop equilibrium point.

. 77 = fa(nv 5)
5 = fb(nvé) + G(777§)u

where¢ € RY represent the dynamical statesc R? represent the kinemati-
cal statesu € R? are control inputsf,(n, £) andf,(n, ¢) function maps, and
G(n, &) € R¥™4 a non-singular matrix, and is equal to the number of degrees
of freedom in the system.

We consider an extension of the previous system which iesutiynamic
disturbances and parameter uncertaintie&n):

i ="fa(n,§) (6.1)

¢ =808+ GnHEM Hu+d(n, & ut) (6.2)
whereE(n, ¢) € R¢ is a diagonal matrix of strictly positive diagonal elements
ei(n,§) > 0fori = 1..d representing parameter uncertaintiexGaf, £) and is
equal to the identity matrix when there are no uncertainfidee vectors(n, £,t)

describes dynamic disturbances, it is important to notetkiese disturbances are
matched, which means thét, £,t) is in the column-space &&(7, ).

Associated with the system issiiding variableexpressed as:

s=¢—o(n) (6.3)

where¢(n) is a at least once differentiabtgiidance control layi.e. a feedback
that stabilises Equation (6.1) with= ¢(n) as input. Equation (6.3) implicitly
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defines thesliding manifold
S:{¢(77)7 § - SZO}

It is the goal of the sliding mode controller to reach theistidmanifold and
remain there, even in the presence of disturbances andtamtiers as described
by Equation (6.1) and Equation (6.2). The design of the quddaontrollergp(n),
is not addressed in the SMC design that follows, but is silmpgumed available.
It could e.g. be implemented by negative proportional esignal feedback or
some other suitable control methodology.

In order to describe the motion on the sliding mode we difigate Equation (6.3)
once and obtain:
d¢

§=fp(n, &) — 8—nfa('n, §) + G, EM,u+d(n, & ut) (6.4)

When we assume a known nominal mokle= I4 for E and no disturbances,
i.e. § = 0 then it is clear that the following input makésequal to zero and
maintains the system on the sliding manifold.

(—fbm,&) T g—jfam,f)) (6.5)

u= |G B¢
The first term is responsible for cancelling dynamic forcethe system and the
second term ensures that the system tracks changes indimg stianifold. This
control is also dubbedquivalent contro]Bandyopadhyay and Sivaramakrishnan,
2006].

To ensure that the system reaches the sliding manifold #nqurs control
law is augmented with a term to guarantee stabilisationdonhanifold:

u= [0 9B00] " (R0 + G0 ) G 0Oy (60

wherev is a switching element characteristic for sliding mode oanalso dubbed
thereaching law The following analysis will show how the reaching law can be
designed to ensure that the sliding mode is reached und@rélsence of distur-
bances and uncertainties.
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When Equation (6.6) is substituted into Equation (6.4) weiobthe expression
for each element;; € S:

S =ei(n,&)vi + Ai(n, &, v, t) (6.7)

where the first term arises due to the reaching law and thendg¢eom due to the
disturbances and uncertainties, in more detail:

A(nv &, v, t) -

) <77,€,G‘1(77,£)E_1(77,§) <_fb(777§) + g—f&%&)) + G_l(naé)vat>

+ [Idxd—E(n,f)E_l(mf)} (fb(n,f) - g—ifa(mé)>

here the first term represents dynamic disturbances anétbed term represents
the error in cancelling the dynamic forces and tracking tiggng mode which is
due to uncertain knowledge & (7, ).

We assume that the magnitude of the uncertainties and lostoes can be es-
timated by a continuous function and a constant such thdotlosving inequality
holds:

‘ Ai(nv Ev v, t)
€z‘(777 f)
wherep(n, &) > 0 andkg = [0,1).

‘s 0(1,€) + rollVl|eo VI<i<d (6.8)

If we consider the following Lyapunov function candidate &ach sliding
variable,s; € S:

Vi = %sf with Vi = s
and insert Equation (6.7) into the expressionifgrwe obtain:
Vi = siei(n, )vi + si0i(n, &, v, 1)
inserting the uncertainty bound, i.e. Equation (6.8), we ge
Vi < ei(n,€) (sivi + |sil[o(n, &) + rol[V]c]) (6.9)

hence to ensure negativity bf, an inputy; can be chosen as:

vi=—B0n,&)sen(s;) ¥1<i<d (6.10)
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where the3(n, &) function is defined as:

Bin &) = 209 g

11— Ko
Now, inserting Equation (6.10) into Equation (6.9) and rpafdting terms, we
get: '
Vi < —ei(n,€)Bo(1 — ko)lsil (6.11)

It is therefore obvious that the sliding mode controllemgsihe control law pro-
posed in Equation (6.10) provides global asymptoticalgb#ity for the uncer-
tain/disturbed system.

6.2.1 Chattering and Boundary Layer Control

The previous section showed the potential of the SMC methorims of its
strong stability properties. However, the requirementdisaontinuous switching
input signal is not attractive from an implementation paitview. Often the
discontinuous switching can result in a phenomena knovamasering consider
Figure 6.1.

s=20
s>0

s <0

Figure 6.1: lllustration of the chattering phenomena.

In theory once the trajectory crosses the sliding manifatdttee figure it
should remain there, however the theory assumes that imptahing can occur
infinitely fast. This is not practical possible in implematibns of SMC and the
result is that the sliding manifold is "overshot" and a zagging motion criss-
crossing the manifold follows. This is clearly not desigbls it wears on the
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actuators. Therefore, in applications, the switching frqgmmponent is often ap-
proximated using a continuous function, e.g. by applying:

o= 0 st (2) 6.12)

€

wheresat(x) is a function approximatinggn(z) as:

oz if |z] <1
sat(z) = { sgn(z) if |z >1 (6.13)
and where:;; > 0 is a parameter to control the relative slope of the approx-
imation, i.e. choosing a large reduces the gain close g = 0 and a small
value fore; gives a response very similar to the origingh(-) function. Another
commonly used alternative for agn(x) approximating function isanh(z).

The use of a continuous approximation for the switching eletnwill have
consequences for the stability properties derived in tBeipus subsection. These
consequences will be analysed in the following forghe 2) function. By insert-
ing Equation (6.12) into Equation (6.9) we get:

Vi < e, ©) (~0n.ssat () + sl + Bl Ol ) .20
where from it can be seen that whenever> ¢ thenV; is negative and equivalent
to Equation (6.11). This means thgtis uniformly ultimately bounded to the
set{]s;| < e,1 < i < d} called theboundary layer To analyse the effect of
the boundary layer on the stability of the system we first rieedefine clas#C
functions.

Definition 6.1 (ClasskC function [Khalil, 2000])
A continuous functionv : [0,a) — [0,00) is said to belong to class if it is
strictly increasing and.(0) = 0.

We assume that there exists a continuesly differentiablgiuov function,
V(n), associated with the sliding manifold desigr= ¢(n) and that there exist
two classK functionsa; andas such that the following inequalities hold:

ar([[nl]) < V(n) < as(|Inll) (6.15)
and for the Lyapunov derivative wiitli; and~ being classC functions:
ov
a_nfa(”’ ¢(n+s)) < —as(llnll) Vv lInll =~(Ils]]) (6.16)
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It can be seen that for some constatte following is implied:

lsi] <ecforl<i<d=|ls|| <kic=
Vo < —ag(|Inl]) for |Inl] = y(kic)

wherek; is a norm dependent positive constant. We define anothes /Clésnc-
tion « such that:

a(r) = ax(y(kir))
and realise the following implications:

Vi) 2 as) = V() = ax(r(hne)
= lInll = y(kao)
= V< -asllnl) < —asr(ke)  (6.07)

from which it is clear that the sefV(n) < ¢y for ¢ > a(c)} is positively
invariant asv’ is negative on the bounda#¥() = cy. Therefore if we define the
set:

Q= {V(n) < e} x {|si| <, 1<i < d}
it is clear that this set is positively invariant when we have- ¢ and that all
trajectories with initial state if2 are bounded fot > 0.

From Equation (6.14) we know that after some finite time theft)| < e and
therefore from Equation (6.17) that:

V < —as(y(kie)) ¥ V(1) = ale)

It therefore follows that in finite time any initial trajectowill reach the positively
invariant set defined by:

Qe ={V(n) < ale)} x{[si| <e 1<i<d}

Which proves that when a boundary layer is introduced thé&esydooses
asymptotically stability, but instead provides ultimgteiniformly boundedness
for trajectories to the sé?. which can be made arbitrarily small by the choice of
the parametet; for the switching approximation, see Equation (6.12).
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6.2.2 Reaching Laws

When applying the control law of Equation (6.10) or its cootus approximation
Equation (6.12) the approach towards the sliding manifaltllve at a constant
rate determined by the magnitude @, ). If a different reaching response is
desired then feedback law can be extended to provide moribiliyx consider
for example the following reaching control law (based onr@gopadhyay and
Sivaramakrishnan, 2006]):

v, = —k; (ﬂ> — ¢is; — B(n, &) tanh <ﬂ> (6.18)
€;

wherel, k, g, ¢ are positive design parameters. The third term is resplen&ib

disturbance rejection, the second term provide optionapqmional feedback,

and the first term provide optional feedback on the squaidihglvariable pro-

viding fast reaction to large errors.

It is the fact that the SMC approach reduces the design protwedesigning
a reaching controller for the sliding mode that makes itrade, since the chal-
lenges associated with the non-linear dynamics of the daatcounted for by
the equivalent control introduced in Equation (6.5).

6.3 A QSS2 Implementation of Sliding Mode Control

This section contributes with a quantised state systemseimgntation of the
SMC approach described in the previous section. The besdditgieneric soft-
ware package that can be used to provide stabilising cofura large class of
systems, given that the user can supply: a nominal modekrtaicty bounds,
and parameters to shape the control performance in ternesaofiing the sliding
manifold.

At first the control structure is presented, where aftergtesif a guidance
controller based on convex performance criteria for thekiatical states is de-
veloped. Then the SMC controller for the dynamical systerdeigeloped and
finally a module to dynamically adjust the parameters of thetroller to local
uncertainties is presented in Subsection 6.3.5 on pageTlt@Onext section will
provide simulation results to discuss performance.
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6.3.1 Control Structure

The controller structure is depicted in Figure 6.2, whermhdalock represents a
software object/class in the implementation of the coldrol

L Kinematic Map

Guid 50, .
(.70 / (17) Corl:tlroe}lrge (Q< Doy ”5)>
] fa(n,€) | I o(n)

L Dynamic Map (&3 m Sliding Mode (a o fa(n-£)>

€9
— fo(1,€) + G(n,&)u s=&—0(n)

¢
G,

Controller

(u,0)

Figure 6.2: Sliding mode controller structure. Simple example with
d=1.

TheKinematic andDynamic map, as well as the integrator blocks cor-
responds to the QSS2 software components described in €apn page 29.
This means that the user must supply a QSS2 model which isirgjglithe two
maps.

The Guidance Controller block provides the vectop(n) that defines
the time varying sliding manifold, the implementation oistblock is described
in the next subsection. THg&liding Mode block implements the sliding mode
equation, i.e. Equation (6.3), and t@entroller block is responsible for im-
plementing the equivalent control law and the reachingrobfaw, details will be
given in the following. The final subsection of this sectioitl describe how the
presented control structure is adapted to situations whereser is able to supply
state-dependent uncertainty/disturbance bounds.
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6.3.2 Guidance Controller

The guidance controller must provide a feedback) such that:

1 = fa(n, ¢(n))

is stabilised at the desired end-point. Inspired by therotiat presented in the
previous chapter we associate with the controller a scalaed convex objective
function with global minimum in the desired referenge

v =v(n) with v(n,) = min v(n)
neRd

with v(n) : R? — R!. A sufficient condition for minimising this function over
time, from convex optimisation theory [Boyd and Vandenberg2004], is to al-
ways move in the direction of the negative gradient, theesfo

¢(n) = =Vv(n)

By implementing the objective function using the alreadyealepedQss2-
Mapclass, cf. Subsection 3.2.3 on page 36, the gradient intiwméor the func-
tion is already available (cf. Equation ( 3.2.2 on page 3#)gnce the guidance
controller can be implemented by inheriting tQss2Map class and overriding
theoutput()  method to output the negative gradient vector rather thaifutic-
tion value ofv(n). This new class is calledegativeGradient

However, the class must also provi@%;i)fa(n, ¢(n)) as an output for use in
the calculation of the equivalent control. This informatiis not directly avail-
able from theQss2Map class. However, by requiring(n) to be at least twice
differentiable a good numerical approximation can be olgifrom:

—

6?;5777) £a(n, d(n)) = Vvi(n) _szkl(n) (6.19)

The domain over which this backward difference estimatesterinined byAn
which in turn is determined by the quantum selected by thefos¢he kinemati-
cal states. Equation (6.19) is implemented inNegativeGradient class.

The guidance controller presented here is just one opgtyriwther classes
which comply to the same interface in terms of input and dugignals can be
implemented and plugged into the controller structure gtiFé 6.2.
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6.3.3 Sliding Mode

The sliding mode block accepts the working point QSS2 ttajées (¢, 5) as in-
puts, as well as the outputs of the guidance controller. Tésdmplements the
sliding mode equation (see Equation (6.3)) by propagatiegdynamic trajecto-
ries:

_ s 0
s = (5 + fAt) - <¢>(77) + %fa(m ¢>(?7))Af¢>

whereAt is a vector of time-lapses since the last output event wasvedt from
the corresponding integrator in the model, @k, is the time-lapse since the last
time input was received from the guidance controller.

The sliding mode block outputs the sliding variaklend it passes on the

—

a‘g—(:)fa(n, »(n)) output from the guidance controller, which is also to be used
the sliding mode control calculation.

The above described functionality is implemented in thelealledSli-
dingMode and can also be replaced with other classes if a differentitiefi of
the sliding mode than Equation (6.3) is desired in the cdietretructure.

6.3.4 Sliding Mode Controller

The controller accepts as input the sliding variabknd the change in the guid-

ance Iawa‘g—%mfa(n, ¢(n)) as inputs, and can access the input sensitivity matrix

—

G (77, €) and the most recent force vectofrom theDynamicMap .

Whenever new input is received the controller pulls the mestnt informa-
tion from theDynamicMap and then calculates the equivalent control:

Ue = éil(ﬁvé) <_/fb(777 5) —+ g_ifa("?af)>

wherefy, (77, €) is obtained by:
/fb(ﬁ7 g) = 5 - @(ﬁ7 g)u*

whereu* is the input calculated in the previous control calculation
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The reaching law is implemented as:

N\ 2
v; = —k; <%> — ¢;8; — (s switch (s;) (6.20)
wherel;, k;, q; are positive design parameters supplied by the yseis a user
supplied positive constant such that:

5.2 01,6 > 228 4 (6.21)

and finallyswitch(-) is a user defined class which implements the desired approx-
imation of the termsgn(s;) for exampletanh (‘:—) User supplied classes must
adhere to th&8oundaryLayer interface which specifies a single method:

doubl e evaluate( int index, Matrix s);

If no class is specifiegen(s;) is used as default. From the equivalent control
and the reaching law the combined control is then calculatetiapplied to the
system: R

u=u, +G 7, &v

Saturation limits can also be specified for the control ispdio summarise;
the Controller class provides many parameters for the user to set in order to
tune the performance of the controller to each specific prabl The different
methods to do that is briefly listed below:

voi d setSquareGain( doubl e K[]);

voi d setSquareRegion(  doubl e I[]);

voi d setProportionalGain( doubl e q[]);

voi d setBoundaryLayer(BoundaryLayer swi t ch);
voi d setSaturation( doubl e sat[]);

voi d setStaticBeta( doubl e beta_s);

The output of the controller, as is indicated on Figure 62dpt constant
between control calculations, i-2.= 0 in the output double which is provided to
the Dynamic Map object (®ss2Map class).

6.3.5 Dynamic Disturbance Bounds Calculation

The controller presented in the previous subsection ontgidered static uncer-
tainty bounds, see Equation (6.21). This subsection descr@ software class
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} Uncertainty (8(1.6),6(7.€)) .
(€,9) Bound >
—>

Figure 6.3: Adding dynamic uncertainty bounds to the controller struc-
ture.

that can be augmented to the presented controller struictuseder to provide
dynamic uncertainty bounds. Consider Figure 6.3.

By inserting such a block into the controller structure, Bagure 6.2, with
output signal routed to an optional input on tBkding Controller block
the value fors used in the feedback calculation in Equation (6.20) can dateol
dynamically.

TheUncertaintyBound  class was implemented by inheriting tQss2-
Map class and specifying a single output. In this way the userspatify a
function 3(-) : R?? — R! which specify the uncertainty bound. The uncertainty
bound provided by the user must both apply for the dynamitidiances (1, &)
and uncertainty in input gaiR(7, £) as indicated by Equation (6.8).

One can easily provide custom classes for uncertainty boalodlation with
different functionality than the above if required for theesific application and
insert it into the control structure, for example if one vashto implement an
adaptive uncertainty bound estimator based on monitorgrfopmance of the
control system

6.4 Simulation Results for a Deep Space Probe

In this section a simulation study of the proposed controkgate will be presented
which concerns théhree-axismode of the Deep Space Probe (DSP) presented in
Chapter 4 on page 51, cf. Figure 4.4 on page 60. Results withbba nominal
model; the objective is to describe how the SMC approach svaorider ideal
conditions. The next chapter will provide simulation résuhcluding estimation
errors, disturbances and model uncertainties in orderdd fight on controller
performance under non-ideal circumstances.
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Referring to the kinematical model of the DSP, see Equatibhi on page 60),
the kinematical model for the SMC controller is identified as

1 cosfy sinfisinfy;  cos b sin by
N = 0 cosfycosfy —sinfycosby | wwith 8 =n, w=¢
cos 05 .
0 sin 64 cos 01

The dynamical model of the DSP without actuators is givengodion (4.12
on page 60). We augment this model with a model of six thrastdrich can
provide thrust in all directions of up to 2 N with a lever armb@fcm. We currently
assume that there are no quantisation or minimum impulsedionsider for the
thrusters, and the model becomes:

E=J71 <—[wx].]w + %u) with w = ¢ (6.22)

Each element in the input vectarc R? controls two complementary thrusters
of which only one is active at a time depending on the sign efdbrresponding
input signal.

The QSS2 model of the DSP developed for the EKF algorithm iapBdr 4
on page 51 is reused with the updated dynamical model of kEquéd.22). If
not stated otherwise the quanta used in the following sitimla are10—5 rad for
attitude states anth~" rad/s for angular rate states.

We define the control objective to be attitude stabilisatiorspecified set-
pointsn, = [My,1 N2 ’I’]r,g]T and represent this control objective in the following
objective function for the guidance controller:

9 2 9
v=(m—n1)"+ M2 —nr2)"+ (N3 — 10 3)

The following subsection will show control performance endarying choices
of SMC control parameters and discuss achieved performance

6.4.1 Results without Boundary Layer Control

Initially we will consider the simplest SMC controller pddge by applying the
reaching law of Equation (6.20) with parameters:

ki=q¢=0, li=¢=1forl>i>3 (6.23)
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switch = sgn(+), B(n,&) = 0.05

Simulation results are given in Figure 6.4 wih = [0 0 0]7 and initial at-
titudeny = [0.5 — 0.1 1]7. Looking a the attitude states it is clear that the
controller reaches the reference, although with a littliéaihovershoot, and main-

tains it there.

Angular Velocity States

Attitude States

Angular Velocity [rad/s]

Attitude [rad]

50 ) 5 10 15 20 25 30 35 40 45 50

5 10 15 20 25 30 35 40 45
Time [s]

Time [s]

(a) Attitude response (b) Angular velocities

!
l

Cont tl\pl

i

(c) Control input signal

Figure 6.4: Simple SMC control results, a large degree of chattering is
evident.

From the angular velocities (b) it can be seen that the ciatrdrives the an-
gular velocities towards a constant value that is mainthimgil the corresponding
attitude state gets close to convergence. This behavialsdsevident from the
attitude states which approaches their reference at a naatamt rate.

The (c) graph, however, shows that the controller exhilbitdtering to a high
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degree, where the control input switches between its sainrpoints when each
state reaches its reference. This switching makes the medgklow to execute,
approximately 18 s, as the QSS2 model switches operatingtgpuery often.

From a propellant consumption point of view this behavieualso not desirable.

The switching is due to the bounded final error region of th&@8pproach
to propagating differential equations, see Section 3.3 ageB8. Effectively,
the input variables:; is operating with a quantum of twice the saturation limit
for each variable. As will be seen in the following simulasoperformance can
be improved significantly if approximations to then(-) function is used in the
reaching law.

6.4.2 Results with Boundary Layer Control

To investigate if better performance is obtained by switghio an approxima-
tion of the switching component all control parameters aaintained except the
change taanh(s;/¢;) as an approximation for the switching component, the pa-
rameters are:

switch = tanh(-), £(n,&) = 0.05

Simulated responses are shown on Figure 6.5 wite= [0 0 0]7 and initial
attituden, = [0.5 —0.1 1]7. Again the attitude states converges to zero from their
initial errors; this time a little slower but without the agboot seen previously.

The angular velocity states also shows a similar, but mormosim response
than in the previous simulation. The (c) graph clearly shdved the inputs no
longer are switching as seen previously.

The (d) graph shows the intensity of control calculatiohs; blue line shows
the frequency of controller updates (averaged over perdds2 s) and the red
line is a moving average filtered version of the same dataawtindow spanning
2 s. It can be seen that the controller demands extensive wtorgpresources
initially while stabilising the system, and that the regdiresources is reduced as
the system operates near to its set-point.

The time required for the execution is 0.22 s, corresponainghly 230 times
real-time on a contemporary computer. A vast improvemempared to the
previous execution.
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Atiitude States Angular Velocity States

Attitude [rad]
Angular Velocity [rad/s]

5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time [s] Time [s]

(a) Attitude Response (b) Angular velocities

Control Inputs Control Calculation Intensity
T T T T T T T
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100

o
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Thruster force [N]
o
Control Updates pr. Second [1/s]

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time [s] Time [s]

(c) Control Input signal (d) Control calculation intensity

Figure 6.5: SMC control results with approximated switching function.
Chattering is no longer evident.

6.4.3 Performance Tuned Results

Continuing from the previous set of parameters we now wiske® if perfor-

mance of the controller can be improved. We select to uttleek; gains (cf.

Equation (6.18)) in order for the controller to react stiyrig large errors, both
for the error to converge quickly, but also in order to redtimecomputation time
that is required throughout the execution. The controlleameters are:

switch = tanh(-), £(n,&) = 0.01

Results are given in Figure 6.6 with = [0 0 0]7 and the initial attitude is as
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previouslyn, = [0.5 — 0.1 1]7. It can be seen that the attitude is stabilised faster

than in the previous cases.

Attitude States

12

Attitude [rad]

-0.05

Angular Velocity [rad/s]

-0.2

1

0.8

0.6

0.4

0.2

0
0 5 10 15

20 25 30 35 40
Time [s]

(a) Attitude response

Control Inputs

Thruster force [N]
o

.
.
-0.5
.

Control Updates pr. Second [L/s]

[ 5 10 15 20 25 30 35 40
Time [s]

(c) Control input signal

Figure 6.6: SMC control results with performance tuned reaching law.

The plot of the angular velocities (b) shows that the newhiggclaw does
not stabilise at a constant rate, but more aggressivelesltiie errors to zero.
This is also evident from the plot of the control inputs (c)iethspend more
time in saturation. The plot of calculation intensity (d3@reflects the increased
performance as it can be seen that initially there is a parfitigh intensity which
reduces when the states converges to their set points. to®dime is 0.20 s,

Angular Velocity States

J—

—f

[ 5 10 15 20 25 30 35 40 45 50
Time [s]

(b) Angular velocities

Control Calculation Intensity

0 5 10 15 20 25 30 35 40 45 50
Time [s]

(d) Control calculation intensity

equivalent to 250 times real-time computation.
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6.4.4 Discussion of the Final Error

From all the graphs shown in this chapter so far it seems tbit the attitude
and angular velocity states converges nicely to zero. Ei§uf shows a close up
plot of the states after the convergence; these plots gamnels to the controller
parameters with results presented in Figure 6.6.

x10° Attitude States X107 Angular Velocity States
T T T T T T

frad]
-

o

Angular Velocity [rad/s]

Attitude

i
8

4‘0 5‘0 6‘0 7‘0 8‘0 90 4‘0 5‘0 6‘0 7‘0 E;O 9‘0
(a) Attitude response (b) Angular velocities

Figure 6.7. SMC control in steady state. Bounded oscillations are evi-
dent.

The plots show that the states does not converge to zerolyekactends in
bounded oscillations. This is what can be expected for a Q®&S2d system;
See Section 3.3 on page 38 which explains that oscillat@ipmnds proportional
to the quanta selection. In practice one can select quarddi enough that this
region is insignificant. See Subsection 4.4.3 on page 63don#ar discussion on
guanta selection on estimation errors for the QSS2 basesh&ed Kalman Filter.
Another possibility could be to implement a small dead-zfumeghe actuators in
order to avoid excessive actuation in this region.

6.5 Chapter Summary

This chapter introduced sliding mode control for quantisede systems and de-
veloped a controller structure, and corresponding soévimplementation, that
can stabilise a large class of non-linear systems, evereipithsence of distur-
bances and model uncertainties.
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The proposed object oriented controller structure is lyiglalaptable and each
component can be replaced by customised elements to swifisggplication
requirements. The approach was verified on a deep space attdhde control
example.

The practical relevance of this will be investigated furtire the following
chapter, which provides results in presence of uncerésrgnd estimation errors.
However, it is reasonably to expect that if the quanta arecssdl small enough
to result in oscillations that are not significant compa@the uncertainty of the
state knowledge then these oscillations will not have aagtaral significance.

The presented algorithm concerns state stabilisationeberythe proposed
structure can easily be adapted to provide tracking; aldaitmethodology is
developed in [Khalil, 2000].
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Evaluation of Estimation
Based Control

This chapter brings together the results from the previduspters and provides
simulated results for estimation based control of the dggees probe case using
the QSS based Extended Kalman Filter and the QSS based lmmstouctures
developed in the previous two chapters.

7.1 Introduction and Infrastructure for Evaluation

The previous chapters saw the development of an estimatbtvanmcontrol al-
gorithms which are specifically designed to be implemensidguquantised state
systems. The two chapters on control algorithms provideduation of control
performance under ideal conditions, i.e. perfect statevenge and no distur-
bances or uncertainties. This chapter investigates peédioce under more realis-
tic settings including state estimation errors, dynamgtuwtbances and uncertain
model parameters. Consider Figure 7.1 which reflects thetsne that will be
used in the evaluation approach of this chapter.

There are two major parts in the structure; A so-called Ktrabdel”, which is
implemented irBimulinkand which simulates the physical system with all details,
and a control part implemented in DEVS which consists of derival control
model, an estimator, and a controller. The two parts exahaogtrol inputs and
sensor outputs through a network and the communicationcibtd@ed in both
parts by specific objects responsible for communicationtimmel synchronisation.

The infrastructure and the comparative study of controbilgms are the
contributions of the chapter. Section 7.2 will first deserthe evaluation case,
and then the mechanism for interaction between the DEVSi&gerithms and
the Simulinksimulation environment. Thereafter, the two following teats will
provide results first for the objective directed controlaalthm and then for the
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TCP/IP

Measurements

Figure 7.1: Infrastructure for estimation based evaluation. A modet re
resenting the "real" plant is simulated usiBgnulinkand the estimator
and controller are implemented in DEVS. Communication leetwthe
two is facilitated by a TCP/IP network link

sliding mode control algorithm.

As an example of the declarative manner in which models,robbets and
estimators are constructed and configured the completelistidg for setting up
the case as presented in in Section 7.4 can be found in App€nain page 191.

7.2 Case Study Details

The case study that will be used for evaluation in this clhraistéased on the
Deep Space Probe (DSP) model presented in Chapter 4 on padeuBiig the
DSP mission it is envisioned that it will have to conduct aldly-of Jupiter in
order to gain a gravity boost of itAV (Speed wrt. the target planet), consider
Figure 7.2.

During the fly-by the DSP is required to autonomously mamiagrtial point-
ing of its antenna dish towards the Earth in order to trantetémetry throughout
the whole manoeuvre. During the fly-by the DSP will expereetemporary sen-
sor unavailability, due to eclipse, and attitude distudasnbecause of influence
from the Jovian magnetic and gravitational fields. With #ggenario as inspira-
tion the following paragraphs will give more details on tlase.

Sensor Models
In Chapter 4 on page 51 the DSP used two vector observatiogrsdastruct atti-
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~— ToEarth

Flight Path

Figure 7.2: Inspiration for the case study; A Jovian fly-by.

tude and angular velocity information. These sensors amayailable, but are
now sampled at 5 Hz for the sun-sensor and 0.5 Hz for the steses. An In-
ertial Measurement Unit (IMU) measuring angular velositigill also be used
for the evaluation of the sliding mode controller later onheTIMU is sam-
pled at 10 Hz and provides an accuracy represented by a staddaation of
orymu = 0.0001 °/s.

The simulations to be presented in the following will dentoaie the effect
of temporarily loosing information from the sun-sensor efhis imagined to be
eclipsed by Jupiter, during this time it is up to the estimatoprovide the best
possible state-estimate despite the fact that the rengag@nsors do not provide
full state observability.

Disturbances

Most notably the fly-by will cause attitude disturbancesdamts of gravity gra-
dient torques and magnetic torques. For modelling sintplimnly the latter will
be considered here, however, from a control point of viewttheetype of distur-
bances are qualitatively similar, and results can be ghsedao cover both. The
magnetic torque on the spacecraft is expressed by [Fodegal., 2003]:

7 =m x (A(0)B(t)) (7.1)

where A () is a direction cosine matrix parametrised by the angulaitipos
states which describes the transformation from inertiardimates to spacecraft
body coordinatesB is the ambient magnetic field in inertial coordinates, gien
of units Tesla, andn is the magnetic moment of the DSP in units4f?.

The magnetic moment of the DSP arises due to current loopsnaerials
with magnetic properties. We assume timatconsists of two componenis
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andm, which respectively represent a known magnetic momentmé@ted from
pre-launch calibrations tm; = [0.3 — 0.2 0.7]7 and an unknown component
my = [0.4 00]T.

The truth model irSimulinkimplementam; + my, to calculate the magnetic
torque, and the sliding mode controller will make usexof as part of its dynam-
ical uncertainty adaption. To support the latter; avaligbbf a magnetometer
is assumed which provides measurements of the local madiedtl in the body
frame of the DSP at a rate of 1 Hz.

A simplified model of the Jovian magnetic field near the equaltplane can
be expressed as follows under the assumption that the fietintges that of a
simple dipole field and that the field strength is about 15 sirat of the near
Earth environment.
B(t)=B=[00 0.6 mT

While this is a very simplified model it is adequate to demiaistthe ability of
the controllers to cope with dynamical disturbances.

Model Uncertainty

The truth and control model have differing parameters ireotd introduce model
uncertainty; the control model implements the parametetiseodynamic model
presented in Equations (4.12 on page 60) and ( 4.13 on pag@éd jruth model
implements an inertia matrix with perturbed parameterspamed to the control
model. The truth model inertia matrix is:

280 -03 -—-1.1
J=1] -03 290 -1.6
-11 -16 54.0

The model for the thruster actuation system was introduceskttion 6.4 on
page 101. It is comprised of throttleable thrusters from 0.8N with a torque
arm of 50 cm. This information is used in the control modelilevthe truth-model
has different values for the torque arm lengths:

1=0.48 0.52 0.55]7 m

In summary; the control and truth model differ both in in@parameters and
thrust model parameters and hence will contribute to piogid realistic measure
of performance for the controllers under realistic circtanses.
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7.2.1 Interconnection with Matlab/Simulink

As indicated in Figure 7.1, exchange of data between the DEMESimulink
simulation environment is network based. This subsectiomiges details on the
implementation of this scheme. Consider Figure 7.3 whidétass diagram of
the involved classes.

DevsRendevouzRunner «interface»
RendevouzAdaptor

+ DevsRendevouzRunner()
+ run() + start()

+ stop()

+ gotoTime()

+ getDevsinput()
+ setDevsOutput()

DevsCoordinator MatlabAdaptor
+ DevsCoordinator() + MatlabAdaptor()
+ deltaExt() _ + start()
+ timeAdvance() ~ + stop()
+ deltaint() + getDevsInput()

+ setDevsOutput()
+ gotoTime()
+ enableDebug()

Figure 7.3: Class diagram for DEVS model with 10 to/fro8imulink

A replacement for th®evsRunner class introduced in Subsection 2.2.3 on
page 23 calledevsRendezvousRunner was developed; It is composed of
a DevsCoordinator  class which holds the system to be simulated/executed
and a class that implements tRendezvousAdaptor interface. The runner
class and the adaptor interface allows two systems to siedalecute in lock-
step by each taking a specified forward step in time and thelmagge inputs and
outputs, before taking another step to the next rendezvoint. fSee Figure 7.4
for an overview of the protocol for advancing the simulasion

DEVS/Simulink
simulate until
next rendezvouz

DEVS transmit
next rendezvouz
time

Input/
output is
exchanged

Figure 7.4: The steps in the rendezvous protocol.

The MatlabAdaptor  class implements this interface and communicates
through socket-based TCP/IP networking with a runn8igulink simulation,
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which on its part implements a specifitatlab S-function taking care of com-
munication on th&imulinkside and implements a sample time to match the spec-
ified forward step time. This has been the mechanism usee irethainder of the
chapter to close the loop between the control system impleaden DEVS and

the "truth model" implemented i8imulink

For a concrete application the next step after verificatimaugh simulations
would be to write a new implementation for tiRendezvousAdaptor inter-
face which communicates with the sensors and actuatorseospticecraft. This
way the control system can transition from a simulation mmrnent to the appli-
cation environment without changing a single line of codéhm control system
software.

7.3 Optimising Control Results

This section provides results for the control algorithm aedleped in Chapter 5
on page 69. The rendezvous interval that is used to synd®dhée truth model
simulation in Simulink and the control/estimation softean DEVS has been
set to 0.05 s. The QSS2 implementation of the DSP model egilguanta of
AQ = 107 rad for the attitude states adxty = 10~ rad/s for angular velocity
states. These values corresponds to the values chosenpte€Hhan page 51 in
order to be insignificant compared to the estimation error.

7.3.1 Simulation Results - Optimising Control

This section shows results of the optimising controllerli@opon the case de-
scribed above. A performance function to provide inertititiade stabilisation
was found as:

v.(0,w) = 30w? + 30w + 50w3 4+ 5(30(A1 — r1)% +30(02 — 12)? 4+ 50(F5 — 13)?)

wherer = [ry ry r3] are the attitude references for each corresponding Euler
angle. The leading factor before each term is the inertia@tbrresponding axis

in order to provide a weighting that corresponds to the diffjcof turning around

the corresponding axis. The leading factor, 5, in front otz attitude related
terms is an empirically found relative weighting betweerepjiag small angular
rates and reaching the target attitude quickly.
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Other parameters for the controller are the saturatiortdiofi+0.8 N for each
thruster, and the maximum allowed rate of change of the abaignals which
were found to be:

Upnar = —min = [0.3 0.3 0.3]

In this case the values were found by trial and error rathean ttonsidering phys-
ical limitations of the thrusters, i.e. actuator dynamiggansidered fast enough
to track this signal. Finally, a control cost vector was founy a few simulation
iterations to provide good performance:

015 0 0
P=| 0 015 0 (7.2)
0 0 015

The simulations results for the case with these controdgaqmeters can be
seen in Figure 7.5 for an attitude reference of= [0.1 — 0.5 0.7]7 and ini-
tialisation conditions of zero attitude and a significadtacound the axis of most
inertia. Further, from time 200 s to 300 s no sun-sensor meawnts are avail-
able due the sensor being eclipsed by Jupiter.

The (a) and (b) graphs on the figure show the attitude and angelocities
reported by the truth model throughout the simulation; it t& seen that the
controller effectively reduces the angular velocities poditions the probe at the
correct attitude within 200 s. During the following periodhere the sun-sensor
is unavailable small drifts in the attitude, graph (a), carsben, specially for the
05 state and at 300 s, where the sensor becomes available thgaéttitude states
are again stabilised at their references.

The (c) and (d) graphs show the estimation error by the QSEfitt€r for at-
titude and angular velocity states, respectively. Théairétrror is quickly reduced
on the first sample on both graphs and continues to reduceahadintil 200 s
where the sun-sensor becomes unavailable. Hereafterléas that the attitude
estimates, graph (c), begins to drift over the next 100 s dulee limited observ-
ability with the available star-sensor. At time 300 s the-sansor again becomes
available and the estimate quickly converges again.

The (e) graph shows actuation signals to the thrustersallpithere is a large
response in order to cancel the roll-rate whereafter alladitin signals converge
close to zero. After the sun-sensor becomes available thigeblinded period
ending at time 300 s, it can be seen that the thrusters ireeedivity in order to
re-align the craft to the proper attitude.

115



Section 7.3: Optimising Control Results
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Figure 7.5: Jupiter gravity assist results with the optimising conémol
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Chapter 7: Evaluation of Estimation Based Control

The (f) graph shows the disturbance torque due to the magdisturbance.
It can be seen how the directionality of the disturbancenkeld to changes in
attitude of the craft.

In summary the estimation and control algorithm combinedope well.
However, a number of points are worth further discussiommfthe graph show-
ing actuation signals it can be seen that the signals havghaftéquency low
amplitude switching component. This behaviour was alseesl on the simu-
lations carried out in Chapter 5 on page 69. This behavioduésto the nature of
the control law which switches between positive and negatalues of the input
slope, see Equation ( 5.8 on page 73), this behaviour is mtitylarly desirable
for this case since it means that propellant is consumed.

Second point for discussion is the final error; from the gsaiplis clear that
there is some motion close to the reference values. Zoommityeoplots it can be
seen that this corresponds with amplitudes of the estimatior. Further, since
the magnetic disturbance has an amplitude that is relathadl fompared to the
estimation errors it is difficult to validate the robustngseperties towards this
disturbance.

7.3.2 Results with Exaggerated Disturbances

In order to address the two points discussed above a newaibrulcase will
be presented where a low-pass filter is applied to the cosijohls before being
applied to the truth-model. The idea is to see if this is atiwakremedy to reduce
propellant consumption while not affecting performanceéne Tilter will have a
cut-off frequency of 0.3 Hz, which is chosen slightly higltiean the maximum
frequency at which the controller can alternate betweeirabsignal saturation
limits.

Secondly, we will let the sun-sensor be available througti@whole simula-
tion, but between time 200 s and 300 s the magnetic distuebaitidbe multiplied
with a factor of 25 to investigate the controller responséhts disturbance. The
results are presented in Figure 7.6.

Observing first the (e) graph it can be seen that the contplténare now
much more smooth than in the corresponding graph on Figre Apart from
removing the high frequency oscillations the control inputves are equivalent
and it can also be observed that performance of the contisleguivalent to the
previous case. In summary; the addition of the low-pasg filearly is a benefit
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Figure 7.6: Results with filtered inputs and exaggerated disturbance.
Note the smoother control input signals.
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in terms of implementation and has no significant effect ceral performance.

If the results are observed after time 200 s it is clear froe(th graph that
there is a sudden increase in the disturbance input andsestant to develop for
both velocity and attitude states. It can also be seen tieatdhtroller reacts to
the disturbance and manages to reduce angular velocitagsh ¢b), to zero again
and stabilise the attitude states (graph (a)), although afinal static error. The
(c) and (d) also clearly show that the estimator cannot peunbiased estimates
in the presence of this very low-frequent disturbance.

The amplitude of the final error is due to Pareto optimalityhie performance
function between the objective of driving the state perfange function to zero
and at the same time drive control inputs to zero. Reducingrabcost will
reduce the final error, but also provide a less dampened mespo the initial
error.

7.4 Sliding Mode Control Results

This section describes evaluation results obtained foslidang mode controller
structure. Results are presented for the case above witjgesated disturbances
in order to evaluate robustness properties of the contharse.

We define the control objective to be attitude stabilisatiorspecified set-
pointsn, = [n,1 .2 737 and represent this control objective in the following
objective function for the guidance controller (cf. Sulis®t6.3.2 on page 98):

v=(m —mr1)° + (2 — me2)? + (13 — 0 3)°

A dynamic disturbance bound calculation, as proposed is&tilon 6.3.5 on
page 100, was implemented to provide bounds on the magristictthnce input
described by Equation (7.1). The bound is calculated ugiagkhown magnetic
moment of the craftm;, and the ambient magnetic field as measured by the on-
board magnetometeB,,,, i.e. the bound is given by:

|7] = 1.5|m1 X Bp| (7.3)

where the leading factor, 1.5, ensures additional robsstbewards unknown
magnetic moments (e.gn, which is part of the truth model, but not the con-
trol model). The settings of remaining controller parametzan be seen by the
API calls below:
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smc.setSaturation( new doubl e[]{0.8, 0.8, 0.8});
smc.setProportionalGain( new doubl e[]{0.06,0.06,0.06});
smc.setBoundaryLayer( new TanhLayer(0.1));

Otherwise initial conditions in the truth model and QSS/E&&Emator is as
in the previous section.

7.4.1 Simulation Results - Sliding Mode Control

Figure 7.7 provides results for the sliding mode contradieithe case with exag-
gerated disturbance inputs.

From graphs (a) and (b) it can be seen that performance ifeaxtcm terms
of reaching the attitude reference and maintaining it evetiné presence of the
disturbance signal. Graphs (c) and (d) also show that tiraatstr performs well.

However, looking at the (e) graph it is clear that the consighal is not de-
sirable for a real system due to the extreme switching thavident. This phe-
nomenon is not due to chattering, but due to the coupling éatvthe estimation
error and the equivalent control, cf. Equation ( 6.5 on patje Ihis will be
investigated further in the following.

7.4.2 Effect of Estimation Error on Equivalent Control

The results presented in Figure 7.8 are for a simulation gvbely the equivalent
control is applied to the system, i.e. the control will atgro bring all velocity
states to zero.

It can be seen that the control is effective in doing so, benew steady-
state there is significant control switching and pertudretito velocity states as a
conseqguence. This control action is driven by the estimadioors in the angular
velocity states.

Hence, to improve the situation, accuracy of the state esitom must be in-
creased, which will lead to reduced noise-driven actuafidns will be achieved
by adding the inertial measurement unit sensor describgdlkisection 7.2. Filter-
ing the control signal (as done previously for the optinmgsaontroller) is not an
option since it will introduce chattering, due to the unmededelay in applying
the control signal [Khalil, 2000].
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The control signals are clearly unde-
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Figure 7.8: Results with only Equivalent Control. Control switching
caused by estimation error is evident

7.4.3 Sliding Mode Control with IMU

Figure 7.9 provides results for the sliding mode contradieithe case with exag-
gerated disturbance, with an added IMU sensor for improsgéchation accuracy.

It can be seen from the top graphs that performance in termeaching time
is equivalent to the non-IMU case. However, in steady stib@st no perturba-
tions are visible on the states and after time 250 s no reatithe disturbance is
evident at all. It is noted, however, that thestate is slow to converge fully to its
reference.

Observing the middle graphs it is seen that for thestate estimator con-
vergence is slow, which was reflected in the attitude respgagn on the graph
above. The reason for this is believed to be that with the aegurate IMU
sensor added to the configuration the Extended Kalman Fiterbecome very
confident, i.e. it has very low co-variance traces in steddieoperation. It is
possible that the situation can be improved by injectingtamal process noise.
Angular velocity estimation errors can be seen to correldtie the control input
signal, which is natural since there is some difference betwthe truth and con-
trol model used due to uncertainties. Also, it can be sedrthkastimation error
increases when the exaggerated disturbance is in effect.

Looking at the bottom-left graph it is clear that the congiginal is now better
suited for use on a real system with less noise driven actuatiowever, some
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Control switching is significantly re-

duced compared to previous results.
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switching is still observed, especially during the first H6f the simulation.

In part this switching can be explained by chattering whigldue to the un-
modelled sample-and-hold delay of the control signal &piplo the truth model.
This can be reduced by increasing the rendezvous frequensjgnificant part
of the switching, however, is ascribed to attitude estioragrror which changes
rapidly during the first 100 s and causes the guidance ctertrd update the
angular velocity reference often. This part can be redugeitidreasing attitude
estimation accuracy, e.g. by adding a high performancersteker.

In summary; it is concluded that the sliding mode contraodiffers very good
performance in terms of reaching time and disturbance tiejecbut it is very
sensitive, in terms of desirability of the control input r&id, to the estimation
error.

7.5 Chapter Summary

This chapter described an evaluation case for evaluatagltforithms developed
in the previous chapters under conditions that resemblectieaperienced by a
real-life control problem, i.e. effects of disturbancescertainties, estimation er-
rors, and synchronisation.

Using the case the controller structures developed in thetya chapters was
evaluated when driven by estimates obtained from the QSESAsimator devel-
oped previously. A truth model was implemented in Simulimkl anput/output
signals between the Simulink model and the DEVS based dfestionation al-
gorithms were facilitated by a special adaptor class toigeovendezvous based
data exchange.

The optimising control scheme showed to be able to guidetttiade to the
desired reference, but it was not very robust against diahges. The sliding
mode controller showed excellent performance in termsaghimg time and dis-
turbance rejection, but is sensitive to estimation errors.
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Hybrid Systems and
QSS Based Simulation

This chapter introduces a control oriented specificatiomybrid system models
and contributes with a quantised state systems approachkifiaulating and ex-
ecuting such models. The approach features conservatieet @etection and
can be initialised declaratively from hybrid system speatfons expressed in
a declarative language, in this case based on the eXtendatudd.anguage
(XML).

8.1 Introduction and Motivation

Hybrid system models capture both continuous and discedtaviour of a given
system and hence possess more power of expression comparige tontinuous
models or pure discrete models. However, due to this expegsss and the
associated difficulty of obtaining strong theoretical Hssthere is not today a
unified definition of exactly what a hybrid system is, or a wdfinotation and
terminology for such systems.

Instead there are many different hybrid system model defirsttailored to
specific problem domains or solutions strategies, e.grabaot piece-wise-linear
systems [Bemporad and Morari, 1999], control of piece-vaifime systems [Ha-
bets et al., 2006], or model verification [Henzinger, 1996].

This chapter introduces a definition of hybrid system mouddiih is suitable
for supervisory control applications, as will be demortetian the next chapter.
The definition, given in Section 8.2, is close to the defimitgiven in [Branicky
et al., 1998], but differs in some aspects. Associated withdpecification is
a dedicated language formulated in eXtended Markup Lareg(&lylL), which
allows users to declare hybrid system models in a format cengmsible to hu-
mans, which can also be processed by computer algorithms.



Section 8.2: Hybrid System Models

Section 8.3 contributes with a method to execute hybridesysnodels, as
specified in XML, as part of a control system. The key pointehisrto provide
conservative detection of discrete location transitiamsl secondly to provide an
algorithm that can co-exist with an estimation algorithmichhalso manipulates
the state. Section 8.4 gives some details on the impleni@mtat the approach
and the translation from XML files to software entities.

Finally, Section 8.5 provides a full declaration for a hgbgystem model
known asRaibert's Hopper[Back et al., 1993] and provides simulation results
for the state evolution of the system based on the develdgedtam.

The work on a control oriented hybrid systems specificatiot associated
XML description is published in [Laursen et al., 2005, Almiénet al., 2006a, Al-
minde et al., 2006b] as part of a multi-disciplinary framekvéor working with
hybrid system models called Simulation, Observation arahithg in Hybrid
Systems (SOPHY). Appendix A on page 173 provide the hybrilesy model
definition used in SOPHY from which the following definitiom éxtracted. The
Appendix also covers composition of hybrid systems whiamascovered in the
main dissertation.

8.2 Hybrid System Models

This section introduces the formal definition of a hybridteys that will be used
in the remainder of this dissertation. In our terminology wid associate the
termlocationto cover each of the different continuous systems embedud#ti
hybrid system model, and shifts between locations aredasitions which
are taken whentansition conditionis true. During transitions between locations
the state can be discretely alteredréget conditionsand finally transitions can be
triggered byinput eventsand each transition can enoititput eventsvhen taken.

Definition 8.1 (Hybrid System Model)
A hybrid system model is an 8-tuple:

H= (Q;X7U7Y7E7F7g77)

With spaces defined as:

Q = {q |1 < q < s}: is the set of location indexes with cardinal number 7.+
X C IR™: is the continuous state-space with dimensiop 7.

U C R™: is the continuous input-space with dimensienc 7+
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Y C R°: is the continuous output-space with dimension 7.
E = {ele € 2>} is the set of possible input/output event labels, wheis a set
of labels

and related maps:

F:Q x X x U — X:is amapping onto the tangent bundleof X
G:Q x X xU —Y':isacontinuous output map

T:QxX xUxFE— QxX x E:is atransition map

Remark 8.1.1

Time is not explicitly given in the definition of the systemowever, with no
loss of generality the model can include an extra state ircéminuous map to
represent explicit time

Remark 8.1.2
The mapF, as defined above, allows Ordinary Differential EquatiaDBE), but
not differential algebraic or partial differential equats

At any point in time the future evolution of a given hybrid s/ model can
be described by its current location, state values, and wagdues. This we define
as the hybrid state of the system and the history of the hytaig: evolution is the
hybrid trajectory.

Definition 8.2 (Hybrid State)
At any time the total state of a hybrid system model is descrity the triple:

S=(@e@,xeX,uel)

Definition 8.3 (Hybrid Trajectory)
Associated with an interval of time.= [to;t ;] is the hybrid trajectory:

T(t) = (q(t),x(t))

whereq(t) is a piece-wise constant function antt) is a piece-wise continuous
function.

The maps, as described in the definition of hybrid system ispdee de-
scribed very generally. The next definition provides morecstire by associating
a specific map to each discrete location. This provides a ropeeational ter-
minology for specifying hybrid system models and implenm@ntorresponding
representations in software.
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Definition 8.4 (Location Indexed Maps)
The forcing map and output map are refined with more strucasdollows, in
order to allow sub-maps to be specified for each discretditota

F = {{fq}qu:quxU%X}

G = ﬁ%&meXxUHY}

A similar exercise is undertaken for the transition map lyresentingZ” by
transitions mapping between specific locations, and with-eedined transition
domain and reset condition.

Definition 8.5 (Transition Map)
The transition maf is composed of transition relations between specified loca-
tions:

T={{theqr..p)|@ X X x UXE = Qx X x E}

where each transition relation is a 6-tuple:

Tr = (q17q2ujr(')urr(')aer,in € QZuer,out € 22)

where:

q1 € Q: is the source location

g2 € Q: is the destination location

Jr(-) + X x U — {true false} : transition equatiomvhich triggers the transition
r.(): X xU — @Q x X:is an algebraic reset equation of the state

erin. IS an input event that causes the transition to trigger

erout: IS @n output event that is emitted when the transition israk

Remark 8.5.1
When a transition relationj,(-), turns true or an input event label is received
which is contained i, ;, the corresponding reset condition and location jump is
always taken.

8.2.1 Graphical Representation of Hybrid System Models

With the definitions from above it is possible to give a graphrepresentation of
a hybrid system model. Consider Figure 8.1 on the facing pddeh represents
a hybrid system model with two discrete locations and thraesition relations.
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Ji(z,u) :ri(x,u)

€3,in * €3,0ut

Figure 8.1: A graphical representation of a hybrid system model.

Each location is identified by the value @fand each has distinct state and
output maps. Transition relations are drawn as directedsfigm source location
to destination location. Above each transition relatioa tfansition equation is
written followed by the state-reset equation. Under theiitaon relation the set of
input labels that can trigger the transition is written daled by the set of labels
that are emitted when the transition is taken. Later in thigpter a concrete
example of a hybrid model definition and associated graphégeesentation will
be presented.

8.2.2 XML Specification of Hybrid Systems

In order for hybrid system models to be declared as input topeder algorithms
as part of a declarative approach a format must be availahiehvis both human
readable and at the same time interpretable for a computerefore a specifica-
tion using eXtended Markup Language has been developedntyas the hybrid
system model definition as described above. XML is a dedlaréanguage that
is well suited for the purpose.

The XML format for hybrid systems definitions is describe&amXML Doc-
ument Type Definition (DTD) which describe the allowed tatsijr allowed hi-
erarchy and multiplicity. Table 8.1 gives and overview o tags defined in the
DTD and their meaning. The complete DTD specification isgiveSection A.5
on page 180.

The table illustrates how the specification is divided irethisections; one
section giving general information such as model name npeiers and constants,
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Element Data contained in element
SophySystem
name The name of the subsystem
documentation? Text describing the subsystem model
hints? Parameters to be passed on to on-line system
hint+(name) Name (in attribute) and value (string) pair for hint
constants? Collection of constants to be substituted in equations
constant+(name) Name (in attribute) and value pair for the constant
states
state*(documentation) Name of state, optional documentation in attribute
inputs
input*(documentation) Name of input, optional documentation in attribute
outputs
output*(documentation) Name of output, optional documentation in attribute
locations
location+
name The name of the location
documentation? Documenting text for this location
diffequation*(state) A mathematical expression giving the differential
equation for each state
outputmap*(output) Mathematical expression involving state variables
that evaluates to an output value for this output
transitions?
transition+
name The name of the transition
documentation? Documenting text for this transition
domain Logical expression involving state and input variables
reset Reset associated with this transition
destination Name of destination location
statereset*(state)] Expression to reset the state indicated as attribute
inputevent* Names of events that are emitted when transitioning
outputevent* Names of events that can trigger this transition

Table 8.1: Tags and their meaning in XML descriptions of hybrid system
models. '?" means 0 or 1 corresponding tag required, '*' ifo2e many
and '+’ means at least one. Tags in parenthesis, followiragalefinition,
are tags that must be included within the tag being definethg@aium,
2006].

a second section defining the state-, input-, and outpuespand a final section
providing details for each location in the model. It can dsoseen that optional
documentation tags and attributes are included to provissr binding between
model elements and documentation. This can e.g. be usedraphigal model

viewer, where the documentation can pop-up when the mousésyo a specific

location or transition.
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A full example of a model defined in this format can be seen ictiSe A.6
on page 182. The following shows an example specificationsifigle location
for a system of a free-falling object and a transition assted with the event of
the object hitting the ground.
<location>

<name>FreeFall</name>
<diffequation state="Position" > Speed</diffequation>
<diffequation state="Speed" > —9.82</diffequation>

<outputmap output="Position" > Position </outputmap>
<outputmap output="Speed" > Speed </outputmap>

<transitions>
<transition>
<name> GroundImpact</name>
<domain>Position &It; 5</domain>
<reset>
<destination> Crashed </destination>
<statereset state="Speed" > 0 </statereset>
</reset>
</transition>
</transitions>
</location>

8.3 Hybrid System Execution in DEVS/QSS

This section proceeds to describe a method based on DEVS @&8dt@t simu-
lates or executes a hybrid system models as defined above. SAa@@oach to
simulation of hybrid system models was presented in [Koin2004], but this
work extends the approach by adding state resets and muglifiyto allow use
in execution environments (rather than just simulatio®), it can be used as part
of an on-line control system where the state variables camtzs manipulated by
an estimator. Further, software is developed that autcalbtitranslates a hybrid
system model specified in the XML into executable code.

The challenge in simulating or executing a hybrid systemehsdstate-event
detection, i.e. accurately detecting when a transitioragqun j,.(-) turns true, at
which time, exactly, the related transition must be exatttea consistent result.
Many methods for hybrid simulation based on time discretéhods check the
transition equations each time step and if a condition hasrbe true they use bi-
section or interpolation tmll-back the simulation to the event time [Barton and
Lee, 2002, Taylor and Kebede, 1997, Lieu et al., 1999]. Gleldnis is not suitable

133



Section 8.3: Hybrid System Execution in DEVS/QSS

for a method that supports use as a execution system; inahés @ausality must
be preserved.

L1

Figure 8.2: The problem of detecting events consistently in sampled
systems. Blue points represent discrete sample points.

Another problem in discrete time approaches to propag#timgtate of hybrid
system models is missed state-event detections; if the-dteyes taken by the
algorithm are too large it may fail to activate the roll-bgatocedure, consider
Figure 8.2. Here the dots represent the points in stateespacesponding to the
time instances where the propagation algorithm perfornmpeation and the
shaded area is a transition domain; depending on the eraes tf evaluation the
system may evolve along different trajectories.

The simulation architecture to be presented in the follgwiaragraphs makes
use of the DEVS/QSS approach to provide consistent and n@tse event de-
tection by extrapolating the current state and identifyfitgre state-events times.

8.3.1 Hybrid Execution/Simulation Architecture

Figure 8.3 depicts the software architecture that will bedus implement hybrid
system models in DEVS/QSS in terms of a block diagram.

The two mapsf andg, are based on the QSS2 function map described in
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€in Cout
(¢, x") HybridLocationControl (a.x")
A
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f(x,u) . ] g(x)
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Y2, Y2
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Figure 8.3: Block diagram of architecture for simulating and execut-
ing hybrid system models. Example with two states, one inpod two
outputs.

Subsection 3.2.2 on page 33, but are extended to contaiiptadmbedded maps
and has an extra input port which receives information orctiveent locationg,

and the state value following a transitiari. When a message is received on this
port theQss2HybridMap switches to the associated set of equations for the new
location and recalculates output values and their deviesti

The integrators each has two inputs; the first to receivevakerivalues from
the function map and the second to receive state reset eidregsfrom an estima-
tor or from theQss2HybridLocationControl class which handles hybrid
transitions.

The first output of the integrator is as previously, i.e. & firsler state model
that is updated when the quantum criteria, Equation ( 3.6 age®3) is ful-
filled. The new second output outputs the full second ordde shodel, see Equa-
tion (3.5 on page 33) whenever the integrator block recaiegsinput. This new
output is used in th@ss2HybridLocationControl class to conservatively
detect state events and execute corresponding transitibhis is explained in
more detail in the following.

135



Section 8.3: Hybrid System Execution in DEVS/QSS

8.3.2 Hybrid Location Control

The Qss2HybridLocationControl (HLC) is the most important class in
terms of simulating/executing hybrid system models andlv@ldescribed more
in depth in the following. The responsibilities of the clés$o:

e conservatively predict location changes times
e execute location changes and associated resets
e react to incoming events and communicate output eventsoatiém changes

Of these the first responsibility is the most daunting andl léldescribed in
the following. The core point is to predict when to schedaeation changes,
i.e. to predict when the state values in the simulation wiliee a region of the
state-space where the transition equaiofn) of Definition (8.5) turns true. We
considerj,.(-) as a logical relation of inequalities, e.g.:

Ja(x,u) = (x1 < 5) A (Bxg + 223 > 4) (8.1)

In order to predict location changes the shift of logic staté all inequali-
ties, which are part of all transitions in a given locatioryshbe maintained and
predicted into the future. To this end the HLC class uses tweri classes to
represent transitions and inequalities respectivelyFagpare 8.4.

Qss2HybridLocationControl

+ Qss2HybridLocationControl()
+ deltaint()

+ deltaExt()

+ setEstimatorPresent()

+ addTransition()

1%} T
InEquality Transition
~ InEquality() + Transition()
# timeToHit() ~ resetState()
# conditionCheck() ~ evaluate()
# conditionChange() ~ inputEvent()
+ getTransition() ~ getOutputEvent()
+ toString() ~ getTolLocation()

Figure 8.4: The HLC class and its two inner classes representing in-
equalities and transitions.
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An InEquality object is created for each inequality in the hybrid system
model, like e.g. x;1 < 5 from Equation (8.1), and assigned a unique id. The
timeToHit() method (to be described soon) is then called om&quality
objects which are relevant for the current location and th€ldchedules an in-
ternal DEVS event at the least positive time.

At the execution of internal event the logic state of thegeigngInEquali-
ty objectis updated and it is checked if the full compositedabexpression, e.g.
Equation (8.1) is fulfilled, using thevaluate() = method. If the transition is en-
abled the HLC class utilises the methods in Tmansition class to perform a
state reset and emit the correct output labels. If the lbgxpression is not ful-
filled; the HLC class does nothing but allows continued comdus state evolution
until the next inequality changes logic state.

Conservative Event Detection

As described above the HLC classes requires each ineqt@ligport when in
the future it will change logic state. This is possible sinéth the Qss2Map and
Qss2Integrator the trajectory is known into the future as it is given by the
parabolic model maintained in the integrator. The HLC nee®ithis trajectory
from each integrator, as described above.

However, in the following we will require that the inequagi are scalar equa-
tions which are linear functions of the state and input, eetipely. Thus we re-
quire that each inequality can be put on the following forrheve, for simplicity,
z = [xT uT]7 is the concatenation of the state and input vector resgytiv

Lg : atz—b>0, or (8.2)
Ly : atz—b<0

Wherel;; is an assigned unique identification to track the inequakgr a
numerical implementation on a computer we make no distncbetween the
operator pair>- and>, as well as the pair and<.

ThetimeToHit() method must now determine when the inequality turns
true; given thatz, z,Z are known from the integrators, we know the state will
evolve along the following parabolic path until the nextmvwehere new informa-
tion will be received:

2(r) = %2(t0)72 + #(to)r + 2(t0)
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wheret indicates the time where the last information was receiveahfthe inte-
grators, by inserting this equation into the lefthand side sf Equation (8.2) and
setting the expression equal to zero, we obtain the chaistateequation:

%aTi(to)TQ + aTa(to)r +aTz(to) — b =0 8.3)
which is a standard second order equation in the variabtetbét can be solved
deterministically. Positive roots of this expression aade times in the future
where the inequality will change logic state under the aurteajectory ofz. If
there are two positive roots the least it chosen and if atisrace negative, meaning
that the state is moving away from the transition, then p@sinfinity is returned
by thetimeToHit() method.

Discussion of General Inequalities

A limitation in the approach from above is the restrictiorattithe inequalities
must be on the form of Equation (8.2) which only accepts lireg@ressions. An
alternative approach, which has not been pursued, could &éotv general non-
linear expressions and then use a numerical approach, egtoN iteration, to
determine the least positive root.

This approach has not been pursued for two reasons; the lioea intro-
duced in Equation (8.2) is adequate for the hybrid systemetsddvestigated in
the remainder of this dissertation and secondly the Newtnation algorithm
does not guarantee convergence in all cases [Kreyzig, 1988¢h makes it ill
suited for use in an on-line system.

8.3.3 Handling Estimator State Resets

When a hybrid location change results in a state-reset tharegualities for the

new location are evaluated to determine their initial ctadiand if the set of

fulfilled inequalities triggers a transition upon initigdition then the HLC class
makes sure that the transition is taken immediately.

However, when the hybrid system model is executed with amasar in the
loop which can also trigger reset events in the integratareeehanism must be
place in the HLC class to detect this and evaluate if the-stadmge caused any of
the equalities to shift logic state. The HLC class checkgrtijectory inputs from
the integrators and when it is detected that they have beet, iereinitialises all
inequalities and checks for enabled transitions.
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This approach is computationally expensive each time thmatr provides
a new update, but it is necessary to maintain a consisteiststafe of the inequal-
ities that make up the transition equation.

8.4 Declaring Models for Simulation/Execution

The previous section described the infrastructure for Eitmg/executing hybrid
system models, and this section now proceeds to give soraé detthe func-

tion calls required to set up a hybrid system model using mf@structure, as
well as describe the automated process of translating alrdefired in an XML

document, into an executable object.

8.4.1 Application Programmers Interface

The integrator blocks and the maps on Figure 8.3 are set iy isetme manner as
a standard QSS2 simulation, cf. Subsection 3.2.3 on pageiBtthe exception
that the constructor for each map accepts an array of equséits rather than a
single set, and has a parameter to indicate which equatgiris the initial set.
Declaration of the HLC is done with the following call:

Qss2HybridLocationControl( i nt nolnputs, i nt noStates,
i nt noLocations, i nt currentLocation)

Which creates the HLC object and initialises the number pliig, states,
locations and the initial location. Transitions betweeoalions are registered
with the object using the following call:

addTransition( i nt fromLocation, i nt tolLocation,
String transitionEq, String[] reset,

ArrayList<String> inEvents,
ArrayList<String> outEvents)

Where the first two arguments are the source and destinakations of the tran-
sition, respectivelyTransitionEq is the transition equation, i.g,(-), reset

is an array of of algebraic expressions of the state and wpith describe the
state-reset for each state to be executed when the tranisitiaken.inEvents

are the event labels that can trigger the transition@utéEvents are the event
labels emitted by the model when the transition is taken rvi@ the system are
represented by text strings.
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If the hybrid system model is to be used in on-line control rehthe states
can be reset by other mechanisms than the HLC object this Ineusidicated to
the HLC class. This is indicated by issuing the call:

setEstimatorPresent()

8.4.2 Translation from XML to Executable

A special classXMLModelFactory , has been developed which parses XML
documents as described in Subsection 8.2.2 and trandfetiesinto DEVS cou-
pled model following the block diagram of Figure 8.3. Thigals:

e creating required maps, integrators and the HLC object
e setting up DEVS connections between the ports of all blocks
¢ adding all transitions including resets and input/outpuging specifications

The ability to declare models in an XML document that closelgembles
the mathematical model of the system clearly supports toggive approach
pursued in this dissertation, and makes it easier to move frmdel towards an
implementation.

8.5 Simulation of Raibert's Hopper

To illustrate the applicability of the specification of hitbisystem models and
simulation/execution software developed in this chaptsinaulation case study
will be presented involving a one legged robot known as Rtsbopper, which
have previously been simulated in the literature, see Bagi et al., 1993].

8.5.1 Model Description

Raibert’'s Hopper is a one-legged jumping robot with motionfmed to the ver-
tical axis, see Figure 8.5 for a sketch of the physical system

It consists of a body comprised of two pressurised tarRs;: is a low-
pressure tank used to extend the leg during free-flight”apds a high pressure
tank used to boost the robot off the ground. A valve contrdiéctvtank is con-
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Pinit —» |

N I

Figure 8.5: Schematic drawing of Raibert's Hopper [Back et al., 1993].

nected to the pneumatic cylinder leg. The system is modekany four states:

x=1[y gt n)"

wherey is the positiony is the velocity,t is a time-elapse state used in the thrust
phase of motion (to be explained), anglis a resettable parameter used in the
decompression phase (to be explained) to model the foratedxby the com-
pressed gas in the pneumatic cylinder following the thrastse. A hybrid model
of the system is formulated, see Figure 8.7 for a graphiqalesentation of the
associated hybrid system model and Figure 8.6 for illusinatof the state of the
physical system in each location.

The behaviour in each of the four locations can be described a

Flight: Here the hopper is not in contact with the ground and the loyegure
tank is connected to the piston ensuring it is fully extenddte equations of
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Mnmit
Flight Compression Thrust Decompression
Figure 8.6: lllustration of the state of the physical system in the four
different locations: Flight, compression, thrust, andatepression [Back

etal., 1993].

motion are: ' '
Yy )
(] -9
f;: . =
1 i 0
72 0

Where g is the acceleration due to gravity. Air drag is assumed ablgi
When the bottom of the piston touches the ground (the constanlicates
the height where this happens) the system enter€timepressionlocation.

Compression: here the valve is closed and the pressure in the cylindedsupb
as it is compressed and exerts an upward directed forceaateased by the
constant,n. Kinetic friction, with friction coefficienty, also acts to reduce
energy. The equations of motion are:

Y Y
¢ gl _ | ny—1—yg
20 0

72 0
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<A

rro<fi

0=

q=3
X = f3(X,ll)

y = gs(x,u)

Thrust

Decompression

(t>t)A(y>1) : 0

Figure 8.7: Graphical presentation of a hybrid model for Raibert’s Hop-
per with all transitions between locations.

When the spring-like effect of the compression causes theakvelocity to

reach zero the hopper transitions to Tiigust location and resets the internal
timer statet.

Thrust : In the Thrust location the high-pressure tanj,f) gets connected to
the piston through the valve for a duration specified by thestamtt,,, alter-
natively the hopper can also transition from the locatidhéf piston becomes
fully extended within the active thrust period. The equadiof motion are:

Y Y

| Ty
fa:) 3 1= 1
72 0

wherer is the thrust force.

Decompression:At this point if the bottom of the piston has already left the
ground the transition to the flight phase is taken immediatgherwise the
hopper continues upwards movement due to the upward spédti@accel-
eration caused by the force exerted by the compressed dae jriston. This

143



Section 8.5: Simulation of Raibert’s Hopper

force is proportional to the achieved height at the time tieeswas closed,
i.e. 7o = Ty, Wherey, is the height when leaving the thrust phasg. is
calculated by the reset condition leading to the locatiome €quations of
motion are:

Y Y
e, - |G| w19
R I 0

72 0

In each location the output-map is just an identity map ofdfages. A full
XML declaration of the hybrid system model can be seen ini&ech.6 on
page 182 of Appendix A, which also gives numerical valuestf@ constants
in the model.

8.5.2 Simulation Results

Here simulation results are shown for Raibert’s Hopper ileoto demonstrate the
functioning DEVS/QSS software for simulating/executindpfid system models.
At first an example will be given where the hopper exhibitblgtdopping motion
and thereafter an example where the energy supplied to $iensys not enough to
sustain hopping motion resulting in the system becomingckstin one location.
For both cases the initial state-space values are:

x=[yytmp’=[190100"

Results for the first case are presented on the four graphsganeF8.8 and
correspond to the following set of parameters for the system

2
g=—982" 1=05m t,=0ls 7=402 =02 n =8 =
S S S

The (a) and (b) graphs show that after the first hop the mogtifes at a very
stable orbit. The (c) graph shows the location indexes awdritbe seen how
the systems transitions according to the diagram of FigureirBa continuing
sequence.

The (d) graph is a phase-plane portrait and it is easy to seehm system
finds a stable orbit following initialisation. The graph @lshows the points in
the orbit where the system transitions between locationsch Stable periodic
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Vertical Position of the Hopper Vertical Speed of the Hopper
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(c) Location indexes (d) Phase-plane portrait

Figure 8.8: Raibert’s Hopper under stable hopping motion.

behaviour as seen here is expected from analytical analfyfie system [Vakakis
and Burdick, 1990].

Results for the second case, where the upward thrust foscbden reduced,
are presented on the four graphs on Figure 8.9 and correspainel following set
of parameters for the system:

m2

g=—9822 1=05m t,=01s 7=2002 =02 g =8>
S S S
This time, as evident from the (c) graph, the hopper getkstuthe Decom-
pressionlocation since the supplied thrust is not enough for thessgsb achieve
flight. In this case the spring-effect and the friction caue system to exhibit a
decaying oscillation, which is clearly evident from the &ay (b) graphs, as well
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Vertical Position of the Hopper Vertical Speed of the Hopper
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Figure 8.9: Raibert's Hopper - Getting stuck in decompression.

as the phase-portrait of the (d) graph.

Performance Discussion

The real-time performance of the software has been analysiad the first case,
presented above, by extending the simulation period to4888 comparing it to
a real-time clock. Execution time on a contemporary lapwag 2.25s, meaning
that the simulation runs at approximately 444 times reattithese result are for
QSS2 quanta ag = 0.001. Profiling the simulation shows that 67% of the time
is spent in the DEVS framework, 15% is spent evaluating mbp% in the HLC
class, and 7% in the integrators.

The numbers above gives a feel for the performance, but tdmenapplied
to predict about the computing resources required by otloetets as it depends
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highly on the quantum selected, the dimension of the sfaeesand the number
of inequalities in each location. For this example the higarbead (Time spent
in the DEVS-framework) is due to the simplicity of the modehich makes the

evaluation in the maps very efficient.

8.6 Matlab Comparison

In order to demonstrate the value of conservative eventtietea simple example
has been setup where the QSS based solution is comparediplamientation of
Raibert's Hopper implemented in a Matlab script. The Masflaftipt uses the same
eguations, transition and constants as in the previou®eextd implements these
in a simulation loop that performs simulation actions adoay to the sequence:

1. Propagate states in current location

2. Check transitions equations and shift location if regglir

3. Perform reset on entering new location if location change
4. Proceed from top

Results for this comparison can be seen on Figure 8.10, vgnaph (a) gives
the QSS solution for the first 5 seconds with the blue line dpdlire position, the
red line is location indexes (O=free flight, 1=compressidnathrust, 3=decom-
pression) and the green line indicates the transition banyniiom the free flight
location to the compression location. It can be seen fronfithuee that all three
lines meet in the transition points at 0.5m as one would dxgdwe quantisation
for all states is 0.0025.

Graph (b) shows results from the Matlab script with a sampléog of 0.002s
which is fast enough to give a similar result with transiatetected accurately
enough not to qualitatively affect the simulation.

Finally, graph (c) shows what happens when the sample pieriget to 0.02s.
Here it is visually evident that the new location is only eateat the following
sample. The reduced accuracy also leads to qualitativereiftes in behaviour;
in the previously two examples motion stabilises with topfsoof the parabola at
1.4m, now the general height has increased and seems taoargycle to cycle.

The general increase of the top-point is due to the fact teathrust periods
becomes longer due to the transition detection delay. Thanae of height is
due the variance of the transition detection delay in eachhi® various transi-
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Transition Detection - QSS based Transition Detection - Time Discrete - Ts=0.002s

Position [m]

18 Location
Boundary

Boundary
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(a) QSS solution (b) Time Discrete - high sample rate

Transition Detection - Time Discrete ~ Ts=0.02s
T T T

(c) Time Discrete - low sample rate

Figure 8.10: Transition detection comparison to Matlab.

tion events. Increasing the sample period further resnl{rogressively larger
qualitative differences compared to graph (a) and (b).

For a simulation lasting 500s, Matlab takes 1.05s to coralet simulation,
while the QSS implementation takes 0.91s. However, thes®ats are as much
an artifact of the underlying run time system as the spedijorahms in used by
the two approaches.

This simple comparative study has demonstrated how costsex\event de-
tection, as implemented in the QSS method of this chaptgrste provide more
accurate simulations.
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8.7 Chapter Summary

This chapter contributed with a mathematical model of h/dsinamical systems
which is designed to be widely applicable for control syse@oftware based on
the DEVS framework and quantised state systems was dewdefopsimulation
and on-line execution of hybrid system models. The QSS agprallowed state
events to be detected conservatively.

Further, a XML file format was specified which makes it easydarser to
supply a hybrid system model (compliant to the presentedifsgetion), which
is then automatically translated into an executable objddtis approach was
explored through the Raibert’s Hopper Example.

Finally, a simple comparative study demonstrated someebémnefits of the
QSS method with conservative event estimation as companedite implemen-
tation of a hybrid model of Raibert’'s Hopper.
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Towards Declarative
Hybrid Supervisory
Control

This chapter provides an example of hybrid supervisoryrobbaised on the Deep
Space Probe case. With this example in mind a methodologyefdarative hy-
brid supervisory control is proposed. The proposed metluagobuilds on the
results presented in this dissertation, but still requisesne elements to be fully
implemented.

9.1 Introduction

During the course of this dissertation a number of tools Hzeen developed to
support simulation, estimation and control of dynamic eyst based on discrete
event interactions between software objects and the nofiqonantised state sys-
tems. These tools are depicted on Figure 9.1 as the lower idoyers in the figure.

Methodology
Hybrid | QSS/ IP/TCP
Models | EKF | comrol ™ q

Figure 9.1: Layers of capabilities as developed in the dissertatiorva n
methodology layer will be added to on top.



Section 9.2: Hybrid Supervisory Control Example

This chapter will conclude the dissertation by proposingeghoadology based
on the developed capabilities fetybrid Supervisory ControlHereby we mean
control of a continuous plant according to a hybrid modelcdbing desired
closed loop performance.

The proposed methodology is not fully integrated in thevsafe developed
during the dissertation and descriptions of the remainingkvio implement the
methodology are given. Referring to Figure 1.6 on page 14vitr& in this chap-
ter fits in theConfiguration package.

The next section will at first provide an example of hybrideswsory control,
whereafter Section 9.3 on page 154 will describe the praposethodology and
the required work to implement it from the current state ofedepment.

9.2 Hybrid Supervisory Control Example

The previous chapter introduced hybrid system models asdritbed methods
to simulate/execute them using tools based on quantisésl statems. Before
formulating a methodology, in the next section, for hybrighearvisory control,
this section will provide an example of how the tools devebbjin the previous
chapter can be utilised to implement such a hybrid supemyisontrol system.

The example will utilise the optimising controller devedapin Chapter 5 and
will be evaluated in the same manner as in Chapter 7, whetteotdmputs drives
a "truth model" implemented in Simulink, which also prodsiceeasurements for
the control model implemented in DEVS/QSS.

9.2.1 Scanning Motion for the Deep Space Probe Case

The following example is based on the Deep Space Probe césgasspresented
in Chapter 7 on page 109, where the DSP motion was considsiiedanducted a
Jovian fly-by. For the following example we will impose theurement that the
DSP, during the fly-by, must perform a scanning motion wite ohits sensors;
we will require the Euler anglé; to scan the following interval, while the other
two Euler angles must be held constant:

01 =01 AN —04<0;<—-02 A 05=0.7

This behaviour is described using the hybrid model depiateHigure 9.2
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using two discrete locations.

92 > —0.2 : @

Figure 9.2: Hybrid model for the extended DSP Case

Here f;(-) and fy(-) represent identical dynamical models, as there are no
changes in dynamics for the two locations. Furtlget;) andgs(-) represent the
measurement models for the sun- and star sensor, whichsar@lehtical in both
locations. Both the dynamics and the measurement modetkddDSP case are
stated in Subsection 4.4.1 on page 59.

The functionsv; () andv,(-) are performance functions for the control algo-
rithm. We will make use of the optimising controller and atdthye performance
function used in Section 7.3 on page 114:

0(0,w) = 30w? + 30w3 + 50w + 5(30(01 —r1)% +30(02 — r2)? 4+ 50(05 — 13)?)

with the reference vector, = [r; r5 r3]7, being determined by the current loca-
tion:
01 —0507" if ¢g=1
r = T .
0.1 —0.10.7) if ¢g=2

With these reference vectors it is certain that the comtrafi each location
will move towards the transition boundary for each locatienspecified by the
transition equations depicted on Figure 9.2.

Supervisory Control Implementation

The hybrid performance function is implemented using tiedtybridMap class
described in Subsection 8.3.1 on page 134 and the trarséierhandled using the
HybridLocationControl class described in Subsection 8.3.2 on page 136.
These classes have been introduced into the code developte: foriginal DSP
optimising control case as described in Section 7.3 on page 1
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9.2.2 Simulation Results

Simulations have been run with the supervisory controlésscdbed above under
the same conditions as in Chapter 7 on page 109, i.e.:

e In closed loop with a "truth” model in Simulink
e Model uncertainties:
— uncertain moments of inertia
— uncertain lever-arm vector
e Presence of a parasitic magnetic moment
e Sensor noise

The results of the simulation can be seen on Figure 9.3 fronm &hat is ini-
tialised with conditions of zero Euler angles and an angudmcity correspond-
ing to a slow roll about the major axis of inertia.

Graph (a) shows how the desired attitude motion oféthexis is obtained,
i.e. a side scanning motion, while the other two Euler anghesheld constant.
It can be seen that there is some cross-coupling of the moteeming that the
controller must exert effort to maintain the constant Ewalegles off; and ds.
Graph (b) shows the corresponding angular velocity.

Graphs (c) and (d) show the estimation error of the QSS/EK&r fibr the
attitude and angular velocity respectively. Graph (e) shtive control input and
it is clear that the direction of actuation of the 2nd axisrdes as thélybrid-
LocationControl class commands location transitions. Finally, graph () de
picts the disturbance from the parasitic magnetic moment.

9.3 Towards a Methodological Approach

For complex systems it is desirable to be able to build hyswigervisory control
systems declaratively, i.e. automatically based on daetsonis of the system and
desired behaviour. The previous example showed an exarhplestatively sim-
ple system implemented by declaring each part of the systssnDEVS objects
in source code) and setting up interconnections.

Chapter 8 on page 127 showed how run-time models of hybrigsgscould
be constructed declaratively from a specification file, is ttase using XML. A
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Figure 9.3: Jupiter gravity assist with side-scanning motion.
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similar approach should be taken towards specification amsh@atic construc-
tion of complete control systems, as discussed in the Intiboh chapter (see
Chapter 1 on page 1).

This section proposes a methodology for hybrid supervisontrol and points
out the remaining work required to implement this methodgglbased on the tools
developed so far during this dissertation.

9.3.1 Proposed Methodology

Figure 9.4 depicts the steps in the proposed methodologiylarid supervisory
control. In each step a part of the control system is declareticomposed with
the result of the previous step.

3. Control 4. Integration

1. Modeling 2. Estimation

|

|

|
Performance |
Model |
|

|

|

|

wojsAg

Jojewnsgy
J1ajj01u0)

Plant Model

~ N\ |
1

3 Simulator

Figure 9.4: Methodology for declarative control design using the tools
developed in this thesis. Circles represent software caitipn, arrows
points to the entities being composed, and dotted linesatelitemporary
composition.

Each step in the process is described briefly in the following

Modeling: Here a model of the plant and the performance to achieved doy th
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plant are declared by the control engineer.

Estimation: An estimator is declared with appropriate parameters amwris-
posed with the model and performance specification from tbeiqus step.

Control: Here a controller type is chosen and declared with propearpeters
specific for the type, and composed to the system.

Implementation: Finally, the composite is composed with the run-time system
order to take control of the real plant. Tuning based on aeligerformance
can be conducted.

Through all the steps itis possible to verify the status ekttgpoment by com-
posing the composite at that point with a suitable simutetibm!; Subsection 2.3.1
on page 26 mentions some of the developed DEVS tools thatearststumental
in this process, e.g. tools to feed a DEVS model at step 2 withsured data from
the physical plant to evaluate estimator performance.

At a first glance; the methodology looks very similar to thaattional process
of designing and implementing model-based control; howekere are a number
of important differences:

1) Each step results in a piece of software that is carrieddut in the pro-
cess unchanged (except for parameters that may be tunediptagdated with
the results of the other steps. This means that when therdssdpne, so is the
software that implements it. A more traditional approactoitest designs using
various simulations tools and then when satisfied the acturdtol code is written
to mimic the implementation in the tool used to verify theigas

2) In each step we are not required to implement solutionsualb instead
we declare them, e.g. in thaontrol step, we declare what algorithm to use, set
parameters, and compose it to our system. The alternativédvee to implement
a given controller manually on each new problem. This allquisk adoption of
complicated solution strategies to the problem and quickptdn to e.g. new sys-
tem parameters. This is possible due to the goal orientegenaf the controllers
treated in Chapter 5 and 6.

9.3.2 Required Work to Implement the Proposed Methodology

Given the tools developed during this dissertation, i.eious Quantised State
Components implemented in DEVS, it is possible to encafesuteodels, esti-
mation algorithms and control algorithms in contained camitating software
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objects.

The example given in Section 9.1 of this chapter demonstratgse of these
objects to implement a hybrid supervisory control systenictvimplements all
the steps described in the methodology, however, the exahaye proceed from
step to step by adding new elements to the source code andpéicy. To be a
truly declarative approach further work is required.

Declarative System Description

Instead of declaring the control system structure by inigting objects in a com-
piled language, Java in this, case the control structurelghmze described in a
declarative language separate from the implementatiogukege. The XML ap-

proach described in Section 8.2 on page 128 implementsyipi®ach for hybrid

models.

To extent this approach to cover the whole methodology XM&cdetions
should be available for each step in the methodology, i.e.fib@ for the model,
one for performance, one for the estimator, one for contndl @ne for the com-
position. Finally, one file should describe the configuratid the control system,
i.e. point to the relevant specific files declaring each phtth@ system.

First results for a composition architecture along thesmights have been
published in [AlIminde et al., 2006b], and a specific examplgle use of these
results in an architecture that makes use of of QSS/DEVSibamstroller is de-
scribed in [Alminde et al., 2007c]. However, systematic @am and develop-
ment into a plug’n’play control framewaork requires furthiveork.

Online Composition

With a system declaration available as just described ib$siple to build a com-
plete control structure from declaration including sejtup all the relevant bind-
ings, i.e. communication channels, between the objectteimgnting the entities
being declared.

This process can either take place as a sequential builégsar the individ-
ual components can be instantiated in parallel and then bafauthe declared
structure by subsequent on-line manipulation.

The first approach is the one implemented with the QSS/DEVWIS ttescribed
during this dissertation, but as already discussed in &&i4 on page 27 it is
an interesting avenue of further work to develop from the [3Ed@rmalism an
evolved encapsulation mechanism which is more rich in médion about itself
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and in methods to allow on-line manipulation of the objects.

9.4 Chapter Summary

This chapter has provided an example demonstrating howatim@anents devel-
oped throughout the dissertation using DEVS and quantisge systems can be
used to implement a hybrid supervisory control system. Heunhore, a method-
ology to handle such systems declaratively has been prdparse it has been
discussed what remaining work lies ahead to implement teihadology.
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Concluding
Remarks

This final chapter summarises the results of the thesis aald&es them against
the research objectives formulated in the Introduction @baof the thesis. Con-
clusions from the work is drawn, and, finally, a number of aresorth further
work are presented and discussed.

10.1 Summary of the Results

The following provides a chapter by chapter summary of theertts and results
reported in this thesis.

Chapter 1: Introduction

The introductory chapter proposed the development of eadstole control sys-
tem to enable advanced control and estimation algorithmsetoised as solu-
tions to real-life challenges with reduced developmeradreffThis idea was trans-
formed into three research objectives that were pursueldisrthiesis. The three
objectives are restated here:

Research Objective 1:"To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be dibsct independently and
then be composed at run time"

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-lirecetion"

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems

approach to control systems software in contrast to typgeahple driven imple-
mentations”



Section 10.1: Summary of the Results

Further, an overview of related work was presented and tiietste of the
thesis and its scientific contributions were summarised.

Chapter 2: Discrete Event Systems

The chapter introduced the DEVS representation, which éas bsed throughout
the thesis to implement the methods and algorithms develope summary a
DEVS model is made up of atomic and coupled models contaimedtop-level
coupled model that can be executed by a runner object.

A software framework was developed in Java which implemtrmspecified
DEVS capabilities. Further, issues concerning the comoatioin model used in
DEVS was discussed. The merit of the DEVS approach when mmgi¢ing con-
trol systems software is the encapsulation and compoalttgrihat it can provide
for software components, such that they can be reused iougaciontexts with no
changes.

Chapter 3: Quantised State Systems

Initially it was argued that numerical simulation algoritk are an important part
of advanced control and estimation approaches. An alfeentd well known
discrete-time methods was presented, which relies on gaéioh of the states.
The merit of this approach is automatic adjustment of theired number of in-
tegration steps to the level of change experienced by theicoltrajectory - and
further a decoupling of states in the calculations that cqutoé sparsity.

A specific QSS based algorithm, the QSS2 algorithm, was predan de-
tail. The algorithm relies on a first order quantisation @& ttate and maintains
internally Jacobian matrices for the system being progagat

The properties of the QSS2 algorithm was discussed and derated through
both simple illustrative examples and a more intensive kitian study of an au-
tonomous underwater vehicle. It was demonstrated that 8®@2Xalgorithm has
performance and robustness features that makes it inteydst use in control
applications. To the author’s best knowledge the simutagtoidy currently is the
most comprehensive study of a higher dimensional nonlisgstem being sim-
ulated with the QSS2 algorithm.

Chapter 4: Kalman Filter Estimation in QSS
The chapter introduced the QSS/EKEF filter which is an extdndalman filter
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implemented for use with quantised state systems. A cadg stincerning atti-
tude determination for a deep-space probe demonstratethth®SS/EKF filter
performs almost identically to the traditional sampledthEKF.

Contrary to the original EKF algorithm, the QSS/EKF altéiwvedoes not
require analytical expressions for the state and measmterndacobians respec-
tively, but instead Jacobians are provided at no additionatputational cost by
the QSS2 algorithm used for state propagation. For systemesewt is imprac-
tical or impossible to analytically derive expressions thoe Jacobian, or where
such expressions becomes very computationally expenstv€@8S/EKF algo-
rithm provides an interesting alternative to the converaidKF algorithm.

Secondly, the QSS/EKF filter is a reusable implementatiat éffectively
encapsulates the algorithm and only requires the user tofgplee model of the
system and associated measurements as a QSS2 model. THEKBGSRjorithm
and the model can then be composed at run-time.

Chapter 5: Optimising Control of QSS Systems

The chapter introduced two algorithms for control of a ctafgson-linear multiple-
input-multiple-output systems based on QSS2 models ofytsieis and a QSS2
description of a control objective function which is mingad by the choice of
control input slopes by the controller.

It was shown that stability of the proposed method must beedkin the
framework of switched/hybrid systems and depends on thes gkeice of control
objective function and control cost matrix. Further, it vgaswn that if a quadratic
control objective function is chosen the control strateggquivalent to thenin-
skew-projectiorstrategy described in [Pettersson and Lennartson, 1997].

In practice the method can be applied to a large number oésgste.g. mo-
tion control system with inherent dynamical dampening, ighbe control objec-
tive it to guide the kinematical states to a given set-point.

The method was demonstrated using simulations of an autom®mnder-
water vehicle, based on a nhominal model and full state kragde and it was
demonstrated that the method was successful in contrdtiegystem. Both the
single objective and multiple objective control variantloé method was demon-
strated successfully.

Chapter 6: Sliding Mode Control in QSS Systems
The chapter introduced sliding mode control for quantigatessystems and de-
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veloped a controller structure, and corresponding soévimplementation, that
can stabilise a large class of non-linear systems, evereiptibsence of distur-
bances and model uncertainties.

The proposed controller structure is highly adaptable aoti eomponent can
be replaced by customised elements to suit specific applicegquirements. The
approach was verified on a deep space probe attitude corénaipge.

The presented algorithm concerns state stabilisationeterythe proposed
structure can easily be adapted to provide tracking; aldaitmethodology is de-
veloped in [Khalil, 2000].

Chapter 7: Evaluation of Estimation Based Control

The chapter described a case for evaluating the algorittawnsl@ped in the pre-
ceding chapters under conditions that resembles thoseaierped by real-life

control problems, i.e. including effects of disturbana@sgertainties, estimation
errors, and synchronisation issues.

Using the case the controller structures developed in téqrs two chapters
were evaluated when driven by estimates obtained from the/EXg- estimator.
A truth model was implemented in Simulink and input/outgghals between the
Simulink model and the DEVS based control/estimation dlgars were facili-
tated by a special adaptor class to provide rendezvous ktestedsynchronisation.

The optimising control scheme showed itself to be able tdgtine attitude
to the desired reference, but it was not very robust agaisstrdances. The slid-
ing mode controller showed excellent performance in terfmeaching time and
disturbance rejection, but is sensitive to estimationrsrro

Chapter 8: Hybrid Systems and QSS Based Simulation

The chapter contributed with a mathematical model of hytyidamical systems
which is designed to be widely applicable for control sysefurther, software
based on the DEVS framework and quantised state systemseavatoped for
simulation and on-line execution of hybrid models.

Next, a XML file format was specified which makes it easy forerts supply
a hybrid model (compliant to the presented specificatiohjckvis then automati-
cally translated into an executable object. This approaahexplored through the
Raibert’'s Hopper Example. The QSS approach allowed state®to be detected
conservatively.

Finally, a simple comparative study demonstrated someeobémefits of the
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QSS method with conservative event estimation as companedite implemen-
tation of a hybrid model of Raibert’'s Hopper.

Chapter 9: Towards Declarative Supervisory Control

The chapter provided an example demonstrating how the coemp® developed
throughout the thesis using DEVS and quantised state sgstam be used to
implement a hybrid supervisory control system. Furtheenarmethodology to
handle such systems declaratively was proposed and it vsassdied what re-
maining work lies ahead to implement this methodology.

10.2 Conclusions on Research Objectives and Contri-
butions

To evaluate the contributions of the thesis they are relatdbe research objec-
tives that were stated in Chapter 1 on page 1. The first obgeatas formulated as:

Research Objective 1:"To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be diésdt independently and
then be composed at run time"

This thesis has addressed this issue and developed the RIS8gimation
algorithm which is set-up by composing it with a QSS2 modedcdbing the
plant, and declaring uncertainty parameters. Further,distinct control algo-
rithms were developed; one based on local optimisation aedased on sliding
mode control. Both rely on composition with a QSS2 model ef plant and a
desired control objective.

The DevsRendendevouzAdapiaterface introduced in Subsection 7.2.1 on
page 113 allows The complete control software implemeoriatitd be composed
with different system, e.g. a simulator or the plant haréwanthout modification
other than adoption of a Java interface to implement inpdioaput functionality.

Further, the chapter on hybrid systems has demonstrateildheof using
XML descriptions of hybrid systems model, which closely eets the mathe-
matical model, as a tool for automatic declarative compmsiof hybrid system
models for simulation and execution.

167



Section 10.2: Conclusions on Research Objectives and Contributions

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-lirecetion”

Object oriented programming has been used throughout thie prvesented
in the thesis and provides a high degree of modularity andpdation of the
implemented functionality. The sliding mode control cleas a good example
of this where it was possible to inherit tli@gss2Static  class and modify its
behaviour to form the guidance controller of the sliding madntroller structure.

Again theDevsRendendevouzAdapioterface introduced in Subsection 7.2.1
on page 113 demonstrates the value of the object orientedagpby providing
the flexibility to use the control software in different emiaments by only imple-
menting a specific input/output handler for the environment

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typgaahple driven imple-
mentations"”

Quantised state systems and specifically the QSS2 algohigdwa been used
extensively throughout the thesis and it has been showrittisadt paradigm that
fits well with the two research objectives listed above. Tesis contributes with
novel algorithms which can be used with quantised statesysin applications
involving hybrid simulation, estimation and control.

This thesis and associated publications demonstrategsheade of the QSS2
algorithm in estimation problems, and the first direct eikptoon of the QSS2 al-
gorithm and its structure for control algorithms. Previcostrol work, e.g. [Kof-
man, 2003] has investigated the Quantised State Approaah msplementation
method for control laws based on traditional analytical mods for linear sys-
tems, i.e. as an alternative to difference equations.

It is still not as easy to apply advanced control theory as tbiremove red
eyes from a photograph in Photoshop - as the ultimate goatosamilated in the
introduction; however, the approach pursued in this thieagslead to algorithm
implementations based on quantised state system whichsatbo-line compo-
sition of model-elements (dynamics and performance) wigoréghms for esti-
mation and control, without having the control engineer @nomlly write any
control code.
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10.3 Recommendations for Future Work

This final section puts attention to a number of issues thaatithor feels are
important to discuss as possible avenues of further woitkinvthe topics treated
in this thesis.

10.3.1 Real-Time Issues

There has been no stringent treatment of real-time issughuwehhighly relevant
for any control system. In Chapter 7 and Chapter 9 the alynstwere tested
in closed loop with a high-fidelity simulation model. Thesstt did not indicate
real-time issues, but clearly for applications where thegatational delays are
significant, relative to the physical system being contallissues can develop.

An analysis of these issues for the DEVS and QSS based meihatsl-
lenging as the computational delays will vary in a non-datristic way. This is
contrary to traditional sample-based methods were delfiga oan be measured
and incorporated in the control design.

One intriguing idea worth further investigation is the udeh® quantums,
used in the QSS2 algorithm, as a feedback quantity in ordegidate the current
CPU-usage to a preallocated share of the total CPU time. isnntianner the
control system will apply more fine-grained control when $lystem is close to
resting and apply a more coarse control during set-poinsttians.

10.3.2 Control Beans

Emphasis has been put on encapsulating algorithms in a mauectethat they can
be used in a number of applications with no changes, DEVSenQ§S approach
have been instrumental in this approach. Future work shatédrate changes in
the DEVS specification as discussed in Section 2.4 on pageréming formal-
isation of non-subscription based communication betwesmponents. Further,
the implementation of the DEVS framework should consoédatich Application
Programmers Interface (API) for tli#evsAtomic class which not only covers
DEVS execution functionality, but also the capability fopls to interrogate the
capabilities of each object.

This would lead to a kind dfcontrolBeans'specification, which can be utilised
by tools that declaratively builds solution implementatido user specified prob-
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lems. This idea is closely related to the uselafaBeangSun_Microsystems,
2007b] used by tools that automatically builds code for biegd user interfaces
from a user supplied specification of the desired resultavd Enterprise Beans
[Sun_Microsystems, 2007a] used in a similar fashion foirass applications.

10.3.3 The Configuration Layer of the Declarative Control System

The introduction talked about a requir€dnfiguration module in the Declar-
ative Control System Architecture, see Subsection 1.1.gage 3, with the fol-
lowing responsibility:

Configuration this module is responsible for analysing the user suppliedets
and set up relations (at run time) between model elementsalgudithms,
both estimation and control. This includes choosing whilgorthms are
best suited to the problem.

This module has not received much attention during thisishees focus has
been on developing methodologies of the more basic arthitdccomponents.
However, Chapter 8 on page 127 on hybrid systems introdueedde of XML
files to declare hybrid system models and Chapter 9 on pagepidfibsed a
methodology to extent this approach to cover full specificadf control systems
- some of these ideas has been described as as part@ihtliéation, Observation
and Planning in Hybrid Systems (SOPH¥dject [Alminde et al., 2006b, Laursen
et al., 2005] were the use of XML files to describe both dynatmicodel compo-
nents, hardware interfaces, and composite system stesctuas explored, but it
remains to fully integrate this work with the QSS approach.

Consolidating this approach and using the XML formats asckead for
a graphical user interface similar to e$imulinkin appearance will provide a
convenient mechanism for control engineers to provideesysiescriptions and
a platform for algorithms to analyse the specified systemsarggjest to the user
which controlBeansobjects should be chosen for automatic composition with the
model to form suitable solution strategies.
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Hybrid Systems and
XML Specifications

This note formally defines hybrid systems and their compasitas interpreted
within the Sophy working group - A distinction is made betwe&terministic and
probabilistic systems. Also, specifications for the asgedi XML file format is
given as well as an example hereupon.

A.1 Definition of a Hybrid System

In the following R™ will denote the n-dimensional Euclidean space @rndwill
denote the smallest inductive set, i.e. the positive imgegk hybrid system is an
8-tuple:

H=(Q,X,UY,E,F,GT) (A1)

Where:

Q = {q € ZT|]1 < q < s}: is a set of location indexes with cardinal number
s ezt

X = {{z|zr € X;}qeq| Xy = R™}: is the state-space with dimensiagcg €
Y/

U = {{ufu € Uy}qeqlUy = R™4}: is the input-space with dimension,cq €
7t

Y = {{yly € Yy}qeqlYq = R} is the output-space with dimensiopcg €
7t

E = {e|e € 2*}: is the set of possible input/output event labels, wheis a set
of labels

F :Q x X x U X: is the forcing functions on the continuous state-space
G:Q x X xU —Y:isacontinuous output map
T:QxXxUxE~ Q@QxX x E:isatransition map
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Remarks

e Time is not explicitly given in the definition of the systempwever, with no
loss of generality the modeller can include an extra statlka@rcontinuous map
to represent explicit time

¢ In most practical applications the dimensions of the stamgut-, and output-
spaces will not change with differegte @

e The mapF, as defined above, allows Ordinary Differential Equaticd®E),
but not e.g. differential algebraic or partial differehgguations

A.2 Specialised Specifications

The above definition is abstract and contains little infaroreabout how the maps
are to be implemented in practice or how the initial stateeitngtd. This section
imposes restrictions on the above definition in order to @ediilybrid Determin-

istic System (HDS) and a Hybrid Probabilistic System (HR&}Y gives examples
of how concrete specifications can be implemented undee ttessrictions.

A.2.1 Hybrid Deterministic System (HDS)

A HDS imposes the following restrictions on the above dabnit

e The maps,F, G, and7, must be deterministic functions of the state and input

e At any time the total state of the HDS is defined by the trigle= (¢ € Q,x €
Xq,ueUy)

e The initial state of a HDS is defined by = (g0 € @, z0 € X, uo € Uy,)

e If the total state is indexed with € @, e.g. S,, it means that the location is
fixed, thus:S, = X, x U,

To define a HDS the initial total state must be included in gif@nition, further
to make specification of the HDS more convenient the mapsnd G will be
defines as sets of functions with indexe @ and the transition map will be
broken up into a set of different maps:

HIPS —(Q,X,U,Y,E,F,G,T,S,) (A.2)

where:
Q,X,U,Y, E: are defined as before
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F = {{fq}qu He} x Xg x Uy — Xq}: is the set of forcing functions on the
continuous state-space
g = {{gq}qu Hq} x Xq x Ug — KI}: is the set of continuous output maps

T = {{tT}Te{l,..,p} QXX xUxE—QxXx E}: are transition maps in-
dexed from 1t

Where each transition is described as a 4-tuple:
Ty = (j(Sq),?”(Sq), €in € 227 €out € 22) (AS)

where:

J(Sy) + Sq — {true, false}: is thetransition domairwhich triggers the transi-
tion when true

r(Sy) : Sq — @ x X: is an algebraic reset equation of the state

ein. IS an input event that causes the transition to trigger

eout: IS @n output event that is emitted when the transition istiak

In this definition the use of the location indexed st8jaather thanS makes
it convenient to group transitions,, according to source location. For purposes
of implementation the transition domain must be specified mgmber of logical
combined inequalities, example:

j(Sq) = jl(Sq) >0 A (j2(8q) >0 vj3(8q) > 0) (A-4)

A.2.2 Hybrid Probabilistic System (HPS)
A HPS imposes the following restrictions on the above dédinit

e The mapsF andg are deterministic functions in the same way as for the HDS
but may accept inputs that are functions of stochastic ge&s i.e.

F: folz,u) = fé(m,u,w)\w =W~P

wherew is the output of a stochastic procd$swith a distribution given by the
probability density functiorP.

e 7 may contain aj(S,) that generates a transition in case< j(S,;), where
J(Sy) is an appropriate likelihood function amds random variable with a con-
stant probability in the intervdD; 1], i.e. the output of a uniformly distributed
process.
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A.2.3 Constant Dimension Systems (CDS)

In many applications of hybrid systems the state, input angui space remains
the same in all locations, these we will call Constant DinemS&ystems (CDS).
For these system we can associate fixed vectors to représespaces, as given

by:

e state-vectorx = X,cq

e input-vector:u = Uyecg

e output-vectory = Y,

A HDS or HPS system can also be CDS at the same time, with apa®p
changes in notation.

A.3 Composition of Hybrid Systems

In the following section we define the parallel compositidntveo hybrid sys-
tems,H; andH,, as shown in Figure A.1, defining a new hybrid systéfs .
Composing two hybrid systems into one entails that:

e Input, uy,, and outputys,, to the composed system is selected.

e Mapping functions, that maps the input to the composed syatad the output
from the two hybrid systemsy;;, andys,, to the input to the two hybrid
systemsyuy, anduy,, and the output from the composed system are selected.

The parallel composition offers the possibility of modeadlia complex hybrid
system as a number of sub-models instead of a monolithicichglystem. The
composition is parallel in the sense that the executionefibdels happens con-
currently.

The composition of two hybrid systems is defined over the doma
v HxH—H, (A.5)
such that the inputs to the composition are two hybrid system

Hl = (le le Ulv Yh Zlv flv gh 7—1) (A6)
HQ - (Q27 XQv U27 Y27 227 ~7:27 ng 7—2) (A7)
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Figure A.1: Composition of two hybrid systems

and the composition operator is defined by a set of matrices:

M = {M(q1,QQ) ’ (qla Q2) € Ql X Q2}, (A8)

that for each possible combination of hybrid locations mtiio systems maps the
output from both hybrid systems and the input vector to themmsed systemy,

to the old input vectorsi;, anduy, and the output vector from the composed
system in the following way:

UH, YH:
U, = ]-v-[(ql7 q2) | YH- : (Ag)
YH; UH;

Two hybrid systems are M-composable, if for all modes Q1 andgs € Q-
there exists a solution to

U, YH1 gl(qh XHq uH1)
Uz, = M(ql,qg) YHo = M(ql,qg) g?(QQ? XHa s u'Hg) (AlO)
YHB UH3 uH3
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given as

X7 Uz,
M ((Q1, QQ), [ x ! :| s uH3> = U, s (A.ll)
T YHs
or in other words there may not be any algebraic loops in tieposition.

A.3.1 Composition of CDS Systems

The above general discussion of composition will requifel do be defined for
any combination of locations in the two systems. The follayvwill define the
composition of two CDS systems needing only &ematrix. While losing some
expressivity, the benefits are:

e Only one composition matrix must be specified (maintaintganfithe engineer
at all costs)

e Communication channels can be set up statically for a Higed system
The hybrid composition is defined as:

HEPo N HEPS = HEPS = (Qs, x5, us, y3, B3, F3, G5, o), (AL2)
with two input systems:

chDS - (Qh X1, U1, Y1, 217 flv g17 7—1) (Al3)
HQCDS - (Q27 X2, U2, y2, 227 va g27 7—2) (Al4)

and a composition matrix of real numbers:

u; Y1
uo =M | yo (A.15)
Y3 us

with the following restrictions to avoid algebraic loops:

¢ there must only be zeros betwegnandu;
e there must only be zeros betweghnandu,
The dimensions ofiz (m) andys (o) is implicitly defined by the dimensions of

M, the inputs and outputs. The following spaces then follawmfthe composi-
tion operation:
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Chapter A: Hybrid Systems and XML Specifications

Qs = {g3: g3 € Q1 x Q2}: is the location set of the composed hybrid system
x3 = [x} x5]": is the new of continuous state space with dimensigr= n; + ns
B3 = {ele € 2%1U%2) 11 s the set of possible input/output events

The maps of the composed system is defined as:
F3: Q3 X x3 X ug — Xg: is the forcing functions on the continuous state space

S| u Fi1(projg,qs, X1, ur) }
F ) ) - . A.16
<Q3 |: :| |: uz :|> |: fQ(p?”OjQQQ:)), X2, LIQ) ( )

s : Q3 X x3 X ug — ys. is the continuous output map
X u Gy (proj , X1, U
G (g, 1 1 > _ 1(p JQ143, X1 1) (A.17)
X2 uy Ga(projg,qs, X2, uz)
T3 : Q3 X X3 X ug X 273 — Q3 x x3 X 2>3 : is the transition map

o [][n))-[Emmnnng] we

X9 us To(projg,qs, X2, Uz, €)

Remarks

e As seen from the composition; Spaces are simply mergedMarntistributes
information toH{'”% andH$P* as appropriate.

e Asthe neV\/I-[gDS itself is a hybrid CDS then the composition is closed.

A.4 Overview of XML Tags for Defining a Hybrid Sys-
tem

This section described tHgophySyster®TD-document which describes who a
subsystem must be declared. The table below shows thews&witthe DTD doc-
ument. Note that: * - indicates zero or more, + indicates 1 oran? - indicates
0 or 1, also identifiers in parenthesis indicates a attrihotehe corresponding
element.
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Element Data contained in element, if any
SophySystem
name The name of the subsystem
documentation? Text describing the subsystem model
hints? Collection of "hints" - see below
hint+(name) Name (in attribute) and value (string) pair for hint
constants? Collection of constants to be substituted in equations
constant+(name) Name (in attribute) and value (string) pair for the constant
states
state*(documentation) Name of state, optional documentation using attribute
inputs
input*(documentation) Name of input, optional documentation using attribute
outputs
output*(documentation) Name of output, optional documentation using attribute
locations
location+
name The name of the location
documentation? Documenting text for this location
diffequation*(state) A mathematical expression giving the differential
equation for each state
outputmap*(output) A mathematical expression involving the state variables
that evaluates to an output value for this output
transitions?
transition+
name The name of the transition
documentation? Documenting text for this transition
domain A logical expression involving the state and input variable
reset Reset associated with this transition
destination Name of destination location
statereset*(state) Mathematical expression to reset the state indicated raisuaét
inputevent* The name of an event that is emitted when transitioning
outputevent* The name of an event that can trigger this transition

The following gives a few additional explaining notes on tlaious elements
from the table:

¢ hints: are optional symbol/value pairs that can provide metarimédion to the
Sophy environment. Currently used for development andraxeatation.

diffequation: must be the corresponding state equation for the stateatedt
as attribute

outputmap: must be the corresponding algebraic equation for the ourtgli+
cated as attribute

A transition becomes enabled when ti@main evaluates to true

statereset is an algebraic equation of the state and input which cateslthe
new state value in the new location

A.5 Document Type Definition for a Hybrid System

The following is the DTD specification for a hybrid systemsdab

<?xml version="1.0’ encoding="utf-8’ ?>

<IELEMENT SophySystem (name, documentation?, hints?, constants?, states,
inputs, outputs, locations)>
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<l—— META DATA sk sk sk sk sk sk ok sk sk sk sk ok sk 3 sk 3k 5k sk sk sk 5k sk 3k sk ok sk 5k sk sk 5k sk 5k sk 5 sk 3 sk 3k 3k 5k 3k sk 3k sk ok 3 ok 3 ok 3k 3k
>

<!ELEMENT name (#PCDATA)>
<!ELEMENT documentation (#PCDATA)>

<IELEMENT constants (constant+ )>
<!ELEMENT constant (#PCDATA)>
<IATTLIST constant symbol CDATA #REQUIRED>

<IELEMENT hints (hint+)>
<IELEMENT hint (#PCDATA)>
<IATTLIST hint hintname CDATA #REQUIRED>

<l—— [O and STAt@S sk sksksksk sk sk sk sk sk sk sk sk 3k 3k 5k sk sk 3k 5k 5k sk 3 3k 5k 5k sk 3K 5k ok 5k K 5k 5k 5k 3k 3K 5k sk 3 3 5K 5k 5k 3 3k 5K ok 3 3 >k 5k 5k
—
<!ELEMENT states (state x)>
<IELEMENT state (#PCDATA)>
<IATTLIST state documentation CDATA #IMPLIED>

<IELEMENT inputs (inputx)>
<!ELEMENT input (#PCDATA)>
<IATTLIST input documentation CDATA #IMPLIED>

<!ELEMENT outputs (outputx)>
<!ELEMENT output (#PCDATA)>
<IATTLIST output documentation CDATA #IMPLIED>

<l— Locations and DYNamiCs sk sksksk sk sk sk sk ok s sk 3k sk ok 3 3 ok ok 3 3 ok ok ok ok ok o ok ok o ok ok ok ok ok o K ok ok
—>
<!ELEMENT locations (location+)>
<IELEMENT location (name, documentation?, diffequation %, outputmap *,
transitions ?)>
<!ELEMENT diffequation (#PCDATA)>
<!ATTLIST diffequation state CDATA #REQUIRED>
<!ELEMENT outputmap (#PCDATA)>
<!ATTLIST outputmap output CDATA #REQUIRED>
<!ELEMENT transitions (transition+)>
<!ELEMENT transition (name, documentation?, domain, reset,
inputevent x,
outputeventx)>
<!ELEMENT domain (#PCDATA)>
<IELEMENT reset (destination, stateresetx)>
<!ELEMENT destination (#PCDATA)>
<!ELEMENT statereset (#PCDATA)>
<IATTLIST statereset state CDATA #REQUIRED>
<!ELEMENT inputevent (#PCDATA)>
<!ELEMENT outputevent (#PCDATA)>
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Section A.6: Example of Subsystem Specification

A.6 Example of Subsystem Specification

The following provides an example of a model described uiegophySystem
specification.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE SophySystem SYSTEM "SophySystem.dtd" >
<SophySystem>

<name>RaibertsHopper</name>

<documentation>
This file implements a model of the one legged robot called
"Raibert's Hopper" . The model is documented in "Hybrid Systems
- Lecture Notes in Computer Science 736" , Springer, 1993

</documentation>

<constants>
<constant symbol="G" >9.82</constant>
<constant symbol="Tp" >0.35</constant>
<constant symbol="L" >0.5</constant>
<constant symbol="GAMMA>0.1</constant>
<constant symbol="TAU" >40</constant>
<constant symbol="ETA" >8</constant>

</constants>

Sl seskosk sk ok ok skook ok ok ok sk ok ok ok ok sk ok oK ok ok 3k sk ok ok ok ok 3k oK ok ok 3k sk ok ok ok ok 3k ok ok ok ok 3k o oK ok ok ok ok 3k ok ok ok ok 3k 3 ok ok ok 3Kk oK K K
—_—>
<states>

<state>Position</state>
<state>Speed</state>

<state documentation="Only used in the thrust location" >Time</ state
>
<state documentation="Only used in the decompression location" >ETA2
</state>
</states>

<inputs> </inputs>

<outputs>
<output>Position</output>
<output>Speed</output>
</outputs>

<locations>
<!—— sk 3k 3k 3k >k 3k 3k 5k 3k 3k 3k 3k sk sk sk sk >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk >k >k >k 3k 3k 3k ok 3k 3k 5k ok 5k %k ok ok sk k ok k k kok ko kk ——>
<location>
<name>Flight</name>
<documentation>
In this location the hopper is in free flight
</documentation>

<diffequation state="Position" > Speed</diffequation>
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<diffequation state="Speed" > —G</diffequation>
<diffequation state="Time" > 0</diffequation>
<diffequation state="ETA2" > 0</diffequation>

<outputmap output="Position" > Position </outputmap>
<outputmap output="Speed" > Speed </outputmap>

<transitions>
<transition>
<name> Ground Impact</name>
<domain>Position &It; L</domain>
<reset>
<destination> Compression </destination>
</reset>
</transition>
</transitions>
</location>

—>
<location>
<name>Compression</name>
<documentation>
The foot now touches the ground and the gas is being
compressed .
</documentation>

<diffequation state="Position" > Speed</diffequation>

<diffequation state="Speed" > ETA/Position -GAMMAxSpeed—G</
diffequation>

<diffequation state="Time" > 0</diffequation>

<diffequation state="ETA2" > 0</diffequation>

<outputmap output="Position" > Position </outputmap>
<outputmap output="Speed" > Speed </outputmap>

<transitions>
<transition>
<name> Deaccelerated </name>
<domain>Speed &It ; 0</domain>
<reset>
<destination> Thrust </destination>
<statereset state="Time" > 0 </statereset>
</reset>
</transition>
</transitions>
</location>

_—>
<location>
<name>Thrust</name>
<documentation>
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The high pressure tank valve is opened and the hopper
is propelled upwards
</documentation>

<diffequation state="Position® > Speed</diffequation>
<diffequation state="Speed" > TAU-GAMMAxPosition -G</diffequation>
<diffequation state="Time" > 1</diffequation>

<diffequation state="ETA2" > 0</diffequation>

<outputmap output="Position" > Position </outputmap>
<outputmap output="Speed" > Speed </outputmap>

<transitions>
<transition>
<name> Thrust timer expires</name>
<domain>(Time &gt; Tp)||( Position &gt; L)</domain>
<reset>
<destination> Decompression </destination>
<statereset state="ETA2" > Position*TAU </statereset>
</reset>
</transition>
</transitions>
</location>

—>
<location>
<name>Decompression</name>
<documentation>
Thrust is over but the foot is not yet clear of the ground,
thus the
gas still provides a small upwards force
</documentation>

<diffequation state="Position® > Speed</diffequation>

<diffequation state="Speed" > ETA2/Position -GAMMAxSpeed—G</
diffequation>

<diffequation state="Time" > 0</diffequation>

<outputmap output="Position" > Position </outputmap>
<outputmap output="Speed" > Speed </outputmap>

<transitions>
<transition>
<name> Ground Cleared</name>
<domain>Position &gt; FootHeight</domain>
<reset>
<destination> Flight </destination>
</reset>
</transition>
</transitions>
</location>
</locations>
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</SophySystem>
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Software Overview

This Appendix provides an overview of the software co-deeel with this thesis

B.1 Obtaining the Software

The software is property of Aalborg Univeristy. If interedtin using it for any
purpose contactimon@es.aau.dk orjakob@es.aau.dk to obtain the soft-
ware and negotiate terms and conditions of use.

In addition the following software libraries must be inkdlin order to com-
pile and run the software:

http://sourceforge.net/projects/jep/ - Java Equation Parser (JEP)
http://jmathtools.sourceforge.net/doku.php - jmathPlot for plot-
ting

B.2 Software Structure

The software repository consists of a number of Java-paskatie package/di-
rectory structure is as follows:

|—— TextDocs
|—— XMLFiles
|—— resources
|—— rpe
‘—— devs
|—— control
|-— customfunctions
|—— devsCore
|-— discreteTimelntegrators
|—— equation
|-— estimation
|—— examples



Section B.2: Software Structure

| ‘—— thesis
|—— hybrid
|—— io

|-— ass

|—— gss2

‘—— tools

The following gives a very condensed description of the enistof each package:

TextDocs: contains a note on idead for improvement of the software.

XMLDaocs: contains document type definitions and examples of hybistesys
specified as XML files, e.g. the model of Raibert’'s Hopper.

ressources: contains a number of comma separated data files which is used
as input for some of the examples in ithevs.examples package.

rpe contains some out-of-tree updates to the JEP library thegdd to increase
performance.

devs.control: contain all controller implementations, i.e. the optiniisa
based controller and the sliding mode controller classes.

devs.customFunctions: contains implementations of various mathemati-
cal functions that is used with JEP in the examples.

devs.devsCore:  the implementation of the Discrete EVent Specification.

devs.discreteTimelntegrators: contains an implementation for the
forward Euler algorithm for time discrete integrations.

devs.equation: contains classes used to describe and evaluate equatson set
for the various map implementations.

devs.estimation: contains the Extended Kalman Filter implementation.
devs.example: contains various examples testing/exploring functidpali

devs.example.thesis: contains code for seeting up all the examples that
has been included in the thesis.

devs.hybrid: contains classes for simulating and executing hybrid syste
both for QSS and QSS2 based models.

devs.io: various classes to facilitate input and output to/from t&3 envi-
roment, e.g. matlab connections, plotting, file 10.

devs.gss:  implements the QSS algorithm for quantised state systenud - n
discussed during the thesis.

devs.gqss2:  implements the QSS2 algorithm for quantised state syst@trigh
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Chapter B: Software Overview

has been used extensively throught the thesis.

devs.tools: contains various tools; &€onnections class to help auto-
mate setting up DEVS connections for complex models an&XieModel-
Factory to build hybrid system models from XML specifications.

B.3 Getting Started

To get started with the code it is recommended to first takeak &t some of the
simple examples in thdevs.examples  package. For examples:

Qss2Test : sets up a simple 2nd order model in QSS2, simulates it using a
standard simulatiorunner, and plots the results.

CartOnPlane:  sets up a model of a cart driving on a plane and composes
it with an optimizing controller, simulates the results gohots it.

DeepSpaceProbelAV2007:  sets up a model of a deep space probe, com-
poses it with the QSS/EKF filter and runs the model with inpotrf datafiles
with results from a truth-model.

To develop new software use the example as templates and snakdo read
the java-doc comments documenting the class interfaces.
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Code Examples

This appendix contains an examples of declaring modelsfltErs/estimators
using the DEVS/QSS framework. The objective of includiisgritthe thesis is to
demonstrate thdeclarativemanner in which a system is set up.

C.1 Code Example for Deep Space Probe Case

package DevsSophy.Examples.thesis;

import DevsSophy.Qss. x*;

import DevsSophy.Tools.x;

import DevsSophy. control .x;

import DevsSophy.customfunctions. x;
import DevsSophy.estimation.x;
import DevsSophy.io.x;

import Jama. Matrix ;

import DevsSophy.DevsCore. x;

/+x This example sets up a model for the Deep Space Probe case study of
* chapter 7 and composes it with an Extended Kalman Filter and a

% Sliding mode controller which includes a dynamic uncertainty bound
* estimator. The complete model is set up to run with Matlab through
* socket communication

* @author Lars Alminde (alminde@es.aau.dk)

*/
public class DSPEvalSMC {

//Main method with all the action

public static void main(String[] args){

// Declare the Devs—Context and loading constants and custom function
/I
DevsContext con= new DevsContext(0,10e—9,true);

con.addConstant("J1=30, J2=30, J3=50, Xdsp=1e6, Ydsp=0, Zdsp=0" )
con.addConstant("Xsun=0, Ysun=0, Zsun=0, Xstar=0, Ystar=1e6, Zstar=5e6" )
con.addFunction("rotate321" ,new Rotate321()); //3—2—1 Euler rotation

con.addFunction("DspGyro" ,new DspGyroCoupling ()); //GyroDynamics

/I Declare a Sample—Hold filter for EKF
-
DevsAtomic filter=new DSPEvalSampleFilter (con, "Filter" ,true) ;

/I Declare the dynamics and kinematics in as an equationsset and
//set up at corresponding Qss2Map
/I
RpeEquationSet eqSet = new RpeEquationSet(

new String []{"ul" ,"u2" ,"u3" ,"z1" ,"z2" ,"z3" ,"z4" ,"z5" ,"z6" });
eqSet.addContext(con);
eqSet.addEquation("™ +
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"(1/cos(z2)) *(cos(z2) *z4+sin(zl) *sin(z2) *z5+cos(zl) =sin(z2) *z6)" );
eqSet.addEquation ("(1/cos(z2)) *(cos(zl) *cos(z2) *z5-sin(zl) *cos(z2) *z6)" );
eqSet.addEquation ("(1/cos(z2)) *(sin(zl) *z5+cos(zl) *z6)" );

eqSet.addEquation ("DspGyro(1,z4,z5,26)+0.5 *(0.0334 *ul+0.0006 *u2+0.0007 *u3)" );
eqSet.addEquation ("DspGyro(2,z4,z5,26)+0.5 *(0.0006 *ul+0.0334 *u2+0.0010 *u3)" );
eqSet.addEquation ("DspGyro(3,z4,z5,26)+0.5 *(0.0007 *ul+0.0010 *u2+0.0200 *u3)" );

eqSet.lock () ;

/l'initial values of input
double [] op=new double[]{0,0,0,0.1,—-1,0,0,—0.03,0.15};

/I construct the map and differentiate wrt. init. value
Qss2Static t = new Qss2Static (con,"Static" ,eqSet,2);
t.differentiate (op,0.01);

// State declarations

Qss2ResetIntegrator intl = new Qss2Resetlntegrator (con,"intl" , op[3], le—5);
Qss2ResetIntegrator int2 = new Qss2Resetlntegrator (con,"int2" , op[4], le—5);
Qss2ResetIntegrator int3 = new Qss2Resetlntegrator (con,"int3" , op[5], le—5);
Qss2ResetIntegrator int4 = new Qss2Resetlntegrator (con,"int4" , op[6], le—6);
Qss2ResetIntegrator int5 = new Qss2Resetlntegrator (con,"int5" , op[7], le—6);
Qss2ResetIntegrator int6 = new Qss2Resetlntegrator (con,"int6" , op[8], le—6);
/Il Declare extended Kalman filter
11
/I Declare measurement equations
RpeEquationSet measurements = new RpeEquationSet(

new String []{"el" ,"e2" ,"e3" ,"p" ,"q" ."r" }):
measurements . addContext(con) ;
measurements . addEquation (

"rotate321(1,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))* )
measurements . addEquation (

"rotate321(2,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))"  );
measurements . addEquation (

"rotate321(3,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))"  );
measurements . addEquation (

"rotate321(1,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))" );
measurements . addEquation (

"rotate321(2,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))" );
measurements . addEquation (

"rotate321(3,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))" )

measurements . lock () ;

/I Construct and differentiate measurement map

Qss2Static measureMap=new Qss2Static (con,"Measurements” ,measurements,0);
measureMap. differentiate (new double []{op[3].,op[4].0op[5],0p[6].,0p[7].,0p[8]}.,0.1);

Il'lnitial paramters for the EKF

Matrix P=new Matrix (new double[][]{{0.1,0,0,0,0,0},{0,0.1,0,0,0,0},
{0,0,0.1,0,0,0},{0,0,0,1e—4,0,0},{0,0,0,0,1e—4,0},{0,0,0,0,0,1e—4}});

Matrix Q=new Matrix (new double[][]{{0,0,0,0,0,0},{0,0,0,0,0,0},
{0,0,0,0,0,0},{0,0,0,1,0,0},{0,0,0,0,1,0},{0,0,0,0,0,1}}).times(1le—8);

/I Construct the filter and register states
EKF ekf=new EKF(con, "ekf" ,0.02 ,2, P, Q, measureMap,false);
ekf.registerState(new Qss2Resetintegrator []J{intl,int2,int3,int4,int5,int6});

/I Register Sun—sensor
Matrix Rss2=new Matrix (new double [][]1{{3e—4,0,0},{0,3e—4,0},{0,0,3e—4}});
ekf.registerMeasurement(new int[]{0,1,2},6Rss2);

/I Register Star—Sensor
Matrix Rss=new Matrix (new double [][]{{3e—6,0,0},{0,3e—6,0},{0,0,3e—6}});
ekf.registerMeasurement(new int[]{3,4,5}, 6,Rss);

/lClass for sampling outputs at 100Hz (only viasualisation after simulation)

Qss2SampledOutput sample=new Qss2SampledOutput(con,"Sample" ,6,0.01,true ,true);

/I Declare Sliding Mode Controller
/l
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/I Declare performance Metric

RpeEquationSet per = new RpeEquationSet(new String []{"z1" ,"z2" ,"z3" });
per.addContext(con) ;

per.addEquation ("0.5 *(z1-0.1)"2+0.5 *(z2+0.5)"2+0.5  *(z3-0.7)"2" );
per.lock () ;

//set up the ’'negativegradieant’ function
NegativeGradient controlStagel=new NegativeGradient(con, “nGrad" , per);
controlStagel. differentiate (new double[]{0.5, —0.1, 1},0.000001);

//set up the ’SlidingMode’ class
SlidingMode controlStage2=new SlidingMode(con, "SlidingMode" ,3);

//set up the ’'SlidingController’

SlidingController controlStage3=new SlidingController(con, "SlidingControl* , 3, 38, new double
[1{0.01, 0.01, 0.01}, t);

controlStage3. setFullMap () ;

controlStage3.setSaturation(new double[]{0.8, 0.8, 0.8});

// controlStage3.setProportionalGain (new double[]{0.06,0.06,0.06});

// controlStage3.setSquareGain(new double[]{0.475,0.475,0.475});

controlStage3.setBoundaryLayer (new TanhLayer(1));

// Set up the custon uncertainty class — hardcoded with relevant equations
Uncertainty unc=new Uncertainty (con,"Uncertainty" )

/I Declare the DEVS coordinator and add all model components to it

DevsCoordinator coord=new DevsCoordinator(con,"Coord" ,9,9,15);

coord .addAtomic (new DevsAtomic []{ filter , t, intl, int2, int3, int4, int5});
coord.addAtomic (new DevsAtomic []{int6 , ekf, measureMap, sample,unc});

coord . addAtomic (new DevsAtomic []{ controlStagel ,controlStage2 ,controlStage3}) ;

//Set up all the runtime connections between the DEVS Components
/I
// External inputs — from matlab
coord.addlnput(1, filter ,1);
coord.addlnput(2, filter ,2);
coord.addlnput(3, filter ,3);
coord.addlnput(4,filter ,4);
coord.addlnput(5, filter ,5);
coord.addlnput(6, filter ,6);
coord.addlnput(7, filter ,7);
coord.addlnput(8, filter ,8);
coord.addlnput(9, filter ,9);

//Maps to integrators and visa verca

Connections.mapTolnt(coord,t ,new DevsAtomic[]{intl,int2 ,int3,int4,int5,int6},0);
Connections . intToMap (coord ,new DevsAtomic[]{intl,int2,int3,int4,int5,int6},t,3);
Connections . intToMap (coord ,new DevsAtomic[]{intl,int2,int3,int4,int5,int6},measureMap,0) ;
Connections.intToMap (coord ,new DevsAtomic[]{intl,int2,int3,int4 ,int5,int6},sample,0);

// Controller connections

Connections.intToMap (coord ,new DevsAtomic[]{intl,int2,int3},controlStagel ,0);
Connections . intToMap (coord ,new DevsAtomic[]{int4 ,int5,int6},controlStage2 ,0);
Connections . intToMap (coord ,new DevsAtomic[]{intl,int2,int3},controlStagel ,0);

coord.addConnection(controlStagel ,1, controlStage2 ,4);
coord.addConnection(controlStagel ,2, controlStage2 ,5) ;
coord.addConnection(controlStage2 ,1, controlStage3 ,1);
coord.addConnection(controlStage2 ,2, controlStage3 ,2) ;
coord.addConnection(unc,1, controlStage3 ,3);
coord.addConnection(filter ,3,unc,1);

coord.addConnection(controlStage3 ,1,t,1);
coord.addConnection(controlStage3 ,2,t,2);
coord.addConnection(controlStage3 ,3,t,3);

//EKF connections
coord.addConnection(t,7,ekf,1);
coord.terminateConnection (t,8);
coord.addConnection(filter ,1,ekf,2);
coord.addConnection( filter ,2,ekf,3);
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coord.addConnection(ekf,1,intl,2);
coord.addConnection(ekf,2,int2,2);
coord.addConnection(ekf,3,int3,2);
coord.addConnection(ekf,4,int4 ,2);
coord.addConnection(ekf,5,int5,2);
coord.addConnection(ekf,6,int6 ,2);

coord. terminateConnection (measureMap, 1) ;
coord. terminateConnection (measureMap, 2) ;
coord. terminateConnection (measureMap, 3) ;
coord. terminateConnection (measureMap, 4) ;
coord. terminateConnection (measureMap,5) ;
coord. terminateConnection (measureMap,6) ;

// Outputs to Matlab
coord.addOutput(controlStage3 ,1,1);
coord.addOutput(controlStage3 ,2,2);
coord.addOutput(controlStage3 ,3,3);

coord. terminateConnection (controlStage3 ,4) ;

coord.addOutput(sample ,1,4);
coord.addOutput(sample,2,5);
coord.addOutput(sample,3,6) ;
coord.addOutput(sample ,4,7) ;
coord.addOutput(sample,5,8);
coord.addOutput(sample ,6,9) ;

//Make runner and do simulation
11

/I Construct Matlab Adaptor for localhost port 8189
RendevouzAdaptor ada=new MatlabAdaptor(8189);

I/ Set up rendevouzrunner for 400s of execution
DevsRendevouzRunner runner=new DevsRendevouzRunner(coord,ada,399);

// Start the execution (will await Matlab)
runner. run (DevsRunner. NOREALTIME, 0.05);
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