
A Quantised State Systems Approach
Towards Declarative Autonomous Control

Ph.D. Thesis

Lars Alminde

Department of Electronic Engineering
Section for Automation and Control

Aalborg University
Fredrik Bajers Vej 7, 9220 Aalborg East, Denmark

January 29, 2009

Thesis title: A Quantised State Systems Approach Towards Declarative Autonomous
Control

ISBN 978-87-90664-38-1
January 2009

Copyright 2004–2009c© Lars Alminde

This thesis was typeset using LATEX 2εin report document class.

Preface

This thesis is submitted as partly fulfilment of the requirements for the Doctor of
Philosophy at the Department of Electronic Systems, Aalborg University, Den-
mark. The work has been carried out in the period August 2004 to January 2009
under the supervision of Professor Jakob Stoustrup and Associate Professor Jan
Dimon Bendtsen.

Aalborg University, January 2009
Lars Alminde

Abstract

This thesis concerns methods for developing control software for autonomous
systems with a high level of modularity, striving towards a declarative control
paradigm, where the control system is able to solve control and estimations tasks
based on system and objective descriptions alone. This is pursued on the basis
of Quantised State Systems (QSS) which is a recent formalismfor working with
systems of ordinary differential equations in an computingenvironment based on
discrete interactions between model entities.

At first; Quantised State Systems are introduced together with the Discrete
EVent Systems (DEVS) formalism used to implement them. A comparative study
on simulation performance compared to traditional time-discrete methods is given
for an autonomous underwater vehicle.

Next, a novel Extended Kalman Filter (EKF) variation is developed which
utilises the QSS approach to allow Jacobian free estimationwith discrete event
inputs. This approach is compared to a traditional EKF implementation on an
example concerning attitude determination for a deep-space-probe.

Two different control strategies are thereafter developedbased on the QSS
approach; an optimising general controller that uses localinformation to provide
an input signal that minimises a user supplied objective function of the state, and a
controller based on sliding mode control which is highly modular and also allows
configuration by supplying an objective function.

The aforementioned QSS based estimator and control algorithms are evalu-
ated in a closed-loop control setting with a high-fidelity simulation model sim-
ulating a Deep Space Probe conducting a Jovian fly-by. The results favours the
sliding mode controller in terms of both performance and robustness.

A simulation architecture for Hybrid System models are developed, allowing
translation from XML specifications of hybrid models into run-time representa-
tions. It is demonstrated how the tools developed for hybridmodel simulation can
be combined with the aforementioned algorithms for continuous control to imple-
ment hybrid supervisory control systems. Finally, it is proposed how the different
algorithms and tools can be combined into a declarative control system.

Synopsis - Danish Abstract

Nærliggende afhandling omhandler metoder til udvikling afsoftware til kon-
trol at autonome systemer med en høj grad af modularitet. Udviklingen sigter
imod et deklarativt kontrol paradigme, hvor kontrol systemet bliver i stand til løse
estimations- og kontrolopgaver baseret på modelbeskrivelser og målbeskrivelser.
Denne målsætning forfølges på basis af Kvantiserede State Systemer (KSS), som
er en ny formalisme for behandling af ordinære differentialligninger i et comput-
ersystem baseret på diskrete interaktioner imellem komponenter.

Indledningsvis beskrives Kvantiserede State Systemer sammen med en speci-
fikation af Discrete EVent Systems (DEVS), som er en formalisme der imple-
menterer KSS systemer. Et simuleringstudie sammenligner KSS simulering med
traditionelle tidsdiskrete metoder for et eksempel omhandlende en autonom un-
dervandsbåd.

Derefter udvikles en ny variation af den kendte Extended Kalman Filter (EKF)
algoritme baseret på KSS systemer. Denne tilgangsvinkel tillader estimering uden
kendskab til Jacobian matricen for systemet og understøtter event baserede målinger.
Den nye algoritme sammenlignes med den traditionelle EKF algoritme på et ek-
sempel omhandlende en interplanetarisk probe.

To forskellige reguleringsalgoritmer er herefter udviklet med base i KSS til-
gangen; en optimerende regulator, som benytter lokal information til at udlede
et styresignal der minimerer en brugerdefineret målfunktion, og en modulær op-
bygget controller baseret på teorien om glidende manifolder, som også styres af
en brugerdefineret målfunktion.

De førnævnte KSS baserede værktøjer til estimering og kontrol er evalueret
på et reguleringsproblem omhandlende en interplaneteriskprobe der flyver forbi
Jupiter.

En simuleringsarkitektur for modeller af hybride systemerer udviklet, som
tillader oversættelse fra XML specifikationer til software-objekter. Det er demon-
streret hvordan disse værktøjer for hybrid simulering kan kombineres med førnævnte
algoritmer og implementere hybrid control systemer. Endeligt, er det forelsået
hvordan resultaterne kan videreudvikles henimod et deklarativt kontrol system.

Acknowledgements

I would like to thank my two supervisors associate professorJan Dimon Bendtsen
and professor Jakob Stoustrup for continuous support and input during the past
three-and-a-half years. I have been privileged to pursue myown ideas to a great
extend during this work and appreciate the patience and trust granted me in so
doing. I hope we will continue to work as partners on joint projects in the future.

A special thanks to Jan Dimon Bendtsen and Karl Kaas Laursen for the fruit-
ful discussions of our ad-hoc discussion group about hybridsystems and Java
technology during 2005.

I would also like to thank professor Kristin Ytterstad Petersen for hosting me
at the Norwegian University of Science and Technology during the fall of 2006. It
was a pleasant period and opened my eyes to the fascinating world of underwater
robotics.

Thanks are also due to all my colleagues at the section of Automation and
Control at Aalborg university with whom I have shared many exciting experiences
over the years - satellite launches not least. A special thanks to Karen Drescher
for help tackling the bureaucracy seemingly inherent to life at the university.

A very special thanks is also due to Morten Bisgaard with whomI have had
an excellent cooperation over the last past 8 years. In the same paragraph I wish
to thank Tor Viscor for friendship over the years.

Finally, the greatest thanks goes to Birgit Krogh for love and support, and for
clearing the clouds when it all looked almost impossible. A special thanks for the
patience you showed during the last months.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Related Work . 7

1.3 Contributions . 11

1.4 Thesis Outline . 12

1.5 Chapter Summary . 15

I Preliminaries 17

2 Discrete Event Systems 19

2.1 Background and Motivation . 19

2.2 DEVS - Discrete Event Specification 20

2.3 A Software Framework for DEVS 24

2.4 Discussion . 27

2.5 Chapter Summary . 28

3 Quantised State Systems 29

3.1 Motivation for Quantised State Systems29

3.2 The QSS2 Method - First Order Quantisation 31

3.3 Properties and Benefits of QSS2 38

3.4 Simulation of an Autonomous Underwater Vehicle 42

3.5 Chapter Summary . 48

CONTENTS

II Estimation and Control using Quantised State Systems 49

4 Kalman Filter Estimation in QSS 51

4.1 Introduction . 51

4.2 Review of Extended Kalman Filtering 51

4.3 Extended Kalman Filtering in Quantised Systems 54

4.4 Simulation Case Study: Attitude Determination 59

4.5 Chapter Summary . 68

5 Optimising Control of QSS Systems 69

5.1 Event Based Control and Quantised State Systems 69

5.2 A Simple Optimising QSS2 Controller 70

5.3 Stability Analysis . 74

5.4 Extension to Multiple Objective Control 79

5.5 Control Algorithm Summary and Implementation 79

5.6 Control of an Autonomous Underwater Vehicle81

5.7 Chapter Summary . 87

6 Sliding Mode Control in QSS Systems 89

6.1 Introduction . 89

6.2 Sliding Mode Stabilisation of MIMO Systems90

6.3 A QSS2 Implementation of Sliding Mode Control96

6.4 Simulation Results for a Deep Space Probe 101

6.5 Chapter Summary . 107

7 Evaluation of Estimation Based Control 109

7.1 Introduction and Infrastructure for Evaluation 109

7.2 Case Study Details . 110

7.3 Optimising Control Results . 114

7.4 Sliding Mode Control Results 119

7.5 Chapter Summary . 124

XII

CONTENTS

III Hybrid Systems, Simulation and Control 125

8 Hybrid Systems and QSS Based Simulation 127

8.1 Introduction and Motivation . 127

8.2 Hybrid System Models . 128

8.3 Hybrid System Execution in DEVS/QSS 133

8.4 Declaring Models for Simulation/Execution 139

8.5 Simulation of Raibert’s Hopper 140

8.6 Matlab Comparison . 147

8.7 Chapter Summary . 149

9 Towards Declarative Hybrid Supervisory Control 151

9.1 Introduction . 151

9.2 Hybrid Supervisory Control Example 152

9.3 Towards a Methodological Approach 154

9.4 Chapter Summary . 159

IV Closure 161

10 Concluding Remarks 163

10.1 Summary of the Results . 163

10.2 Conclusions on Research Objectives and Contributions. 167

10.3 Recommendations for Future Work 169

V Appendices 171

A Hybrid Systems and XML Specifications 173

A.1 Definition of a Hybrid System 173

A.2 Specialised Specifications . 174

A.3 Composition of Hybrid Systems 176

XIII

CONTENTS

A.4 Overview of XML Tags for Defining a Hybrid System 179

A.5 Document Type Definition for a Hybrid System 180

A.6 Example of Subsystem Specification 182

B Software Overview 187

B.1 Obtaining the Software . 187

B.2 Software Structure . 187

B.3 Getting Started . 189

C Code Examples 191

C.1 Code Example for Deep Space Probe Case 191

Bibliography 195

XIV

List of Figures

1.1 Advances in control engineering enabled the Apollo missions . . . 2

1.2 The concept of a declarative control system 4

1.3 Elements in an implementation of a declarative control system . . 5

1.4 An artist’s conception of the Deep Space One spacecraft 9

1.5 Closed loop sampled system . 11

1.6 Mapping from chapters to the DCS structure14

2.1 An example of a DEVS model hierarchy 20

2.2 Coupled DEVS model . 22

2.3 Class diagram in UML for the DevsCore package 25

2.4 Sequence diagram showing how classes interact during a simulation 26

3.1 Comparison between time quantisation and state quantisation . . . 30

3.2 Illustration of the calculation of the time until the next event. . . . 31

3.3 Structure of a QSS2 simulation 32

3.4 A Sample QSS2 Trajectory . 34

3.5 Class diagram for the QSS2 package 38

3.6 Lightly damped oscillator . 41

3.7 System with different response time-scales 42

3.8 The Naval Postgraduate School Autonomous Underwater Vehicle 43

3.9 A slow turn of the NPSAUV . 45

3.10 Non-nominal initial conditions47

4.1 EKF temporal flow . 54

4.2 QSS/EKF data flow . 56

4.3 Block diagram for a QSS based EKF implementation57

LIST OF FIGURES

4.4 A deep space mission scenario 60

4.5 Attitude sensors for the DSP . 62

4.6 DSP simulation results . 64

4.7 EKF performance . 65

4.8 QSS/EKF filter performance . 66

4.9 QSS/EKF Performance with increased quantum67

5.1 Feedback control structure . 69

5.2 QSS Control structure . 72

5.3 The MSP control strategy . 78

5.4 MOC results for AUV states . 83

5.5 MOC results for AUV control objective functions 84

5.6 SOC results for AUV states . 86

5.7 SOC objective function vs. MOC summed objective functions . . 87

6.1 Illustration of the chattering phenomena. 93

6.2 Sliding mode controller structure97

6.3 Adding dynamic uncertainty bounds to the controller structure. . . 101

6.4 Simple SMC control results, a large degree of chatteringis evident 103

6.5 SMC control results with approximated switching function 105

6.6 SMC control results with performance tuned reaching law. . . . 106

6.7 SMC control in steady state . 107

7.1 The infrastructure for estimation based evaluation 110

7.2 Inspiration for the case study; A Jovian fly-by. 111

7.3 Class diagram for DEVS model with IO to/fromSimulink. 113

7.4 The steps in the rendezvous protocol.113

7.5 Jupiter gravity assist results with the optimising controller 116

7.6 Results with filtered inputs and exaggerated disturbance 118

7.7 Sliding mode results . 121

7.8 Results with only Equivalent Control122

XVI

LIST OF FIGURES

7.9 Results with IMU . 123

8.1 A graphical representation of a hybrid system model. 131

8.2 Detecting events consistently in sampled systems 134

8.3 Architecture for simulating and executing hybrid system models . 135

8.4 The Hybrid Location Control class 136

8.5 Schematic drawing of Raibert’s Hopper [Back et al., 1993]. 141

8.6 The different location in the Raibert’s Hopper model 142

8.7 Graphical presentation of a hybrid model for Raibert’s Hopper . . 143

8.8 Raibert’s Hopper under stable hopping motion 145

8.9 Raibert’s Hopper - Getting stuck in decompression 146

8.10 Transition detection comparison to Matlab 148

9.1 Layers of capabilities as developed during the dissertation 151

9.2 Hybrid model for the extended DSP Case 153

9.3 Jupiter gravity assist with side-scanning motion. 155

9.4 Methodology . 156

A.1 Composition of two hybrid systems 177

XVII

List of Tables

3.1 Quanta selection for QSS2 simulation 46

3.2 Number of outputs for each state during QSS2 simulation 46

5.1 Actuator signal updates to the model.85

8.1 Tags in XML descriptions of hybrid system models 132

List of Algorithms

2.1 Behaviour of coupled models . 23
2.2 A simple runner algorithm with external I/O 24
3.1 DEVS implementation of a QSS2 integrator 37
3.2 DEVS implementation of QSS2 function map 37
5.1 The Controller Block . 80

Introduction 1
This thesis concerns development of methods and tools to enable declarative so-
lutions to control problems, i.e. the development of generic algorithms that can
easily adapt to problem specific model descriptions. This chapter provides moti-
vation for the work and an overview of the thesis and its contributions.

1.1 Background and Motivation

Control problems relating to human artifacts date back to ancient times when
Egyptian inventor Ctesibius invented the float valve as a feed-back device in wa-
ter clocks to help keep a constant pressure and hence increase accuracy. As civil-
isation entered the industrialised age more industrial processes needed to be con-
trolled and in 1788 James Watt developed his famous fly-ball governor to control
the shaft speed in steam engine powered equipment.

Until this time all control inventions were based on physical insight and in-
genuity rather than mathematical analysis, and the controlinventions were imple-
mented by mechanical modifications to the system to be controlled. However, the
19th century saw the development of the first mathematical analysis tools for con-
trol problems, pioneered by names such as James C. Maxwell, E. J. Routh, and A.
M. Lyapunov.

At the start of the 20th century the invention of flight and therapid deployment
of combustion engines inspired increased research in control problems. Also in
these years the development of electronics allowed controllers to be implemented
in electric circuits as an alternative to mechanical devices. Frequency design
methods, well suited for implementation using operation amplifier technology,
were developed during the time with H. W. Bode and H. Nyquist as leading re-
searchers.

Section 1.1: Background and Motivation

Figure 1.1: Advances in control engineering and digital computers en-
abled the Apollo missions to the Moon during the sixties and seventies.

Following the second world war advances in control engineering became nec-
essary for the super powers in support of the raging space race. This time saw the
development of state-space methods, Kalman filtering, and optimal control theory
among others.

Since then there has been a continued research effort to provide increasingly
complex algorithms to deal with challenging control problems such as e.g. non-
linearity or embedded discrete behaviour. One trend that can be identified is that
the role of the digital computer continues to be more dominant throughout all
phases from analysis and modelling to implementation of control laws. Recent
methods such as e.g. non-linear model predictive control orparticle filtering em-
phasises this trend.

1.1.1 The Gap Between Theory and Application

As argued above there exists today a large body of advanced theory to address
challenging control problems. However, it is reasonable toask if this theory is
being applied in applications today? It is a well known saying in the control
community that "In industry they always implement PID∗ controllers anyway".

A good motivation for why this might be true to a large extend is that PID
control is available out-of-the-box from e.g. Programmable Logic Control (PLC)

∗Proportional Integral Derivative control

2

Chapter 1: Introduction

units, which can be installed by an electrician, who can alsotune the control
parameters by himself. On the other hand application of morerecent and advanced
control theory require domain experts and control experts to work together for
extended time during which they will gradually progress from problem definition
to implementation of a control system.

In other words the investment required to apply modern control techniques at
typical industrial fabrication facilities can be prohibitive. Hence, in order to make
advanced control methods more cost effective, we must look at ways to make
them easier to apply to real-life problems without extensive expert assistance. The
price that is paid for not implementing the advanced controlmethods is increased
resource consumption, reduced process quality and increased wear in machinery.

As an analogy, consider the advancement in computer graphics over the last
decades; here also a very large body of theory has been developed and the methods
also rely on digital computers for implementation. However, all of this research
is available to the mainstream consumer in software packages such as GIMP† or
Photoshop‡ , where the consumer can apply the latest results in wavelet analysis
and related methods, when enhancing family photos. The userknows nothing
about what is going on but is simply presented with a dialoguebox with some
intuitive parameters to adjust (e.g. sharpness). With thisexample in mind the fol-
lowing ultimate goal is presented for the research pursued in this thesis:

Ultimate Goal 1: "Application of advanced control theory to real-life control
challenges is as easy as enhancing family photos in Photoshop."

The next subsection will elaborate this goal into more concrete terms.

1.1.2 A Declarative Control System

In Computer Science; programming languages are often categorised as support-
ing one or multiple programming paradigms, for example C++ is said both to be
a procedural and object-oriented programming language. Atthe highest level one
can distinguish betweenimperative programminganddeclarative programming.
The first concept is the most well-known and refers to languages where the pro-
gram elements describe ways to manipulate data, e.g. the implementation of an

†http://www.gimp.org
‡http://www.adobe.com/products/photoshop

3

Section 1.1: Background and Motivation

algorithm. This way of thinking is typical in languages suchas C/C++, Pascal,
and Java.

Declarative programming on the contrary focuses on declaring the problem
rather than specifying solutions in terms of algorithms. For example the XSLT§

language is used to describe transformations between eXtended Markup Language
(XML) documents by describing relations-ships rather thanprocedures for trans-
formation. Other examples of declarative languages are LISP [Seibel, 2005] and
Prolog [Callear, 2003]. With this terminology from computer science we are in-
spired to develop a system that can solve control problems declaratively:

Definition 1.1 (Declarative Control System (DCS))
A Declarative Control System is a system capable of controlling a plant based
on a description of the plant and a description of the performance that must be
obtained.

Certainly if the advanced control theories that exists today can be packaged in
a DCS such that the algorithms automatically atrun-timecan adapt to the supplied
models then these methods are much easier to apply for the technician in the field.

M e a s u r e m e n t sC o n t r o lS i g n a l s P l a n t I n t e r f a c e
Figure 1.2: The concept of a declarative control system - accepting plant
and performance models as basis for computation.

Figure 1.2 depicts this graphically; the DCS is fed with a model description
(including all available sensors and actuators) and a performance specification.
Based hereupon; the DCS is able to control the plant in real-time accepting mea-
surements from the plant and supplying control signals to it. Figure 1.3 provides

§Extensible Style-sheet Language Transformations

4

Chapter 1: IntroductionD C S
M o d e l
E x e c u t i v e C o n fi g u r a t i o n E s t i m a t i o n

C o n t r o l
Figure 1.3: The different architectural elements in an implementationof
a declarative control system.

a general overview of the software modules that must be developed in order to
implement the DCS functionality. The following gives a brief discussion of each
module:

Model this module must implement software which can represent theplant and
performance model as described by the user. This entails software represen-
tations for integrators, function maps, and other model elements.

Estimation this module must implement various estimation algorithms that
can be used to filter data from plant sensors.

Control here various control algorithms must be implemented generically such
that they can be bound to the user supplied model without any modifications
to the algorithms.

Configuration this module is responsible for analysing the user supplied
models and set up relations (at run time) between model elements and algo-
rithms, both estimation and control. This includes choosing which algorithms
are best suited to the problem.

Executive based on the relations set up between components by the configura-
tion module the executive module is responsible for executing the algorithms

5

Section 1.1: Background and Motivation

and interacting with the plant.

Deploying the DCS architecture fully is beyond the scope of asingle PhD
project and the next subsection will limit the scope of the present study and present
specific research objectives pursued in this thesis. Focus will be on methodologies
that can support the idea of a DCS system.

1.1.3 Scope of this Study

Control and estimation algorithms such as e.g. sliding modecontrol and Kalman
filtering replicate parts of the plant model in their structure; for example in Kalman
filtering the plant dynamics is used to propagate states and covariance, and a slid-
ing mode controller will use the plant control matrix to derive input signals. Typi-
cal implementations therefore combine model and algorithmelements in the same
sequential code.

To enable the DCS architecture the algorithms must be implemented in a
generic manner that allows them to be composed with any modelthat the user
may supply. This is expressed in the following objective:

Research Objective 1: "To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be described independently and
then be composed at run time"

Today control system software is often developed and validated in a simula-
tion environment, e.g. Matlab/Simulink and then at the end of the development
cycle the solution is hand-implemented on the target systemin code or the control
software is auto-generated by the tool and then adapted to the target system. In
both cases the programming paradigm used in the implementation code is that of
structured programming.

For the framework to be developed this approach will be replaced with an Ob-
ject Oriented (OO) implementation philosophy. There are two reasons for this. 1)
for a framework that will grow over time the OO approach will be more main-
tainable and flexible and 2) the OO approach allowsencapsulation, meaning that
when parts of the system have been validated (perhaps even certified for safety-
critical applications), these parts can remain fully encapsulated and further de-
velopment on these parts of the system can be based on modifying behaviour in
derived classes. These ideas have led to the formulation of the second research

6

Chapter 1: Introduction

objective:

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-line execution"

The elements in the framework must be able to communicate in astructured
manner during run-time where the elements together implement the control sys-
tems functionality. Most control system implementations rely on a sample driven
approach. However, recent research [Kofman, 2002] has pointed to Quantised
State Systems (QSS) as an alternative approach to deal with system dynamics in a
computing environment. With this approach communication between model en-
tities are based on events, which are dispatched when each component undergoes
a significant internal state change. This approach promisesto be more efficient in
terms of required computing resources than the typical sample driven approach.
Therefore it has been chosen to use this QSS approach for the implementation of
the framework:

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typicalsample driven imple-
mentations"

With the formulation of these research objectives most of the functionality of
the DCS system described in the previous subsection is addressed except for the
functionality in theConfiguration module. However, the result of the work
to be presented in this thesis will be a good starting point toaddress the issues of
automatic model analysis and coupling to relevant algorithms.

1.2 Related Work

It has been noted by other researchers that most control systems are first developed
on a mathematical foundation using tools such as Matlab/Simulink to analyse,
design, and verify the algorithms of the control system, whereafter the design
is implemented on the target platform with little regard forthe inherent timing
issues involved with consistent implementation of controlsoftware on embedded
computing platforms.

Discussions in [Horowitz et al., 2003, Henzinger et al., 2003] points to the

7

Section 1.2: Related Work

same issues regarding implementation of control software and proposes a platform
approach where a special purpose kernel, dubbed Giotto, implements the interface
to the specific real time operating system of the control computer.

In [Koo et al., 2005] a framework calledReachLabis presented which allows
hybrid dynamical models as well as analysis algorithms to bedescribed in an
abstract language: Hybrid System Analysis and Design Language (HADL). The
framework allows such models to be translated to the language of a number of
computational kernels, which are independent environments for analysis of hybrid
models.

During the nineties NASA launched a number of independent deep space ex-
ploration probes and noticed that almost no control software was reused from
mission to mission, and that the implementations lacked a common methodology
to help avoid implementation mistakes [Dvorak et al., 2000]. This led to the for-
mulation of themission data system (MDS), a vision for future control software,
which emphasises a number of themes to be addressed, of whichmany are rele-
vant to the present thesis; the most relevant themes are listed below by their short
descriptions from [Dvorak et al., 2000]:

1. Construct subsystems from their architectural elements, not the other way
around

2. Design interfaces to accommodate foreseeable advances in technology

3. System state and models form the foundation for information processing

4. Express domain knowledge explicitly in models rather than implicitly in pro-
grams

5. Operate missions via specifications of desired state rather than sequences of
actions

Of these the first two are relevant in connection with the object oriented ap-
proach that will be taken in this thesis and the latter three relates to the concept
of declarativity as described in the previous section. Withoffset in the MDS it is
demonstrated [Dvorak et al., 2004] that object oriented software written in Java is
suited for real-time execution for a Mars rover platform.

Many of the themes in the MDS were motivated from the Deep Space One
(DS1) spacecraft launched by NASA on the 24th of October 1998which featured
the Remote Agent eXperiment (RAX) [Bernard et al., 1999]. Itwas an experi-
mental flight software which featured intelligent on-line planning and execution.

8

Chapter 1: Introduction

Figure 1.4: An artist’s conception of the Deep Space One spacecraft,
which featured the Remote Agent eXperiment (RAX).

One of the software modules was the Mode Identification and Recovery (MIR)
system [Williams and Nayak, 1999]; this system was a declarative system which
was able to fulfil configuration goals, set by the planner component of RAX, by
using models of the spacecraft. Further, it was able to identify faults in hardware
and autonomously plan around them to the extent possible. However, the system
only considered discrete models and discrete switches as actuators.

Despite the fact that an evaluation of the RAX experiment [Bernard et al.,
2000] concluded that the technology could be applied to future missions this has
not happened as of yet. However, parts of RAX have seen further theoretical
development, e.g. described in [Williams et al., 2003].

1.2.1 Declarative Algorithms

Focusing on specific algorithmic approaches to automatic controller synthesis
there have been significant results in recent times. One methodology is Model
Predictive Control (MPC) [Maciejowski, 2002], where optimisation is used to de-
rive optimal input sequences based on a specified performance index. MPC can
be applied to a large class of systems, e.g. hybrid systems [Bemporad and Morari,
1999], and results in either an explicit controller derivedoff-line for simple sys-
tems or an implicit controller that solves the optimisationproblem on-line, e.g.
for non-linear systems. However, MPC in its implicit version can often be too
computationally intensive to support on-line implementation [Oort et al., 2006].
MPC methods are not researched in this thesis, but MPC algorithms are clearly

9

Section 1.2: Related Work

candidates for inclusion in the proposed DCS framework.

Other automatic synthesis methods focus on complete off-line synthesis of
controllers, where the results is a bank of Piece-Wise-Affine (PWA) control laws
that each apply to a constrained polytopic subset of the state-space. For instance,
in [Rodrigues and How, 2003] general non-linear systems areautomatically trans-
formed into a number of local PWA models that approximate theoriginal system.
From these local models local PWA control laws are generated, which is shown
to satisfy a global piece-wise-cubic Lyapunov function. In[Habets et al., 2006]
a PWA approach is taken to provide automatic controller synthesis for hybrid au-
tomata where the models in each discrete location are PWA models.

1.2.2 Event Based Control

Another theme in this thesis is the use of Quantised State Systems (QSS) to rep-
resent dynamics, which is in contrast to typical discrete time representations. Pre-
vious work concerning QSS will be reviewed throughout the thesis, while this
subsection will discuss other event-based approaches thanQSS.

In [Sandee et al., 2005, Årzén, 1999] it is shown through simulations that for
a regulation problem the processor load can be reduced significantly by enabling
event driven sampling in the vicinity of the set-point, i.e.control updates are only
performed when an error threshold is exceeded. This approach was validated
experimentally in [Sandee et al., 2006]. Theoretical work based on this approach
[Sandee and Heemels, 2006], has established ultimate boundedness criteria for
the solution trajectories, which are similar to results forquantised state systems,
which are used in this thesis.

Other work [Lunze, 1994, Philips et al., 2003, Heemels et al., 2006] focuses
on the effects of quantisation of sensors and actuators (effects of analogue to dig-
ital conversion and digital to analogue conversions, see Figure 1.5). In [Heemels
et al., 2006] a method is presented that minimises the effectof the quantisation on
closed loop performance. [Philips et al., 2003] and [Sandeeet al., 2006] both ap-
proach this problem by abstracting the continuous dynamicsinto a discrete event
automata where each state represents a small hypercube in the state-space of the
continuous system. These abstractions are then treated off-line using discrete
event methods for assessing reachability of the automata.

10

Chapter 1: Introduction

D / A C o n t i n u o u s S y s t e m A / DD i s c r e t e C o n t r o l l e rC o n t r o l C o m p u t e rP h y s i c a l W o r l d
Figure 1.5: Closed loop system with digital to analogue and analogue
to digital converters to interface between a continuous plant and discrete
controller.

1.3 Contributions

The contributions of this thesis can be summarised in the following main points.
Citations are provided for contributions which have been published.

• A comparison of performance and robustness between Quantised State Systems
(QSS) and usual time discrete simulation for a model of an autonomous under-
water vehicle, which is the first reported study on using QSS based simulation
for simulation of non-linear systems with a high-dimensional state-space (to the
author’s knowledge).

• A novel generalisation of the well-known extended Kalman filter based on QSS
models, which eliminates the need to analytically derive Jacobian matrices and
allows the algorithm to be used declaratively. The filter accepts incoming mea-
surements as events rather than equidistant samples. This work is published
in [Alminde et al., 2007a].

• A novel declarative control strategy which utilises an on-line QSS model of
the system under control to effectively derive small-signal models that is used
for local minimisation of a convex control objective function. This work is
published in [Alminde et al., 2007b].

• A generalisation of sliding mode control based on QSS modelsof the system
under control with a guidance control based on minimisationof a user supplied

11

Section 1.4: Thesis Outline

performance function. The algorithm implementation is highly modular and
can be composed with models in a declarative manner

• The estimators and controllers developed for QSS have been verified in a com-
prehensive study of a deep space probe example complete withevaluation of
the effect of uncertainties and disturbances.

• A specification of hybrid systems defined to reflect typical control systems
and problems in contrast to many verification oriented specifications. This
specification in various states of development is publishedin [Alminde et al.,
2006a,Alminde et al., 2006b].

• A QSS approach for simulating hybrid systems as defined by theabove speci-
fication and a mechanism for directly translating a specification, written in eX-
tended Markup Language, into an executable software object. Early version
published in [Alminde et al., 2006a].

• Throughout the thesis methods are developed and demonstrated to support the
idea of a declarative control system. These results are tiedtogether in a software
framework based on discretely interacting components.

An international journal publication is under preparationwhich summarises
the results concerning the use of quantized state systems for control and estimation
purposes.

1.4 Thesis Outline

The following gives a chapter by chapter overview of the contents of this thesis.

Chapter 1: Introduction
Provides motivation for the thesis and an overview of its structure and results.

Chapter 2: Discrete Event Simulation
This chapter introduces the Discrete EVent Specification (DEVS) which is utilised
throughout the thesis as a framework for simulating/executing discrete event mod-
els.

Chapter 3: Quantised State Systems
The concept of Quantised State Systems (QSS) is central to this thesis and is de-

12

Chapter 1: Introduction

scribed in this chapter in the context of simulation of continuous system models.
A comprehensive simulation study is conducted using a modelof an autonomous
underwater vehicle.

Chapter 4: Kalman Filter Estimation in QSS
Here it is shown how quantised state systems can be used to implement the ex-
tended Kalman filtering algorithm and how this approach makes analytical evalu-
ation of Jacobians for covariance propagation unnecessary. The conventional and
QSS filters are demonstrated and compared on a model of a deep space probe,
which must determine its attitude from vector observations.

Chapter 5: Optimising Control of QSS Systems
This chapter develops a control strategy based on local models of a non-linear
multiple-input-multiple-output plant generated by the QSS approach. At each
control calculation a change in control signals is found from an optimisation prob-
lem based on the local model. The control strategy is evaluated on a model of an
autonomous underwater vehicle.

Chapter 6: Sliding Mode Control in QSS Systems
Here a sliding mode controller for state stabilisation is developed within the QSS
framework and demonstrated on a deep space probe example. Compared to the
control strategy of the previous chapter the sliding mode approach provides better
stability and robustness properties.

Chapter 7: Evaluation of Estimation Based Control
This chapter wraps up the work from the previous three chapters by providing a
performance evaluation of the two proposed control strategies with the QSS based
estimator in the loop. The evaluation uses the deep space probe as a case study.

Chapter 8: QSS Simulation of Hybrid Systems
Hybrid systems features both continuous state evolution aswell as discrete events
affecting the state evolution. This chapter describes how such systems can be
simulated using quantised state systems and provides software that can translate a
hybrid system model described in a dedicated language into asoftware entity that
can be used for simulation or control.

13

Section 1.4: Thesis Outline

Chapter 9: Towards Declarative Hybrid Supervisory Control
In this chapter the work on controllers for continuous systems and the work on
hybrid models are combined to demonstrate how one can implement a hybrid su-
pervisory control system with the tools developed. Further, it is discussed what
future work is required to utilise the results for a methodological approach to
declaratively specifying control systems.

Chapter 10: Conclusions and Perspectives
The final chapter wraps up the results and points to areas of further work.

Figure 1.6 provides a graphical overview of how the individual chapters con-
tribute to the proposed DCS architecture from Subsection 1.1.2. As can be seen
all of the architectural elements will be addressed throughout the thesis although
only limited emphasis will be put on theConfiguration module.D C SM o d e l3 & 8

E x e c u t i v e2 & (7) C o n fi g u r a t i o n(7 & 9) E s t i m a t i o n4
C o n t r o l5 & 6

Figure 1.6: Mapping from chapters to the DCS structure. Chapter num-
bers in parenthesis signify minor contributions.

14

Chapter 1: Introduction

1.5 Chapter Summary

This introductory chapter proposed the development of a declarative control sys-
tem to enable advanced control and estimation algorithms tobe used as solu-
tions to real-life challenges with reduced development effort. This idea was trans-
formed into three research objectives that are pursued throughout this thesis. The
three objectives are restated here:

Research Objective 1: "To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be described independently and
then be composed at run time"

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-line execution"

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typicalsample driven imple-
mentations"

Further, an overview of related work was presented and the structure of the
thesis and its scientific contributions were summarised.

15

Part I

Preliminaries

Discrete Event Systems 2
This chapter introduces the Discrete EVent Specification (DEVS), which is a frame-
work for simulating and executing systems characterised bytheir discrete interac-
tions. This specification and associated software provide atool that will be used
to implement the algorithms developed in the remainder of this dissertation.

2.1 Background and Motivation

This dissertation concerns methods for declarative autonomy; these methods are
based on the notion of Quantised State Systems (QSS), which is introduced in the
next chapter. In short; the QSS approach transforms continuous dynamics into a
discrete event system. In order to implement, on a computer,solutions based on
QSS it is necessary to have a software framework that can execute these discrete
event systems consistently.

Such a framework was introduced in [Zeigler, 1976] under thename "Discrete
EVent Specification" (DEVS) and has seen a number of revisions and extensions
since then, see e.g. [Zeigler et al., 2000]. The specification defines an abstract
view of model components and their discrete interactions through message pass-
ing, and in addition algorithms for consistent model execution are specified.

Section 2.2 presents the DEVS specification and associated algorithms, while
section 2.3 provides an overview of the software implementation of DEVS, which
was developed as an execution platform for the algorithms tobe developed through-
out this dissertation. Further, details on the software framework, than given in this
chapter, are available in Appendix B on page 187. The DEVS framework devel-
opment is published as part of [Alminde et al., 2006a].

Section 2.2: DEVS - Discrete Event Specification

2.2 DEVS - Discrete Event Specification

The Discrete EVent Specification (DEVS) was formalised by Bernard P. Zeigler
[Zeigler, 1976] as a language formalism for discrete event systems. In contrast to
more widely adopted discrete event system descriptions [Cassandras and Lafor-
tune, 1999], which enumerates all possible system configurations into a number
of discrete states with associated transitions between, DEVS takes an alternative
view and considers a number of units, called DEVSatomic models. These can im-
plement complex processing, but interacts with other components through discrete
interactions. DEVS has been applied for a wide range of modelling and simulation
applications spanning from protocol verification to neuralnets, see [Sarjoughian
and Cellier, 2001] for an overview. A large number of DEVS variations have
been presented throughout the years; This dissertation makes use of the DEVS
specification in [Zeigler et al., 2000] dubbed "Classical DEVS with Ports".

The core entities in a DEVS model are model components calledatomic mod-
els. Each atomic model is a self-contained system with an internal state and the
ability to receive and send messages to/from other components through a number
of enumerated input- and output ports respectively. Each port can be used to com-
municate one object, e.g. a real, a vector, or matrix. The behaviour of each atomic
model is specified by a function describing behaviour when events are received
and another function that describes internal autonomous state transitions.

Atomic models can be connected to formcoupled models; it is the responsi-
bility of the coupled model to handle message passing between ports of the atomic
models contained in the coupled model and the in- and output ports of the cou-
pled model to/from the contained atomic models. The coupledmodel has the
same external interface as an atomic model meaning that a model hierarchy can
be established, see Figure 2.1.

Runner

Coupled

Coupled

Atomic Atomic

Atomic Atomic

Figure 2.1: An example of a DEVS model hierarchy composed of
atomic and coupled sub-models.

20

Chapter 2: Discrete Event Systems

A stand alone atomic model or a coupled model is executed by arunnerobject
which is in control of advancing time and mapping inputs and outputs from the
outside (i.e. outside of the DEVS model) to the top level model component. The
following subsections describe the three model components: atomic, coupled and
runner objects in more detail.

2.2.1 Atomic DEVS Models

At first we define a message,M , used for communicating events between differ-
ent model components:

M = {m = (i, v) | i ∈ Z+, v ∈ Ra×b}

that is a setM consisting of pairs,m, described by a port identifier,i and a value,
v. The value can represent a real, vector or matrix (dependingon the dimensions:
a, b). In the followinge will be used to denote the time since the last event in the
atomic model. A general atomic DEVS model is specified as an 8-tuple:

D = (S,X ,Y , δint, δext, λ, ta)

where:
S: are internal states, representation is up to the user
X = {x ∈ Z+|1 ≤ x ≤ px}: is the set of input ports,px the number of inputs
Y = {y ∈ Z+|1 ≤ x ≤ py}: is the set of output ports,py the number of outputs

δint(e,S) : R+ × S → S ′: is the state transition function
δext(e,M,S) : R+ ×M×S → S ′: is the external event function (i ∈ X)
λ(e,S) : R+ × S → M: is the output mapping (i ∈ Y)
ta(e,S) : R+ × S → R+: is the time advance function i.e. time to next internal
event.

The behaviour of a given model is implemented in the two transitions func-
tionsδint(·) andδext(·), while the output,λ(·), and time advance,ta(·), functions
are used by the coupled model or runner driving the atomic model for extracting
output and scheduling information, respectively.

21

Section 2.2: DEVS - Discrete Event Specification

2.2.2 Coupled DEVS Models

Atomic models can be coupled as specified in a coupling specification. Consider
Figure 2.2, which shows two atomic models that are coupled. There are three
model entities in the figure;a1 anda2 are internal atomic models andc is the
coupled model. There are connections between the two contained models and
also connections between the contained models and the inputand output ports of
the coupled model. C o u p l e d m o d e l : cA t o m i c 1 : a 1 A t o m i c 2 : a 2

Figure 2.2: Coupled DEVS model consisting of two atomic sub-models,
their interconnections and connections to the outside.

In the following c will mean the coupled model anda1, . . . , al will denote
atomic models that make up a coupled model. The coupling specification consists
of three distinct sets with elements of the form((m1, p1), (m2, p2)), wheremj

specifies a model component andpj a port associated with that component. The
three sets defining a coupled model are [Zeigler et al., 2000]:

EIC external input coupling, withm1 being the coupled model,c, with p1 ∈ Xc

andm2 ∈ {a1, . . . , al} with p2 ∈ Xm2
.

EOC external output coupling coupling, withm1 ∈ {a1, . . . , al} andp2 ∈ Xm1
,

andm2 ∈ {c} with p2 ∈ Yc

IC internal coupling, withm1 ∈ {a1, . . . , al} andp1 ∈ Xm1
, andm2 ∈ {a1, . . . ,

an} with p2 ∈ Xm2
.

Further, a coupled model must adhere to the definition of an atomic model as
defined in the last section; this means that coupled models can be internal parts of

22

Chapter 2: Discrete Event Systems

other coupled models.

δint():
tn ← least m.ta(·) where m = {a1, . . . , an}
I ← set of all {m : m.ta(·) = tl}
forall m ∈ I call m.δint(·)
forall m ∈ I call m.λ(·) and store messages in P
Generate new messages from P according to EOC and IC :
˙ if (p ∈ P) ∈ EOC store as output of c
˙ if (p ∈ P) ∈ IOC add to target to distribution set D
forall d ∈ D call δext(·) on receiving model

δext(P): P is incoming messages
Generate new messages from P according to EOC and IC :
˙ if (p ∈ P) ∈ EOC store as output of c
˙ if (p ∈ P) ∈ IOC add to target to distribution set D
forall d ∈ D call δext(·) on receiving model

λ():
Return stored output messages

ta(e): e is time since last event

tn ← least m.ta(·) where m = {a1, . . . , an}
return tn − e

Algorithm 2.1: Behaviour of coupled models

The behaviour of a coupled model is described in Algorithm 2.1, which gives
an overview of how a coupled model interacts with other models; both with regard
to internal models and to the outside world through the same mechanisms as for
an atomic model.

2.2.3 Root Coordinator and Execution

In order to execute a model all components, both atomic models and coupled
models, must be contained in one coupled model, which is thendriven by a single
software entity called aRunner. The runner is responsible for global time keeping
and input/output management to/from the DEVS model. Different runners can be
implemented to e.g. perform stand-alone executions or executions with input and
output to local hardware or e.g. a network. Algorithm 2.2 gives an example of
how such a runner could work together with external input andoutput (referred to
as "ext.").

23

Section 2.3: A Software Framework for DEVS

t← startT ime
while (t < endT ime)
˙ tn ← t+ c.ta()
˙ if (ext. input before tn)
˙ call c.δext(·)
˙ t←(time of ext. input)
˙ continue
˙ t← tn
˙ call c.δint(·)
˙ call c.λ(·) and write to ext.

Algorithm 2.2: A simple runner algorithm with external I/O

2.3 A Software Framework for DEVS

DEVS has mainly been used in academical projects and there are therefore no
widespread commercial software packages for DEVS. However, a number of
DEVS tools have been developed at university centres aroundthe world of varying
levels of maturity. An overview of available tools can be seen onhttp://www.sce.-
carleton.ca/faculty/wainer/standard/tools.html.

For this project an implementation of the DEVS core functionality as de-
scribed above was implemented in order to support the research objectives with
a maximum degree of flexibility. The software was implemented in Java∗. The
following will provide an overview of the developed DEVS implementation and
more details can be found in Appendix B on page 187 which describe all the
software developed for this dissertation.

The DEVS implementation is implemented in theDevsCore package and an
overview can be seen on the class diagram of Figure 2.3. TheDevsAtomic class
is an implementation of the atomic model specification givenin Subsection 2.2.1
andDevsCoordinator is an implementation of the coupled model specified in
Subsection 2.2.2, likewise theDevsMessage class is an implementation of the
message construct introduced in Subsection 2.2.1 and finally the DevsRunner
is a simple stand-alone runner as described in Subsection 2.2.3.

TheDevsAtomic class is abstract and must be inherited in order to imple-
ment specific behaviour by overriding the abstract functions: δint(·) andδext(·).
Default behaviour forλ(·) (calledoutput()) andta(·) (calledtimeAdvance())
is implemented in the class for convenience but can likewisebe overrided to suit

∗Java Standard edition version 1.5

24

Chapter 2: Discrete Event Systems

DevsAtomic+DevsAtomic(context:DevsContext,name:String,noInputs:int,noOutputs:int,priority:int)+deltaExt(eventtime:double,message:DevsMessage):double+deltaInt(eventtime:double):double+output():DevsMessage+timeAdvance(eventtime:double):doubleDevsContext+DevsContext()+DevsContext(startTime:double,timeResolution:double,globalDebugFlag:boolean)+addConstant(cons:String)+addFunction(name:String,infunc:PostfixMathCommand)+failure(ob:Object,mes:String)+failure(ob:Object,mes:String,e:Exception)
DevsCoordinator+DevsCoordinator(context:DevsContext,name:String,inputs:int,outputs:int,noSys:int)+addAtomic(system:DevsAtomic)+addAtomic(systems:DevsAtomic[])+addConnection(fromSys:DevsAtomic,fromPort:int,toSys:DevsAtomic,toPort:int)+addOutput(fromSys:DevsAtomic,fromPort:int,toPort:int)+addInput(fromPort:int,toSys:DevsAtomic,toPort:int)+terminateConnection(fromSys:DevsAtomic,fromPort:int)+addInitialInputs(in:double[])+addInitialInputs(object:Object[])+deltaInt(eventtime:double):double+deltaExt(eventtime:double,message:DevsMessage):double+timeAdvance(eventtime:double):double

DevsMessage+DevsMessage(system:DevsAtomic)+DevsMessage(system:DevsAtomic,port:DevsPortValue,expectedSize:int)+DevsMessage(system:DevsAtomic,port:DevsPortValue)+push(port:DevsPortValue)+pop():DevsPortValue+getList():List<DevsPortValue>+getSortedList():List<DevsPortValue>
DevsPort+DevsPort(system:DevsAtomic,port:int)+hashCode():int+equals(o:Object):boolean+compareTo(in:DevsPort):int DevsPortValue+DevsPortValue(system:DevsAtomic,port:int,value:double)+DevsPortValue(system:DevsAtomic,port:int,value:double,obj:Object)+toString():String

DevsRunner+DevsRunner(coordinator:DevsCoordinator,endTime:double)+run(file:String,mode:boolean,verbose:int):long

Figure 2.3: Class diagram in UML for the DevsCore package imple-
menting DEVS core functionality.

individual needs.

TheDevsContext class is not part of the DEVS specification, but it is in-
cluded as a class to contain attributes and helper functionsthat can be shared
between a number ofDevsAtomic objects, for example numerical constants,
definitions of mathematical functions, and functions for reporting errors and diag-
nostic information.

A DEVS model is constructed by defining a number of concreteDevsAtomic
objects and adding them to aDevsCoordinator object using theaddAto-
mic() call. Hereafter, connections are declared between the model components
within the coordinator using the following functions calls: addConnection() ,
addInput() , addOutput() , andterminateConnection() . Finally, a
runner object is constructed with the coordinator as argument and the model can
then be executed by therun() method of the runner object.

Figure 2.4 provides an example sequence showing how a runnerobject per-
forms one simulation/execution step for a configuration as indicated on Figure 2.2;
As can be seen the coordinator is in charge of calling all atomic model compo-
nents, while the runner only interacts directly with the coordinator as the top-level
component in the model.

To enable real-time execution on an embedded platform the runner object
should be implemented as a real-time thread constantly scheduling its next execu-

25

Section 2.3: A Software Framework for DEVSa1:DevsAtomica2:DevsAtomicc:DevsCoordinatorr:DevsRunner
:output():timeAdvance():deltaExt():timeAdvance():output():timeAdvance()

:deltaInt() :deltaInt()

Figure 2.4: Sequence diagram showing how classes interact during a
simulation. One simulation step.

tion at the next event time in the model. For such a scheme to work the underlying
scheduler should use a dynamic scheduling principle, e.g.earliest deadline first
scheduling.

2.3.1 Associated DEVS Tools

The software implementation described above constitutes the core functionality
required to execute DEVS components. The remainder of this dissertation will
develop various simulation, estimation and control algorithms, which are imple-
mented on top of the DEVS implementation described above.

In addition a set of DEVS components have been developed which are not
described in detail, but is used throughout the examples in this dissertation. These
tools are standard tools to provide such functionality as for example:

26

Chapter 2: Discrete Event Systems

• Reading and writing data to files during simulation/execution

• Plotting data at the end of simulation/execution runs

• Time discretisation of signals (sample-and-hold)

An overview of these tools can also be seen in Appendix B on page 187.

2.4 Discussion

A few points concerning the DEVS specification and implementation are found
worthy of further discussion.

Push and Pull Communication in Devs
The DEVS specification, and its implementation as describedabove, is a very
operational mechanism to implement discrete event based software entities that
communicate on a subscription basis, or in Object Oriented jargon; components
that are updated through theobserverpattern [Gamma et al., 1994].

For model components that must always react to changes in itsinputs imme-
diately the subscription based communication is very adequate. However, as will
be seen in the coming chapters, some model components may have inputs that are
only used occasionally and therefore do not need to trigger recomputation in the
component. This is easily adopted in the DEVS scheme by usingsubscription,
and then just storing the input received from these ports. However, from a point
of view of performance this is not ideal and the coming chapters will show how
mechanisms can be implemented to support this kind of communication outside
the DEVS specification.

As a consequence on can argue the need to extend the DEVS specification
with descriptions of data bindings between components thatis not based on sub-
scription in order to keep intact a clear link between a functional specification in
DEVS and the corresponding implementation.

Compositionality of DEVS Components
The behaviour of a component in DEVS, i.e. the ability to schedule internal dy-
namics in the component and react to external events is very similar to the way
control software is typically implemented on an embedded computer: as a pe-
riodic thread and associated interrupt handler that handleexternal inputs (e.g.

27

Section 2.5: Chapter Summary

samples from the analogue-to-digital-converter or push buttons), which can re-
schedule the periodic process if e.g. a change of controllerparameters has been
ordered.

Therefore, in our view, it is a strength of DEVS that it captures this behaviour
in a model that is not bound to an implementation. TheRunner mechanism in
the implementation of DEVS is here very important, because the model can be
composed with different runners.

For example if the model is of a specific controller for a givenproblem the
DEVS implementation can be composed with a runner object that interfaces it
to a simulation environment for a first evaluation and then later the exact same
controller implementation can be composed with another runner object that inter-
faces to the system calls of the Real Time Operating System onthe target control
computer.

This philosophy has much in common with how software is developed for
business applications; here software components are encapsulated using tech-
nologies such as for exampleEnterprise Java Beans[Sun_Microsystems, 2007a],
whereafter it can be deployed in different contexts withoutchanging the compo-
nent itself. In this work we pursue this approach of encapsulation and composi-
tion for control systems software, as described in the research objectives defined
in Subsection 1.1.3 on page 6.

2.5 Chapter Summary

This chapter introduced the DEVS formalism, which will be used throughout the
dissertation to implement the methods and algorithms to be developed. In sum-
mary; a DEVS model is made up of atomic and coupled models contained in a
top-level coupled model that is executed by a runner object.

A software framework was developed in Java which implementsthe speci-
fied DEVS capabilities and an overview of this work was given.Further, issues
concerning the communication model used in DEVS were discussed.

The merit of the DEVS approach as a platform for implementingcontrol sys-
tems software is the encapsulation and compositionality that it can provide for
software components, such that they can be reused in variouscontexts with no
changes.

28

Quantised State
Systems 3
This chapter describes Quantised State Systems (QSS) and specifically the QSS2
algorithm for propagating ordinary differential equations. Mathematical proper-
ties are discussed and illustrative examples are given. Finally, a comprehensive
simulation study of an autonomous underwater vehicle is given to demonstrate
the benefits over traditional methods.

3.1 Motivation for Quantised State Systems

Complex autonomous systems often require that models are propagated on-line
for use in state estimation (e.g. extended Kalman filtering [Grewal and Andrews,
1993]), feed-forward control (e.g. Model Predictive Control [Alamir, 2006]), as
well as other usages. Typically, numerical integration techniques used for on-
line model propagation are based on quantisation of time in evenly distributed in-
tervals. Examples include forward-Euler integration or Runge-Kutta integration,
which are often applied for such applications.

The sample-based approach is challenged in complex non-linear systems where
it can be difficult to select a reasonable sample-rate which is fast enough for worst
case conditions and at the same time computationally efficient under nominal cir-
cumstances. In networked systems information may be received over a network
arriving with non-uniform intervals making it difficult to incorporate using a sam-
ple based approach.

An alternative approach is to consider quantisation of the value axis rather
than the time axis, consider Figure 3.1. The (a) graph depicts a typical ideal
time quantised solution (red line) that approximates a continuous trajectory(ẋ =
f(x), x ∈ R). The (b) graph shows an ideal state quantised solution wherethe
value axis is quantised. It is noted that in the value quantised trajectory, discrete

Section 3.1: Motivation for Quantised State Systems

t

x

(a) Time quantisation
t

x

(b) State quantisation

Figure 3.1: Time and state quantisation. The black line is the continuous
state evolution and the red line is the discretised state evolution.

value changes appear at a rate that is proportional to the level of change of the
continuous trajectory, whereas the rate is constant for thetime quantised approxi-
mation.

In other words; a state quantised approach allows the computational effort
required to propagate the model to be adjusted to the currentrate of change in the
system. This overcomes the problem of selecting an appropriate sample rate for
non-linear systems as discussed above.

A practical implementation of the scheme described above can be based on
the forward-Euler method but with the modification that instead of calculating
value increase over a sample period, the interval until the next quantised level
is reached is calculated based on the chosen quantisation distance,∆Q, and the
current derivative,̇x (see also Figure 3.2):

∆t =
∆Q

|ẋ(tk)|
(3.1)

Then when the time interval elapses, the state is updated according to:

x(tk + ∆t) = x(tk) + sgn(ẋ(tk))∆Q

whereupon the derivative is evaluated and the next intervalis calculated using
Equation (3.1). This scheme is easily formulated in the DEVSdiscrete event
formulation as described in the previous chapter. Also, using the external event
functionδext(·), new information can be injected into the model at arbitrarytimes
- e.g. information in arriving network packages.

This way of thinking and associated DEVS formulations for operational algo-
rithms can be found in early work by Bernard P. Zeigler [Zeigler, 1976]. However,

30

Chapter 3: Quantised State Systems

ẋ

tk tk + ∆t

∆t =
∆Q

|ẋ| ∆Q

Figure 3.2: Illustration of the calculation of the time until the next event.

with these methods it was known that for some pathological examples the propa-
gation of the system would require an infinite number of discrete transitions in a
finite time interval - rendering the problem non-computable.

Recently Ernesto Kofman extended the algorithm to include ahysteresis level
that ensures a minimum time between transitions [Kofman et al., 2001] and also
developed a second order algorithm [Kofman et al., 2001] where the quantisation
is related to the second derivative of the each state trajectory. The first and second
order algorithms are called QSS1 and QSS2 respectively∗ . Related work on the
development of multi-point integration schemes for quantised systems have been
published [Nutaro, 2005], but will play no role in this dissertation.

The QSS2 algorithm forms the basis for most of the work in thisdissertation
and is described in Section 3.2. In Section 3.3 mathematicalproperties are dis-
cussed and some simple illustrative examples are given. Finally, in section 3.4 a
more comprehensive simulation study is performed using a non-linear model of
an autonomous underwater vehicle. To the author’s knowledge this study is the
first comprehensive study of the QSS2 algorithm applied to a high-dimensional
non-linear system.

3.2 The QSS2 Method - First Order Quantisation

This section describes the QSS2 method for propagating ordinary differential
equations and provides details on how this method is mapped to the DEVS speci-
fication introduced in the previous chapter. Consider a system specified by a gen-

∗In this dissertation the abbreviation ’QSS’ will be used to denoted quantised state methods in
general

31

Section 3.2: The QSS2 Method - First Order Quantisation

eral time-invariant non-linear ordinary differential equation with a time-invariant
non-linear output map:

ẋ = f(x,u) (3.2)

y = h(x) (3.3)

wherex ∈ Rn is the state vector of dimensionn, u ∈ Rm is the input vector of di-
mensionm andy ∈ Rp is the output vector of dimensionp. f(·) is a differentiable
mappingf : x × u → ẋ andh(·) is likewise a mappingh : x → y.

Recall that any time-varying equationf(x,u, t) can be put on the form of
Equation (3.2) by augmenting the system with an extra state,xa, with derivative
ẋa = 1, hence no loss of generality is inferred by the time invariance limitation of
Equation (3.2).

The QSS2 algorithm integrates the state and produces the output h(x) by
decoupling the system into event-communicating DEVS components representing
functions and integrators, respectively - see Figure 3.3.

f(x,u)

∫

∫
h(x)

(u, u̇) (ẋ1, ẍ1)

(ẋ2, ẍ2)

(x̄1, ¯̇x1)

(x̄2, ¯̇x2)

(y1, ẏ1)

Figure 3.3: Structure of a QSS2 simulation. This figure is an example
for a system with two states, one input and one output.

The objects that are communicated between the objects are ordered pairs(a ∈
R, b ∈ R) representing a specific block output variable and its derivative. The
following two subsections describe how the integrator and function blocks process
information, respectively.

3.2.1 QSS2 Integrators

Each integrator block represents a single statexi of the state vectorx of the system
as described by Equation (3.2). The integrator maintains a first order and second
order internal model of this state respectively:

x̄i(t) = x̄i(ti) + ¯̇xi(t− ti) (3.4)

32

Chapter 3: Quantised State Systems

xi(t) = xi(te) + ẋi(t− te) +
1

2
ẍi(t− te)

2 (3.5)

whereti is the time of the last DEVS internal event of the integrator block† andte
is the time of the last DEVS external event, i.e. new derivatives received from the
function block.

When a new external event is received thenxi(te) is reset toxi(t) - meaning
that the second order model is a piecewise parabolic trajectory. The condition for
updating the first order model, i.e. Equation (3.4), is givenby a quantum separa-
tion principle between the two models:

|x̄i(t) − xi(t)| > ∆Q (3.6)

where∆Q is the chosen quantisation. When this expression becomes true, the
first order model is reset to the value of the second order model, i.e.:

x̄i(t) = xi(t) ∧ ¯̇xi(t) = ẋi(t) (3.7)

Equation (3.6) can be seen to be related to the curvature of the second order
model, which equals the second state derivative. The above scheme is sketched
in Figure 3.4, which provides an example trajectory. Here, it can be seen how the
models forx̄i(t) andxi(t) are allowed to evolve independently whereafter upon
reaching the difference∆Q are reset to the same condition.

With this formulation one can think of(x̄, ¯̇x) as an operating point, or rather
anoperating trajectory, with the guarantee that it is correct to within the chosen
quantum within the time interval until the next event.

At any time the time until the next internal event of the integrator can be
found by solving Equation (3.6), which is the result returned by the time advance
function (ta(·)) of the integrator. It is worth to note that near linear trajectories
result in very few events, while the rate of events increase in proportion to the
magnitude of the second derivative of the state trajectory.

3.2.2 QSS2 Function Maps

In the following we will discussf(x,u), but the discussion is the same forh(x) as
well. The block representingf(x,u) receives working state and input trajectories

†corresponding to the last time the block produced an output

33

Section 3.2: The QSS2 Method - First Order Quantisation

x

t

∆Q

∆Q

∆Q

∆Q

∆Q

Figure 3.4: Sample QSS2 trajectory; showing when internal events oc-
cur (blue stars) and linear trajectories of the quantised states between
events (dashed lines).

and is tasked with producing first and second state derivatives. For the function
block there is no difference if the block inputs are from external inputs or from
states, therefore with no loss of generality we consider theinput vector:

z = [xT uT]T = [z1 . . . zn+m]T

and input derivative vector:

ż = [ẋT u̇T]T = [ż1 . . . żn+m]T

Further, we consider the vector valued functionf as an ordered set of scalar func-
tions, i.e.

f = (f1, . . . , fn)

We let a matrixD ∈ Rn×(n+m) describe connections from inputs(zj : j <
n+m) to outputs off such thatzj selects a column inD which has entries,di,j ,
which are one if the corresponding output,i, depends on the inputzj and zero if
there is no dependence. Finally, we define the Jacobian matrix of f :

Jf =




∂f1(z)
∂z1

. . . ∂f1(z)
∂zn+m

...
.. .

...
∂fn(z)

∂z1
. . . ∂fn(z)

∂zn+m


 (3.6)

34

Chapter 3: Quantised State Systems

The total internal state of the function block is made up of these quantities,
e.g.z, ż, D andJf . The following will describe how input events are processed
and how outputs are generated, respectively.

Input Processing
When an external event occurs the function block first updates the internal state
according to:

z(t) = z(tk) + ż · (t− tk) (3.6)

wheret is the current time andtk is the time of the last event. Hereafter the input
message setM (see Section 2.2.1 on page 21) containing new inputs{(z∗j , ż

∗
j) :

j ∈ X} are processed in the following manner one by one; first the derivative
information is copied to the internal state:

żj = ż∗j

Hereafter the j’th column inD is selected and for each non-zero element,di,j,
corresponding terms inJf are calculated using the numerical difference:

∂fi

∂zj
=
fi(z) − fi(z

∗)

zj − z∗j
∀ {i : di,j 6= 0} (3.5)

wherez∗ is the originalz vector but with the j’th element replaced by the new in-
formation, i.e.zj = z∗j . It is important to realize that the above difference calcula-
tion, due to the integrator quantisation, is always performed with the denominator
satisfying:

|zj − z∗j | = ∆Qj

meaning that the accuracy of the calculation of the Jacobianterm, Equation (3.2.2),
is controlled by the choice of the quantum.

Output Calculation
The function block is memoryless in the sense that as soon as new information
is received then outputs must be produced. This means that following an exter-
nal event we haveta(·) = 0, meaning that an output is produced immediately.
Consider the first order Taylor expansion off(z):

ẋ = f(z(tk)) + Jf (tk)ż(t− tk)

wheretk is the time of the just processed external event. From this expansion we
identify that:

ẋ = f(z(tk))

35

Section 3.2: The QSS2 Method - First Order Quantisation

ẍ = Jf (tk)ż(tk)

hence output pairs(ẋ, ẍ) can be evaluated for any output index,i, as:

fi(z(tk)),

(n+m)∑

j=1

∂fi(z(tk))

∂zj
żj(tk)


 (3.1)

in other words; the second derivative is the directional derivative of fi. Outputs
are only produced for outputs that depended on the inputs received in the last
external event, i.e. indexesj ∈ M. This entails the index-set:

i ∈
⋃

j∈M

{s : ds,j 6= 0 ∨ 1 ≤ s ≤ n} (3.1)

The fact that QSS2 produces new outputs based on coupling information of
the system means that the method is able to utilise sparsity in the system and it
therefore reduces the number of required function evaluations.

3.2.3 Software Implementation

This subsection provides an overview of how the QSS2 algorithm has been im-
plemented in the software framework described in Section 2.3 on page 24. Al-
gorithm 3.1 shows how the QSS2 integrator functionality described in Subsec-
tion 3.2.1 maps the DEVS specification of functions. Likewise for Subsection 3.2.2
describing the functionality of QSS2 map blocks; Algorithm3.2 describes how it
is implemented in the DEVS specification.

Figure 3.5 is a class diagram for the QSS2 package implemented to be used
with the DEVS package described in Section 2.3 on page 24. Central to the imple-
mentation is theQss2Integrator andQss2Mapwhich implement the QSS2
integrator and function respectively, they are both concrete implementations of
the abstractDevsAtomic .

Communication between the integrators and functions are delegated to the
Qss2Port class which is a representation of the pairs consisting of a value and
its derivative. TheQss2Map class delegates responsibility for representing a set
of equations through theEquationSet interface.

The RpeEquationSet is a concrete implementation ofEquationSet
which use the external library "Java Equation Parser 2.4 (JEP)‡", which manages

‡Available from http:///www.singularsys.com/jep/

36

Chapter 3: Quantised State Systems

δint():
integrate Equation (3.5) to current time
x̄← x, ¯̇x← ẋ

δext(P): P is a set of messages
integrate Equation (3.5) to current time
update ẋ and ẍ with new values from P

λ():

return (x̄, ¯̇x)

ta():
return solution to Equation (3.6)

Algorithm 3.1: DEVS implementation of a QSS2 integrator

δint():
return

δext(P): P is a set of messages
update internal state, Equation (3.2.2)
select row in D and calculate Jacobian terms, Equation (3.2.2)

λ():
foreach index, i, in the set given by Equation (3.2.2):
˙ calculate outputs, Equation (3.2.2)

ta():
return ∞

Algorithm 3.2: DEVS implementation of QSS2 function map

parsing and evaluation of equations based on a representation as text strings. JEP
also allows custom functions and constants to be utilised. An algorithm has also
been developed which analyses the equations, represented by string input from
the user, and derives the coupling matrixD.

The delegation of equation representation through the interface allows a great
deal of flexibility; for example one might use theRpeEquationSet implemen-
tation throughout the whole analysis and design phase of a project and then for
implementation on an embedded processor the equations can be hard-coded as
(Java) functions in order to minimise processing time requirements.

37

Section 3.3: Properties and Benefits of QSS2Qss2Port
Qss2Map

Qss2Integrator
DevsAtomic «interface»EquationSet

RpeEquationSet
Figure 3.5: Classes that implement the QSS2 approach and their inter-
dependencies.

3.3 Properties and Benefits of QSS2

This section provides an overview of the mathematical properties of the QSS2
algorithm and discusses how these properties match up with the properties of other
integration methods. Hereafter some benefits specifically related to the work in
this dissertation are summarised. Finally, a few illustrative examples are presented
to demonstrate the points.

3.3.1 Mathematical Properties

Important properties of the QSS2 algorithm are derived in [Kofman, 2003] based
on a perturbation analysis approach. The following gives a brief overview of the
main idea in the analysis and the results. It is noted that by construction of the
QSS2 algorithm the difference between the quantised and unquantised state:

∆x = x − x̄

is bound by the choice of quantisation:

|∆x| � ∆Q

therefore properties relating to the QSS2-simulated system can be analysed by
analysing the perturbed dynamical system:

ẋ = f(x + ∆x,u)

Based on this approach, the following properties have been derived in [Kofman,
2003]:

38

Chapter 3: Quantised State Systems

1. QSS based solutions approach analytical solutions exactly as the quantisation
approach zero (Theorem 4.1 in [Kofman, 2003]).

2. Stable equilibrium points in the systemf(x,u) are preserved in the quantised
system (Lemma 4.1 in [Kofman, 2003]).

3. It is always possible to find a sufficiently small quantisation ∆Q, such that
states in the quantised systems converge to a small region centred at the
corresponding stable equilibrium point of the continuous system (Theorem
4.2 [Kofman, 2003]).

To summarise; QSS solutions are qualitatively consistent with analytical so-
lutions in terms of equilibrium points, but solutions converge not to equilibrium
points exactly, but instead to regions near those points. Itis always possible to
find a sufficiently small quantisation that the quantisationeffects are negliable for
any practical problem.

From a functional level the use of QSS methods is analogous toordinary
time-discrete methods such as forward-Euler integration or integration using the
Runge-Kutta algorithm; if we choose a reasonably small quantisation of time then
the algorithm provides a simulated trajectory that is sufficiently consistent with
the analytical solution.

As is often the case with analysis of numerical algorithms [Ascher and Pet-
zold, 1998] then when considering Linear Time Invariant (LTI) systems the extra
structure can be used to derive useful properties that to some extend also can
describe how the algorithm copes with non-linear systems. By analysing LTI sys-
tems it has been found [Kofman, 2003] that the QSS2 algorithmpropagates LTI
systems with a global error bound that can be derived from theeigenvalues.

This is a stronger guarantee than what is provided by forward-Euler integra-
tion and Runge-Kutta integration; in general this kind of guarantee is only pro-
vided by implicit methods for numerical integration. Implicit methods are not
suited for on-line implementation due to their non-causality, however. Also QSS2
copes consistently with stiff systems, which are typicallychallenging for explicit
time discretised methods like forward-Euler or Runge-Kutta [Ascher and Petzold,
1998].

In summary; QSS2 is a method for numerical integration that has some advan-
tages over explicit methods, which are usually only found innon-causal implicit
methods, but introduces a residual perturbation in the solution trajectory.

39

Section 3.3: Properties and Benefits of QSS2

3.3.2 Discussion of the QSS2 Algorithm

In this dissertation the QSS2 algorithm will be utilised heavily, and we shall briefly
list some of the benefits of QSS2 that will be exploited in the work during the
remainder of the dissertation:

• The use of the coupling matrixD allows for exploitation of inherent sparsity in
systems with loosely coupled subsystems.

• The JacobianJf is maintained throughout the propagation and can be exploited
for control and estimation purposes.

• The event formalism inherently supports changes at arbitrary times. This will
be utilised in connection with hybrid systems, which is the subject for Part III
of this dissertation.

The main drawback is that budgetting of computer time is difficult with QSS2,
whereas required computer time is usually deterministic when using fixed step
algorithms. Secondly, it should be mentioned that the complete state of a QSS2
simulation consists not only of the state values, but also their derivatives and event
times, whereas the state only consist of the state values in atime discrete method.
This means that QSS2 state representation requires more storage and are more
computationally expensive to make copies off.

3.3.3 Illustrative Examples

This subsection provides a few examples of simple systems propagated using
QSS2 in order to discuss some of the phenomena described above. The next
section will provide a comprehensive case study of a complexsystem. Consider
the following system, a lightly damped oscillator:

ẋ1 = x2

ẋ2 = −0.95x1 − 0.1x2

This system has been simulated with the QSS2 method with quanta of∆Q =
0.01 for both states. Results are shown on Figure 3.6 for a simulation with initial
conditions,x1 = 2 andx2 = 0.

The (a) graph shows initially an exponentially decaying envelope for the sys-
tem, as expected. However, at the end of the simulation it is clear that the residual

40

Chapter 3: Quantised State Systems

0 20 40 60 80 100 120
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [s]

S
ta

te
s

Attenuated Spring Model

x

1

x
2

(a) Trajectories over time

0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Attenuated Spring Model

S
ta

te
s

Time [s]

(b) First seconds with marked integrator events

Figure 3.6: Lightly damped oscillator showing decaying oscillations.

oscillation is not decaying any further, as predicted in thelast section. The residual
oscillations can, however, be made arbitrarily small by reducing the quantum.

The (b) graph is a zoom of the initial 8 seconds where the blue/green dia-
monds indicate integrator outputs of the corresponding integrator. i.e. when new
output trajectories are generated, cf. Equation (3.7). It can be seen that events
occur frequently where each state trajectory is most curvedand that when it is
near to a straight line then there are only a small number of events.

As a second example; consider the following non-linear system, which is char-
acterised by a change of time-scale from the initial response to the prevailing
response:

ẋ1 = −100(x1 + sin x2)

ẋ2 = 1

This system has been simulated with initial conditions:x = [1 0] using QSS2
with quanta∆Q1 = 0.001 and∆Q2 = 0.1. The result forx1 can be seen on
Figure 3.7.

The figure shows the simulated trajectory ofx1 as the blue line and the inte-
grator output event times as green diamonds. It is clear fromthe figure how the
QSS2 algorithms adapts to the changing dynamics by scheduling more integrator
events when the trajectory has a high curvature, while the number of integrations
decrease as the trajectory resembles a straight line.

41

Section 3.4: Simulation of an Autonomous Underwater Vehicle

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time[s]

st
at

e:
 x

1

A Stiff System

Figure 3.7: Example of a system with different response time-scales and
the resulting internal integrator events.

3.4 Simulation of an Autonomous Underwater Vehicle

This section describes the application of the QSS2 algorithm to simulation of
an Autonomous Underwater Vehicle (AUV). The purpose of thiscase study is
threefold:

• To demonstrate the QSS2 algorithm on a complex non-linear dynamical system

• To evaluate the consistency and accuracy of QSS2 simulationcompared to an
explicit method

• To evaluate the execution speed of QSS2 relative to an explicit integration
method at the same level of accuracy

To facilitate the comparison between QSS2 and an explicit method on equal
terms the forward-Euler integration method has been implemented in the DEVS
framework. The QSS2 simulation will be performed using the software described
in Subsection 3.2.3. The forward-Euler integration approach was chosen due to

42

Chapter 3: Quantised State Systems

its simplicity which facilitated quick implementation in DEVS/Java.

The AUV model which will be used for the study is known as the Naval Post-
graduate School Autonomous Underwater Vehicle (NPSAUV) and is thoroughly
described in [Healey and Lienard, 1993]. The following willat first provide an
overview of the model of the NPSAUV, whereafter evaluation results for three
simulation cases are given.

3.4.1 Model Description

Figure 3.8 depicts the NPSAUV. The craft is5.3m long and has a mass of5.4T .
The model is described on basis of [Healey and Lienard, 1993], but is formulated
in the standard marine notation of [Fossen, 2002a].

Figure 3.8: A sketch of the Naval Postgraduate School Autonomous
Underwater Vehicle [Healey and Lienard, 1993].

The vector of controllable inputs to the system is given by:

u = [δr δbs δbp δs δtb n]T

where the different actuators are:δr - Rudder,δbs - Starboard bow plane,δbp -
Port bow plane,δs - Stern plane,δtb - Top-Bottom plane, andn - propeller speed.
The rudder and control planes all saturate at±20o and the propeller can run at
between 0 and 1500 RPM.

The model contains 12 states, six of which are described in a body-fixed co-
ordinate system and six described in an assumed inertial North-East-Down frame
(NED). The body fixed states are:

V = [u v w p q r]T

43

Section 3.4: Simulation of an Autonomous Underwater Vehicle

which respectively represent: surge speed, sway speed, heave speed, roll rate,
pitch rate, and yaw rate. The state variables in the NED frameare:

η = [x y z φ θ ψ]T

which respectively represent: x-, y-, and z-position, roll-, pitch-, and yaw-angle.
The dynamical/kinematical model is of the form:

M(V)V̇ + C(V)V + D(V)V + g(η) = τ(u,V, η)

η̇ = J(η)V

where the terms describe:

M(V)V̇ : Rigid body mass and added mass due to hydrodynamics

C(V)V: Coriolis and centripetal forces and torques including added mass effects

D(V)V: Hydrodynamic dampening forces and torques

τ(u,V): Propulsion forces and torques

g(η): Gravitational and buoyancy forces and torques

J(η)V: Transformation between body and NED frame

A Matlab implementation of the model can be found as part of the "Marine
Control Toolbox (MCC)" [Fossen, 2002b]. This implementation has been used as
reference for the implementation for the QSS2 algorithm. The complete model
contains around 120 constants and consists of 30 non-linearequations and 4 inte-
grals (cross-flow drag coefficients) to be solved numerically for each simulation
step. The model has singular points inθ = ±π due to Euler-angle formulation of
kinematics and the thrust model is singular inu = 0.

3.4.2 Evaluation Results

This subsection presents simulation results for three distinct cases. Case 1 will
compare performance between QSS2 and forward-Euler integration. Case 2 and
3 will investigate the capabilities of QSS2 to adapt to varying initial conditions.

Case 1 - Slow Turn
In this case we compare the simulated trajectory generated by forward-Euler and
QSS2 integration respectively. During the simulated 100 s the AUV will maintain
a near constant surge speed and perform a slow turn. The initial conditions are a

44

Chapter 3: Quantised State Systems

surge speed ofu = 0.5 m/s and an initial pitch angle ofθ = −0.2 rad, all other
states are initially zero. The rudder is set to a constant deflection ofδr = 0.1 rad
and the propeller shaft is set ton = 400 RPM. Results can be seen in Figure 3.9.

0
10

20
30

40
50

−20

−10

0

10
−0.2

0

0.2

0.4

0.6

x [m]

3D position plot of the AUV

y [m]

z
[m

]

Euler

Qss2

(a) Translational position

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

Time [s]
S

pe
ed

 [m
/s

]

Translational velocity

u

v

w

(b) Translational velocity

0 10 20 30 40 50 60 70 80 90 100
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Time [s]

A
ng

ul
ar

 p
os

iti
on

 [r
ad

]

Angular position

φ
θ
ψ

(c) Angular position

0 10 20 30 40 50 60 70 80 90 100
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time [s]

A
ng

ul
ar

 r
at

es
 [r

ad
/s

]

Angular velocity

p

q

r

(d) Angular velocity

Figure 3.9: A slow turn. Except for (a) dashed lines indicate QSS2
trajectories and full lines are forward-Euler trajectories. It can be seen
that the two simulated trajectories are equivalent.

The forward Euler integration is performed with a time-stepof 0.2 s, which
was found by decreasing the step-size until further decrease gave no visible im-
provement in the simulated trajectory. The quanta for the QSS2 simulation were
chosen such that the solution trajectory is as near to the forward-Euler solution as
possible. The quanta can be seen on Table 3.1.

The results on Figure 3.9 show that the two trajectories are almost identical.
The endpoint difference of the translational position is14.3 cm. The main differ-

45

Section 3.4: Simulation of an Autonomous Underwater Vehicle

State u, v, w p, q, r x, y, z φ θ, ψ
Quantum (∆Q) 10−5 m/s 10−6 rad/s 5 · 10−4 m 10−6 rad 10−5 rad

Table 3.1: Quanta selection for QSS2 simulation

ence, as is evident from the graph of the angular velocity (d)and the graph of the
angular position (c) is that the two methods handle oscillatory behaviour differ-
ently; the forward-Euler method in general generates a trajectory that reaches a
larger amplitude than the QSS2 method does.

Execution time§ for forward-Euler is 0.23 s and for QSS2 it is 0.17 s. QSS2
therefore performs approximately 35% better than forward-Euler integration in
this case. During the simulation the forward-Euler calculates 500 sample points.
The QSS2 methods generates a number of output trajectories for each state which
can be seen on Table 3.2.

State u v w p q r x y z φ θ ψ

Outputs 23 24 37 94 70 49 43 59 27 88 117 17

Table 3.2: Number of outputs for each state during QSS2 simulation

In total this amounts to 648 output events for QSS2, which is higher than the
500 samples for the forward Euler method, but each QSS2 eventonly requires
recomputation of a subset of rows inf(·), whereas forward-Euler integration re-
quires all rows to be calculated at each sample-time, hence the reduced execution
time.

Case 2 - QSS2 Adaptability
As described previously, in Subsection 3.2.1, QSS2 schedules integrator updates
according to the level of deviation from linearity of the individual state trajecto-
ries. If another simulation is performed where the rudder input and engine RPM
input is set to zero and the decay from initial conditions is simulated then QSS2
executes in 0.11 s, while forward-Euler still takes 0.23 s.

Case 3 - QSS2 Robustness
When one selects a time-step for a numerical integration method applied on a
non-linear system one must make some assumptions on the possible initial states.
If these assumptions do not hold, the integration may experience numerical prob-

§on a contemporary lap-top computer, 1.6GHz

46

Chapter 3: Quantised State Systems

lems.

Consider Case 1 presented above; we change the engine speed to n = 0 RPM
(i.e. no energy is added to the system) and set the initial pitch rate toq = 0.45
rad/s. The outcome of this simulation is presented in Figure3.10.

0 10 20 30 40 50 60 70
−2

0

2

4

6

8

10

Time [s]

P
os

iti
on

 [m
]

Translational position

x

y

z

(a) Translational position

0 10 20 30 40 50 60 70
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

A
ng

ul
ar

 r
at

es
 [r

ad
/s

]

Angular velocity

p

q

r

(b) Angular velocity

Figure 3.10: Non-nominal initial conditions; forward-Euler (full lines)
integration is inconsistent, while QSS2 remains (dashed lines) consistent

It is clear from the (a) graph that the QSS2 and forward-Eulertrajectories di-
verge. Looking at the (b) graph it can be seen that after 10 s the forward-Euler
solution begins to develop oscillations with increasing amplitude for the roll and
yaw state - eventually leading to numerical instability forthe forward-Euler solu-
tion. Meanwhile the QSS2 method performs consistently although the number of
integrator outputs have increased to 2063 to cope with the increased dynamics of
the system, which also causes an increase in execution time to 0.4 s.

3.4.3 Discussion of Simulation Study Results

The results presented above demonstrates that the QSS2 method competes well
against forward-Euler integration on the AUV problem. The forward-Euler in-
tegration approach was chosen due to its simplicity which facilitated quick im-
plementation in DEVS. Algorithms such as e.g. Runge-Kutta can also be imple-
mented in DEVS, but would require more effort.

Comparison between Matlab based Runge-Kutta integration based on the model
in the "Marine Control Toolbox (MCC)" [Fossen, 2002b] showssimilar perfor-
mance between the two, but it is hard to tell if the performance is due to the

47

Section 3.5: Chapter Summary

method or the time it takes for function evaluation in the twoexecution environ-
ments (Matlab vs. DEVS/Java). In these simulations the Runge-Kutta algorithm
requires a step-size of 0.5 s.

An important point is the robustness properties demonstrated in Case 3; all
traditional explicit time-discrete integration methods have a limited stability re-
gion [Ascher and Petzold, 1998] meaning that one can imaginepole-locations
where not all poles can be inside the stability region. This is the case for the
forward-Euler algorithm in Case 3, where it cannot cope withthe fast roll and
yaw dynamics at the same time as the relatively slow pitch dynamics. Since the
quantised solution is able to handle each state individually, it can adapt to the
situation. This property is desirable when implementing robust control systems.

Applying a code profiler in Case 1; it was measured that 16% of the simulation
time is overhead in the sense that it is spent by the DEVS framework, i.e. the
software classes described in Section 2.3 on page 24, 2% of the time is spent in
theQss2Integrator class and finally 82% of the time is spent evaluatingf(·)
in theQss2Map class.

3.5 Chapter Summary

Initially it was argued that numerical simulation algorithms are an important part
of many advanced control and estimation approaches, and an alternative to well
known discrete-time methods was presented which relies on quantisation of the
states. The merit of this approach is automatic adjustment of the required number
of integration steps to the level of change experienced by the solution trajectory -
and further a decoupling of states in the calculations that can exploit sparsity.

A specific QSS based algorithm, the QSS2 algorithm, was presented in de-
tail. The algorithm relies on a first order quantisation of the state and maintains
internally Jacobian matrices for the system being propagated.

The properties of the QSS2 algorithm were discussed and demonstrated through
both simple illustrative examples and a more intensive simulation study of an au-
tonomous underwater vehicle. It was demonstrated that the QSS2 algorithm has
performance and robustness features that makes it interesting for use in control
applications. To the author’s best knowledge the simulation study currently is
the most comprehensive study of a higher dimensional non-linear system being
simulated with the QSS2 algorithm.

48

Part II

Estimation and Control using
Quantised State Systems

Kalman Filter Estimation
in QSS 4
This chapter introduces the well-known Extended Kalman Filter algorithm for
quantised state systems within the DEVS framework. Hereby,the algorithm can
provide Jacobian free estimation using the partial derivative matrices generated
by the QSS2 algorithm. The new and original algorithm are compared on an
attitude determination example.

4.1 Introduction

Kalman filtering and Extended Kalman Filtering (EKF) are arguably the most
widely applied methods for state-observation in linear andnon-linear systems re-
spectively. This chapter contributes with a formulation and implementation of
the algorithm for quantised state-system, which provides additional benefits over
traditional EKF implementations by being asynchronous in nature and by pro-
viding Jacobian-free estimation using Jacobian estimatesgenerated by the QSS2
algorithm when propagating the state.

Section 4.2 reviews the classic EKF algorithm for non-linear systems, whereas
Section 4.3 describes how the algorithm has been implemented for quantised state
system models. Finally, Section 4.4 provides a comparativecase-study of attitude
determination for a deep space probe. The QSS/EKF filter development and a
similar simulation study as presented here is published in [Alminde et al., 2007a].

4.2 Review of Extended Kalman Filtering

The EKF algorithm estimates the mean value of the system states and associated
covariance matrix. The state estimate and covariance matrix is propagated in in-
tervals where no measurements are available and when a measurement is available

Section 4.2: Review of Extended Kalman Filtering

the algorithm calculates a state update and updated covariance matrix. Contrary
to the linear Kalman filter the EKF uses small-signal models,around the current
estimation for covariance propagation and Kalman gain calculation.

Under the assumption that process and measurement noises are independent
multi-variate Gaussian distributions with zero mean, the EKF is optimal in the
sense that it minimises the covariance of the prediction error. The following re-
views the important equations for a typical time discrete implementation, based
on [Grewal and Andrews, 1993]. The starting point is a continuous non-linear
model:

ẋ(t) = f(x,u,t) + w(t) w ∼ N(0,Q(t)) (4.1)

y(t) = h(x, t) + v(t) v ∼ N(0,R(t)) (4.2)

wherew(t) ∈ Rn andv(t) ∈ Rm represent process noise and measurement
noise respectively, both of which are assumed to follow multivariate Gaussian dis-
tributions with zero mean and covariance parametersQ(t) ∈ Rn×n andR(t) ∈Rn×m, respectively. A covariance matrixPxx(t) > 0 is associated with the pro-
cess and describes the expected estimation error:

Pxx(t) = E
(
[x(t) − E (x(t))] [x(t) − E(x(t))]T

)
(4.3)

Between points in time where measurements are available thestate estimate
x̂(t) = E(x(t)) is propagated using Equation (4.1) (using some numerical inte-
gration algorithm) and the covariance matrix is propagatedin discrete time (time
stepτ) using the relation:

Pxx(tk+1) = Φ(tk, τ)Pxx(tk)Φ
T (tk, τ) + Q(tk) (4.4)

whereΦ(tk, τ) ∈ Rn×n is the state transition matrix of Equation (4.1) and is
found from the Jacobian matrix of the system:

Af (x̂,u, t) =
∂f(x̂,u, t)

∂xT
(4.5)

from which the state transition matrix for the interval of lengthτ can be found as:

Φ(tk, τ) = I +

∞∑

k=1

Af
k(x̂,u, t)τk

k!
(4.6)

52

Chapter 4: Kalman Filter Estimation in QSS

which is usually evaluated to only the first few powers ink. The discrete time
process noise, required for evaluating Equation (4.4), over the interval between
two samplestk andtk+1 is calculated from:

Q(tk+1) =

∫ tk+1

tk

Φ(tk, τ)Q(tk)Φ
T (tk, τ) dτ (4.7)

When a new measurementy(tk) is available at some discrete time, the state esti-
mate is updated according to:

x̂+(tk) = x̂(tk) + K(tk) (y(tk)−g(x̂(tk))) (4.8)

where superscript "+" indicates the value after the update is applied andK is the
Kalman gain, which is calculated according to:

K(tk)= Pxx(tk)Ch(x̂(tk))
(
Ch(x̂(tk))Pxx(tk)Ch

T (x̂(tk)) + R(tk)
)−1

(4.9)
where the Jacobian of the output equation,h(x, t), is:

Ch(x̂, t) =
∂h(x̂, t)

∂xT

after the state correction, i.e. Equation (4.8), the covariance matrix is updated to
represent the increased knowledge of the state inferred from the measurement:

P+
xx(tk) = [I− K(tk)Ch(x̂(tk))]Pxx(tk) (4.10)

4.2.1 EKF Temporal Flow

Typical implementations of the EKF algorithm assume a constant sample time
with measurements arriving precisely at these sample times. The propagation of
the state and the covariance in time is sketched on Figure 4.1.

As time progresses the covariance and state equations are propagated using
Equations (4.1) and (4.4) respectively. At sample times newmeasurements are
processed according to Equations (4.8), (4.9), and (4.10),i.e. a state correction
is calculated and applied and the covariance is updated to reflect the increase in
information about the state values.

In practical applications of the EKF algorithm the process noise,Q(t) is often
used as a tuning parameter in order to ensure proper filter operation considering
inaccuracies in state-propagation, inexact process knowledge, and inaccuracies
due to the linearised models utilised in the filter [Zarchan and Musoff, 2000].

53

Section 4.3: Extended Kalman Filtering in Quantised Systems

k1 2 3 4
x̂

Pxx

Figure 4.1: Propagation of state (red) and covariance (blue) in the EKF
algorithm. New measurement arrive at sample times.

4.3 Extended Kalman Filtering in Quantised Systems

This section describes an implementation of the EKF algorithm for the quantised
state systems framework introduced in the previous chapter, which utilises the
Jacobian matrices as estimated as part of the QSS2 algorithm(see equation 3.2.2
on page 35). The benefits of this approach are:

• a Jacobian-free declarative estimator

• support for measurements arriving at arbitrary times

The first point is due to the QSS2 algorithm and the second point is due to
the formulation as a discrete event system (i.e. using DEVS). There exist other
Kalman filter formulations, for non-linear systems that do not require the avail-
ability of an expression for the Jacobian.

In [Schei, 1997] the Jacobian is estimated on-line using a central difference
calculation for each element in the Jacobian matrix, where the points at which the
function is evaluated are determined from the covariance. The method is shown
to be marginally more accurate than the standard EKF algorithm.

54

Chapter 4: Kalman Filter Estimation in QSS

The Unscented Kalman Filter (UKF) [Wan and Merwe, 2000] maintains an
ensemble set of2n + 1 state vectors that are propagated through the non-linear
process and measurement models in order to estimate the covariance - the UKF
reaches a higher degree of accuracy than the EKF, because it effectively estimates
the distribution up to the fourth moment. A similar approachis taken in [Quine,
2006] where the presented algorithm only propagatesn + 1 state vectors and
provides the same accuracy as the EKF.

The drawback of these methods is that they require a large number of function
evaluations for each update step which for complex models can be computation-
ally expensive. It will be shown in the following that using the QSS2 algorithm
for state propagation and Jacobian estimation provides an efficient means to im-
plement extended Kalman filtering, when it is intractable orinconvenient to derive
an analytic expression for the Jacobian.

4.3.1 Data Flow and Block Diagram of the QSS/EKF Filter

As mentioned before, typical implementations of the EKF algorithm are sample-
based, i.e. all discrete times,tk, are spaced equally. However, this is not required;
with proper time-keeping non-equal time-steps can be implemented using the
equations presented in Subsection 4.2. The algorithm whichwill be described
in the following implements the EKF equations with proper time-keeping in the
DEVS specification on top of an existing QSS2 model. The result is a generic
EKF block that can be used declaratively with any system described by its QSS2
model.

Consider Figure 4.2; here covariance propagation and measurement process-
ing are decoupled. The covariance is propagated at a guaranteed maximum sample
time (black dashed vertical lines) and when measurements arrive asynchronously
(green dashed vertical lines). The state trajectory and associated output trajectory
is propagated by the QSS2 algorithm.

The Quantised State Systems Extended Kalman Filter (QSS/EKF) is a DEVS
block that can be added to an existing QSS2 simulation model.A block diagram
with all elements is presented in Figure 4.3.

The structure of a normal QSS2 simulation (cf. Figure 3.3 on page 32 for
comparison) is augmented with the QSS/EKF block which receive measurements,
Jacobian estimates from QSS2 function blocks, state and output trajectories. The
QSS/EKF block outputs state corrections and optionally thecovariance matrix in

55

Section 4.3: Extended Kalman Filtering in Quantised Systems

k1 2 3 4
x̂

Pxx

Figure 4.2: Propagation of state (red) and covariance (blue) in the asyn-
chronous QSS/EKF algorithm. Green vertical lines are measurement
events.

order to track filter performance.

Arrows originating in a small circles indicate data-flow that is not controlled
by the DEVS specification, but throughcall-backs from the destination to the
source of the arrow; this is due to the fact that the QSS/EKF block only needs
information on the state and outputs (including the Jacobian of h(x)) when new
measurements are received, hence passing DEVS messages with this information
on all state updates is redundant - see discussion in Section2.4 on page 27.

4.3.2 State and Covariance Propagation

The state is propagated by the QSS2 based algorithm as presented in the last chap-
ter. This is decoupled from the QSS/EKF block, except that itreceives a new
Jacobian estimate,Af (x̄, ū), whenever the QSS2 algorithm updates one or more
entries in this matrix. In other words; the QSS/EKF evaluates Equation (4.5) by
setting it equal to the last received QSS2 estimate of the Jacobian:

Af (x̂,u, t) =
∂f(x̂,u, t)

∂xT
≃ Af (x̄, ū)

56

Chapter 4: Kalman Filter Estimation in QSS

f(x,u)

∫

∫
h(x)

(u, u̇) (ẋ1, ẍ1)

(ẋ2, ẍ2)

(x̄1, ¯̇x1)

(x̄2, ¯̇x2) (y1, ẏ1)

(y2, ẏ2)

Measurements

Ag(x̄)Af(x̄, ū)
State

corrections

QSS/EKF

Covariance

[y1...y2]

Figure 4.3: Block diagram for a QSS based EKF implementation.
Dashed lines are vector/matrix signals. This example has two states, two
outputs, and one input.

When the QSS/EKF block receives a new Jacobian matrixAf (x̄, ū) it first
calculates the state transition matrix, Equation (4.6) using the old Jacobian for
the time interval from the last event until the current time and then solves Equa-
tion (4.7) and Equation (4.4) in order to propagate the covariance to the current
time. In case Jacobian updates are rare, e.g. if the system islinear (only one initial
update), a user specified maximum time between covariance propagation ensures
proper numerical integration. After updating the covariance the new Jacobian is
stored for use in the next propagation step.

4.3.3 Measurement Processing

When a new measurement is available a measurement update is performed, which
entails:

1. The covariance is propagated to the current time, as in Subsection 4.3.2

2. The Kalman gain is calculated using Equation (4.9)

3. State correction is performed using Equation (4.8)

4. The covariance is updated due to the measurement, i.e. Equation (4.10)

57

Section 4.3: Extended Kalman Filtering in Quantised Systems

Kalman gain calculation and state correction require information about the
current state trajectory, current output trajectory, and the measurement Jacobian
Ah(x̄) to be available. The QSS/EKF acquires this information using the call-
back functions during processing of the external event function (δext(·)) triggered
by the measurement. State correction requires an additional input in each integra-
tor block, which resets the states to the value estimated by the EKF.

Referring to Subsection 3.2.1 on page 32 which describes theQSS2 integrator
block; when a reset is receivedx(te) in Equation (3.5 on page 33), the state is
reset to the value from the EKF,x∗. Hereafter the quantum criteria is applied
(Equation (3.6 on page 33), restated here):

|x̄(t) − x∗(t)| > ∆Q

If this inequality holds the integrator behaves as described in Subsection 3.2.1
on page 32 meaning that the time until the next internal eventis found. On the
other hand, if it is violated, the integrator sets its time-advance function to zero
(ta(·) = 0), which causes the integrator to produce a new output immediately
and hence update all first and second derivative outputs of the connected func-
tion block (representingf(x,u)), which causes all integrators to be updated with
current information following the measurement update.

4.3.4 QSS/EKF Implementation Details

The implementation of the quantised state filter requires a QSS2 simulation to be
setup, see Figure 3.3, with the process model as the driving function, f(x), and
the sensor model as the output function,h(x), with such a model in place (see
e.g. Chapter 3 on page 29) the call for constructing the filteris:

EKF(double cT, int nM, Matrix P, Matrix Q, Qss2Map mMap,
Qss2ResetIntegrator[] ints);

wherecT is a guaranteed maximum time between covariance propagation, nM is
the number of associated measurements,P is the initial covariance matrix,Q is
a matrix of continuous time process noise variances,mMapis a reference to the
function,h(x), andints are references to the reset-able integrators.

TheQss2ResetIntegrator is a class that extends theQss2Integra-
tor class defined in Section 2.3 on page 24) with the reset functionality described
in Subsection 4.3.3. Measurements are registered using thefollowing call for each
measurement:

58

Chapter 4: Kalman Filter Estimation in QSS

addMeasurement(int nM, int[] rows, Matrix R);

wherenM is the measurement number,rows are row-indexes forh(x) for the
corresponding measurement andR is an associated matrix of measurement noise
variances. In this way measurements from multiple sensors can be supported.

In addition to these calls then DEVS connections between theblocks must
be set-up using the standard calls for connecting blocks in acoupled model (see
Section 2.3 on page 24).

The discussion of the function calls above serves to demonstrate how simple
it is to add estimation to a QSS2 model; This allows a user to concentrate on the
modelling part of the task rather than implementation of standard algorithms.

TheMatrix type that is used to represent matrices in the software is theJama
public available matrix library for Java developed byMathWorksand theNational
Institute of Standards and Technologies∗ .

During operation of the filteraddMeasurement() can be called again to
update measurement descriptions. If e.g. in an industrial plant a sensor is replaced
with a more accurate one.

4.4 Simulation Case Study: Attitude Determination

Inspired by deep space missions such as Cassini [Johnson andBrown, 1998] and
New Horizons [Stern and Spencer, 2003] the following presents a Deep Space
Probe (DSP) attitude control case study that will be used forevaluating the de-
veloped filter (and which will be revisited in subsequent chapters). The next sub-
section will provide an overview of the case and the following subsection will
provide simulation results for the QSS/EKF algorithm applied on the case and
compare performance against a standard EKF implementation.

4.4.1 Model of a Deep Space Probe

The DSP is a single body spacecraft for deep space exploration; a generic mis-
sion profile with operational phases following spacecraft launch is indicated in
Figure 4.4.

∗Available from http://math.nist.gov/javanumerics/jama/

59

Section 4.4: Simulation Case Study: Attitude Determination

Sun

DSP

Cruise De−spin Three−axis

Target
planet

Figure 4.4: A deep space mission scenario with three autonomous atti-
tude control modes depending on distance to target.

In the Cruise phasethe probe is spinning around its major axis of inertia at
5 RPM with the main dish pointing towards the sun. Except for occasional spin-
axis adjust manoeuvres the craft is not actively controlled.

As the DSP reaches a certain distance from the target planet,it performs a
de-spinmanoeuvre using pulse-controlled thrusters, whereafter the craft enters a
three-axiscontrolled mode utilising precision thrusters and where the DSP must
maintain inertial pointing at the target attitude with minimal disturbances rates.

This chapter will consider only the cruise mode where the task is to estimate
the attitude of the craft using the QSS/EKF algorithm drivenby simulated sensor
data.

Kinematical Model
The kinematical description of the DSP is based on Euler angles (3-2-1 rotation
order) and the kinematical equation is described by [Wertz,1978]:

f1([θ
T ωT]T) = θ̇ =

1

cos θ2




cos θ2 sin θ1 sin θ2 cos θ1 sin θ2
0 cos θ1 cos θ2 − sin θ1 cos θ2
0 sin θ1 cos θ1


ω

(4.11)

Dynamical Model
The time invariant dynamical model of the DSP described in a body centred coor-
dinate system has the following form:

f2([θ
T ωT]T) = ω̇ = J−1 (−[ω×]Jω + ncon + ndist) (4.12)

60

Chapter 4: Kalman Filter Estimation in QSS

whereω = [ω1 ω2 ω3]
T are the body rates,ncon is the vector of control torques,

ndist is the vector of disturbance inputs, and the parameterJ is the inertia matrix
with nominal values:

J =




30.0 −0.5 −1.0
−0.5 30.0 −1.5
−1.0 −1.5 50.0


 (4.13)

and where[ω×] is a skew symmetric matrix representing the gyro-scopic coupling
[Wertz, 1978]:

[ω×] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




During cruise mode, the DSP is spinning about its major axis at a nominal
rate of 5 RPM and there is no actuation, i.e.ncon = 0. The DSP is affected by
unmodelled disturbance torques originating from e.g. :

• Solar radiation pressure

• Material out-gassing

• Propellant sloshing in propellant tanks

• Magnetic induced torques

It will be assumed that these disturbance effects can be adequately regarded
as zero mean torques with Gaussian distributions with standard deviations of
σdist = 10−4 for each axis.

Sensor Model
The DSP utilises a simple sun-sensor and simple star-sensorin cruise mode which
are mounted on the Earth facing side of the spacecraft, see Figure 4.5.

A sensor model for both sensors can be described by the relation:

y = h(θ) = C321(θ) ·

(
XDSP − Xtarget

|XDSP − Xtarget|

)
+ v

whereXDSP is the position of the probe,Xtarget is the position of the sun or
guide star respectively, andC321(θ) is the direction cosine matrix corresponding
to the rotation specified by the Euler angles. Noise,v, for both sensors is Gaussian
distributed with zero mean and with the following standard deviation on all axes
and the stated update frequency.

61

Section 4.4: Simulation Case Study: Attitude Determination

Sun

Guide−star vector

Sun vector

Figure 4.5: The DSP gets its attitude information in cruise mode by
measuring the angle to the sun and a bright guide star respectively.

• Sun-sensor:σsun = 1o @ 2 Hz

• Star-sensor:σstar = 0.1o @ 0.2 Hz

It should be noted that each sensor by itself does not providefull state observ-
ability since the rotation around the boresight of a single vector sensor cannot be
inferred.

4.4.2 Implementation of the Standard EKF Algorithm

In order to compare results of QSS/EKF filtering with resultsfrom the standard
EKF algorithm, an EKF filter was implemented inMatlab, based on Section 4.2
and the model in Subsection 4.4.1. The challenge in implementing the filter is the
derivation of expressions for the required Jacobians. A Jacobian for the dynamical
mode, i.e. Equation (4.12), can be derived by direct differentiation [Bhanderi,
2005]:

Jdyn([θTωT]T) =
∂f2

∂[θTωT]
= J−1 ([Jω×] − [ω×]J)

The Jacobian for the kinematical equation, i.e. e.q. (4.11), was derived using
the Maple software package for computer assisted analytical mathematics (s(·)
andc(·) are short forsin(·) andcos(·) respectively):

Jkin([θTωT]T) =
∂f1

∂[θTωT]
=

62

Chapter 4: Kalman Filter Estimation in QSS



s(θ2)(c(θ1)ω2 − s(θ1)ω3)/c(θ2) (s(θ1)ω2 + c(θ1)ω3)/c(θ2)

2 0
−s(θ1)ω2 − c(θ1)ω3 0 0

(c(θ1)ω2 − s(θ1)ω3)/c(θ2) s(θ2)(s(θ1)ω2 + c(θ1)ω3)/c(θ2)
2 0

1 s(θ1)s(θ2)/c(θ2) c(θ1)s(θ2)/c(θ2)
0 c(θ1) −s(θ1)
0 s(θ1)/c(θ2) c(θ1)/c(θ2)




Finally, a Jacobian is required for each measurement; AgainMaplehas been
utilised to analytically evaluate the Jacobian of the measurement model,h(·):

Jg([θ
TωT]T) =

∂h

∂[θTωT]
=

[
0 −sθ2cθ3u1 − . . .

(cθ1sθ2cθ3 + sθ1sθ3)u1 + (cθ1sθ2sθ3 − sθ1cθ3)u2 + cθ1cθ2u3 sθ1cθ2cθ3u1 + . . .

(−sθ1sθ2cθ3 + cθ1sθ3)u1 + (−sθ1sθ2sθ3 − cθ1cθ3)u2 − sθ1cθ2u3 cθ1cθ2cθ3u1 + . . .

sθ2sθ3u2 − cθ2u3 −cθ2sθ3u1 + cθ2cθ3u2 0 0 0
sθ1cθ2sθ3u2 − sθ1sθ2u3 (−sθ1sθ2sθ3 − cθ1cθ3)u1 + (sθ1sθ2cθ3 − cθ1sθ3)u2 0 0 0
cθ1cθ2sθ3u2 − cθ1sθ2)u3 (−cθ1sθ2sθ3 + sθ1cθ3)u1 + (cθ1sθ2cθ3 + sθ1sθ3)u2 0 0 0

]

whereu = [u1 u2 u3] is a unit vector to the target, i.e. the sun or a chosen guide-
star, ands andc is short forsin(·) andcos(·) respectively. The derivation of these
Jacobians clearly demonstrate that even for a relatively simple system the results
can be quite complex.

The EKF algorithm was implemented with a sample-time of 0.05s, which
was found by observing that no improvement in the estimationaccuracy resulted
from decreasing the sample-time further. Measurement updates are performed for
each of the sensors at appropriate multiples of the sample number consistent with
the sample interval for the sun-sensor and star-sensor respectively.

4.4.3 Simulation Results

In order to evaluate performance, a model based on Subsection 4.4.1, was imple-
mented inSimulinkand it is used to generate measurement data sequences and as-
sociated state values. The QSS/EKF filter implemented in DEVS and the normal
EKF implemented inMatlab have been tested with the generated data sequences
and the results are presented in the following.

For the case to be presented here, the initial conditions forthe state were
ω = [0 0 0.21]T rad/s andθ = [0 0 0]T rad. Each filter was initialised with initial

63

Section 4.4: Simulation Case Study: Attitude Determination

stateω̂ = [0 − 0.03 0.15]T rad/s andθ̂ = [0.1 − 1 0]T rad. The covariance
matrix was initialised with standard deviations ofσ = 0.05 rad for attitude states
andσ = 0.001 rad/s for angular velocity states.

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5

6

7

Time [s]

A
tti

tu
de

 [r
ad

]

Simulated Attitude

θ

1

θ
2

θ
3

(a) Attitude

0 20 40 60 80 100 120 140 160 180 200
−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 [r
ad

/s
]

Simulated Angular velocities

ω
1

ω
2

ω
3

(b) Angular velocities

0 20 40 60 80 100 120 140 160 180 200
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

S
ta

r
m

ea
su

re
m

en
ts

 (
in

 b
od

y
fr

am
e)

 [r
ad

]

Simulated Star Measurements

star
1

star
2

star
3

(c) Star sensor measurements

0 20 40 60 80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

S
un

 m
ea

su
re

m
en

ts
 (

in
 b

od
y

fr
am

e)
 [r

ad
]

Simulated Sun Measurements

sun

1

sun
2

sun
3

(d) Sun sensor measurements

Figure 4.6: "Truth model" state and measurement values as simulated
by Simulink.

Figure 4.6 shows the resulting state trajectories and measurements produced
by the simulation inSimulinkfrom the stated initial values. It can be seen how the
behaviour is dominated by the slow rotation around the majoraxis of inertia with
a small amount of precession due to the off-diagonal terms inthe inertia matrix.

EKF Results
On Figure 4.7 the result using the normal EKF algorithm can beseen in terms of
error signals between the estimated states by the EKF and thesimulation results

64

Chapter 4: Kalman Filter Estimation in QSS

presented in Figure 4.6.

0 20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

A
tti

tu
de

 e
rr

or
 [r

ad
]

EKF Attitude Estimation Error

θ
1

θ
2

θ
3

(a) Attitude error

0 20 40 60 80 100 120 140 160 180 200

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 E
rr

or
 [r

ad
/2

]

EKF Angular Velocity Estimation Error

ω
1

ω
3

ω
4

(b) Angular velocity error

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 1 E
rr

or
 [r

ad
]

EKF Attitude Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 2 E
rr

or
 [r

ad
]

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

Time [s]

θ 3 E
rr

or
 [r

ad
]

(c) Attitude errors with 2σ bounds

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
1 E

rr
or

 [r
ad

/s
]

EKF Angular Velocity Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
2 E

rr
or

 [r
ad

/s
]

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

Time [s]

ω
3 E

rr
or

 [r
ad

/s
]

(d) Angular velocities with 2σ bounds

Figure 4.7: EKF filter performance. Note the small bias on theθ3 state.

The (a) and (b) graphs show the error plots for attitude and angular velocity
states respectively, while the (c) and (d) plots show how theerror fits with the pre-
dicted covariance for each state. The filter converges in approximately 50 seconds
and it can be seen that after convergence there is good correspondence between
estimation errors and their associated covariances. However, it can be seen from
the (c) plot that theθ3 state suffers from a small bias in the estimate, however, it
is known [Grewal and Andrews, 1993, Zarchan and Musoff, 2000] that the EKF
is not an unconditionally unbiased estimator - performancecan to some extent be
recovered by introducing extra process noise [Zarchan and Musoff, 2000].

The behaviour of the EKF filter as illustrated in these plots is consistent, qual-
itatively, with other runs of the filter with different initial state estimates,̂ω.

65

Section 4.4: Simulation Case Study: Attitude Determination

QSS/EKF Results
The QSS/EKF filter was initialised with the same initial conditions as described
above for the EKF. The QSS2 implementation of the DSP model utilises quanta
of ∆Q = 10−5 rad for the attitude states and∆Q = 10−6 rad/s for angular ve-
locity states. A maximum covariance propagation delay of0.05 s was chosen to
make the QSS/EKF filter perform as similar as the EKF as possible.

On Figure 4.8 the result using the normal QSS/EKF algorithm can be seen in
terms of error plots between the estimated states by the QSS/EKF and the simula-
tion results presented in Figure 4.6.

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

Time [s]

A
tti

tu
de

 E
rr

or
 [r

ad
]

QSS/EKF Attitude Estimation Error

θ

1

θ
2

θ
3

(a) Attitude error

0 20 40 60 80 100 120 140 160 180 200

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 E
rr

or
 [r

ad
/2

]

QSS/EKF Angular Velocity Estimation Error

ω
1

ω
3

ω
4

(b) Angular velocity errors

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 1 E
rr

or
 [r

ad
]

Attitude Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 2 E
rr

or
 [r

ad
]

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

Time [s]

θ 3 E
rr

or
 [r

ad
]

(c) Attitude errors with 2σ bounds

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
1 E

rr
or

 [r
ad

/s
]

Angular Velocity Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
2 E

rr
or

 [r
ad

/s
]

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

Time [s]

ω
3 E

rr
or

 [r
ad

/s
]

(d) Angular velocity errors with 2σ bounds

Figure 4.8: QSS/EKF filter performance. Results are qualitatively equal
to the conventional EKF filter.

Again it can be seen that the filter converges in approximately 50 seconds, as

66

Chapter 4: Kalman Filter Estimation in QSS

for the EKF, and if one compares the error trajectories to Figure 4.7 it is clear
that the two filters provide almost identical filtering. However, in the QSS/EKF
filter the small bias on stateθ3 has disappeared, but instead a small bias has now
become apparent on theω3 state (which again can be reduced by introducing more
process noise). The results are consistent with other initial conditions.

The execution time for theMatlab based EKF is 2.3 s and 1.1 s for the DEVS
based QSS/EKF filter. However, these numbers cannot be compared directly as it
would be as much a comparison of execution platforms as algorithm performance.
From the plots presented it is concluded that the QSS/EKF provides an quantised
state systems alternative to the sample-based extended Kalman filter.

Effect of Increased QSS2 Quanta
It is interesting to investigate the influence of the quantumsize selection on the
filter performance; Figure 4.9 shows results for the QSS/EKFfilter on the same
problem as before, but with increased quanta, now all equal to ∆Q = 10−3.

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 1 E
rr

or
 [r

ad
]

Attitude Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

θ 2 E
rr

or
 [r

ad
]

0 20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

Time [s]

θ 3 E
rr

or
 [r

ad
]

(a) Attitude errors and2σ bounds

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
1 E

rr
or

 [r
ad

/s
]

Angular Velocity Error vs. Predicted Covariance

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

ω
2 E

rr
or

 [r
ad

/s
]

0 20 40 60 80 100 120 140 160 180 200
−0.02

0

0.02

Time [s]

ω
3 E

rr
or

 [r
ad

/s
]

(b) angular velocity errors and2σ bounds

Figure 4.9: QSS/EKF Performance with increased quantum. Periodic
oscillation is evident.

It can be seen that the filter does converge to the correct state trajectories, but
that the estimation error is no longer consistent with the predicted covariances.
Generally speaking the oscillations that can be seen in the error trajectories are
on the same magnitude as the chosen quantum. The reduced quanta here also
decreased execution time from 1.1 s to 0.7 s as less integration steps are carried
out in the QSS2 model.

Based on this example and others, it is stated that as a rule ofthumb one

67

Section 4.5: Chapter Summary

should chose quanta for each state that are at least a magnitude lower than the
expected covariance in steady-state operation in order forthe QSS/EKF filter to
operate consistently.

4.5 Chapter Summary

This chapter introduced the QSS/EKF filter which is an extended Kalman filter
implemented for use with quantised state systems. A case study of attitude deter-
mination for a deep-space probe demonstrated that the QSS/EKF filter performs
almost identically to the conventional sample-based EKF implementation.

Contrary to the original EKF algorithm, the QSS/EKF alternative does not
require analytical expressions for the state and measurements Jacobians respec-
tively, but instead Jacobians are provided at no additionalcomputational cost by
the QSS2 algorithm used for state propagation. For systems where it is imprac-
tical or impossible to analytically derive expressions forthe Jacobian, or where
such expressions becomes very computationally expensive the QSS/EKF algo-
rithm provides an interesting alternative to the conventional EKF algorithm.

Secondly, the QSS/EKF filter is a reusable implementation that effectively
encapsulates the algorithm and only requires the user to specify the model of the
system and associate measurements as a QSS2 model. The QSS/EKF algorithm
and the model can then be composed at run-time.

68

Optimising Control of
QSS Systems 5
This chapter contributes with an optimisation based control algorithm that can be
composed with quantised state system models to provide a controller for a given
plant. The algorithm is presented, stability properties are discussed, and finally
the algorithm is evaluated on an example involving an autonomous underwater
vehicle.

5.1 Event Based Control and Quantised State Systems

In this chapter, and the next, controllers are sought which from a description of
the system and a description of the control objective can generate input signals
which drives the system’s states towards fulfillment of the control objective. The
controllers will utilise QSS2 models of both plant and objectives in the process.

D / A C o n t i n u o u s S y s t e m A / DQ S S 2 B a s e d C o n t r o l l e rC o n t r o l C o m p u t e rP h y s i c a l W o r l du y

E v e n t s A s y n c h r o n o u ss a m p l i n g
Figure 5.1: Feedback control structure for a system being controlled by
a control computer executing a QSS2 implemented control law.

Section 5.2: A Simple Optimising QSS2 Controller

In [Kofman, 2003] it is shown that the feedback-coupling of acontinuous sys-
tem and a quantised state system (See Figure 5.1) results in aclosed loop which
fulfils similar ultimate boundedness criteria as for when simulating a QSS system,
see Section 3.3 on page 38. This means that any feedback controller designed
for a continuous system, which can be described as a set of ordinary differential
equations, can be implemented as a QSS2 model on the control computer. The
drawback is, as in the simulation chapter, small oscillations in the solution trajec-
tories. However, it is always possible to find a sufficient small quantisation which
makes these oscillations insignificant compared to system noise that is inherent to
any control system.

Further, in [Kofman, 2003], it is shown that if controllers for Linear Time
Invariant (LTI) systems are designed and then implemented on the control com-
puter as QSS systems and asynchronous sampling∗ is utilised, significant savings
in computation time is obtained, when compared to implementations of the same
controller using a sample-based approach.

In this chapter QSS2 models will be used to provide local linear abstractions
of the system which is to be controlled. The control algorithms presented in this
dissertation utilises these local linear models and finds inputs which minimise a
control objective function chosen by the system designer.

This chapter contributes with one such algorithm where focus is on simplicity
of the required calculations, while the next section describes a more evolved ap-
proach. Section 5.2 presents the development of the controller, Section 5.3 anal-
yses stability of the method, and Section 5.6 demonstrates,through simulation,
the applicability of the controller to the autonomous underwater vehicle presented
earlier.

The algorithm and simulation study involving the autonomous underwater ve-
hicle was published in [Alminde et al., 2007b]. Estimation based control based on
the controller developed here is presented in Chapter 7 on page 109.

5.2 A Simple Optimising QSS2 Controller

This section presents a control algorithm developed with the aim to provide an
algorithmicly simple control algorithm using an on-line QSS2 model of the plant
to be controlled and a control objective function. The idea is to present an on-line

∗using a second or first order quantum separation principle todetermine event times

70

Chapter 5: Optimising Control of QSS Systems

algorithm that works well for a large class of systems and which only requires the
user to specify models defining the system and objective.

5.2.1 A Control Algorithm for Single Objective Control

For control purposes we will augment the system descriptionwith a control ob-
jective in the form of a scalar convex control objective function which maps the
state to a scalar value. The control problem is defined by the functions:

ẋ = f(x,u) (5.1)

vc = vc(x) (5.2)

wherex ∈ Rn is the state vector of dimensionn, u ∈ Rm is the input vector
of dimensionm, f(·) is a differentiable mapf : Rn × Rm → Rn representing
the system dynamics, andvc(·) : Rn → R1 is the control objective function
defined by the user. The control problem is to find input signals that minimise
Equation (5.2).

At this point we will require the control objective functionto be a convex
function with a single minimum point at the point where the user wish to stabilize
the system. The next section will derive more stringent requirements onvc that
will guarantee stability of the system.

The QSS2 algorithm provides the Hessian∂f
∂z

(z(tk)) with z = [x̄T ūT]T (see
Subsection 3.2.2 on page 33), which can be divided into two matricesA(x̄, ū) ≃
∂f
∂x

andB(x̄, ū) ≃ ∂f
∂u

representing state sensitivity and input sensitivity, respec-
tively.

Similarly for vc(x̄) the QSS2 algorithm provides a state sensitivity matrix
E(x̄) ≃ ∂vc

∂x
, which is the Jacobian of Equation (5.2)†. These matrices are com-

municated to the controller, and the controller outputu̇ is fed to the plant through
a set of integrators, see Figure 5.2.

The choice of letting the controller control the input slopes u̇ rather thanu
directly, is due to the fact that the matrices used in the calculation are based on a
fixed operating point(x̄, ū), so any immediate change in the control signal would
cause these matrices to be updated and hence cause the controller to perform an-
other control calculation. To avoid this algebraic loop thecontrol slopes are taken

†In fact a row vector sincevc is scalar, but we leave the matrix symbol for future extension to
multiple objective control

71

Section 5.2: A Simple Optimising QSS2 Controller

(u, u) 1 1(x ,x)

2 2(x ,x)

1 1(x ,x)

2 2(x ,x)

u

f(x,u)
(v, v)

Controller

(A,B)

v(x)

E

Figure 5.2: QSS Control structure. Thick lines are vector signals.
Dashed lines are matrix signals. This figure has two states and one in-
put.

as outputs from the controller which thereby leaves the QSS2mechanism for au-
tomatically switching operating points intact.

The control strategy chosen is to provide an input signal that maintainsv̇c

negative. In order to do this with only information about thematricesA,B andE

we neglect the autonomous response of the system and only consider the forced
response, implications for stability will be addressed later. To this end we need to
see howv̇c is affected by the control vectoṙu over a time horizonτ = tk+1 − tk,
which corresponds to the time until the next scheduled QSS2 event. This change
is given by the expression:

∆u̇v̇c(x̄, u̇, τ) = E(x̄)Γ(x̄, ū, τ)u̇ (5.3)

where∆u̇v̇c(x̄, u̇, τ) is to be read as "the change ofv̇c(x̄, u̇, τ) due tou̇ over
the time-horizonτ ", and whereΓ(x̄, ū, τ) is the input transition matrix [Gene
F. Franklin and Emami-Naeini, 1994]:

Γ(x̄, ū, τ) =

∞∑

k=0

Ak(x̄, ū)τk+1

(k + 1)!
B(x̄, ū) (5.4)

Based on the limited information herein we will construct analgorithm that
seeks to minimisevc(x) by choosing appropriate control action,u̇. As Figure 5.2
introduces integrators for control signalu, we also need to penalise this state in
the control objective function in order to ensure that control signals approachuf

72

Chapter 5: Optimising Control of QSS Systems

as the control objective function is minimised. To this end we use a quadratic cost
term for the control state:

vu(u) =
1

2
(u− uf)

T
P(u − uf)

with parameters given by the matrixP = PT > 0, and possible preset input levels
(feed-forward),uf . We now introduce the joint performance function:

v(x,u) = vc(x) + vu(u) (5.5)

and introduce a term for the input cost in Equation (5.3):

∆u̇v̇(x̄, ū, u̇, τ) =
(
E(x̄)Γ(x̄, ū, τ) + τ(u − uf)

T
P
)

u̇ (5.6)

it is noted that the expression between the outer parenthesis evaluates to a row
vector which we will denotec, i.e. :

∆u̇v̇(x̄, ū, u̇, τ) = cu̇

The minimisation will be performed over a control horizon that corresponds
to the next scheduled integrator output event in the QSS2 simulation. Further-
more, since it is not possible to evaluate the infinite sum of Equation (5.4), it is
evaluated using the firstn terms, wheren is the number of states in the system.
This choice ensures that minimisation includes full information about state con-
trollability. The minimisation problem can now be stated as:

minimize∆u̇v̇(x̄, ū, u̇, τ) = cu̇ (5.7)

subject to:

u̇ � u̇max

u̇ � u̇min

u � umax

u � umin

where the constraintṡumax and u̇min are due to rate limiting andumax andumin

are due to actuator saturation. Denoting the optimal inputu̇∗ it can be seen that
due to the simple dot-product form of the problem, each component, indexi, of
u̇∗ can easily be found:

u̇∗i =





u̇min,i if ci > 0 ∧ ui < umax,i

u̇max,i if ci < 0 ∧ ui > umin,i

0 otherwise
(5.8)

73

Section 5.3: Stability Analysis

Described in words the control algorithm finds a control slope for each con-
trol signal which based on local information of the model andcontrol objective
simultaneously seeks to minimise the functionsvc and vu. The control slopes
are recalculated whenever the QSS2 model informs the controller that either the
model matricesA,B, or the objective matrixE has changed.

In practise the control signal slope limitsu̇max andu̇max can be chosen from
physical insight representing the physical limits of the actuators.

5.3 Stability Analysis

We are investigating the stability properties of the following continuous system,
wherek(x,u) represents the control law (cf. Equation (5.7)):

ẋ = f(x,u) (5.9)

u̇ = k (x,u) (5.10)

v(x,u) = vc(x) +
1

2
(u − uf)

TP(u − uf) (5.11)

Due to the formulation withf(·) andvc(·) being general non-linear functions
andk(·) a controller exhibiting switching behavior, stability forthe general case
is difficult to prove. The following analysis will show that the proper framework
for analysing stability of the system is within stability theory for hybrid systems,
and sufficient conditions for (exponential) stability willbe formulated.

5.3.1 Equivalent Switched System Model

The system described above can alternatively be described using the extended
state-spaceξ = [xT (u−uf)

T]T . Furthermore, we introduce the notation:g(ξ) =
[f(x,u)T

k(x,u)T]T andV(ξ) = vc(x) + vu(u):

ξ̇ = g(ξ) (5.12)

v = V(ξ) (5.13)

It is noted that the control law, i.e. Equation 5.7, results in a control vector of
discrete valued components each corresponding to a maximum, minimum or zero

74

Chapter 5: Optimising Control of QSS Systems

value of a given input signal (u̇i). Therefore we can realiseg as a switched system
of vector fieldsgi ∈ ℧ = {g1, . . . ,g3m} where:

gi(ξ) =

[
f(x,u)

0

]
+

[
0
vi

]
(5.14)

herevi is one of the3m possible input vectors thatk(x,u) can switch between.
By viewing the control problem in this light we see Equation (5.12) as a variable
structure system where the controller switches between different realisations with
the goal of stabilising the system atξ = 0.

To introduce the quantised state approach we note that for each control calcu-
lation the controller is presented with a local affine model in place of the general
non-linear model, i.e.:

ξ̇ =

[
f(x̄, ū)

0

]
+

[
A(x̄, ū) B(x̄, ū)

0 Im×m

] (
ξ − ξ̄

)
+

[
0
vi

]
(5.15)

In principle we can think of the right hand side as a set of possible realisa-
tions of the system’s dynamics and control input. Each time the QSS2 algorithm
switches to a new realisation of the system model the controller switches to an
appropriate realisation of the input signal.

For a simple linear system there would be3m possible systems to switch be-
tween and for a general non-linear system there could be infinitely many. The
choice of quantisation vector∆Q is a parameter adjusting how often the system
model is switched and hence how fine-masked the QSS2 algorithm approximates
the underlying non-linear system.

In the following we will discuss stability of the continuoussystem described
by Equation (5.12-5.13). We thereby assume that the user haschosen a quantiza-
tion ∆Q that approximates the continuous equations closely.

5.3.2 Hybrid Stability

To discuss stability of the switched system described abovewe need to define what
is meant by stability for such a system. Consider an autonomous switched/hybrid
system on the form:

ẋ = f(x, q(t)) = fq(t)(x) (5.16)

whereq : R → {1, . . . ,M} assigns a specific realisation of the vector field to
the system at a given time.q(t) is piecewise continuous from the right implying

75

Section 5.3: Stability Analysis

that there can only be a finite number of switches per unit of time. For each
fi we associate a Lyapunov like function (definition below)vi and region in the
state-spaceΩi where the vector field is switched on.

Definition 5.1 (Lyapunov Like Function [Branicky, 1994])
A Lyapunov-like functionvi associated with a regionΩi satisfies the following
two conditions withx ∈ Ωi:

• vi(0) = 0 andvi(x) > 0 for x 6= 0 (positive definiteness)

• v̇i(x) = ∂vi(x)
∂x

fi(x) ≤ 0 (negative definite derivative)

With this notation and definition in mind we can state a theorem giving suf-
ficient conditionsfor stability of a switched/hybrid system (proof in [Branicky,
1994]):

Theorem 5.2 (Stability of Hybrid Systems [Branicky, 1994])
Given the M-switched non-linear system of Equation (5.16),suppose each vector
field fi has an associated Lyapunov-like functionvi in the regionΩi, each with
equilibrium pointx̄ = 0, and suppose∪iΩi = Rn. Let q(t) be a given switching
sequence such thatq(t) can take on the valuei only if x(t) ∈ Ωi, and in addition:

vi(x(ti,k)) ≤ vi(x(ti,k−1)) (5.17)

whereti,k denotes thekth time that vector fieldfi is "switched in", i.e.q(t−i,k) 6=

q(t+i,k) = i. Then Equation (5.16) is Lyapunov stable.

If in Definition (5.1) condition two and in Theorem (5.2) Equation (5.17)
the less-than-or-equal sign is replaced with a strictly less-than then the system
is asymptotically stable in the sense of Lyapunov.

In words; Each time a new vector field is selected the associated Lyapunov
like function must be less than or equal to the same function evaluated last time
the same vector field was exited. Furthermore, the Lyapunov like function must
be non-increasing while the associated vector field is turned on.

ConsiderV(ξ) a candidate Lyapunov like function for the system given by
Equation (5.12) with the associated regionΩV(ξ) = Rn+m meaning thatV(ξ) is
associated with all realisationsgi ∈ ℧. Let q(t) be the sequence of realisations
gi that is chosen by the controller (Equation (5.7)) then the system is stable if the
conditions of Theorem (5.2) are satisfied from any initial condition.

76

Chapter 5: Optimising Control of QSS Systems

As the controller always chooses the realisationgi that will contribute most
negatively toV̇(ξ) stability is now a question of if the user supplied functionvc(x)
together with the chosen matrixP that in fact provides aV(ξ) that is a global
Lyapunov function for the switched system described by Equation (5.12).

As a general declarative controller this is insufficient as it places the respon-
sibility on the user. Practical experience, however, show that for some systems
it is relatively easy to select a good control objective function and input cost ma-
trix that provides a satisfactory response. The type of systems where the control
strategy works well are systems with stable or marginal stable dynamics and free
kinematic variables.

It should be noted that Theorem (5.2) represents only sufficient conditions,
hence it is possible to have a response whereV(ξ) grows locally but still decays
to zero in finite time. In fact there are some versions of stability theorems for
hybrid systems that are more general than Theorem (5.2) and allows this type of
behavior (in models with a finite number of realisations) (cf. [Carlo et al., 2000]).

5.3.3 Quadratic Performance and Min-Skew-Projection

If we restrictvc(x) to be a quadratic performance index:

vc(x) = xT Qx (5.18)

with Q > 0 a positive definite matrix parameter thenV(ξ) also becomes a quadratic
performance index:

V(ξ) = ξT

[
Q 0
0 P

]
ξ = ξT P̃ξ (5.19)

The controller can now be described as the optimisation problem of choosing
the vector field that gives the most rapid decrease of the quadratic performance
function:

gi = argmin
gi∈℧

ξT P̃gi(ξ) (5.20)

With this formulation the control problem is equivalent to themin-skew-pro-
jectionstrategy (MSP) proposed in [Pettersson and Lennartson, 1997]. Sufficient
stability conditions are given by the following theorem with proof in [Pettersson
and Lennartson, 1997].

77

Section 5.3: Stability Analysis

Theorem 5.3 (Stability of MSP strategy [Pettersson and Lennartson, 1997])
If for all statesξ ∈ Rn+m:

∃ gi(ξ) ∈ ℧ such thatξT P̃g(ξ) ≤ 0 (5.21)

then the closed-loop system is stable using themin-skew-projectioncontrol strat-
egy. Specifically, if for all statesξ ∈ Rn+m there exists aγ > 0 (independent of
ξ) and:

∃ gi(ξ) ∈ ℧ such thatξT P̃g(ξ) ≤ −
1

2
γ||ξ||s (5.22)

then the closed-loop system is exponentially stable using themin-skew-projection
strategy.

With the MSP approach it is understood that the controller selects the vector
field gi which is the largest projection on the vector−P̃ξ. This is depicted in
Figure (5.3) below.

ξ1

ξ2

gi

gj ξ

−P̃ξ

Figure 5.3: The MSP strategy chooses the vector field that is the largest

projection on−P̃ξ, in this casegj overgi.

While the MSP formulation provides more insight into how thecontroller
operates and what the conditions for stability are, it is still up to the user to select
parametersP andQ such that the conditions of the stability theorem holds.

In other works where a similar control strategy is used, e.g.in [Pettersson
and Lennartson, 1997, Rodrigues and How, 2003], it is proposed to search off-
line for proper parameters for the Lyapunov like functions using a linear-matrix-
inequality (LMI) approach to determine either a global Lyapunov like function

78

Chapter 5: Optimising Control of QSS Systems

(cf. [Pettersson and Lennartson, 1997]) or multiple Lyapunov like functions each
valid in some domain (cf. [Rodrigues and How, 2003]).

5.4 Extension to Multiple Objective Control

For many Multiple-Input-Multiple-Output (MIMO) control problems it is often
possible to separate the system into a number of loosely coupled subsystems and
then design controllers for each subsystem while neglecting the cross couplings,
as done in e.g. [Healey and Lienard, 1993] for the AUV model ofChapter 3 on
page 29. The following describes how the just described algorithm can be formu-
lated to support this approach.

An extension to multiple objective control is possible in cases where the actu-
ators can be divided in complementary sets assigned to an objective function. For
multiple objectives the control objective function will nolonger be scalar, but:

vc(x) =





vc,1(x)
...

vc,l(x)

where each scalar functionvc,k(x) is assigned an actuator setak such that:

l⋂

k=1

ak = ∅

For multiple objective control Equation (5.7) and Equation(5.8) are solved
independently for each control objective function with appropriate sub-matrices
extracted fromΓ(x̄, ū, τ), E(x̄) andP. This way single objective control can be
seen as a special case of multiple objective control with just one control objective
function to which all actuators are assigned.

5.5 Control Algorithm Summary and Implementation

The controller is implemented as shown on Figure 5.2 by a control class that cal-
culates control input slopes and a number of integrators that keep track of the
integrated control signal. Algorithm 5.1 summarises the functionality of the con-
troller class described by its DEVS interface.

79

Section 5.5: Control Algorithm Summary and Implementation

δint():

τ ← the least ta(·) in the set of model integrators
evaluate Equation (5.4)
foreach control objective, index k:
˙ evaluate Equation (5.6)
˙ foreach actuator i ∈ ak

˙ u̇i ← Equation (5.8)

δext(P): P is a set of messages
Receive one or more new matrices from P : A,B,E
newF lag ← true

λ():

return {u̇1, . . . , u̇p}

ta():
if newF lag
˙ newF lag ← false
˙ return 0
return ∞

Algorithm 5.1: The Controller Block

The methods necessary to set-up a controller is briefly presented in the fol-
lowing. At first a controller must be constructed:

MinimizingController(DevsContext context, String name, int
noControlObjectives, int controlDepth,
double[] uDotMax, double[] uDotMin,
double controlCost[]);

wherecontext andname provides a context object associated with the DEVS
environment and a name for the controller (cf. 2.3 on page 24). noControl-
Objectives declares the number of control objectives the controller should
handle,controlDepth declares how many terms in Equation (5.4) should be
evaluated,uDotMax anduDotMin specify limits on the control slopes, and fi-
nally controlCost specify diagonal values for the control cost matrixP.

The following method is then called to provide the controller with references
to integrators in the QSS2 model from which the control horizon, τ , should be
derived.

void registerStateIntegrators(Qss2Integrator ints[]);

Similarly, to keep track of the control states references tothe control signals,
integrators are provided:

80

Chapter 5: Optimising Control of QSS Systems

void registerInputIntegrators(QssInputIntegrator ints[]);

TheQssInputIntegrator class provides integrators which take the first
derivative as input, as opposed to theQss2Integrator class, and updates its
output whenever the state has changed by a specified quantum.(i.e. 0-order quan-
tisation as opposed to the first order quantisation of the QSS2 algorithm).

The following method binds control signals, described by their indexes in
theu vector, to specific control objectives,controlObjective .

void registerInputsToControlObjective(int controlObjective,
int[] indexes);

This method can also be used during run-time in order to reallocate actua-
tors, e.g. if new actuators are plugged into the system or if an actuator becomes
unavailable because of a fault. Finally, if control signal feed-forward (i.e.uf) is
desired the feed forward vector can be set with the followingmethod:

void registerInputOperatingPoints(double[] operatingPoint);

The control objectives are declared in aQss2Mapobject (cf. Subsection 3.2.3
on page 36) and is then connected to the controller object using theaddConnec-
tion() method of theDevsCoordinator class (cf. Section 2.3 on page 24).

5.6 Control of an Autonomous Underwater Vehicle

This section will provide simulated results for controllerevaluation of both the
Single Objective Control (SOC) and Multiple Objective Control (MOC) approach
applied on the Autonomous Underwater Vehicle (AUV) model introduced in Sec-
tion 3.4 on page 42. The control objective pursued here is that of depth and head-
ing tracking under constant forward surge speed.

First the MOC approach will be presented, followed by the SOCapproach
which will use the sum of MOC objective functions as its single objective func-
tion. Of the six available actuators the Top-Bottom plane will not be used (it has
virtually no influence due to its position and its control cost will be set to infinity).

Actuator saturation limits are as specified previously (cf.Section 3.4 on
page 42) and the rate constraints have been set tou̇max = −u̇min = [0.2 0.2 0.2
0.4 0 1.2] with units of rad/s for the rudders and RPM/s for the propeller shaft. A
control cost matrix has been found as:P = diag([0.2 0.1 0.1 0.1 ∞ 0.001]). The

81

Section 5.6: Control of an Autonomous Underwater Vehicle

input integrators have been setup with quanta of 0.01 rad forthe control surfaces
and 0.1 rad/s for the propeller shaft.

The AUV system is subject to dynamic dampening due to friction between the
AUV and the water. This means that all dynamical states will tend to zero if no
control is active, in order to fulfill the control objective of constant forward surge
speed and the conditions required for stability of the method, see Section 5.3, it
is necessary to include a feed-forward term as introduced inEquation (5.5). In
order to move the open-loop equilibrium point of the system to coincide with the
control objective.

The simulation case shown in the following graphs is for a combined maneu-
ver where the AUV should dive 20m, while turning 0.9 rad, and increase the surge
speed from 1.1m/s to 1.5m/s.

Multiple Objective Controller
For the MOC case the control objectives and associated actuator sets are described
in the following. Variables with subscriptr are reference values for the corre-
sponding states.

SpeedControl objective function for surge speed:v1 = 10(u − ur)
2 and is as-

signed the actuator-set:a1 = {n}

Heading Control objective function for heading:v2 = 2(ψr−ψ)2 and is assigned
the actuator-set:a2 = {δr}

Depth A control objective function for depth and pitch stabilisation : v3 = (z −
zr)

2 + 3(q)2 and is assigned the actuator-set:a3 = {δs, δbs, δbp}

The third control objective is designed to control the depthand at the same
time avoid oscillations of the lightly dampened pitch axis of the AUV. With the
above choice of control objectives, way point tracking can be accomplished by
a guidance controller that supplies new references:ur, ψr, andzr each time a
way-point is reached.

The same decoupling into controllers for speed, heading anddepth is seen
in [Healey and Lienard, 1993], where single input controllers are designed for
linearised system models. Here we retain the non-linear models and can assign
multiple actuators to e.g. the depth control objective.

Figure 5.4 shows results for the states of the AUV for the first300 seconds. It
can be seen that the surge speed does stabilise at 1.5 m/s on graph (a), the heading
stabilises in roughly 55 s on graph (d), and the depth reachesclose to 20 m also in

82

Chapter 5: Optimising Control of QSS Systems

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

V
el

oc
ity

 [m
/s

]

Translational Velocity

u

v

w

(a) Translational velocity

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

Angular Velocity

p
q
r

(b) Angular velocity

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Time [s]

P
os

iti
on

 [m
]

Translational Position

x

y

z

(c) Translational position

0 50 100 150 200 250 300
−0.5

0

0.5

1

Time [s]

A
ng

ul
ar

 P
os

iti
on

 [r
ad

]

Angular Position

φ
θ
ψ

(d) Angular Position

0 50 100 150 200 250 300
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time [s]

C
on

tr
ol

 P
la

ne
 D

ef
le

ct
io

n
[r

ad
]

Control Surfaces

δ
r

δ
s

δ
b

δ
bs

δ
bp

(e) Control surface deflections

0 50 100 150 200 250 300
120

121

122

123

124

125

126

127

128

129

130

Time [s]

P
ro

pe
lle

r
S

ha
ft

S
pe

ed
 [r

ad
/s

]

Propeller Shaft Speed

n

(f) Propeller shaft speed

Figure 5.4: MOC results for AUV states and control signals - it can be
seen that the control objectives are met.

83

Section 5.6: Control of an Autonomous Underwater Vehicle

55 s on graph (c), but it takes further 100 s before it finally settles. The remaining
states responds to the maneuver as expected.

From the (e) graph it is seen that initially both the stern plane,δs, and the bow
planes,δbs andδbp, are active in order to perform the dive. The two bow-planes
perform the exact same actuation. It can also be seen that therudder is active
at first and then settles at zero as the correct heading is reached. Even after the
control objectives have been met the switching nature of thecontroller can be seen
in the control signals, especially for the stern plane.

The (f) graph shows that initially the surge speed controller increases the pro-
peller shaft speed to gain surge speed and then as the headingand depth objectives
are met the surge speed controller reduces the shaft speed tothe feed-forward op-
erating point of 125 rad/s.

Finally, Figure 5.5 shows the three control objective functions and how they
are minimised throughout the simulated execution. It can beseen that both the
surge speed controller and depth controller experiences short periods where it is
not possible to prohibit growth of the objective function asit is influenced in a
positive direction by the autonomous response of the systemand the disturbances
introduced by the other controllers.

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

C
on

tr
ol

 O
bj

ec
tiv

e
F

un
ct

io
n

Surge Speed Control Objective

(a) Surge speed objective

0 50 100 150 200 250 300
−1

0

1

2

3

4

5

6

7

8

9

Time [s]

H
ea

di
ng

 O
bj

ec
tiv

e
F

un
ct

io
n

Heading Control Objective

(b) Heading objective

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300

350

400

450

Time [s]

D
ep

th
 a

nd
 P

itc
h

O
bj

ec
tiv

e
F

un
ct

io
n

Depth and Pitch Control Objective

(c) Depth objective

Figure 5.5: MOC results for AUV control objective functions.

Single Objective Controller
Now results for the SOC controller is presented the control objective function is
the sum of objective functions for the MOC controller to facilitate comparison:

vsoc(x) = v1(x) + v2(x) + v3(x) (5.23)

And the set of actuators is:

asoc = a1 ∩ a2 ∩ a3 = {δr, δs, δbs, δbp, n}

84

Chapter 5: Optimising Control of QSS Systems

Figure 5.6 shows results for the states of the AUV under SOC control. Again
it can be seen that the states converges to the commanded set-points. However,
compared to the MOC case, convergence is not as rapid.

It is clear from both (e) and (f) compared to (e) and (f) on Figure 5.4 that the
SOC scheme result in more conservative use of the actuators.This is particularly
clear for the stern plane and the rudder.

Finally Figure 5.7 shows the objective function for the SOC controller, i.e.
Equation (5.23), and also, for comparison, the sum of the MOCperformance
functions (Figure 5.5) is plotted on the same graph. Again there is a short pe-
riod where the objective function is increasing, but compared to the MOC case
this period is shorter for SOC.

It can be seen that the MOC approach is somewhat faster than the SOC in
achieving the commanded set-points for the controller.

Discussion
Table 5.1 shows the number of control events for each actuator, i.e. how many
times the corresponding input integrator has updated its output to the model. It
can be seen that the stern-plane actuator is the most utilised for both the SOC and
MOC case. In general the MOC case requires slightly fewer updates to perform
the control. This is reflected in the execution time which forMOC is 8.47s and
8.63s for SOC.

Events SOC MOC
δr 523 385
δs 8842 8769
δbp 1428 1308
δbs 1428 1308
n 167 135

Table 5.1: Actuator signal updates to the model.

In conclusion it can be said that both algorithms lead to satisfactory perfor-
mance on the AUV problem. The MOC approach provides slightlybetter per-
formance and is also slightly faster to execute for the control computer for this
problem.

85

Section 5.6: Control of an Autonomous Underwater Vehicle

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

V
el

oc
ity

 [m
/s

]

Translational Velocity

u

v

w

(a) Translational velocity

0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

Angular Velocity

p
q
r

(b) Angular velocity

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Time [s]

P
os

iti
on

 [m
]

Translational Position

x

y

z

(c) Translational position

0 50 100 150 200 250 300
−0.5

0

0.5

1

Time [s]

A
ng

ul
ar

 P
os

iti
on

 [r
ad

]
Angular Position

φ
θ
ψ

(d) Angular position

0 50 100 150 200 250 300
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time [s]

C
on

tr
ol

 P
la

ne
 D

ef
le

ct
io

n
[r

ad
]

Control Surfaces

δ
r

δ
s

δ
b

δ
bs

δ
bp

(e) Control surface deflections

0 50 100 150 200 250 300
120

121

122

123

124

125

126

127

128

129

130

Time [s]

P
ro

pe
lle

r
S

ha
ft

S
pe

ed
 [r

ad
/s

]

Propeller Shaft Speed

n

(f) Propeller shaft speed

Figure 5.6: SOC results for AUV states and control signals - it can be
seen that control objectives are met.

86

Chapter 5: Optimising Control of QSS Systems

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Time [s]

C
on

tr
ol

 O
bj

ec
tiv

e
F

un
ct

io
n

Control Objective Function

SOC
MOC

Figure 5.7: SOC objective function vs. MOC summed objective func-
tions - It can be seen that the MOC approach is more effective.

5.7 Chapter Summary

This chapter introduced two algorithms for control of a class of non-linear multiple-
input-multiple-output systems based on QSS2 models of the system and a QSS2
description of a control objective function which is minimised by the choice of
control input slopes by the controller.

It was shown that stability of the proposed method must be viewed in the
framework of switched/hybrid systems and depends on the users choice of control
objective function and control cost matrix. Further, it wasshown that if a quadratic
control objective function is chosen the control strategy is equivalent to themin-
skew-projectionstrategy described in [Pettersson and Lennartson, 1997].

In practice the method can be applied to a large number of systems, e.g. mo-
tion control system with inherent dynamical dampening, where the control objec-
tive is to guide the kinematical states to a given set-point.

The method was demonstrated using simulations of an autonomous underwa-
ter vehicle, based on a nominal model and full state knowledge, and it was demon-
strated that the method was successful in controlling the system. Both the single
objective and multiple objective control variant of the method were demonstrated
successfully.

87

Sliding Mode Control in
QSS Systems 6
This chapter contributes with a highly configurable controlstructure based on
sliding mode control theory, which is developed for composition with quantised
state models and offers adaptability by being implemented as a number of object
oriented components that can be replaced or extended individually. Simulation
results are presented for a case involving a deep-space probe.

6.1 Introduction

The concept of Sliding Mode Control (SMC) originates in the theory of variable
structure systems (Cf. [Utkin, 1977] for an early survey paper). The idea is to
have a discontinuous input which drives the system towards amanifold, called a
sliding surface, which defines the desired system dynamics.One great advantage
of the SMC approach is that on the sliding surface the state evolution is indepen-
dent of the system model and can be made robust against bounded uncertainties.
On the other hand SMC suffers from a phenomena calledchattering, due to the
discontinuous nature of the feedback.

Sliding mode control has been applied for many applications, e.g. autonomous
underwater vehicles [Healey and Lienard, 1993] and space vehicle motion con-
trol [Wiesniewski, 1998]. This chapter introduces a SMC stabilisation scheme for
Multiple-Input-Multiple-Output (MIMO) systems, which isbased on the design
procedure introduced in [Khalil, 2000], and develops an implementation of this
approach using quantised state systems and DEVS based simulation/execution.
The main contribution of the chapter is a generic SMC controller for quantised
systems that easily can be re-used for various applicationsby specifying the rele-
vant functions describing the plant to be controlled.

Section 6.2 describes the SMC approach for continuous systems and discusses

Section 6.2: Sliding Mode Stabilisation of MIMO Systems

relevant properties, the subsequent section, Section 6.3,describes how this ap-
proach was adopted to the QSS/DEVS framework, and, finally, Section 6.4 pro-
vides simulation results of a deep space probe using a nominal model with full
state knowledge. The next chapter provides results including the effects of uncer-
tainty and running an estimator in the loop.

6.2 Sliding Mode Stabilisation of MIMO Systems

The following introduces and analyses the SMC stabilisation approach for non-
linear MIMO systems introduced in [Khalil, 2000]. The starting point is a control
affine system on regular form representing a nominal model with the origin (η = 0
andξ = 0) being an open-loop equilibrium point.

η̇ = fa(η, ξ)

ξ̇ = fb(η, ξ) + G(η, ξ)u

whereξ ∈ Rd represent the dynamical states,η ∈ Rd represent the kinemati-
cal states,u ∈ Rd are control inputs,fb(η, ξ) and fa(η, ξ) function maps, and
G(η, ξ) ∈ Rd×d a non-singular matrix, andd is equal to the number of degrees
of freedom in the system.

We consider an extension of the previous system which includes dynamic
disturbances and parameter uncertainties inG(·):

η̇ = fa(η, ξ) (6.1)

ξ̇ = fb(η, ξ) + G(η, ξ)E(η, ξ)u + δ(η, ξ,u,t) (6.2)

whereE(η, ξ) ∈ Rd is a diagonal matrix of strictly positive diagonal elements
ei(η, ξ) > 0 for i = 1..d representing parameter uncertainties ofG(η, ξ) and is
equal to the identity matrix when there are no uncertainties. The vectorδ(η, ξ,t)
describes dynamic disturbances, it is important to note that these disturbances are
matched, which means thatδ(η, ξ,t) is in the column-space ofG(η, ξ).

Associated with the system is asliding variableexpressed as:

s = ξ − φ(η) (6.3)

whereφ(η) is a at least once differentiableguidance control law, i.e. a feedback
that stabilises Equation (6.1) withξ = φ(η) as input. Equation (6.3) implicitly

90

Chapter 6: Sliding Mode Control in QSS Systems

defines thesliding manifold:

S = {φ(η), ξ : s = 0}

It is the goal of the sliding mode controller to reach the sliding manifold and
remain there, even in the presence of disturbances and uncertainties as described
by Equation (6.1) and Equation (6.2). The design of the guidance controller,φ(η),
is not addressed in the SMC design that follows, but is simplyassumed available.
It could e.g. be implemented by negative proportional errorsignal feedback or
some other suitable control methodology.

In order to describe the motion on the sliding mode we differentiate Equation (6.3)
once and obtain:

ṡ = fb(η, ξ) −
∂φ

∂η
fa(η, ξ) + G(η, ξ)E(η, ξ)u + δ(η, ξ,u,t) (6.4)

When we assume a known nominal modelÊ = Id for E and no disturbances,
i.e. δ = 0 then it is clear that the following input makesṡ equal to zero and
maintains the system on the sliding manifold.

u =
[
G(η, ξ)Ê(η, ξ)

]−1
(
−fb(η, ξ) +

∂φ

∂η
fa(η, ξ)

)
(6.5)

The first term is responsible for cancelling dynamic forces of the system and the
second term ensures that the system tracks changes in the sliding manifold. This
control is also dubbedequivalent control[Bandyopadhyay and Sivaramakrishnan,
2006].

To ensure that the system reaches the sliding manifold the previous control
law is augmented with a term to guarantee stabilisation to the manifold:

u =
[
G(η, ξ)Ê(η, ξ)

]−1
(
−fb(η, ξ) +

∂φ

∂η
fa(η, ξ)

)
+ G−1(η, ξ)v (6.6)

wherev is a switching element characteristic for sliding mode control, also dubbed
the reaching law. The following analysis will show how the reaching law can be
designed to ensure that the sliding mode is reached under thepresence of distur-
bances and uncertainties.

91

Section 6.2: Sliding Mode Stabilisation of MIMO Systems

When Equation (6.6) is substituted into Equation (6.4) we obtain the expression
for each element,si ∈ S:

ṡi = ei(η, ξ)vi + ∆i(η, ξ,v, t) (6.7)

where the first term arises due to the reaching law and the second term due to the
disturbances and uncertainties, in more detail:

∆(η, ξ,v, t) =

δ

(
η, ξ,G−1(η, ξ)Ê

−1
(η, ξ)

(
−fb(η, ξ) +

∂φ

∂η
fa(η, ξ)

)
+ G−1(η, ξ)v, t

)

+
[
Id×d−E(η, ξ)Ê

−1
(η, ξ)

](
fb(η, ξ) −

∂φ

∂η
fa(η, ξ)

)

here the first term represents dynamic disturbances and the second term represents
the error in cancelling the dynamic forces and tracking the sliding mode which is
due to uncertain knowledge ofG(η, ξ).

We assume that the magnitude of the uncertainties and disturbances can be es-
timated by a continuous function and a constant such that thefollowing inequality
holds: ∣∣∣∣

∆i(η, ξ,v, t)

ei(η, ξ)

∣∣∣∣ ≤ ̺(η, ξ) + κ0||v||∞ ∀1 ≤ i ≤ d (6.8)

where̺(η, ξ) ≥ 0 andκ0 = [0, 1).

If we consider the following Lyapunov function candidate for each sliding
variable,si ∈ S:

Vi =
1

2
s2i with V̇i = siṡi

and insert Equation (6.7) into the expression forV̇i, we obtain:

V̇i = siei(η, ξ)vi + si∆i(η, ξ,v, t)

inserting the uncertainty bound, i.e. Equation (6.8), we get:

V̇i ≤ ei(η, ξ) (sivi + |si|[̺(η, ξ) + κ0||v||∞]) (6.9)

hence to ensure negativity ofV̇i, an inputvi can be chosen as:

vi = −β(η, ξ) sgn(si) ∀1 ≤ i ≤ d (6.10)

92

Chapter 6: Sliding Mode Control in QSS Systems

where theβ(η, ξ) function is defined as:

β(η, ξ) ≥
̺(η, ξ)

1 − κ0
+ β0

Now, inserting Equation (6.10) into Equation (6.9) and manipulating terms, we
get:

V̇i ≤ −ei(η, ξ)β0(1 − κ0)|si| (6.11)

It is therefore obvious that the sliding mode controller using the control law pro-
posed in Equation (6.10) provides global asymptotically stability for the uncer-
tain/disturbed system.

6.2.1 Chattering and Boundary Layer Control

The previous section showed the potential of the SMC method in terms of its
strong stability properties. However, the requirement of adiscontinuous switching
input signal is not attractive from an implementation pointof view. Often the
discontinuous switching can result in a phenomena known aschattering, consider
Figure 6.1.

s = 0

s > 0

s < 0

Figure 6.1: Illustration of the chattering phenomena.

In theory once the trajectory crosses the sliding manifold on the figure it
should remain there, however the theory assumes that input switching can occur
infinitely fast. This is not practical possible in implementations of SMC and the
result is that the sliding manifold is "overshot" and a zig-zagging motion criss-
crossing the manifold follows. This is clearly not desirable as it wears on the

93

Section 6.2: Sliding Mode Stabilisation of MIMO Systems

actuators. Therefore, in applications, the switching input component is often ap-
proximated using a continuous function, e.g. by applying:

vi = −β(η, ξ) sat

(
si

ǫi

)
(6.12)

wheresat(x) is a function approximatingsgn(x) as:

sat(x) =

{
x if |x| ≤ 1
sgn(x) if |x| > 1

(6.13)

and whereǫi > 0 is a parameter to control the relative slope of the approx-
imation, i.e. choosing a largeǫi reduces the gain close tosi = 0 and a small
value forǫi gives a response very similar to the originalsgn(·) function. Another
commonly used alternative for ansgn(x) approximating function istanh(x).

The use of a continuous approximation for the switching element will have
consequences for the stability properties derived in the previous subsection. These
consequences will be analysed in the following for thesat(x) function. By insert-
ing Equation (6.12) into Equation (6.9) we get:

V̇i ≤ ei(η, ξ)

(
−β(η, ξ)si sat

(
si

ǫi

)
+ ̺(η, ξ)|si| + κ0β(η, ξ)|si|

)
(6.14)

where from it can be seen that wheneversi > ǫ thenV̇i is negative and equivalent
to Equation (6.11). This means thatsi is uniformly ultimately bounded to the
set{|si| ≤ ǫ, 1 ≤ i ≤ d} called theboundary layer. To analyse the effect of
the boundary layer on the stability of the system we first needto define classK
functions.

Definition 6.1 (ClassK function [Khalil, 2000])
A continuous functionα : [0, a) → [0,∞) is said to belong to classK if it is
strictly increasing andα(0) = 0.

We assume that there exists a continuesly differentiable Lyapunov function,
V (η), associated with the sliding manifold designξ = φ(η) and that there exist
two classK functionsα1 andα2 such that the following inequalities hold:

α1(||η||) ≤ V (η) ≤ α2(||η||) (6.15)

and for the Lyapunov derivative withα3 andγ being classK functions:

∂V

∂η
fa(η, φ(η + s)) ≤ −α3(||η||) ∀ ||η|| ≥ γ(||s||) (6.16)

94

Chapter 6: Sliding Mode Control in QSS Systems

It can be seen that for some constantc the following is implied:

|si| ≤ c for 1 ≤ i ≤ d⇒ ||s|| ≤ k1c⇒

V̇ ≤ −α3(||η||) for ||η|| ≥ γ(k1c)

wherek1 is a norm dependent positive constant. We define another classK func-
tion α such that:

α(r) = α2(γ(k1r))

and realise the following implications:

V (η) ≥ α3(c) ⇒ V (η) ≥ α2(γ(k1c))

⇒ ||η|| ≥ γ(k1c)

⇒ V̇ ≤ −α3(||η||) ≤ −α3(γ(k1c)) (6.17)

from which it is clear that the set{V (η) ≤ c0 for c0 ≥ α(c)} is positively
invariant asV̇ is negative on the boundaryV (η) = c0. Therefore if we define the
set:

Ω = {V (η) ≤ c0} × {|si| ≤ c, 1 ≤ i ≤ d}

it is clear that this set is positively invariant when we havec > ǫ and that all
trajectories with initial state inΩ are bounded fort ≥ 0.

From Equation (6.14) we know that after some finite time then|si(t)| ≤ ǫ and
therefore from Equation (6.17) that:

V̇ ≤ −α3(γ(k1ǫ)) ∀ V (η) ≥ α(ǫ)

It therefore follows that in finite time any initial trajectory will reach the positively
invariant set defined by:

Ωǫ = {V (η) ≤ α(ǫ)} × {|si| ≤ ǫ, 1 ≤ i ≤ d}

Which proves that when a boundary layer is introduced the system looses
asymptotically stability, but instead provides ultimately uniformly boundedness
for trajectories to the setΩǫ which can be made arbitrarily small by the choice of
the parameterǫi for the switching approximation, see Equation (6.12).

95

Section 6.3: A QSS2 Implementation of Sliding Mode Control

6.2.2 Reaching Laws

When applying the control law of Equation (6.10) or its continuous approximation
Equation (6.12) the approach towards the sliding manifold will be at a constant
rate determined by the magnitude ofβ(η, ξ). If a different reaching response is
desired then feedback law can be extended to provide more flexibility, consider
for example the following reaching control law (based on [Bandyopadhyay and
Sivaramakrishnan, 2006]):

vi = −ki

(
si

li

)2

− qisi − β(η, ξ) tanh

(
si

ǫi

)
(6.18)

wherel, k, q, ǫ are positive design parameters. The third term is responsible for
disturbance rejection, the second term provide optional proportional feedback,
and the first term provide optional feedback on the squared sliding variable pro-
viding fast reaction to large errors.

It is the fact that the SMC approach reduces the design problem to designing
a reaching controller for the sliding mode that makes it desirable, since the chal-
lenges associated with the non-linear dynamics of the plantis accounted for by
the equivalent control introduced in Equation (6.5).

6.3 A QSS2 Implementation of Sliding Mode Control

This section contributes with a quantised state systems implementation of the
SMC approach described in the previous section. The benefit is a generic soft-
ware package that can be used to provide stabilising controlfor a large class of
systems, given that the user can supply: a nominal model, uncertainty bounds,
and parameters to shape the control performance in terms of reaching the sliding
manifold.

At first the control structure is presented, where after design of a guidance
controller based on convex performance criteria for the kinematical states is de-
veloped. Then the SMC controller for the dynamical system isdeveloped and
finally a module to dynamically adjust the parameters of the controller to local
uncertainties is presented in Subsection 6.3.5 on page 100.The next section will
provide simulation results to discuss performance.

96

Chapter 6: Sliding Mode Control in QSS Systems

6.3.1 Control Structure

The controller structure is depicted in Figure 6.2, where each block represents a
software object/class in the implementation of the controller.

∫

∫

fa(η, ξ)

fb(η, ξ) + G(η, ξ)u

Kinematic Map

Dynamic Map

Guidance
Controller

Sliding Mode

s = ξ − φ(η)

φ(η)

Controller


φ(η),

̂∂φ(η)

∂η
fa(η, ξ)




(u, 0)

(η̇, η̈)

(ξ̇, ξ̈)

(η̄, ¯̇η)

(ξ̄,
¯̇
ξ)

Ĝ(η, ξ)

ξ̇


s,

̂∂φ(η)

∂η
fa(η, ξ)




Figure 6.2: Sliding mode controller structure. Simple example with
d = 1.

TheKinematic andDynamic map , as well as the integrator blocks cor-
responds to the QSS2 software components described in Chapter 3 on page 29.
This means that the user must supply a QSS2 model which is split into the two
maps.

TheGuidance Controller block provides the vectorφ(η) that defines
the time varying sliding manifold, the implementation of this block is described
in the next subsection. TheSliding Mode block implements the sliding mode
equation, i.e. Equation (6.3), and theController block is responsible for im-
plementing the equivalent control law and the reaching control law, details will be
given in the following. The final subsection of this section will describe how the
presented control structure is adapted to situations wherethe user is able to supply
state-dependent uncertainty/disturbance bounds.

97

Section 6.3: A QSS2 Implementation of Sliding Mode Control

6.3.2 Guidance Controller

The guidance controller must provide a feedbackφ(η) such that:

η̇ = fa(η, φ(η))

is stabilised at the desired end-point. Inspired by the controller presented in the
previous chapter we associate with the controller a scalar valued convex objective
function with global minimum in the desired referenceηr:

v = v(η) with v(ηr) = min
η∈Rd

v(η)

with v(η) : Rd 7→ R1. A sufficient condition for minimising this function over
time, from convex optimisation theory [Boyd and Vandenberghe, 2004], is to al-
ways move in the direction of the negative gradient, therefore:

φ(η) = −∇v(η)

By implementing the objective function using the already developedQss2-
Mapclass, cf. Subsection 3.2.3 on page 36, the gradient information for the func-
tion is already available (cf. Equation (3.2.2 on page 34)).Hence the guidance
controller can be implemented by inheriting theQss2Map class and overriding
theoutput() method to output the negative gradient vector rather than the func-
tion value ofv(η). This new class is calledNegativeGradient .

However, the class must also provide∂φ(η)
∂η

fa(η, φ(η)) as an output for use in
the calculation of the equivalent control. This information is not directly avail-
able from theQss2Map class. However, by requiringv(η) to be at least twice
differentiable a good numerical approximation can be obtained from:

∂̂φ(η)

∂η
fa(η, φ(η)) =

∇vk(η) −∇vk−1(η)

∆η
(6.19)

The domain over which this backward difference estimate is determined by∆η
which in turn is determined by the quantum selected by the user for the kinemati-
cal states. Equation (6.19) is implemented in theNegativeGradient class.

The guidance controller presented here is just one opportunity; other classes
which comply to the same interface in terms of input and output signals can be
implemented and plugged into the controller structure of Figure 6.2.

98

Chapter 6: Sliding Mode Control in QSS Systems

6.3.3 Sliding Mode

The sliding mode block accepts the working point QSS2 trajectories(ξ̄, ¯̇ξ) as in-
puts, as well as the outputs of the guidance controller. The class implements the
sliding mode equation (see Equation (6.3)) by propagating the dynamic trajecto-
ries:

s =
(
ξ̄ +

¯̇
ξ∆t

)
−

(
φ(η) +

∂̂φ(η)

∂η
fa(η, φ(η))∆tφ

)

where∆t is a vector of time-lapses since the last output event was received from
the corresponding integrator in the model, and∆tφ is the time-lapse since the last
time input was received from the guidance controller.

The sliding mode block outputs the sliding variables and it passes on the
∂̂φ(η)

∂η
fa(η, φ(η)) output from the guidance controller, which is also to be usedin

the sliding mode control calculation.

The above described functionality is implemented in the class calledSli-
dingMode and can also be replaced with other classes if a different definition of
the sliding mode than Equation (6.3) is desired in the controller structure.

6.3.4 Sliding Mode Controller

The controller accepts as input the sliding variables and the change in the guid-

ance law∂̂φ(η)
∂η

fa(η, φ(η)) as inputs, and can access the input sensitivity matrix

Ĝ(η̄, ξ̄) and the most recent force vectorξ̇ from theDynamicMap .

Whenever new input is received the controller pulls the mostrecent informa-
tion from theDynamicMap and then calculates the equivalent control:

ue = Ĝ−1(η̄, ξ̄)

(
−f̂b(η̄, ξ̄) +

∂̂φ

∂η
fa(η, ξ)

)

wheref̂b(η̄, ξ̄) is obtained by:

f̂b(η̄, ξ̄) = ξ̇ − Ĝ(η̄, ξ̄)u∗

whereu∗ is the input calculated in the previous control calculation.

99

Section 6.3: A QSS2 Implementation of Sliding Mode Control

The reaching law is implemented as:

vi = −ki

(
si

li

)2

− qisi − βs switch (si) (6.20)

whereli, ki, qi are positive design parameters supplied by the user,βs is a user
supplied positive constant such that:

βs ≥ β(η, ξ) ≥
̺(η, ξ)

1 − κ0
+ β0 (6.21)

and finallyswitch(·) is a user defined class which implements the desired approx-

imation of the termsgn(si) for exampletanh
(

si

ǫi

)
. User supplied classes must

adhere to theBoundaryLayer interface which specifies a single method:

double evaluate(int index, Matrix s);

If no class is specifiedsgn(si) is used as default. From the equivalent control
and the reaching law the combined control is then calculatedand applied to the
system:

u = ue + Ĝ−1(η̄, ξ̄)v

Saturation limits can also be specified for the control inputs. To summarise;
theController class provides many parameters for the user to set in order to
tune the performance of the controller to each specific problem. The different
methods to do that is briefly listed below:

void setSquareGain(double k[]);
void setSquareRegion(double l[]);
void setProportionalGain(double q[]);
void setBoundaryLayer(BoundaryLayer switch);
void setSaturation(double sat[]);
void setStaticBeta(double beta_s);

The output of the controller, as is indicated on Figure 6.2, is kept constant
between control calculations, i.e.u̇ = 0 in the output double which is provided to
the Dynamic Map object (aQss2Map class).

6.3.5 Dynamic Disturbance Bounds Calculation

The controller presented in the previous subsection only considered static uncer-
tainty bounds, see Equation (6.21). This subsection describes a software class

100

Chapter 6: Sliding Mode Control in QSS Systems

Uncertainty
Bound

(η̄, ¯̇η)

(ξ̄,
¯̇
ξ)

(
β(η̄, ξ̄), β̇(η̄, ξ̄)

)

Figure 6.3: Adding dynamic uncertainty bounds to the controller struc-
ture.

that can be augmented to the presented controller structurein order to provide
dynamic uncertainty bounds. Consider Figure 6.3.

By inserting such a block into the controller structure, seeFigure 6.2, with
output signal routed to an optional input on theSliding Controller block
the value forβ used in the feedback calculation in Equation (6.20) can be updated
dynamically.

TheUncertaintyBound class was implemented by inheriting theQss2-
Map class and specifying a single output. In this way the user canspecify a
functionβ(·) : R2d 7→ R1 which specify the uncertainty bound. The uncertainty
bound provided by the user must both apply for the dynamic disturbancesδ(η, ξ)
and uncertainty in input gainE(η, ξ) as indicated by Equation (6.8).

One can easily provide custom classes for uncertainty boundcalculation with
different functionality than the above if required for the specific application and
insert it into the control structure, for example if one wishes to implement an
adaptive uncertainty bound estimator based on monitoring performance of the
control system

6.4 Simulation Results for a Deep Space Probe

In this section a simulation study of the proposed control scheme will be presented
which concerns thethree-axismode of the Deep Space Probe (DSP) presented in
Chapter 4 on page 51, cf. Figure 4.4 on page 60. Results will befor a nominal
model; the objective is to describe how the SMC approach works under ideal
conditions. The next chapter will provide simulation results including estimation
errors, disturbances and model uncertainties in order to shed light on controller
performance under non-ideal circumstances.

101

Section 6.4: Simulation Results for a Deep Space Probe

Referring to the kinematical model of the DSP, see Equation (4.11 on page 60),
the kinematical model for the SMC controller is identified as:

η̇ =
1

cos θ2




cos θ2 sin θ1 sin θ2 cos θ1 sin θ2
0 cos θ1 cos θ2 − sin θ1 cos θ2
0 sin θ1 cos θ1


ω with θ = η, ω = ξ

The dynamical model of the DSP without actuators is given in Equation (4.12
on page 60). We augment this model with a model of six thrusters which can
provide thrust in all directions of up to 2 N with a lever arm of50 cm. We currently
assume that there are no quantisation or minimum impulse bits to consider for the
thrusters, and the model becomes:

ξ̇ = J−1

(
−[ω×]Jω +

1

2
u

)
with ω = ξ (6.22)

Each element in the input vectoru ∈ R3 controls two complementary thrusters
of which only one is active at a time depending on the sign of the corresponding
input signal.

The QSS2 model of the DSP developed for the EKF algorithm in Chapter 4
on page 51 is reused with the updated dynamical model of Equation (6.22). If
not stated otherwise the quanta used in the following simulations are10−5 rad for
attitude states and10−7 rad/s for angular rate states.

We define the control objective to be attitude stabilisationto specified set-
pointsηr = [ηr,1 ηr,2 ηr,3]

T and represent this control objective in the following
objective function for the guidance controller:

v = (η1 − ηr,1)
2 + (η2 − ηr,2)

2 + (η3 − ηr,3)
2

The following subsection will show control performance under varying choices
of SMC control parameters and discuss achieved performance.

6.4.1 Results without Boundary Layer Control

Initially we will consider the simplest SMC controller possible by applying the
reaching law of Equation (6.20) with parameters:

ki = qi = 0, li = ǫi = 1 for 1 ≥ i ≥ 3 (6.23)

102

Chapter 6: Sliding Mode Control in QSS Systems

switch = sgn(·), β(η, ξ) = 0.05

Simulation results are given in Figure 6.4 withηr = [0 0 0]T and initial at-
titude η0 = [0.5 − 0.1 1]T . Looking a the attitude states it is clear that the
controller reaches the reference, although with a little initial overshoot, and main-
tains it there.

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Attitude States

Time [s]

A
tti

tu
de

 [r
ad

]

η

1

η
2

η
3

(a) Attitude response

0 5 10 15 20 25 30 35 40 45 50
−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Angular Velocity States

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

ξ

1

ξ
2

ξ
3

(b) Angular velocities

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Control Inputs

Time [s]

T
hr

us
te

r
fo

rc
e

[N
]

u

1

u
2

u
3

(c) Control input signal

Figure 6.4: Simple SMC control results, a large degree of chattering is
evident.

From the angular velocities (b) it can be seen that the controller drives the an-
gular velocities towards a constant value that is maintained until the corresponding
attitude state gets close to convergence. This behaviour isalso evident from the
attitude states which approaches their reference at a near constant rate.

The (c) graph, however, shows that the controller exhibits chattering to a high

103

Section 6.4: Simulation Results for a Deep Space Probe

degree, where the control input switches between its saturation points when each
state reaches its reference. This switching makes the modelvery slow to execute,
approximately 18 s, as the QSS2 model switches operating points very often.
From a propellant consumption point of view this behaviour is also not desirable.

The switching is due to the bounded final error region of the QSS2 approach
to propagating differential equations, see Section 3.3 on page 38. Effectively,
the input variablesui is operating with a quantum of twice the saturation limit
for each variable. As will be seen in the following simulations performance can
be improved significantly if approximations to thesgn(·) function is used in the
reaching law.

6.4.2 Results with Boundary Layer Control

To investigate if better performance is obtained by switching to an approxima-
tion of the switching component all control parameters are maintained except the
change totanh(si/ǫi) as an approximation for the switching component, the pa-
rameters are:

ki = qi = 0, li = 1, ǫi = 0.2 for 1 ≥ i ≥ 3 (6.24)

switch = tanh(·), β(η, ξ) = 0.05

Simulated responses are shown on Figure 6.5 withηr = [0 0 0]T and initial
attitudeη0 = [0.5 −0.1 1]T . Again the attitude states converges to zero from their
initial errors; this time a little slower but without the overshoot seen previously.

The angular velocity states also shows a similar, but more smooth, response
than in the previous simulation. The (c) graph clearly showsthat the inputs no
longer are switching as seen previously.

The (d) graph shows the intensity of control calculations; the blue line shows
the frequency of controller updates (averaged over periodsof 0.2 s) and the red
line is a moving average filtered version of the same data witha window spanning
2 s. It can be seen that the controller demands extensive computing resources
initially while stabilising the system, and that the required resources is reduced as
the system operates near to its set-point.

The time required for the execution is 0.22 s, correspondingroughly 230 times
real-time on a contemporary computer. A vast improvement compared to the
previous execution.

104

Chapter 6: Sliding Mode Control in QSS Systems

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Attitude States

Time [s]

A
tti

tu
de

 [r
ad

]

η

1

η
2

η
3

(a) Attitude Response

0 5 10 15 20 25 30 35 40 45 50
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Angular Velocity States

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

ξ

1

ξ
2

ξ
3

(b) Angular velocities

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Control Inputs

Time [s]

T
hr

us
te

r
fo

rc
e

[N
]

u

1

u
2

u
3

(c) Control Input signal

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
Control Calculation Intensity

C
on

tr
ol

 U
pd

at
es

 p
r.

 S
ec

on
d

[1
/s

]

Time [s]

raw
MA

(d) Control calculation intensity

Figure 6.5: SMC control results with approximated switching function.
Chattering is no longer evident.

6.4.3 Performance Tuned Results

Continuing from the previous set of parameters we now wish tosee if perfor-
mance of the controller can be improved. We select to utilisethe ki gains (cf.
Equation (6.18)) in order for the controller to react strongly to large errors, both
for the error to converge quickly, but also in order to reducethe computation time
that is required throughout the execution. The controller parameters are:

ki = 0.475, qi = 0, li = 1, ǫi = 0.2 for 1 ≥ i ≥ 3 (6.25)

switch = tanh(·), β(η, ξ) = 0.01

Results are given in Figure 6.6 withηr = [0 0 0]T and the initial attitude is as

105

Section 6.4: Simulation Results for a Deep Space Probe

previouslyη0 = [0.5 − 0.1 1]T . It can be seen that the attitude is stabilised faster
than in the previous cases.

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Attitude States

Time [s]

A
tti

tu
de

 [r
ad

]

η

1

η
2

η
3

(a) Attitude response

0 5 10 15 20 25 30 35 40 45 50
−0.15

−0.1

−0.05

0

0.05
Angular Velocity States

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

ξ

1

ξ
2

ξ
3

(b) Angular velocities

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Control Inputs

Time [s]

T
hr

us
te

r
fo

rc
e

[N
]

u

1

u
2

u
3

(c) Control input signal

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140
Control Calculation Intensity

C
on

tr
ol

 U
pd

at
es

 p
r.

 S
ec

on
d

[1
/s

]

Time [s]

raw
MA

(d) Control calculation intensity

Figure 6.6: SMC control results with performance tuned reaching law.

The plot of the angular velocities (b) shows that the new reaching law does
not stabilise at a constant rate, but more aggressively drives the errors to zero.
This is also evident from the plot of the control inputs (c) which spend more
time in saturation. The plot of calculation intensity (d) also reflects the increased
performance as it can be seen that initially there is a periodof high intensity which
reduces when the states converges to their set points. Execution time is 0.20 s,
equivalent to 250 times real-time computation.

106

Chapter 6: Sliding Mode Control in QSS Systems

6.4.4 Discussion of the Final Error

From all the graphs shown in this chapter so far it seems that both the attitude
and angular velocity states converges nicely to zero. Figure 6.7 shows a close up
plot of the states after the convergence; these plots corresponds to the controller
parameters with results presented in Figure 6.6.

40 50 60 70 80 90
−6

−4

−2

0

2

4

x 10
−4 Attitude States

Time [s]

A
tti

tu
de

 [r
ad

]

η

1

η
2

η
3

(a) Attitude response

40 50 60 70 80 90

−2

−1

0

1

2

x 10
−4 Angular Velocity States

Time [s]

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

ξ

1

ξ
2

ξ
3

(b) Angular velocities

Figure 6.7: SMC control in steady state. Bounded oscillations are evi-
dent.

The plots show that the states does not converge to zero exactly but ends in
bounded oscillations. This is what can be expected for a QSS2based system;
See Section 3.3 on page 38 which explains that oscillatory region is proportional
to the quanta selection. In practice one can select quanta small enough that this
region is insignificant. See Subsection 4.4.3 on page 63 for asimilar discussion on
quanta selection on estimation errors for the QSS2 based Extended Kalman Filter.
Another possibility could be to implement a small dead-zonefor the actuators in
order to avoid excessive actuation in this region.

6.5 Chapter Summary

This chapter introduced sliding mode control for quantisedstate systems and de-
veloped a controller structure, and corresponding software implementation, that
can stabilise a large class of non-linear systems, even in the presence of distur-
bances and model uncertainties.

107

Section 6.5: Chapter Summary

The proposed object oriented controller structure is highly adaptable and each
component can be replaced by customised elements to suit specific application
requirements. The approach was verified on a deep space probeattitude control
example.

The practical relevance of this will be investigated further in the following
chapter, which provides results in presence of uncertainties and estimation errors.
However, it is reasonably to expect that if the quanta are selected small enough
to result in oscillations that are not significant compared to the uncertainty of the
state knowledge then these oscillations will not have any practical significance.

The presented algorithm concerns state stabilisation, however, the proposed
structure can easily be adapted to provide tracking; a suitable methodology is
developed in [Khalil, 2000].

108

Evaluation of Estimation
Based Control 7
This chapter brings together the results from the previous chapters and provides
simulated results for estimation based control of the deep space probe case using
the QSS based Extended Kalman Filter and the QSS based controller structures
developed in the previous two chapters.

7.1 Introduction and Infrastructure for Evaluation

The previous chapters saw the development of an estimator and two control al-
gorithms which are specifically designed to be implemented using quantised state
systems. The two chapters on control algorithms provided evaluation of control
performance under ideal conditions, i.e. perfect state knowledge and no distur-
bances or uncertainties. This chapter investigates performance under more realis-
tic settings including state estimation errors, dynamic disturbances and uncertain
model parameters. Consider Figure 7.1 which reflects the structure that will be
used in the evaluation approach of this chapter.

There are two major parts in the structure; A so-called "truth model", which is
implemented inSimulinkand which simulates the physical system with all details,
and a control part implemented in DEVS which consists of an internal control
model, an estimator, and a controller. The two parts exchange control inputs and
sensor outputs through a network and the communication is facilitated in both
parts by specific objects responsible for communication andtime synchronisation.

The infrastructure and the comparative study of control algorithms are the
contributions of the chapter. Section 7.2 will first describe the evaluation case,
and then the mechanism for interaction between the DEVS based algorithms and
theSimulinksimulation environment. Thereafter, the two following sections will
provide results first for the objective directed control algorithm and then for the

Section 7.2: Case Study DetailsS i m u l i n k S i m u l a t i o n S i m u l i n k R u n n e r
Si muli nkDSPM od e
l DEVSAd apt or DEVSAd apt or Q S S / E K F E s t i m a t o rQ S S 2 D S P M o d e lC o n t r o l l e r

T C P / I PM e a s u r e m e n t sC o n t r o l
Figure 7.1: Infrastructure for estimation based evaluation. A model rep-
resenting the "real" plant is simulated usingSimulinkand the estimator
and controller are implemented in DEVS. Communication between the
two is facilitated by a TCP/IP network link

sliding mode control algorithm.

As an example of the declarative manner in which models, controllers and
estimators are constructed and configured the complete codelisting for setting up
the case as presented in in Section 7.4 can be found in Appendix C on page 191.

7.2 Case Study Details

The case study that will be used for evaluation in this chapter is based on the
Deep Space Probe (DSP) model presented in Chapter 4 on page 51. During the
DSP mission it is envisioned that it will have to conduct a fly-by of Jupiter in
order to gain a gravity boost of its∆V (Speed wrt. the target planet), consider
Figure 7.2.

During the fly-by the DSP is required to autonomously maintain inertial point-
ing of its antenna dish towards the Earth in order to transmittelemetry throughout
the whole manoeuvre. During the fly-by the DSP will experience temporary sen-
sor unavailability, due to eclipse, and attitude disturbances because of influence
from the Jovian magnetic and gravitational fields. With thisscenario as inspira-
tion the following paragraphs will give more details on the case.

Sensor Models
In Chapter 4 on page 51 the DSP used two vector observations toreconstruct atti-

110

Chapter 7: Evaluation of Estimation Based Control

Flight Path

To Earth

Figure 7.2: Inspiration for the case study; A Jovian fly-by.

tude and angular velocity information. These sensors are again available, but are
now sampled at 5 Hz for the sun-sensor and 0.5 Hz for the star-sensor. An In-
ertial Measurement Unit (IMU) measuring angular velocities will also be used
for the evaluation of the sliding mode controller later on. The IMU is sam-
pled at 10 Hz and provides an accuracy represented by a standard deviation of
σIMU = 0.0001 o/s.

The simulations to be presented in the following will demonstrate the effect
of temporarily loosing information from the sun-sensor which is imagined to be
eclipsed by Jupiter, during this time it is up to the estimator to provide the best
possible state-estimate despite the fact that the remaining sensors do not provide
full state observability.

Disturbances
Most notably the fly-by will cause attitude disturbances in terms of gravity gra-
dient torques and magnetic torques. For modelling simplicity only the latter will
be considered here, however, from a control point of view thetwo type of distur-
bances are qualitatively similar, and results can be generalised to cover both. The
magnetic torque on the spacecraft is expressed by [Fortescue et al., 2003]:

τ = m × (A(θ)B(t)) (7.1)

whereA(θ) is a direction cosine matrix parametrised by the angular position
states which describes the transformation from inertial coordinates to spacecraft
body coordinates,B is the ambient magnetic field in inertial coordinates, givenin
of units Tesla, andm is the magnetic moment of the DSP in units ofAm2.

The magnetic moment of the DSP arises due to current loops andmaterials
with magnetic properties. We assume thatm consists of two componentsm1

111

Section 7.2: Case Study Details

andm2 which respectively represent a known magnetic moment determined from
pre-launch calibrations tom1 = [0.3 − 0.2 0.7]T and an unknown component
m2 = [0.4 0 0]T .

The truth model inSimulinkimplementsm1 + m2 to calculate the magnetic
torque, and the sliding mode controller will make use ofm1 as part of its dynam-
ical uncertainty adaption. To support the latter; availability of a magnetometer
is assumed which provides measurements of the local magnetic field in the body
frame of the DSP at a rate of 1 Hz.

A simplified model of the Jovian magnetic field near the equatorial plane can
be expressed as follows under the assumption that the field resembles that of a
simple dipole field and that the field strength is about 15 times that of the near
Earth environment.

B(t) = B = [0 0 0.6]T mT

While this is a very simplified model it is adequate to demonstrate the ability of
the controllers to cope with dynamical disturbances.

Model Uncertainty
The truth and control model have differing parameters in order to introduce model
uncertainty; the control model implements the parameters of the dynamic model
presented in Equations (4.12 on page 60) and (4.13 on page 61). The truth model
implements an inertia matrix with perturbed parameters compared to the control
model. The truth model inertia matrix is:

J =




28.0 −0.3 −1.1
−0.3 29.0 −1.6
−1.1 −1.6 54.0




The model for the thruster actuation system was introduced in Section 6.4 on
page 101. It is comprised of throttleable thrusters from 0 to0.8 N with a torque
arm of 50 cm. This information is used in the control model, while the truth-model
has different values for the torque arm lengths:

l = [0.48 0.52 0.55]T m

In summary; the control and truth model differ both in inertia parameters and
thrust model parameters and hence will contribute to providing a realistic measure
of performance for the controllers under realistic circumstances.

112

Chapter 7: Evaluation of Estimation Based Control

7.2.1 Interconnection with Matlab/Simulink

As indicated in Figure 7.1, exchange of data between the DEVSand Simulink
simulation environment is network based. This subsection provides details on the
implementation of this scheme. Consider Figure 7.3 which isa class diagram of
the involved classes.

MatlabAdaptor+MatlabAdaptor()+start()+stop()+getDevsInput()+setDevsOutput()+gotoTime()+enableDebug()
«interface»RendevouzAdaptor+start()+stop()+gotoTime()+getDevsInput()+setDevsOutput()DevsRendevouzRunner+DevsRendevouzRunner()+run()

DevsCoordinator+DevsCoordinator()+deltaExt()+timeAdvance()+deltaInt()
Figure 7.3: Class diagram for DEVS model with IO to/fromSimulink.

A replacement for theDevsRunner class introduced in Subsection 2.2.3 on
page 23 calledDevsRendezvousRunner was developed; It is composed of
a DevsCoordinator class which holds the system to be simulated/executed
and a class that implements theRendezvousAdaptor interface. The runner
class and the adaptor interface allows two systems to simulate/execute in lock-
step by each taking a specified forward step in time and then exchange inputs and
outputs, before taking another step to the next rendezvous point. See Figure 7.4
for an overview of the protocol for advancing the simulations.D E V S t r a n s m i tn e x t r e n d e z v o u zt i m e D E V S / S i m u l i n ks i m u l a t e u n t i ln e x t r e n d e z v o u z I n p u t /o u t p u t i se x c h a n g e d

Figure 7.4: The steps in the rendezvous protocol.

The MatlabAdaptor class implements this interface and communicates
through socket-based TCP/IP networking with a runningSimulink simulation,

113

Section 7.3: Optimising Control Results

which on its part implements a specificMatlab S-function taking care of com-
munication on theSimulinkside and implements a sample time to match the spec-
ified forward step time. This has been the mechanism used in the remainder of the
chapter to close the loop between the control system implemented in DEVS and
the "truth model" implemented inSimulink.

For a concrete application the next step after verification through simulations
would be to write a new implementation for theRendezvousAdaptor inter-
face which communicates with the sensors and actuators on the spacecraft. This
way the control system can transition from a simulation environment to the appli-
cation environment without changing a single line of code inthe control system
software.

7.3 Optimising Control Results

This section provides results for the control algorithm developed in Chapter 5
on page 69. The rendezvous interval that is used to synchronise the truth model
simulation in Simulink and the control/estimation software in DEVS has been
set to 0.05 s. The QSS2 implementation of the DSP model utilises quanta of
∆Q = 10−5 rad for the attitude states and∆Q = 10−6 rad/s for angular velocity
states. These values corresponds to the values chosen in Chapter 4 on page 51 in
order to be insignificant compared to the estimation error.

7.3.1 Simulation Results - Optimising Control

This section shows results of the optimising controller applied on the case de-
scribed above. A performance function to provide inertial attitude stabilisation
was found as:

vc(θ, ω) = 30ω2
1 +30ω2

2 +50ω2
2 +5(30(θ1 −r1)

2 +30(θ2−r2)
2 +50(θ3−r3)

2)

wherer = [r1 r2 r3] are the attitude references for each corresponding Euler
angle. The leading factor before each term is the inertia of the corresponding axis
in order to provide a weighting that corresponds to the difficulty of turning around
the corresponding axis. The leading factor, 5, in front of all the attitude related
terms is an empirically found relative weighting between keeping small angular
rates and reaching the target attitude quickly.

114

Chapter 7: Evaluation of Estimation Based Control

Other parameters for the controller are the saturation limits of±0.8 N for each
thruster, and the maximum allowed rate of change of the control signals which
were found to be:

u̇max = −u̇min = [0.3 0.3 0.3]

In this case the values were found by trial and error rather than considering phys-
ical limitations of the thrusters, i.e. actuator dynamics is considered fast enough
to track this signal. Finally, a control cost vector was found by a few simulation
iterations to provide good performance:

P =




0.15 0 0
0 0.15 0
0 0 0.15


 (7.2)

The simulations results for the case with these controller parameters can be
seen in Figure 7.5 for an attitude reference of:r = [0.1 − 0.5 0.7]T and ini-
tialisation conditions of zero attitude and a significant roll around the axis of most
inertia. Further, from time 200 s to 300 s no sun-sensor measurements are avail-
able due the sensor being eclipsed by Jupiter.

The (a) and (b) graphs on the figure show the attitude and angular velocities
reported by the truth model throughout the simulation; it can be seen that the
controller effectively reduces the angular velocities andpositions the probe at the
correct attitude within 200 s. During the following period where the sun-sensor
is unavailable small drifts in the attitude, graph (a), can be seen, specially for the
θ3 state and at 300 s, where the sensor becomes available again,the attitude states
are again stabilised at their references.

The (c) and (d) graphs show the estimation error by the QSS/EKF filter for at-
titude and angular velocity states, respectively. The initial error is quickly reduced
on the first sample on both graphs and continues to reduce gradually until 200 s
where the sun-sensor becomes unavailable. Hereafter it is clear that the attitude
estimates, graph (c), begins to drift over the next 100 s due to the limited observ-
ability with the available star-sensor. At time 300 s the sun-sensor again becomes
available and the estimate quickly converges again.

The (e) graph shows actuation signals to the thrusters. Initially there is a large
response in order to cancel the roll-rate whereafter all actuation signals converge
close to zero. After the sun-sensor becomes available afterthe blinded period
ending at time 300 s, it can be seen that the thrusters increase activity in order to
re-align the craft to the proper attitude.

115

Section 7.3: Optimising Control Results

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

1.5

2

2.5

3

Time [s]

E
ul

er
 A

ng
le

s
[r

ad
]

Atittude of the DSP

θ

1

θ
2

θ
3

(a) Truth model attitude

0 50 100 150 200 250 300 350 400

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(b) Truth model angular velocities

0 50 100 150 200 250 300 350 400
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

E
rr

or
 A

ng
le

s
[r

ad
]

Attitude Estimation Error

θ

1

θ
2

θ
3

(c) Attitude estimation error

0 50 100 150 200 250 300 350 400
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [r

ad
/s

]

Angular Velocity Estimation Error

ω

1

ω
2

ω
3

(d) Angular velocities estimation error

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(e) Control input signals

0 50 100 150 200 250 300 350 400
−6

−4

−2

0

2

4

6
x 10

−4

Time [s]

M
ag

ne
tic

 D
is

tu
rb

an
ce

 T
or

qu
e

[N
m

]

Disturbance Torque

m

1

m
2

m
3

(f) Magnetic disturbance

Figure 7.5: Jupiter gravity assist results with the optimising controller.

116

Chapter 7: Evaluation of Estimation Based Control

The (f) graph shows the disturbance torque due to the magnetic disturbance.
It can be seen how the directionality of the disturbance is linked to changes in
attitude of the craft.

In summary the estimation and control algorithm combined perform well.
However, a number of points are worth further discussion; from the graph show-
ing actuation signals it can be seen that the signals have a high-frequency low
amplitude switching component. This behaviour was also observed on the simu-
lations carried out in Chapter 5 on page 69. This behaviour isdue to the nature of
the control law which switches between positive and negative values of the input
slope, see Equation (5.8 on page 73), this behaviour is not particularly desirable
for this case since it means that propellant is consumed.

Second point for discussion is the final error; from the graphs it is clear that
there is some motion close to the reference values. Zooming on the plots it can be
seen that this corresponds with amplitudes of the estimation error. Further, since
the magnetic disturbance has an amplitude that is relative small compared to the
estimation errors it is difficult to validate the robustnessproperties towards this
disturbance.

7.3.2 Results with Exaggerated Disturbances

In order to address the two points discussed above a new simulation case will
be presented where a low-pass filter is applied to the controlsignals before being
applied to the truth-model. The idea is to see if this is a practical remedy to reduce
propellant consumption while not affecting performance. The filter will have a
cut-off frequency of 0.3 Hz, which is chosen slightly higherthan the maximum
frequency at which the controller can alternate between control signal saturation
limits.

Secondly, we will let the sun-sensor be available throughout the whole simula-
tion, but between time 200 s and 300 s the magnetic disturbance will be multiplied
with a factor of 25 to investigate the controller response tothis disturbance. The
results are presented in Figure 7.6.

Observing first the (e) graph it can be seen that the control inputs are now
much more smooth than in the corresponding graph on Figure 7.5. Apart from
removing the high frequency oscillations the control inputcurves are equivalent
and it can also be observed that performance of the controller is equivalent to the
previous case. In summary; the addition of the low-pass filter clearly is a benefit

117

Section 7.3: Optimising Control Results

0 50 100 150 200 250 300 350 400

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

E
ul

er
 A

ng
le

s
[r

ad
]

Atittude of the DSP

θ

1

θ
2

θ
3

(a) Truth model attitude

0 50 100 150 200 250 300 350 400
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(b) Truth model angular velocities

0 50 100 150 200 250 300 350 400
−0.05

0

0.05

0.1

Time [s]

E
rr

or
 A

ng
le

s
[r

ad
]

Attitude Estimation Error

θ

1

θ
2

θ
3

(c) Attitude estimation error

0 50 100 150 200 250 300 350 400
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [r

ad
/s

]

Angular Velocity Estimation Error

ω

1

ω
2

ω
3

(d) Angular velocities estimation error

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(e) Control input signals

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time [s]

M
ag

ne
tic

 D
is

tu
rb

an
ce

 T
or

qu
e

[N
m

]

Disturbance Torque

m
1

m
2

m
3

(f) Magnetic disturbance

Figure 7.6: Results with filtered inputs and exaggerated disturbance.
Note the smoother control input signals.

118

Chapter 7: Evaluation of Estimation Based Control

in terms of implementation and has no significant effect on overall performance.

If the results are observed after time 200 s it is clear from the (f) graph that
there is a sudden increase in the disturbance input and errors start to develop for
both velocity and attitude states. It can also be seen that the controller reacts to
the disturbance and manages to reduce angular velocities, graph (b), to zero again
and stabilise the attitude states (graph (a)), although with a final static error. The
(c) and (d) also clearly show that the estimator cannot provide unbiased estimates
in the presence of this very low-frequent disturbance.

The amplitude of the final error is due to Pareto optimality inthe performance
function between the objective of driving the state performance function to zero
and at the same time drive control inputs to zero. Reducing control cost will
reduce the final error, but also provide a less dampened response to the initial
error.

7.4 Sliding Mode Control Results

This section describes evaluation results obtained for thesliding mode controller
structure. Results are presented for the case above with exaggerated disturbances
in order to evaluate robustness properties of the control scheme.

We define the control objective to be attitude stabilisationto specified set-
pointsηr = [ηr,1 ηr,2 ηr,3]

T and represent this control objective in the following
objective function for the guidance controller (cf. Subsection 6.3.2 on page 98):

v = (η1 − ηr,1)
2 + (η2 − ηr,2)

2 + (η3 − ηr,3)
2

A dynamic disturbance bound calculation, as proposed in Subsection 6.3.5 on
page 100, was implemented to provide bounds on the magnetic disturbance input
described by Equation (7.1). The bound is calculated using the known magnetic
moment of the craft,m1, and the ambient magnetic field as measured by the on-
board magnetometer,Bm, i.e. the bound is given by:

|τ | = 1.5|m1 × Bm| (7.3)

where the leading factor, 1.5, ensures additional robustness towards unknown
magnetic moments (e.g.m2 which is part of the truth model, but not the con-
trol model). The settings of remaining controller parameters can be seen by the
API calls below:

119

Section 7.4: Sliding Mode Control Results

smc.setSaturation(new double[]{0.8, 0.8, 0.8});
smc.setProportionalGain(new double[]{0.06,0.06,0.06});
smc.setBoundaryLayer(new TanhLayer(0.1));

Otherwise initial conditions in the truth model and QSS/EKFestimator is as
in the previous section.

7.4.1 Simulation Results - Sliding Mode Control

Figure 7.7 provides results for the sliding mode controlleron the case with exag-
gerated disturbance inputs.

From graphs (a) and (b) it can be seen that performance is excellent in terms
of reaching the attitude reference and maintaining it even in the presence of the
disturbance signal. Graphs (c) and (d) also show that the estimator performs well.

However, looking at the (e) graph it is clear that the controlsignal is not de-
sirable for a real system due to the extreme switching that isevident. This phe-
nomenon is not due to chattering, but due to the coupling between the estimation
error and the equivalent control, cf. Equation (6.5 on page 91). This will be
investigated further in the following.

7.4.2 Effect of Estimation Error on Equivalent Control

The results presented in Figure 7.8 are for a simulation where only the equivalent
control is applied to the system, i.e. the control will attempt to bring all velocity
states to zero.

It can be seen that the control is effective in doing so, but even in steady-
state there is significant control switching and perturbations to velocity states as a
consequence. This control action is driven by the estimation errors in the angular
velocity states.

Hence, to improve the situation, accuracy of the state estimation must be in-
creased, which will lead to reduced noise-driven actuation. This will be achieved
by adding the inertial measurement unit sensor described insubsection 7.2. Filter-
ing the control signal (as done previously for the optimising controller) is not an
option since it will introduce chattering, due to the unmodeled delay in applying
the control signal [Khalil, 2000].

120

Chapter 7: Evaluation of Estimation Based Control

0 50 100 150 200 250 300 350 400

−0.5

0

0.5

1

1.5

2

2.5

3

Time [s]

E
ul

er
 A

ng
le

s
[r

ad
]

Atittude of the DSP

θ

1

θ
2

θ
3

(a) Truth model attitude

0 50 100 150 200 250 300 350 400

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(b) Truth model angular velocities

0 50 100 150 200 250 300 350 400

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time [s]

E
rr

or
 A

ng
le

s
[r

ad
]

Attitude Estimation Error

θ

1

θ
2

θ
3

(c) Attitude estimation error

0 50 100 150 200 250 300 350 400
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [r

ad
/s

]

Angular Velocity Estimation Error

ω

1

ω
2

ω
3

(d) Angular velocities estimation error

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(e) Control input signals

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time [s]

M
ag

ne
tic

 D
is

tu
rb

an
ce

 T
or

qu
e

[N
m

]

Disturbance Torque

m
1

m
2

m
3

(f) Magnetic disturbance

Figure 7.7: Sliding mode results. The control signals are clearly unde-
sirable.

121

Section 7.4: Sliding Mode Control Results

0 50 100 150

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(a) Truth model angular velocities

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(b) Control input signal

Figure 7.8: Results with only Equivalent Control. Control switching
caused by estimation error is evident

7.4.3 Sliding Mode Control with IMU

Figure 7.9 provides results for the sliding mode controlleron the case with exag-
gerated disturbance, with an added IMU sensor for improved estimation accuracy.

It can be seen from the top graphs that performance in terms ofreaching time
is equivalent to the non-IMU case. However, in steady state almost no perturba-
tions are visible on the states and after time 250 s no reaction to the disturbance is
evident at all. It is noted, however, that theθ3-state is slow to converge fully to its
reference.

Observing the middle graphs it is seen that for theθ3-state estimator con-
vergence is slow, which was reflected in the attitude response seen on the graph
above. The reason for this is believed to be that with the veryaccurate IMU
sensor added to the configuration the Extended Kalman Filterhas become very
confident, i.e. it has very low co-variance traces in steady state operation. It is
possible that the situation can be improved by injecting additional process noise.
Angular velocity estimation errors can be seen to correlatewith the control input
signal, which is natural since there is some difference between the truth and con-
trol model used due to uncertainties. Also, it can be seen that the estimation error
increases when the exaggerated disturbance is in effect.

Looking at the bottom-left graph it is clear that the controlsignal is now better
suited for use on a real system with less noise driven actuation. However, some

122

Chapter 7: Evaluation of Estimation Based Control

0 50 100 150 200 250 300 350 400
−0.5

0

0.5

1

1.5

2

2.5

3

Time [s]

E
ul

er
 A

ng
le

s
[r

ad
]

Atittude of the DSP

θ

1

θ
2

θ
3

(a) Truth model attitude

0 50 100 150 200 250 300 350 400

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(b) Truth model angular velocities

0 50 100 150 200 250 300 350 400

−0.1

−0.05

0

0.05

0.1

Time [s]

E
rr

or
 A

ng
le

s
[r

ad
]

Attitude Estimation Error

θ

1

θ
2

θ
3

(c) Attitude estimation error

0 50 100 150 200 250 300 350 400
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−4

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [r

ad
/s

]

Angular Velocity Estimation Error

ω

1

ω
2

ω
3

(d) Angular velocities estimation error

0 50 100 150 200 250 300 350 400
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(e) Control input signals

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time [s]

M
ag

ne
tic

 D
is

tu
rb

an
ce

 T
or

qu
e

[N
m

]

Disturbance Torque

m
1

m
2

m
3

(f) Magnetic disturbance

Figure 7.9: Results with IMU. Control switching is significantly re-
duced compared to previous results.

123

Section 7.5: Chapter Summary

switching is still observed, especially during the first 100s of the simulation.

In part this switching can be explained by chattering which is due to the un-
modelled sample-and-hold delay of the control signal applied to the truth model.
This can be reduced by increasing the rendezvous frequency.A significant part
of the switching, however, is ascribed to attitude estimation error which changes
rapidly during the first 100 s and causes the guidance controller to update the
angular velocity reference often. This part can be reduced by increasing attitude
estimation accuracy, e.g. by adding a high performance star-tracker.

In summary; it is concluded that the sliding mode controlleroffers very good
performance in terms of reaching time and disturbance rejection, but it is very
sensitive, in terms of desirability of the control input signal, to the estimation
error.

7.5 Chapter Summary

This chapter described an evaluation case for evaluating the algorithms developed
in the previous chapters under conditions that resemble those experienced by a
real-life control problem, i.e. effects of disturbances, uncertainties, estimation er-
rors, and synchronisation.

Using the case the controller structures developed in the past two chapters was
evaluated when driven by estimates obtained from the QSS/EKF estimator devel-
oped previously. A truth model was implemented in Simulink and input/output
signals between the Simulink model and the DEVS based control/estimation al-
gorithms were facilitated by a special adaptor class to provide rendezvous based
data exchange.

The optimising control scheme showed to be able to guide the attitude to the
desired reference, but it was not very robust against disturbances. The sliding
mode controller showed excellent performance in terms of reaching time and dis-
turbance rejection, but is sensitive to estimation errors.

124

Part III

Hybrid Systems, Simulation and
Control

Hybrid Systems and
QSS Based Simulation 8
This chapter introduces a control oriented specification ofhybrid system models
and contributes with a quantised state systems approach forsimulating and ex-
ecuting such models. The approach features conservative event detection and
can be initialised declaratively from hybrid system specifications expressed in
a declarative language, in this case based on the eXtended Markup Language
(XML).

8.1 Introduction and Motivation

Hybrid system models capture both continuous and discrete behaviour of a given
system and hence possess more power of expression compared to pure continuous
models or pure discrete models. However, due to this expressiveness and the
associated difficulty of obtaining strong theoretical results there is not today a
unified definition of exactly what a hybrid system is, or a unified notation and
terminology for such systems.

Instead there are many different hybrid system model definitions tailored to
specific problem domains or solutions strategies, e.g. control of piece-wise-linear
systems [Bemporad and Morari, 1999], control of piece-wise-affine systems [Ha-
bets et al., 2006], or model verification [Henzinger, 1996].

This chapter introduces a definition of hybrid system modelswhich is suitable
for supervisory control applications, as will be demonstrated in the next chapter.
The definition, given in Section 8.2, is close to the definition given in [Branicky
et al., 1998], but differs in some aspects. Associated with the specification is
a dedicated language formulated in eXtended Markup Language (XML), which
allows users to declare hybrid system models in a format comprehensible to hu-
mans, which can also be processed by computer algorithms.

Section 8.2: Hybrid System Models

Section 8.3 contributes with a method to execute hybrid system models, as
specified in XML, as part of a control system. The key point here is to provide
conservative detection of discrete location transitions,and secondly to provide an
algorithm that can co-exist with an estimation algorithm which also manipulates
the state. Section 8.4 gives some details on the implementation of the approach
and the translation from XML files to software entities.

Finally, Section 8.5 provides a full declaration for a hybrid system model
known asRaibert’s Hopper[Back et al., 1993] and provides simulation results
for the state evolution of the system based on the developed algorithm.

The work on a control oriented hybrid systems specification and associated
XML description is published in [Laursen et al., 2005, Alminde et al., 2006a, Al-
minde et al., 2006b] as part of a multi-disciplinary framework for working with
hybrid system models called Simulation, Observation and Planning in Hybrid
Systems (SOPHY). Appendix A on page 173 provide the hybrid system model
definition used in SOPHY from which the following definition is extracted. The
Appendix also covers composition of hybrid systems which isnot covered in the
main dissertation.

8.2 Hybrid System Models

This section introduces the formal definition of a hybrid system that will be used
in the remainder of this dissertation. In our terminology wewill associate the
term location to cover each of the different continuous systems embedded in the
hybrid system model, and shifts between locations are called transitions, which
are taken when atransition conditionis true. During transitions between locations
the state can be discretely altered byreset conditions, and finally transitions can be
triggered byinput eventsand each transition can emitoutput eventswhen taken.

Definition 8.1 (Hybrid System Model)
A hybrid system model is an 8-tuple:

H = (Q,X,U, Y,E,F ,G,T)

With spaces defined as:
Q = {q |1 ≤ q ≤ s}: is the set of location indexes with cardinal numbers ∈ Z+

X ⊆ Rn: is the continuous state-space with dimensionn ∈ Z+

U ⊆ Rm: is the continuous input-space with dimensionm ∈ Z+

128

Chapter 8: Hybrid Systems and QSS Based Simulation

Y ⊆ Ro: is the continuous output-space with dimensiono ∈ Z+

E =
{
e|e ∈ 2Σ

}
: is the set of possible input/output event labels, whereΣ is a set

of labels

and related maps:
F : Q×X × U → Ẋ : is a mapping onto the tangent bundleẊ of X
G : Q×X × U → Y : is a continuous output map
T : Q×X × U × E → Q×X × E: is a transition map

Remark 8.1.1
Time is not explicitly given in the definition of the system; however, with no
loss of generality the model can include an extra state in thecontinuous map to
represent explicit time

Remark 8.1.2
The mapF , as defined above, allows Ordinary Differential Equations (ODE), but
not differential algebraic or partial differential equations

At any point in time the future evolution of a given hybrid system model can
be described by its current location, state values, and input values. This we define
as the hybrid state of the system and the history of the hybridstate evolution is the
hybrid trajectory.

Definition 8.2 (Hybrid State)
At any time the total state of a hybrid system model is described by the triple:

S = (q ∈ Q,x ∈ X,u ∈ U)

Definition 8.3 (Hybrid Trajectory)
Associated with an interval of time:t = [t0; tf] is the hybrid trajectory:

T (t) = (q(t),x(t))

whereq(t) is a piece-wise constant function andx(t) is a piece-wise continuous
function.

The maps, as described in the definition of hybrid system models, are de-
scribed very generally. The next definition provides more structure by associating
a specific map to each discrete location. This provides a moreoperational ter-
minology for specifying hybrid system models and implementing corresponding
representations in software.

129

Section 8.2: Hybrid System Models

Definition 8.4 (Location Indexed Maps)
The forcing map and output map are refined with more structure, as follows, in
order to allow sub-maps to be specified for each discrete location:

F =
{
{fq}q∈Q

: q ×X × U → Ẋ
}

G =
{
{gq}q∈Q

: q ×X × U → Y
}

A similar exercise is undertaken for the transition map by representingT by
transitions mapping between specific locations, and with well-defined transition
domain and reset condition.

Definition 8.5 (Transition Map)
The transition mapT is composed of transition relations between specified loca-
tions:

T =
{
{tr}r∈{1,...,p} |Q×X × U × E → Q×X × E

}

where each transition relation is a 6-tuple:

τr =
(
q1, q2, jr(·), rr(·), er,in ∈ 2Σ, er,out ∈ 2Σ

)

where:
q1 ∈ Q: is the source location
q2 ∈ Q: is the destination location
jr(·) : X × U → {true, false}: transition equationwhich triggers the transition
rr(·) : X × U → Q×X: is an algebraic reset equation of the state
er,in: is an input event that causes the transition to trigger
er,out: is an output event that is emitted when the transition is taken

Remark 8.5.1
When a transition relation,jr(·), turns true or an input event label is received
which is contained iner,in the corresponding reset condition and location jump is
always taken.

8.2.1 Graphical Representation of Hybrid System Models

With the definitions from above it is possible to give a graphical representation of
a hybrid system model. Consider Figure 8.1 on the facing pagewhich represents
a hybrid system model with two discrete locations and three transition relations.

130

Chapter 8: Hybrid Systems and QSS Based Simulation

q = 1

ẋ = f1(x,u)

y = g1(x,u)

q = 2

ẋ = f2(x,u)

y = g2(x,u)

j1(x, u) : r1(x,u)

e1,in : e1,out

j2(x, u) : r2(x,u)

e2,in : e2,out

j3(x, u) : r3(x,u)

e3,in : e3,out

Figure 8.1: A graphical representation of a hybrid system model.

Each location is identified by the value ofq and each has distinct state and
output maps. Transition relations are drawn as directed edges from source location
to destination location. Above each transition relation the transition equation is
written followed by the state-reset equation. Under the transition relation the set of
input labels that can trigger the transition is written followed by the set of labels
that are emitted when the transition is taken. Later in this chapter a concrete
example of a hybrid model definition and associated graphical representation will
be presented.

8.2.2 XML Specification of Hybrid Systems

In order for hybrid system models to be declared as input to computer algorithms
as part of a declarative approach a format must be available which is both human
readable and at the same time interpretable for a computer. Therefore a specifica-
tion using eXtended Markup Language has been developed thatmaps the hybrid
system model definition as described above. XML is a declarative language that
is well suited for the purpose.

The XML format for hybrid systems definitions is described inan XML Doc-
ument Type Definition (DTD) which describe the allowed tags,their allowed hi-
erarchy and multiplicity. Table 8.1 gives and overview of the tags defined in the
DTD and their meaning. The complete DTD specification is given in Section A.5
on page 180.

The table illustrates how the specification is divided in three sections; one
section giving general information such as model name, parameters and constants,

131

Section 8.2: Hybrid System Models

Element Data contained in element
SophySystem

name The name of the subsystem
documentation? Text describing the subsystem model
hints? Parameters to be passed on to on-line system

hint+(name) Name (in attribute) and value (string) pair for hint
constants? Collection of constants to be substituted in equations

constant+(name) Name (in attribute) and value pair for the constant
states

state*(documentation) Name of state, optional documentation in attribute
inputs

input*(documentation) Name of input, optional documentation in attribute
outputs

output*(documentation) Name of output, optional documentation in attribute
locations

location+
name The name of the location
documentation? Documenting text for this location
diffequation*(state) A mathematical expression giving the differential

equation for each state
outputmap*(output) Mathematical expression involving state variables

that evaluates to an output value for this output
transitions?

transition+
name The name of the transition
documentation? Documenting text for this transition
domain Logical expression involving state and input variables
reset Reset associated with this transition

destination Name of destination location
statereset*(state) Expression to reset the state indicated as attribute

inputevent* Names of events that are emitted when transitioning
outputevent* Names of events that can trigger this transition

Table 8.1: Tags and their meaning in XML descriptions of hybrid system
models. ’?’ means 0 or 1 corresponding tag required, ’*’ is zero to many
and ’+’ means at least one. Tags in parenthesis, following a tag definition,
are tags that must be included within the tag being defined [Consortium,
2006].

a second section defining the state-, input-, and output spaces, and a final section
providing details for each location in the model. It can alsobe seen that optional
documentation tags and attributes are included to provide clear binding between
model elements and documentation. This can e.g. be used in a graphical model
viewer, where the documentation can pop-up when the mouse points to a specific
location or transition.

132

Chapter 8: Hybrid Systems and QSS Based Simulation

A full example of a model defined in this format can be seen in Section A.6
on page 182. The following shows an example specification of asingle location
for a system of a free-falling object and a transition associated with the event of
the object hitting the ground.

< l o c a t i o n >
<name>FreeFa l l < / name>
< d i f f e q u a t i o n s ta te ="Position" > Speed< / d i f f e q u a t i o n>
< d i f f e q u a t i o n s ta te ="Speed" > −9.82< / d i f f e q u a t i o n>
<outputmap ou tpu t="Position" > Po s i t i o n < / outputmap>
<outputmap ou tpu t="Speed" > Speed < / outputmap>

< t r a n s i t i o n s >
< t r a n s i t i o n >

<name> GroundImpact< /name>
<domain>Po s i t i o n & l t ; 5< / domain>
< re se t>

< d e s t i n a t i o n> Crashed < / d e s t i n a t i o n>
< s t a t e r e s e t s ta te ="Speed" > 0 < / s t a t e r e s e t>

< / re se t>
< / t r a n s i t i o n >

< / t r a n s i t i o n s >
< / l o c a t i o n >

8.3 Hybrid System Execution in DEVS/QSS

This section proceeds to describe a method based on DEVS and QSS that simu-
lates or executes a hybrid system models as defined above. A QSS approach to
simulation of hybrid system models was presented in [Kofman, 2004], but this
work extends the approach by adding state resets and modifying it to allow use
in execution environments (rather than just simulation), i.e. it can be used as part
of an on-line control system where the state variables can also be manipulated by
an estimator. Further, software is developed that automatically translates a hybrid
system model specified in the XML into executable code.

The challenge in simulating or executing a hybrid system model is state-event
detection, i.e. accurately detecting when a transition equation jr(·) turns true, at
which time, exactly, the related transition must be executed for a consistent result.
Many methods for hybrid simulation based on time discrete methods check the
transition equations each time step and if a condition has become true they use bi-
section or interpolation toroll-back the simulation to the event time [Barton and
Lee, 2002,Taylor and Kebede, 1997,Lieu et al., 1999]. Clearly, this is not suitable

133

Section 8.3: Hybrid System Execution in DEVS/QSS

for a method that supports use as a execution system; in this case causality must
be preserved.

x1

x2

q = 2

q = 1

R i g h tW r o n g

Figure 8.2: The problem of detecting events consistently in sampled
systems. Blue points represent discrete sample points.

Another problem in discrete time approaches to propagatingthe state of hybrid
system models is missed state-event detections; if the time-steps taken by the
algorithm are too large it may fail to activate the roll-backprocedure, consider
Figure 8.2. Here the dots represent the points in state-space corresponding to the
time instances where the propagation algorithm performs computation and the
shaded area is a transition domain; depending on the exact times of evaluation the
system may evolve along different trajectories.

The simulation architecture to be presented in the following paragraphs makes
use of the DEVS/QSS approach to provide consistent and conservative event de-
tection by extrapolating the current state and identifyingfuture state-events times.

8.3.1 Hybrid Execution/Simulation Architecture

Figure 8.3 depicts the software architecture that will be used to implement hybrid
system models in DEVS/QSS in terms of a block diagram.

The two maps,f andg, are based on the QSS2 function map described in

134

Chapter 8: Hybrid Systems and QSS Based Simulation

f(x,u)

∫

∫
g(x)

(u, u̇) (ẋ1, ẍ1)

(ẋ2, ẍ2)

(x̄1, ¯̇x1)

(x̄2, ¯̇x2)

(y1, ẏ1)

(y2, ẏ2)

State
Resets

HybridLocationControl(q,x+)

HybridMap HybridMap

(q,x+)

ein eout

Figure 8.3: Block diagram of architecture for simulating and execut-
ing hybrid system models. Example with two states, one input, and two
outputs.

Subsection 3.2.2 on page 33, but are extended to contain multiple embedded maps
and has an extra input port which receives information on thecurrent location,q,
and the state value following a transitionx+. When a message is received on this
port theQss2HybridMap switches to the associated set of equations for the new
location and recalculates output values and their derivatives.

The integrators each has two inputs; the first to receive derivate values from
the function map and the second to receive state reset eventseither from an estima-
tor or from theQss2HybridLocationControl class which handles hybrid
transitions.

The first output of the integrator is as previously, i.e. a first order state model
that is updated when the quantum criteria, Equation (3.6 on page 33) is ful-
filled. The new second output outputs the full second order state model, see Equa-
tion (3.5 on page 33) whenever the integrator block receivesnew input. This new
output is used in theQss2HybridLocationControl class to conservatively
detect state events and execute corresponding transitions. This is explained in
more detail in the following.

135

Section 8.3: Hybrid System Execution in DEVS/QSS

8.3.2 Hybrid Location Control

The Qss2HybridLocationControl (HLC) is the most important class in
terms of simulating/executing hybrid system models and will be described more
in depth in the following. The responsibilities of the classis to:

• conservatively predict location changes times

• execute location changes and associated resets

• react to incoming events and communicate output events on location changes

Of these the first responsibility is the most daunting and will be described in
the following. The core point is to predict when to schedule location changes,
i.e. to predict when the state values in the simulation will enter a region of the
state-space where the transition equationjr(·) of Definition (8.5) turns true. We
considerjr(·) as a logical relation of inequalities, e.g.:

j3(x,u) = (x1 < 5) ∧ (3x2 + 2x3 > 4) (8.1)

In order to predict location changes the shift of logic states of all inequali-
ties, which are part of all transitions in a given location, must be maintained and
predicted into the future. To this end the HLC class uses two inner classes to
represent transitions and inequalities respectively, seeFigure 8.4.

InEquality~InEquality()#timeToHit()#conditionCheck()#conditionChange()+getTransition()+toString()

Qss2HybridLocationControl+Qss2HybridLocationControl()+deltaInt()+deltaExt()+setEstimatorPresent()+addTransition()
Transition+Transition()~resetState()~evaluate()~inputEvent()~getOutputEvent()~getToLocation()

Figure 8.4: The HLC class and its two inner classes representing in-
equalities and transitions.

136

Chapter 8: Hybrid Systems and QSS Based Simulation

An InEquality object is created for each inequality in the hybrid system
model, like e.g. x1 < 5 from Equation (8.1), and assigned a unique id. The
timeToHit() method (to be described soon) is then called on allInEquality
objects which are relevant for the current location and the HLC schedules an in-
ternal DEVS event at the least positive time.

At the execution of internal event the logic state of the triggeringInEquali-
ty object is updated and it is checked if the full composite logical expression, e.g.
Equation (8.1) is fulfilled, using theevaluate() method. If the transition is en-
abled the HLC class utilises the methods in theTransition class to perform a
state reset and emit the correct output labels. If the logical expression is not ful-
filled; the HLC class does nothing but allows continued continuous state evolution
until the next inequality changes logic state.

Conservative Event Detection
As described above the HLC classes requires each inequalityto report when in
the future it will change logic state. This is possible sincewith theQss2Mapand
Qss2Integrator the trajectory is known into the future as it is given by the
parabolic model maintained in the integrator. The HLC receives this trajectory
from each integrator, as described above.

However, in the following we will require that the inequalities are scalar equa-
tions which are linear functions of the state and input, respectively. Thus we re-
quire that each inequality can be put on the following form, where, for simplicity,
z = [xT uT]T is the concatenation of the state and input vector respectively:

lid : aTz − b > 0, or (8.2)

lid : aTz − b < 0

Wherelid is an assigned unique identification to track the inequality. For a
numerical implementation on a computer we make no distinction between the
operator pair> and≥, as well as the pair< and≤.

The timeToHit() method must now determine when the inequality turns
true; given thatz, ż, z̈ are known from the integrators, we know the state will
evolve along the following parabolic path until the next event where new informa-
tion will be received:

z(τ) =
1

2
z̈(t0)τ

2 + ż(t0)τ + z(t0)

137

Section 8.3: Hybrid System Execution in DEVS/QSS

wheret0 indicates the time where the last information was received from the inte-
grators, by inserting this equation into the lefthand side side of Equation (8.2) and
setting the expression equal to zero, we obtain the characteristic equation:

1

2
aTz̈(t0)τ

2 + aTż(t0)τ + aTz(t0) − b = 0 (8.3)

which is a standard second order equation in the variable ofτ that can be solved
deterministically. Positive roots of this expression indicate times in the future
where the inequality will change logic state under the current trajectory ofz. If
there are two positive roots the least it chosen and if all roots are negative, meaning
that the state is moving away from the transition, then positive infinity is returned
by thetimeToHit() method.

Discussion of General Inequalities
A limitation in the approach from above is the restriction that the inequalities
must be on the form of Equation (8.2) which only accepts linear expressions. An
alternative approach, which has not been pursued, could be to allow general non-
linear expressions and then use a numerical approach, e.g. Newton iteration, to
determine the least positive root.

This approach has not been pursued for two reasons; the linear form intro-
duced in Equation (8.2) is adequate for the hybrid system models investigated in
the remainder of this dissertation and secondly the Newton iteration algorithm
does not guarantee convergence in all cases [Kreyzig, 1999], which makes it ill
suited for use in an on-line system.

8.3.3 Handling Estimator State Resets

When a hybrid location change results in a state-reset then all inequalities for the
new location are evaluated to determine their initial condition and if the set of
fulfilled inequalities triggers a transition upon initialisation then the HLC class
makes sure that the transition is taken immediately.

However, when the hybrid system model is executed with an estimator in the
loop which can also trigger reset events in the integrators amechanism must be
place in the HLC class to detect this and evaluate if the state-change caused any of
the equalities to shift logic state. The HLC class checks thetrajectory inputs from
the integrators and when it is detected that they have been reset, it reinitialises all
inequalities and checks for enabled transitions.

138

Chapter 8: Hybrid Systems and QSS Based Simulation

This approach is computationally expensive each time the estimator provides
a new update, but it is necessary to maintain a consistent logic state of the inequal-
ities that make up the transition equation.

8.4 Declaring Models for Simulation/Execution

The previous section described the infrastructure for simulating/executing hybrid
system models, and this section now proceeds to give some detail on the func-
tion calls required to set up a hybrid system model using the infrastructure, as
well as describe the automated process of translating a model defined in an XML
document, into an executable object.

8.4.1 Application Programmers Interface

The integrator blocks and the maps on Figure 8.3 are set up in the same manner as
a standard QSS2 simulation, cf. Subsection 3.2.3 on page 36,with the exception
that the constructor for each map accepts an array of equation-sets rather than a
single set, and has a parameter to indicate which equations set is the initial set.
Declaration of the HLC is done with the following call:

Qss2HybridLocationControl(int noInputs, int noStates,
int noLocations, int currentLocation)

Which creates the HLC object and initialises the number of inputs, states,
locations and the initial location. Transitions between locations are registered
with the object using the following call:

addTransition(int fromLocation, int toLocation,
String transitionEq, String[] reset,
ArrayList<String> inEvents,
ArrayList<String> outEvents)

Where the first two arguments are the source and destination locations of the tran-
sition, respectively.TransitionEq is the transition equation, i.e.jr(·), reset
is an array of of algebraic expressions of the state and inputwhich describe the
state-reset for each state to be executed when the transition is taken.inEvents
are the event labels that can trigger the transition andoutEvents are the event
labels emitted by the model when the transition is taken - events in the system are
represented by text strings.

139

Section 8.5: Simulation of Raibert’s Hopper

If the hybrid system model is to be used in on-line control where the states
can be reset by other mechanisms than the HLC object this mustbe indicated to
the HLC class. This is indicated by issuing the call:

setEstimatorPresent()

8.4.2 Translation from XML to Executable

A special class,XMLModelFactory , has been developed which parses XML
documents as described in Subsection 8.2.2 and translates them into DEVS cou-
pled model following the block diagram of Figure 8.3. This entails:

• creating required maps, integrators and the HLC object

• setting up DEVS connections between the ports of all blocks

• adding all transitions including resets and input/output event specifications

The ability to declare models in an XML document that closelyresembles
the mathematical model of the system clearly supports the declarative approach
pursued in this dissertation, and makes it easier to move from model towards an
implementation.

8.5 Simulation of Raibert’s Hopper

To illustrate the applicability of the specification of hybrid system models and
simulation/execution software developed in this chapter asimulation case study
will be presented involving a one legged robot known as Raibert’s Hopper, which
have previously been simulated in the literature, see e.g. [Back et al., 1993].

8.5.1 Model Description

Raibert’s Hopper is a one-legged jumping robot with motion confined to the ver-
tical axis, see Figure 8.5 for a sketch of the physical system.

It consists of a body comprised of two pressurised tanks;Pinit is a low-
pressure tank used to extend the leg during free-flight andPth is a high pressure
tank used to boost the robot off the ground. A valve controls which tank is con-

140

Chapter 8: Hybrid Systems and QSS Based Simulation

Figure 8.5: Schematic drawing of Raibert’s Hopper [Back et al., 1993].

nected to the pneumatic cylinder leg. The system is modelledusing four states:

x = [y ẏ t η2]
T

wherey is the position,ẏ is the velocity,t is a time-elapse state used in the thrust
phase of motion (to be explained), andη2 is a resettable parameter used in the
decompression phase (to be explained) to model the force exerted by the com-
pressed gas in the pneumatic cylinder following the thrust phase. A hybrid model
of the system is formulated, see Figure 8.7 for a graphical representation of the
associated hybrid system model and Figure 8.6 for illustrations of the state of the
physical system in each location.

The behaviour in each of the four locations can be described as:

Flight: Here the hopper is not in contact with the ground and the low-pressure
tank is connected to the piston ensuring it is fully extended. The equations of

141

Section 8.5: Simulation of Raibert’s Hopper

Figure 8.6: Illustration of the state of the physical system in the four
different locations: Flight, compression, thrust, and decompression [Back
et al., 1993].

motion are:

f1 :




ẏ
ÿ
ṫ
η̇2


 =




ẏ
−g
0
0




Whereg is the acceleration due to gravity. Air drag is assumed negliable.
When the bottom of the piston touches the ground (the constant l indicates
the height where this happens) the system enters theCompressionlocation.

Compression: here the valve is closed and the pressure in the cylinder builds up
as it is compressed and exerts an upward directed force, characterised by the
constant,η. Kinetic friction, with friction coefficientγ, also acts to reduce
energy. The equations of motion are:

f2 :




ẏ
ÿ
ṫ
η̇2


 =




ẏ
η/y − γẏ − g

0
0




142

Chapter 8: Hybrid Systems and QSS Based Simulation

q = 1

ẋ = f1(x,u)

y = g1(x,u)

q = 2

ẋ = f2(x,u)

y = g2(x,u)

y < l : ∅

ẏ
>

0
:

t
=

0

y
>

l
:
∅

Flight Compression

q = 4

ẋ = f4(x,u)

y = g4(x,u)
Decompression

q = 3

ẋ = f3(x,u)

y = g3(x,u)
Thrust

∅ : ∅

∅ : ∅

∅
:
∅

∅
:
∅

(t > tp) ∧ (y > l) : ∅

Figure 8.7: Graphical presentation of a hybrid model for Raibert’s Hop-
per with all transitions between locations.

When the spring-like effect of the compression causes the vertical velocity to
reach zero the hopper transitions to theThrust location and resets the internal
timer statet.

Thrust : In the Thrust location the high-pressure tank (pth) gets connected to
the piston through the valve for a duration specified by the constanttp, alter-
natively the hopper can also transition from the location ifthe piston becomes
fully extended within the active thrust period. The equations of motion are:

f3 :




ẏ
ÿ
ṫ
η̇2


 =




ẏ
τ − γẏ − g

1
0




whereτ is the thrust force.

Decompression:At this point if the bottom of the piston has already left the
ground the transition to the flight phase is taken immediately, otherwise the
hopper continues upwards movement due to the upward speed and the accel-
eration caused by the force exerted by the compressed gas in the piston. This

143

Section 8.5: Simulation of Raibert’s Hopper

force is proportional to the achieved height at the time the valve was closed,
i.e. η2 = τyt, whereyt is the height when leaving the thrust phase.η2 is
calculated by the reset condition leading to the location. The equations of
motion are:

f4 :




ẏ
ÿ
ṫ
η̇2


 =




ẏ
η2/y − γẏ − g

0
0




In each location the output-map is just an identity map of thestates. A full
XML declaration of the hybrid system model can be seen in Section A.6 on
page 182 of Appendix A, which also gives numerical values forthe constants
in the model.

8.5.2 Simulation Results

Here simulation results are shown for Raibert’s Hopper in order to demonstrate the
functioning DEVS/QSS software for simulating/executing hybrid system models.
At first an example will be given where the hopper exhibits stable hopping motion
and thereafter an example where the energy supplied to the system is not enough to
sustain hopping motion resulting in the system becoming "stuck" in one location.
For both cases the initial state-space values are:

x = [y ẏ t η2]
T = [1.9 0.1 0 0]T

Results for the first case are presented on the four graphs on Figure 8.8 and
correspond to the following set of parameters for the system:

g = −9.82
m

s2
l = 0.5m tr = 0.1s τ = 40

m

s2
γ = 0.2 η1 = 8

m2

s2

The (a) and (b) graphs show that after the first hop the motion settles at a very
stable orbit. The (c) graph shows the location indexes and itcan be seen how
the systems transitions according to the diagram of Figure 8.7 in a continuing
sequence.

The (d) graph is a phase-plane portrait and it is easy to see how the system
finds a stable orbit following initialisation. The graph also shows the points in
the orbit where the system transitions between locations. Such stable periodic

144

Chapter 8: Hybrid Systems and QSS Based Simulation

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Vertical Position of the Hopper

Time [s]

P
os

iti
on

 [m
]

(a) Vertical position

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6
Vertical Speed of the Hopper

Time [s]

S
pe

ed
 [m

/s
]

(b) Vertical velocity

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

Location Evolution

Time [s]

Lo
ca

tio
n

in
de

x,
 q

(c) Location indexes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2

4

6
Phase Map of Motion

Position [m]

S
pe

ed
 [m

/s
]

Compression

Thrust

Decompression

Flight

(d) Phase-plane portrait

Figure 8.8: Raibert’s Hopper under stable hopping motion.

behaviour as seen here is expected from analytical analysisof the system [Vakakis
and Burdick, 1990].

Results for the second case, where the upward thrust force has been reduced,
are presented on the four graphs on Figure 8.9 and correspondto the following set
of parameters for the system:

g = −9.82
m

s2
l = 0.5m tr = 0.1s τ = 20

m

s2
γ = 0.2 η1 = 8

m2

s2

This time, as evident from the (c) graph, the hopper gets stuck in theDecom-
pressionlocation since the supplied thrust is not enough for the system to achieve
flight. In this case the spring-effect and the friction causes the system to exhibit a
decaying oscillation, which is clearly evident from the (a)and (b) graphs, as well

145

Section 8.5: Simulation of Raibert’s Hopper

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Vertical Position of the Hopper

Time [s]

P
os

iti
on

 [m
]

(a) Vertical position

0 2 4 6 8 10 12 14 16 18 20
−6

−5

−4

−3

−2

−1

0

1

2
Vertical Speed of the Hopper

Time [s]

S
pe

ed
 [m

/s
]

(b) Vertical velocity

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

Location Evolution

Time [s]

Lo
ca

tio
n

in
de

x,
 q

(c) Location indexes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−6

−5

−4

−3

−2

−1

0

1

2
Phase Map of Motion

Position [m]

S
pe

ed
 [m

/s
]

(d) Phase-plane portrait

Figure 8.9: Raibert’s Hopper - Getting stuck in decompression.

as the phase-portrait of the (d) graph.

Performance Discussion
The real-time performance of the software has been analysedusing the first case,
presented above, by extending the simulation period to 1000s and comparing it to
a real-time clock. Execution time on a contemporary lap-topwas 2.25s, meaning
that the simulation runs at approximately 444 times real time - these result are for
QSS2 quanta of∆q = 0.001. Profiling the simulation shows that 67% of the time
is spent in the DEVS framework, 15% is spent evaluating maps,11% in the HLC
class, and 7% in the integrators.

The numbers above gives a feel for the performance, but cannot be applied
to predict about the computing resources required by other models as it depends

146

Chapter 8: Hybrid Systems and QSS Based Simulation

highly on the quantum selected, the dimension of the state-space and the number
of inequalities in each location. For this example the high overhead (Time spent
in the DEVS-framework) is due to the simplicity of the model,which makes the
evaluation in the maps very efficient.

8.6 Matlab Comparison

In order to demonstrate the value of conservative event detection a simple example
has been setup where the QSS based solution is compared to an implementation of
Raibert’s Hopper implemented in a Matlab script. The Matlabscript uses the same
equations, transition and constants as in the previous section and implements these
in a simulation loop that performs simulation actions according to the sequence:

1. Propagate states in current location

2. Check transitions equations and shift location if required

3. Perform reset on entering new location if location changed

4. Proceed from top

Results for this comparison can be seen on Figure 8.10, wheregraph (a) gives
the QSS solution for the first 5 seconds with the blue line being the position, the
red line is location indexes (0=free flight, 1=compression,2=thrust, 3=decom-
pression) and the green line indicates the transition boundary from the free flight
location to the compression location. It can be seen from thefigure that all three
lines meet in the transition points at 0.5m as one would expect. The quantisation
for all states is 0.0025.

Graph (b) shows results from the Matlab script with a sample period of 0.002s
which is fast enough to give a similar result with transitions detected accurately
enough not to qualitatively affect the simulation.

Finally, graph (c) shows what happens when the sample periodis set to 0.02s.
Here it is visually evident that the new location is only entered at the following
sample. The reduced accuracy also leads to qualitative differences in behaviour;
in the previously two examples motion stabilises with top points of the parabola at
1.4m, now the general height has increased and seems to vary from cycle to cycle.

The general increase of the top-point is due to the fact that the thrust periods
becomes longer due to the transition detection delay. The variance of height is
due the variance of the transition detection delay in each for the various transi-

147

Section 8.6: Matlab Comparison

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [s]

Transition Detection − QSS based

Position [m]
Location
Boundary

(a) QSS solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [s]

Transition Detection − Time Discrete − Ts=0.002s

Position [m]
Location
Boundary

(b) Time Discrete - high sample rate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time[s]

Transition Detection − Time Discrete − Ts=0.02s

Position [m]
Location
Boundary

(c) Time Discrete - low sample rate

Figure 8.10: Transition detection comparison to Matlab.

tion events. Increasing the sample period further results in progressively larger
qualitative differences compared to graph (a) and (b).

For a simulation lasting 500s, Matlab takes 1.05s to complete the simulation,
while the QSS implementation takes 0.91s. However, these numbers are as much
an artifact of the underlying run time system as the specific algorithms in used by
the two approaches.

This simple comparative study has demonstrated how conservative event de-
tection, as implemented in the QSS method of this chapter, helps to provide more
accurate simulations.

148

Chapter 8: Hybrid Systems and QSS Based Simulation

8.7 Chapter Summary

This chapter contributed with a mathematical model of hybrid dynamical systems
which is designed to be widely applicable for control systems. Software based on
the DEVS framework and quantised state systems was developed for simulation
and on-line execution of hybrid system models. The QSS approach allowed state
events to be detected conservatively.

Further, a XML file format was specified which makes it easy fora user to
supply a hybrid system model (compliant to the presented specification), which
is then automatically translated into an executable object. This approach was
explored through the Raibert’s Hopper Example.

Finally, a simple comparative study demonstrated some of the benefits of the
QSS method with conservative event estimation as compared to naive implemen-
tation of a hybrid model of Raibert’s Hopper.

149

Towards Declarative
Hybrid Supervisory
Control 9
This chapter provides an example of hybrid supervisory control based on the Deep
Space Probe case. With this example in mind a methodology fordeclarative hy-
brid supervisory control is proposed. The proposed methodology builds on the
results presented in this dissertation, but still requiressome elements to be fully
implemented.

9.1 Introduction

During the course of this dissertation a number of tools havebeen developed to
support simulation, estimation and control of dynamic systems based on discrete
event interactions between software objects and the notionof quantised state sys-
tems. These tools are depicted on Figure 9.1 as the lower three layers in the figure.

Figure 9.1: Layers of capabilities as developed in the dissertation, a new
methodology layer will be added to on top.

Section 9.2: Hybrid Supervisory Control Example

This chapter will conclude the dissertation by proposing a methodology based
on the developed capabilities forHybrid Supervisory Control. Hereby we mean
control of a continuous plant according to a hybrid model describing desired
closed loop performance.

The proposed methodology is not fully integrated in the software developed
during the dissertation and descriptions of the remaining work to implement the
methodology are given. Referring to Figure 1.6 on page 14 thework in this chap-
ter fits in theConfiguration package.

The next section will at first provide an example of hybrid supervisory control,
whereafter Section 9.3 on page 154 will describe the proposed methodology and
the required work to implement it from the current state of development.

9.2 Hybrid Supervisory Control Example

The previous chapter introduced hybrid system models and described methods
to simulate/execute them using tools based on quantised state systems. Before
formulating a methodology, in the next section, for hybrid supervisory control,
this section will provide an example of how the tools developed in the previous
chapter can be utilised to implement such a hybrid supervisory control system.

The example will utilise the optimising controller developed in Chapter 5 and
will be evaluated in the same manner as in Chapter 7, where control inputs drives
a "truth model" implemented in Simulink, which also produces measurements for
the control model implemented in DEVS/QSS.

9.2.1 Scanning Motion for the Deep Space Probe Case

The following example is based on the Deep Space Probe case asit was presented
in Chapter 7 on page 109, where the DSP motion was considered as it conducted a
Jovian fly-by. For the following example we will impose the requirement that the
DSP, during the fly-by, must perform a scanning motion with one of its sensors;
we will require the Euler angleθ2 to scan the following interval, while the other
two Euler angles must be held constant:

θ1 = 0.1 ∧ −0.4 < θ2 < −0.2 ∧ θ3 = 0.7

This behaviour is described using the hybrid model depictedin Figure 9.2

152

Chapter 9: Towards Declarative Hybrid Supervisory Control

using two discrete locations.

q = 1

ẋ = f1(x,u)

y = g1(x)

q = 2

ẋ = f2(x,u)

y = g2(x)

θ2 < −0.4 : ∅

θ2 > −0.2 : ∅

v = v1(x) v = v2(x)

Figure 9.2: Hybrid model for the extended DSP Case

Here f1(·) and f2(·) represent identical dynamical models, as there are no
changes in dynamics for the two locations. Further,g1(·) andg2(·) represent the
measurement models for the sun- and star sensor, which are also identical in both
locations. Both the dynamics and the measurement models forthe DSP case are
stated in Subsection 4.4.1 on page 59.

The functionsv1(·) andv2(·) are performance functions for the control algo-
rithm. We will make use of the optimising controller and adopt the performance
function used in Section 7.3 on page 114:

v(θ, ω) = 30ω2
1 +30ω2

2 +50ω2
2 +5(30(θ1 − r1)

2 +30(θ2 − r2)
2 +50(θ3 − r3)

2)

with the reference vector,r = [r1 r2 r3]
T , being determined by the current loca-

tion:

r =

{
[0.1 − 0.5 0.7]T if q = 1

[0.1 − 0.1 0.7]T if q = 2

With these reference vectors it is certain that the controller in each location
will move towards the transition boundary for each locationas specified by the
transition equations depicted on Figure 9.2.

Supervisory Control Implementation
The hybrid performance function is implemented using the theHybridMap class
described in Subsection 8.3.1 on page 134 and the transitions are handled using the
HybridLocationControl class described in Subsection 8.3.2 on page 136.
These classes have been introduced into the code developed for the original DSP
optimising control case as described in Section 7.3 on page 114.

153

Section 9.3: Towards a Methodological Approach

9.2.2 Simulation Results

Simulations have been run with the supervisory controller described above under
the same conditions as in Chapter 7 on page 109, i.e.:

• In closed loop with a "truth" model in Simulink

• Model uncertainties:

– uncertain moments of inertia

– uncertain lever-arm vector

• Presence of a parasitic magnetic moment

• Sensor noise

The results of the simulation can be seen on Figure 9.3 from a run that is ini-
tialised with conditions of zero Euler angles and an angularvelocity correspond-
ing to a slow roll about the major axis of inertia.

Graph (a) shows how the desired attitude motion of theθ2 axis is obtained,
i.e. a side scanning motion, while the other two Euler anglesare held constant.
It can be seen that there is some cross-coupling of the motionmeaning that the
controller must exert effort to maintain the constant Eulerangles ofθ1 and θ3.
Graph (b) shows the corresponding angular velocity.

Graphs (c) and (d) show the estimation error of the QSS/EKF filter for the
attitude and angular velocity respectively. Graph (e) shows the control input and
it is clear that the direction of actuation of the 2nd axis changes as theHybrid-
LocationControl class commands location transitions. Finally, graph (f) de-
picts the disturbance from the parasitic magnetic moment.

9.3 Towards a Methodological Approach

For complex systems it is desirable to be able to build hybridsupervisory control
systems declaratively, i.e. automatically based on descriptions of the system and
desired behaviour. The previous example showed an example of a relatively sim-
ple system implemented by declaring each part of the system (as DEVS objects
in source code) and setting up interconnections.

Chapter 8 on page 127 showed how run-time models of hybrid systems could
be constructed declaratively from a specification file, in this case using XML. A

154

Chapter 9: Towards Declarative Hybrid Supervisory Control

0 20 40 60 80 100 120 140 160 180 200

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

E
ul

er
 A

ng
le

s
[r

ad
]

Atittude of the DSP

θ

1

θ
2

θ
3

(a) Truth model attitude

0 20 40 60 80 100 120 140 160 180 200
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time [s]

A
ng

ul
ar

 V
el

oc
iti

es
 [r

ad
/s

]

Angular Velocities of the DSP

ω

1

ω
2

ω
3

(b) Truth model angular velocities

0 20 40 60 80 100 120 140 160 180 200
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

E
rr

or
 A

ng
le

s
[r

ad
]

Attitude Estimation Error

θ

1

θ
2

θ
3

(c) Attitude estimation error

0 20 40 60 80 100 120 140 160 180 200
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time [s]

A
ng

ul
ar

 v
el

oc
ity

 e
rr

or
 [r

ad
/s

]

Angular Velocity Estimation Error

ω

1

ω
2

ω
3

(d) Angular velocities estimation error

0 20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

T
hr

us
te

r
A

ct
io

n
[N

]

Control Signals

τ
1

τ
2

τ
3

(e) Control input signals

0 20 40 60 80 100 120 140 160 180 200

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Time [s]

M
ag

ne
tic

 D
is

tu
rb

an
ce

 T
or

qu
e

[N
m

]

Disturbance Torque

m

1

m
2

m
3

(f) Magnetic disturbance

Figure 9.3: Jupiter gravity assist with side-scanning motion.

155

Section 9.3: Towards a Methodological Approach

similar approach should be taken towards specification and automatic construc-
tion of complete control systems, as discussed in the Introduction chapter (see
Chapter 1 on page 1).

This section proposes a methodology for hybrid supervisorycontrol and points
out the remaining work required to implement this methodology based on the tools
developed so far during this dissertation.

9.3.1 Proposed Methodology

Figure 9.4 depicts the steps in the proposed methodology forhybrid supervisory
control. In each step a part of the control system is declaredand composed with
the result of the previous step.

P e r f o r m a n c eM o d e lP l a n t M o d e l
Es timato r Co ntro lle r Sy s te m
S i m u l a t o r

1 . M o d e l i n g 2 . E s t i m a t i o n 3 . C o n t r o l 4 . I n t e g r a t i o n

Figure 9.4: Methodology for declarative control design using the tools
developed in this thesis. Circles represent software composition, arrows
points to the entities being composed, and dotted lines indicate temporary
composition.

Each step in the process is described briefly in the following:

Modeling: Here a model of the plant and the performance to achieved by the

156

Chapter 9: Towards Declarative Hybrid Supervisory Control

plant are declared by the control engineer.

Estimation: An estimator is declared with appropriate parameters and iscom-
posed with the model and performance specification from the previous step.

Control: Here a controller type is chosen and declared with proper parameters
specific for the type, and composed to the system.

Implementation: Finally, the composite is composed with the run-time systemin
order to take control of the real plant. Tuning based on achieved performance
can be conducted.

Through all the steps it is possible to verify the status of development by com-
posing the composite at that point with a suitable simulation tool; Subsection 2.3.1
on page 26 mentions some of the developed DEVS tools that can be instrumental
in this process, e.g. tools to feed a DEVS model at step 2 with measured data from
the physical plant to evaluate estimator performance.

At a first glance; the methodology looks very similar to the traditional process
of designing and implementing model-based control; however, there are a number
of important differences:

1) Each step results in a piece of software that is carried forward in the pro-
cess unchanged (except for parameters that may be tuned) andintegrated with
the results of the other steps. This means that when the design is done, so is the
software that implements it. A more traditional approach isto test designs using
various simulations tools and then when satisfied the actualcontrol code is written
to mimic the implementation in the tool used to verify the design.

2) In each step we are not required to implement solutions manually, instead
we declare them, e.g. in thecontrol step, we declare what algorithm to use, set
parameters, and compose it to our system. The alternative would be to implement
a given controller manually on each new problem. This allowsquick adoption of
complicated solution strategies to the problem and quick adaption to e.g. new sys-
tem parameters. This is possible due to the goal oriented nature of the controllers
treated in Chapter 5 and 6.

9.3.2 Required Work to Implement the Proposed Methodology

Given the tools developed during this dissertation, i.e. various Quantised State
Components implemented in DEVS, it is possible to encapsulate models, esti-
mation algorithms and control algorithms in contained communicating software

157

Section 9.3: Towards a Methodological Approach

objects.

The example given in Section 9.1 of this chapter demonstrates a use of these
objects to implement a hybrid supervisory control system which implements all
the steps described in the methodology, however, the example have proceed from
step to step by adding new elements to the source code and recompiling. To be a
truly declarative approach further work is required.

Declarative System Description
Instead of declaring the control system structure by instantiating objects in a com-
piled language, Java in this, case the control structure should be described in a
declarative language separate from the implementation language. The XML ap-
proach described in Section 8.2 on page 128 implements this approach for hybrid
models.

To extent this approach to cover the whole methodology XML descriptions
should be available for each step in the methodology, i.e. one file for the model,
one for performance, one for the estimator, one for control and one for the com-
position. Finally, one file should describe the configuration of the control system,
i.e. point to the relevant specific files declaring each part of the system.

First results for a composition architecture along these thoughts have been
published in [Alminde et al., 2006b], and a specific example on the use of these
results in an architecture that makes use of of QSS/DEVS based controller is de-
scribed in [Alminde et al., 2007c]. However, systematic adoption and develop-
ment into a plug’n’play control framework requires furtherwork.

Online Composition
With a system declaration available as just described it is possible to build a com-
plete control structure from declaration including setting up all the relevant bind-
ings, i.e. communication channels, between the objects implementing the entities
being declared.

This process can either take place as a sequential build process or the individ-
ual components can be instantiated in parallel and then be put into the declared
structure by subsequent on-line manipulation.

The first approach is the one implemented with the QSS/DEVS tools described
during this dissertation, but as already discussed in Section 2.4 on page 27 it is
an interesting avenue of further work to develop from the DEVS formalism an
evolved encapsulation mechanism which is more rich in information about itself

158

Chapter 9: Towards Declarative Hybrid Supervisory Control

and in methods to allow on-line manipulation of the objects.

9.4 Chapter Summary

This chapter has provided an example demonstrating how the components devel-
oped throughout the dissertation using DEVS and quantised state systems can be
used to implement a hybrid supervisory control system. Furthermore, a method-
ology to handle such systems declaratively has been proposed and it has been
discussed what remaining work lies ahead to implement this methodology.

159

Part IV

Closure

Concluding
Remarks 10
This final chapter summarises the results of the thesis and evaluates them against
the research objectives formulated in the Introduction Chapter of the thesis. Con-
clusions from the work is drawn, and, finally, a number of areas worth further
work are presented and discussed.

10.1 Summary of the Results

The following provides a chapter by chapter summary of the contents and results
reported in this thesis.

Chapter 1: Introduction
The introductory chapter proposed the development of a declarative control sys-
tem to enable advanced control and estimation algorithms tobe used as solu-
tions to real-life challenges with reduced development effort. This idea was trans-
formed into three research objectives that were pursued in this thesis. The three
objectives are restated here:

Research Objective 1: "To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be described independently and
then be composed at run time"

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-line execution"

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typicalsample driven imple-
mentations"

Section 10.1: Summary of the Results

Further, an overview of related work was presented and the structure of the
thesis and its scientific contributions were summarised.

Chapter 2: Discrete Event Systems
The chapter introduced the DEVS representation, which has been used throughout
the thesis to implement the methods and algorithms developed. In summary a
DEVS model is made up of atomic and coupled models contained in a top-level
coupled model that can be executed by a runner object.

A software framework was developed in Java which implementsthe specified
DEVS capabilities. Further, issues concerning the communication model used in
DEVS was discussed. The merit of the DEVS approach when implementing con-
trol systems software is the encapsulation and compositionality that it can provide
for software components, such that they can be reused in various contexts with no
changes.

Chapter 3: Quantised State Systems
Initially it was argued that numerical simulation algorithms are an important part
of advanced control and estimation approaches. An alternative to well known
discrete-time methods was presented, which relies on quantisation of the states.
The merit of this approach is automatic adjustment of the required number of in-
tegration steps to the level of change experienced by the solution trajectory - and
further a decoupling of states in the calculations that can exploit sparsity.

A specific QSS based algorithm, the QSS2 algorithm, was presented in de-
tail. The algorithm relies on a first order quantisation of the state and maintains
internally Jacobian matrices for the system being propagated.

The properties of the QSS2 algorithm was discussed and demonstrated through
both simple illustrative examples and a more intensive simulation study of an au-
tonomous underwater vehicle. It was demonstrated that the QSS2 algorithm has
performance and robustness features that makes it interesting for use in control
applications. To the author’s best knowledge the simulation study currently is the
most comprehensive study of a higher dimensional non-linear system being sim-
ulated with the QSS2 algorithm.

Chapter 4: Kalman Filter Estimation in QSS
The chapter introduced the QSS/EKF filter which is an extended Kalman filter

164

Chapter 10: Concluding Remarks

implemented for use with quantised state systems. A case study concerning atti-
tude determination for a deep-space probe demonstrated that the QSS/EKF filter
performs almost identically to the traditional sample-based EKF.

Contrary to the original EKF algorithm, the QSS/EKF alternative does not
require analytical expressions for the state and measurements Jacobians respec-
tively, but instead Jacobians are provided at no additionalcomputational cost by
the QSS2 algorithm used for state propagation. For systems where it is imprac-
tical or impossible to analytically derive expressions forthe Jacobian, or where
such expressions becomes very computationally expensive the QSS/EKF algo-
rithm provides an interesting alternative to the conventional EKF algorithm.

Secondly, the QSS/EKF filter is a reusable implementation that effectively
encapsulates the algorithm and only requires the user to specify the model of the
system and associated measurements as a QSS2 model. The QSS/EKF algorithm
and the model can then be composed at run-time.

Chapter 5: Optimising Control of QSS Systems
The chapter introduced two algorithms for control of a classof non-linear multiple-
input-multiple-output systems based on QSS2 models of the system and a QSS2
description of a control objective function which is minimised by the choice of
control input slopes by the controller.

It was shown that stability of the proposed method must be viewed in the
framework of switched/hybrid systems and depends on the users choice of control
objective function and control cost matrix. Further, it wasshown that if a quadratic
control objective function is chosen the control strategy is equivalent to themin-
skew-projectionstrategy described in [Pettersson and Lennartson, 1997].

In practice the method can be applied to a large number of systems, e.g. mo-
tion control system with inherent dynamical dampening, where the control objec-
tive it to guide the kinematical states to a given set-point.

The method was demonstrated using simulations of an autonomous under-
water vehicle, based on a nominal model and full state knowledge, and it was
demonstrated that the method was successful in controllingthe system. Both the
single objective and multiple objective control variant ofthe method was demon-
strated successfully.

Chapter 6: Sliding Mode Control in QSS Systems
The chapter introduced sliding mode control for quantised state systems and de-

165

Section 10.1: Summary of the Results

veloped a controller structure, and corresponding software implementation, that
can stabilise a large class of non-linear systems, even in the presence of distur-
bances and model uncertainties.

The proposed controller structure is highly adaptable and each component can
be replaced by customised elements to suit specific application requirements. The
approach was verified on a deep space probe attitude control example.

The presented algorithm concerns state stabilisation, however, the proposed
structure can easily be adapted to provide tracking; a suitable methodology is de-
veloped in [Khalil, 2000].

Chapter 7: Evaluation of Estimation Based Control
The chapter described a case for evaluating the algorithms developed in the pre-
ceding chapters under conditions that resembles those experienced by real-life
control problems, i.e. including effects of disturbances,uncertainties, estimation
errors, and synchronisation issues.

Using the case the controller structures developed in the previous two chapters
were evaluated when driven by estimates obtained from the QSS/EKF estimator.
A truth model was implemented in Simulink and input/output signals between the
Simulink model and the DEVS based control/estimation algorithms were facili-
tated by a special adaptor class to provide rendezvous basedstate synchronisation.

The optimising control scheme showed itself to be able to guide the attitude
to the desired reference, but it was not very robust against disturbances. The slid-
ing mode controller showed excellent performance in terms of reaching time and
disturbance rejection, but is sensitive to estimation errors.

Chapter 8: Hybrid Systems and QSS Based Simulation
The chapter contributed with a mathematical model of hybriddynamical systems
which is designed to be widely applicable for control systems. Further, software
based on the DEVS framework and quantised state systems was developed for
simulation and on-line execution of hybrid models.

Next, a XML file format was specified which makes it easy for a user to supply
a hybrid model (compliant to the presented specification), which is then automati-
cally translated into an executable object. This approach was explored through the
Raibert’s Hopper Example. The QSS approach allowed state events to be detected
conservatively.

Finally, a simple comparative study demonstrated some of the benefits of the

166

Chapter 10: Concluding Remarks

QSS method with conservative event estimation as compared to naive implemen-
tation of a hybrid model of Raibert’s Hopper.

Chapter 9: Towards Declarative Supervisory Control
The chapter provided an example demonstrating how the components developed
throughout the thesis using DEVS and quantised state systems can be used to
implement a hybrid supervisory control system. Furthermore, a methodology to
handle such systems declaratively was proposed and it was discussed what re-
maining work lies ahead to implement this methodology.

10.2 Conclusions on Research Objectives and Contri-
butions

To evaluate the contributions of the thesis they are relatedto the research objec-
tives that were stated in Chapter 1 on page 1. The first objective was formulated as:

Research Objective 1: "To provide and demonstrate a framework that allows
control/estimation algorithms and plant models to be described independently and
then be composed at run time"

This thesis has addressed this issue and developed the QSS/EKF estimation
algorithm which is set-up by composing it with a QSS2 model describing the
plant, and declaring uncertainty parameters. Further, twodistinct control algo-
rithms were developed; one based on local optimisation and one based on sliding
mode control. Both rely on composition with a QSS2 model of the plant and a
desired control objective.

The DevsRendendevouzAdaptorinterface introduced in Subsection 7.2.1 on
page 113 allows The complete control software implementation to be composed
with different system, e.g. a simulator or the plant hardware, without modification
other than adoption of a Java interface to implement input and output functionality.

Further, the chapter on hybrid systems has demonstrated theidea of using
XML descriptions of hybrid systems model, which closely reflects the mathe-
matical model, as a tool for automatic declarative composition of hybrid system
models for simulation and execution.

167

Section 10.2: Conclusions on Research Objectives and Contributions

Research Objective 2:"To demonstrate the applicability of object oriented de-
sign to the domain of control systems software for on-line execution"

Object oriented programming has been used throughout the work presented
in the thesis and provides a high degree of modularity and encapsulation of the
implemented functionality. The sliding mode control chapter is a good example
of this where it was possible to inherit theQss2Static class and modify its
behaviour to form the guidance controller of the sliding mode controller structure.

Again theDevsRendendevouzAdaptorinterface introduced in Subsection 7.2.1
on page 113 demonstrates the value of the object oriented approach by providing
the flexibility to use the control software in different environments by only imple-
menting a specific input/output handler for the environment.

Research Objective 3:"To demonstrate and evaluate a Quantised State Systems
approach to control systems software in contrast to typicalsample driven imple-
mentations"

Quantised state systems and specifically the QSS2 algorithmhave been used
extensively throughout the thesis and it has been shown thatit is a paradigm that
fits well with the two research objectives listed above. The thesis contributes with
novel algorithms which can be used with quantised state systems in applications
involving hybrid simulation, estimation and control.

This thesis and associated publications demonstrates the first use of the QSS2
algorithm in estimation problems, and the first direct exploitation of the QSS2 al-
gorithm and its structure for control algorithms. Previouscontrol work, e.g. [Kof-
man, 2003] has investigated the Quantised State Approach asan implementation
method for control laws based on traditional analytical methods for linear sys-
tems, i.e. as an alternative to difference equations.

It is still not as easy to apply advanced control theory as it is to remove red
eyes from a photograph in Photoshop - as the ultimate goal wasformulated in the
introduction; however, the approach pursued in this thesishas lead to algorithm
implementations based on quantised state system which allows on-line compo-
sition of model-elements (dynamics and performance) with algorithms for esti-
mation and control, without having the control engineer to manually write any
control code.

168

Chapter 10: Concluding Remarks

10.3 Recommendations for Future Work

This final section puts attention to a number of issues that the author feels are
important to discuss as possible avenues of further work within the topics treated
in this thesis.

10.3.1 Real-Time Issues

There has been no stringent treatment of real-time issues which is highly relevant
for any control system. In Chapter 7 and Chapter 9 the algorithms were tested
in closed loop with a high-fidelity simulation model. These tests did not indicate
real-time issues, but clearly for applications where the computational delays are
significant, relative to the physical system being controlled, issues can develop.

An analysis of these issues for the DEVS and QSS based methodsis chal-
lenging as the computational delays will vary in a non-deterministic way. This is
contrary to traditional sample-based methods were delays often can be measured
and incorporated in the control design.

One intriguing idea worth further investigation is the use of the quantums,
used in the QSS2 algorithm, as a feedback quantity in order toregulate the current
CPU-usage to a preallocated share of the total CPU time. In this manner the
control system will apply more fine-grained control when thesystem is close to
resting and apply a more coarse control during set-point transitions.

10.3.2 Control Beans

Emphasis has been put on encapsulating algorithms in a manner such that they can
be used in a number of applications with no changes, DEVS and the QSS approach
have been instrumental in this approach. Future work shouldintegrate changes in
the DEVS specification as discussed in Section 2.4 on page 27 concerning formal-
isation of non-subscription based communication between components. Further,
the implementation of the DEVS framework should consolidate a rich Application
Programmers Interface (API) for theDevsAtomic class which not only covers
DEVS execution functionality, but also the capability for tools to interrogate the
capabilities of each object.

This would lead to a kind of"controlBeans"specification, which can be utilised
by tools that declaratively builds solution implementations to user specified prob-

169

Section 10.3: Recommendations for Future Work

lems. This idea is closely related to the use ofJavaBeans[Sun_Microsystems,
2007b] used by tools that automatically builds code for graphical user interfaces
from a user supplied specification of the desired result andJava Enterprise Beans
[Sun_Microsystems, 2007a] used in a similar fashion for business applications.

10.3.3 The Configuration Layer of the Declarative Control System

The introduction talked about a requiredConfiguration module in the Declar-
ative Control System Architecture, see Subsection 1.1.2 onpage 3, with the fol-
lowing responsibility:

Configuration this module is responsible for analysing the user supplied models
and set up relations (at run time) between model elements andalgorithms,
both estimation and control. This includes choosing which algorithms are
best suited to the problem.

This module has not received much attention during this thesis as focus has
been on developing methodologies of the more basic architectural components.
However, Chapter 8 on page 127 on hybrid systems introduced the use of XML
files to declare hybrid system models and Chapter 9 on page 151proposed a
methodology to extent this approach to cover full specification of control systems
- some of these ideas has been described as as part of theSimulation, Observation
and Planning in Hybrid Systems (SOPHY)project [Alminde et al., 2006b,Laursen
et al., 2005] were the use of XML files to describe both dynamical model compo-
nents, hardware interfaces, and composite system structures was explored, but it
remains to fully integrate this work with the QSS approach.

Consolidating this approach and using the XML formats as a back-end for
a graphical user interface similar to e.g.Simulink in appearance will provide a
convenient mechanism for control engineers to provide system descriptions and
a platform for algorithms to analyse the specified system andsuggest to the user
which controlBeansobjects should be chosen for automatic composition with the
model to form suitable solution strategies.

170

Part V

Appendices

Hybrid Systems and
XML Specifications A
This note formally defines hybrid systems and their compositions as interpreted
within the Sophy working group - A distinction is made between deterministic and
probabilistic systems. Also, specifications for the associated XML file format is
given as well as an example hereupon.

A.1 Definition of a Hybrid System

In the followingRn will denote the n-dimensional Euclidean space andZ+ will
denote the smallest inductive set, i.e. the positive integers. A hybrid system is an
8-tuple:

H = (Q,X,U, Y,E,F ,G,T) (A.1)

Where:
Q = {q ∈ Z+|1 ≤ q ≤ s}: is a set of location indexes with cardinal number
s ∈ Z+

X = {{x|x ∈ Xq}q∈Q|Xq = Rnq}: is the state-space with dimensionnq∈Q ∈Z+

U = {{u|u ∈ Uq}q∈Q|Uq = Rmq}: is the input-space with dimensionmq∈Q ∈Z+

Y = {{y|y ∈ Yq}q∈Q|Yq = Roq}: is the output-space with dimensionoq∈Q ∈Z+

E =
{
e|e ∈ 2Σ

}
: is the set of possible input/output event labels, whereΣ is a set

of labels

F : Q×X × U 7→ Ẋ : is the forcing functions on the continuous state-space
G : Q×X × U 7→ Y : is a continuous output map
T : Q×X × U × E 7→ Q×X × E: is a transition map

Section A.2: Specialised Specifications

Remarks

• Time is not explicitly given in the definition of the system, however, with no
loss of generality the modeller can include an extra state inthe continuous map
to represent explicit time

• In most practical applications the dimensions of the state-, input-, and output-
spaces will not change with differentq ∈ Q

• The mapF , as defined above, allows Ordinary Differential Equations (ODE),
but not e.g. differential algebraic or partial differential equations

A.2 Specialised Specifications

The above definition is abstract and contains little information about how the maps
are to be implemented in practice or how the initial state is defined. This section
imposes restrictions on the above definition in order to define a Hybrid Determin-
istic System (HDS) and a Hybrid Probabilistic System (HPS),and gives examples
of how concrete specifications can be implemented under these restrictions.

A.2.1 Hybrid Deterministic System (HDS)

A HDS imposes the following restrictions on the above definition:

• The maps,F ,G, andT , must be deterministic functions of the state and input

• At any time the total state of the HDS is defined by the triple:S = (q ∈ Q,x ∈
Xq, u ∈ Uq)

• The initial state of a HDS is defined by:S0 = (q0 ∈ Q,x0 ∈ Xq0
, u0 ∈ Uq0

)

• If the total state is indexed withq ∈ Q, e.g. Sq, it means that the location is
fixed, thus:Sq = Xq × Uq

To define a HDS the initial total state must be included in the definition, further
to make specification of the HDS more convenient the mapsF andG will be
defines as sets of functions with indexq ∈ Q and the transition map will be
broken up into a set of different maps:

HHDS = (Q,X,U, Y,E,F ,G,T ,So) (A.2)

where:
Q,X,U, Y,E: are defined as before

174

Chapter A: Hybrid Systems and XML Specifications

F =
{
{fq}q∈Q

|{q} ×Xq × Uq 7→ Ẋq

}
: is the set of forcing functions on the

continuous state-space

G =
{
{gq}q∈Q |{q} ×Xq × UQ 7→ Yq

}
: is the set of continuous output maps

T =
{
{tr}r∈{1,..,p} |Q×X × U × E 7→ Q×X × E

}
: are transition maps in-

dexed from 1 top

Where each transition is described as a 4-tuple:

τr =
(
j(Sq), r(Sq), ein ∈ 2Σ, eout ∈ 2Σ

)
(A.3)

where:
j(Sq) : Sq 7→ {true, false}: is thetransition domainwhich triggers the transi-
tion when true
r(Sq) : Sq 7→ Q×X: is an algebraic reset equation of the state
ein: is an input event that causes the transition to trigger
eout: is an output event that is emitted when the transition is taken

In this definition the use of the location indexed stateSq rather thanS makes
it convenient to group transitions,τr, according to source location. For purposes
of implementation the transition domain must be specified asa number of logical
combined inequalities, example:

j(Sq) = j1(Sq) > 0 ∧ (j2(Sq) > 0 ∨ j3(Sq) > 0) (A.4)

A.2.2 Hybrid Probabilistic System (HPS)

A HPS imposes the following restrictions on the above definition:

• The mapsF andG are deterministic functions in the same way as for the HDS
but may accept inputs that are functions of stochastic processes, i.e.

F : fq(x, u) = f ′q(x, u,w)|w = W ∼ P

wherew is the output of a stochastic processW with a distribution given by the
probability density functionP .

• T may contain aj(Sq) that generates a transition in caseu ≤ j(Sq), where
j(Sq) is an appropriate likelihood function andu is random variable with a con-
stant probability in the interval[0; 1], i.e. the output of a uniformly distributed
process.

175

Section A.3: Composition of Hybrid Systems

A.2.3 Constant Dimension Systems (CDS)

In many applications of hybrid systems the state, input and output space remains
the same in all locations, these we will call Constant Dimension Systems (CDS).
For these system we can associate fixed vectors to represent the spaces, as given
by:

• state-vector:x = Xq∈Q

• input-vector:u = Uq∈Q

• output-vector:y = Yq∈Q

A HDS or HPS system can also be CDS at the same time, with appropriate
changes in notation.

A.3 Composition of Hybrid Systems

In the following section we define the parallel composition of two hybrid sys-
tems,H1 andH2, as shown in Figure A.1, defining a new hybrid systemH3 .
Composing two hybrid systems into one entails that:

• Input,uH3
, and output,yH3

, to the composed system is selected.

• Mapping functions, that maps the input to the composed system and the output
from the two hybrid systems,yH1

and yH2
, to the input to the two hybrid

systems,uH1
anduH2

, and the output from the composed system are selected.

The parallel composition offers the possibility of modelling a complex hybrid
system as a number of sub-models instead of a monolithic hybrid system. The
composition is parallel in the sense that the execution of the models happens con-
currently.

The composition of two hybrid systems is defined over the domain:

||M : H×H → H, (A.5)

such that the inputs to the composition are two hybrid systems:

H1 = (Q1, X1, U1, Y1, Σ1, F1, G1, T1) (A.6)

H2 = (Q2, X2, U2, Y2, Σ2, F2, G2, T2) (A.7)

176

Chapter A: Hybrid Systems and XML Specifications

H2

H1

M

yH2

yH1

yH3

uH1

uH3

H3 = H1||MH2

uH2

Figure A.1: Composition of two hybrid systems

and the composition operator is defined by a set of matrices:

M = {M(q1, q2) | (q1, q2) ∈ Q1 ×Q2}, (A.8)

that for each possible combination of hybrid locations in the two systems maps the
output from both hybrid systems and the input vector to the composed systemuH3

to the old input vectorsuH1
anduH2

and the output vector from the composed
system in the following way:




uH1

uH2

yH3


 = M(q1, q2)




yH1

yH2

uH3


 . (A.9)

Two hybrid systems are M-composable, if for all modesq1 ∈ Q1 andq2 ∈ Q2

there exists a solution to



uH1

uH2

yH3


 = M(q1, q2)




yH1

yH2

uH3


 = M(q1, q2)




G1(q1, xH1
, uH1

)
G2(q2, xH2

, uH2
)

uH3


 (A.10)

177

Section A.3: Composition of Hybrid Systems

given as

M

(
(q1, q2),

[
xH1

xH2

]
, uH3

)
=




uH1

uH2

yH3


 , (A.11)

or in other words there may not be any algebraic loops in the composition.

A.3.1 Composition of CDS Systems

The above general discussion of composition will require aM to be defined for
any combination of locations in the two systems. The following will define the
composition of two CDS systems needing only oneM matrix. While losing some
expressivity, the benefits are:

• Only one composition matrix must be specified (maintain sanity of the engineer
at all costs)

• Communication channels can be set up statically for a distributed system

The hybrid composition is defined as:

HCDS
1 ||MHCDS

2 = HCDS
3 = (Q3, x3, u3, y3, Σ3, F3, G3, T3) , (A.12)

with two input systems:

HCDS
1 = (Q1, x1, u1, y1, Σ1, F1, G1, T1) (A.13)

HCDS
2 = (Q2, x2, u2, y2, Σ2, F2, G2, T2) (A.14)

and a composition matrix of real numbers:



u1

u2

y3


 = M




y1

y2

u3


 (A.15)

with the following restrictions to avoid algebraic loops:

• there must only be zeros betweeny1 andu1

• there must only be zeros betweeny2 andu2

The dimensions ofu3 (m) andy3 (o) is implicitly defined by the dimensions of
M, the inputs and outputs. The following spaces then follows from the composi-
tion operation:

178

Chapter A: Hybrid Systems and XML Specifications

Q3 = {q3 : q3 ∈ Q1 ×Q2}: is the location set of the composed hybrid system
x3 = [xt

1 xt
2]

t: is the new of continuous state space with dimensionn3 = n1 +n2

E3 =
{
e|e ∈ 2(Σ1∪Σ2)

}
: is the set of possible input/output events

The maps of the composed system is defined as:
F3 : Q3 × x3 × u3 → ẋ3: is the forcing functions on the continuous state space

F

(
q3,

[
x1

x2

]
,

[
u1

u2

])
=

[
F1(projQ1

q3, x1, u1)
F2(projQ2

q3, x2, u2)

]
(A.16)

G3 : Q3 × x3 × u3 → y3: is the continuous output map

G

(
q3,

[
x1

x2

] [
u1

u2

])
=

[
G1(projQ1

q3, x1, u1)
G2(projQ2

q3, x2, u2)

]
(A.17)

T3 : Q3 × x3 × u3 × 2Σ3 → Q3 × x3 × 2Σ3 : is the transition map

T

(
q3,

[
x1

x2

] [
u1

u2

]
, e

)
=

[
T1(projQ1

q3, x1, u1, e)
T2(projQ2

q3, x2, u2, e)

]
(A.18)

Remarks

• As seen from the composition; Spaces are simply merged andM distributes
information toHCDS

1 andHCDS
2 as appropriate.

• As the newHCDS
3 itself is a hybrid CDS then the composition is closed.

A.4 Overview of XML Tags for Defining a Hybrid Sys-
tem

This section described theSophySystemDTD-document which describes who a
subsystem must be declared. The table below shows the structure of the DTD doc-
ument. Note that: * - indicates zero or more, + indicates 1 or more, ? - indicates
0 or 1, also identifiers in parenthesis indicates a attributefor the corresponding
element.

179

Section A.5: Document Type Definition for a Hybrid System

Element Data contained in element, if any
SophySystem

name The name of the subsystem
documentation? Text describing the subsystem model
hints? Collection of "hints" - see below

hint+(name) Name (in attribute) and value (string) pair for hint
constants? Collection of constants to be substituted in equations

constant+(name) Name (in attribute) and value (string) pair for the constant
states

state*(documentation) Name of state, optional documentation using attribute
inputs

input*(documentation) Name of input, optional documentation using attribute
outputs

output*(documentation) Name of output, optional documentation using attribute
locations

location+
name The name of the location
documentation? Documenting text for this location
diffequation*(state) A mathematical expression giving the differential

equation for each state
outputmap*(output) A mathematical expression involving the state variables

that evaluates to an output value for this output
transitions?

transition+
name The name of the transition
documentation? Documenting text for this transition
domain A logical expression involving the state and input variables
reset Reset associated with this transition

destination Name of destination location
statereset*(state) Mathematical expression to reset the state indicated as attribute

inputevent* The name of an event that is emitted when transitioning
outputevent* The name of an event that can trigger this transition

The following gives a few additional explaining notes on thevarious elements
from the table:

• hints: are optional symbol/value pairs that can provide meta information to the
Sophy environment. Currently used for development and experimentation.

• diffequation: must be the corresponding state equation for the state indicated
as attribute

• outputmap: must be the corresponding algebraic equation for the output indi-
cated as attribute

• A transition becomes enabled when thedomain evaluates to true

• statereset: is an algebraic equation of the state and input which calculates the
new state value in the new location

A.5 Document Type Definition for a Hybrid System

The following is the DTD specification for a hybrid systems model:
<?xml version=’1.0’ encoding=’utf-8’ ?>

< !ELEMENT SophySystem (name , documentation ? , h i n t s ? , constants ? , s ta tes ,
inpu ts , outputs , l o c a t i o n s) >

180

Chapter A: Hybrid Systems and XML Specifications

< !−− META DATA ∗∗
−−>

< !ELEMENT name (#PCDATA) >

< !ELEMENT documentation (#PCDATA) >

< !ELEMENT constants (constan t+) >
< !ELEMENT constan t (#PCDATA) >

< ! ATTLIST constan t symbol CDATA #REQUIRED>

< !ELEMENT h i n t s (h i n t +)>
< !ELEMENT h i n t (#PCDATA) >

< ! ATTLIST h i n t hintname CDATA #REQUIRED>

< !−− IO and s ta tes ∗∗∗
−−>

< !ELEMENT s ta tes (s ta te ∗)>
< !ELEMENT s ta te (#PCDATA)>

< ! ATTLIST s ta te documentation CDATA #IMPLIED>

< !ELEMENT i npu ts (i npu t ∗)>
< !ELEMENT i npu t (#PCDATA)>

< ! ATTLIST i npu t documentation CDATA #IMPLIED>

< !ELEMENT outpu ts (ou tpu t ∗)>
< !ELEMENT outpu t (#PCDATA)>

< ! ATTLIST outpu t documentation CDATA #IMPLIED>

< !−− Locat ions and Dynamics∗∗
−−>

< !ELEMENT l o c a t i o n s (l o c a t i o n +)>
< !ELEMENT l o c a t i o n (name, documentation ? , d i f f e q u a t i o n ∗ , outputmap ∗ ,

t r a n s i t i o n s ?)>
< !ELEMENT d i f f e q u a t i o n (#PCDATA)>

< ! ATTLIST d i f f e q u a t i o n s ta te CDATA #REQUIRED>
< !ELEMENT outputmap (#PCDATA) >

< ! ATTLIST outputmap outpu t CDATA #REQUIRED>
< !ELEMENT t r a n s i t i o n s (t r a n s i t i o n +)>

< !ELEMENT t r a n s i t i o n (name, documentation ? , domain , reset ,
inpu tevent ∗ ,

ou tpu tevent ∗)>
< !ELEMENT domain (#PCDATA) >
< !ELEMENT r ese t (des t i na t i on , s t a t e r e s e t ∗)>

< !ELEMENT d e s t i n a t i o n (#PCDATA) >
< !ELEMENT s t a t e r e s e t (#PCDATA) >

< ! ATTLIST s t a t e r e s e t s ta te CDATA #REQUIRED>
< !ELEMENT i npu tevent (#PCDATA)>
< !ELEMENT outpu tevent (#PCDATA) >

181

Section A.6: Example of Subsystem Specification

A.6 Example of Subsystem Specification

The following provides an example of a model described usingtheSophySystem
specification.

<?xml version="1.0" encoding="UTF-8" ?>

< !DOCTYPE SophySystem SYSTEM "SophySystem.dtd" >
<SophySystem>

<name>RaibertsHopper< / name>
<documentation>

This f i l e implements a model o f the one legged robot ca l l ed
"Raibert’s Hopper" . The model i s documented i n "Hybrid Systems

- Lecture Notes in Computer Science 736" , Spr inger , 1993
< / documentation>

<constants >
<constan t symbol="G" >9.82< / constan t>
<constan t symbol="Tp" >0.35< / constan t>
<constan t symbol="L" >0.5< / constan t>
<constan t symbol="GAMMA">0.1< / constan t>
<constan t symbol="TAU" >40< / constan t>
<constan t symbol="ETA" >8< / constan t>

< / constants >

< !−− ∗∗∗
−−>

<s ta tes >
<s ta te >Pos i t i on < / s ta te >
<s ta te >Speed< / s ta te >
<s ta te documentation="Only used in the thrust location" >Time< / s ta te

>
<s ta te documentation="Only used in the decompression location" >ETA2

< / s ta te >
< / s ta tes >

< i npu ts> < / i npu ts>

<outpu ts>
<outpu t> Pos i t i on < / ou tpu t>
<outpu t>Speed< / ou tpu t>

< / ou tpu ts>

< l o c a t i o n s>
< !−− ∗∗∗ −−>

< l o c a t i o n >
<name> F l i g h t < / name>
<documentation>

In t h i s l o c a t i o n the hopper i s i n f ree f l i g h t
< / documentation>

< d i f f e q u a t i o n s ta te ="Position" > Speed< / d i f f e q u a t i o n >

182

Chapter A: Hybrid Systems and XML Specifications

< d i f f e q u a t i o n s ta te ="Speed" > −G< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Time" > 0< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="ETA2" > 0< / d i f f e q u a t i o n >

<outputmap outpu t="Position" > Pos i t i on < / outputmap >
<outputmap outpu t="Speed" > Speed < / outputmap >

< t r a n s i t i o n s >
< t r a n s i t i o n >

<name> Ground Impact< / name>
<domain> Pos i t i on & l t ; L< / domain>
< rese t>

< d e s t i n a t i o n> Compression < / d e s t i n a t i o n>
< / rese t>

< / t r a n s i t i o n >
< / t r a n s i t i o n s >

< / l o c a t i o n >

< !−− ∗∗∗
−−>

< l o c a t i o n >
<name>Compression< /name>
<documentation>

The f o o t now touches the ground and the gas i s being
compressed .

< / documentation>

< d i f f e q u a t i o n s ta te ="Position" > Speed< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Speed" > ETA/ Pos i t ion−GAMMA∗Speed−G< /

d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Time" > 0< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="ETA2" > 0< / d i f f e q u a t i o n >

<outputmap outpu t="Position" > Pos i t i on < / outputmap >
<outputmap outpu t="Speed" > Speed < / outputmap >

< t r a n s i t i o n s >
< t r a n s i t i o n >

<name> Deaccelerated < / name>
<domain>Speed & l t ; 0< / domain>
<rese t>

< d e s t i n a t i o n> Thrust < / d e s t i n a t i o n>
< s t a t e r e s e t s ta te ="Time" > 0 < / s t a t e r e s e t>

< / rese t>
< / t r a n s i t i o n >

< / t r a n s i t i o n s >
< / l o c a t i o n >

< !−− ∗∗∗
−−>

< l o c a t i o n >
<name>Thrust < / name>
<documentation>

183

Section A.6: Example of Subsystem Specification

The high pressure tank valve i s opened and the hopper
i s p rope l l ed upwards

< / documentation>

< d i f f e q u a t i o n s ta te ="Position" > Speed< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Speed" > TAU−GAMMA∗Pos i t ion−G< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Time" > 1< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="ETA2" > 0< / d i f f e q u a t i o n >

<outputmap outpu t="Position" > Pos i t i on < / outputmap >
<outputmap outpu t="Speed" > Speed < / outputmap >

< t r a n s i t i o n s >
< t r a n s i t i o n >

<name> Thrust t i me r exp i res< / name>
<domain> (Time > ; Tp) | | (Pos i t i on > ; L) < / domain>
< rese t>

< d e s t i n a t i o n> Decompression < / d e s t i n a t i o n>
< s t a t e r e s e t s ta te ="ETA2" > Pos i t i on ∗TAU < / s t a t e r e s e t>

< / rese t>
< / t r a n s i t i o n >

< / t r a n s i t i o n s >
< / l o c a t i o n >

< !−− ∗∗∗
−−>

< l o c a t i o n >
<name>Decompression< / name>
<documentation>
Thrust i s over but the f o o t i s not ye t c l ea r o f the ground ,

thus the
gas s t i l l p rov ides a smal l upwards fo rce
< / documentation>

< d i f f e q u a t i o n s ta te ="Position" > Speed< / d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Speed" > ETA2 / Pos i t ion−GAMMA∗Speed−G< /

d i f f e q u a t i o n >
< d i f f e q u a t i o n s ta te ="Time" > 0< / d i f f e q u a t i o n >

<outputmap outpu t="Position" > Pos i t i on < / outputmap >
<outputmap outpu t="Speed" > Speed < / outputmap >

< t r a n s i t i o n s >
< t r a n s i t i o n >

<name> Ground Cleared< / name>
<domain> Pos i t i on > ; FootHeight< / domain>
< rese t>

< d e s t i n a t i o n> F l i g h t < / d e s t i n a t i o n>
< / rese t>

< / t r a n s i t i o n >
< / t r a n s i t i o n s >

< / l o c a t i o n >
< / l o c a t i o n s>

184

Chapter A: Hybrid Systems and XML Specifications

< / SophySystem>

185

Software Overview B
This Appendix provides an overview of the software co-developed with this thesis

B.1 Obtaining the Software

The software is property of Aalborg Univeristy. If interested in using it for any
purpose contactdimon@es.aau.dk or jakob@es.aau.dk to obtain the soft-
ware and negotiate terms and conditions of use.

In addition the following software libraries must be installed in order to com-
pile and run the software:
http://sourceforge.net/projects/jep/ - Java Equation Parser (JEP)
http://jmathtools.sourceforge.net/doku.php - jmathPlot for plot-
ting

B.2 Software Structure

The software repository consists of a number of Java-packages, the package/di-
rectory structure is as follows:

|−− TextDocs
|−− XMLFiles
|−− resources
|−− rpe
‘−− devs

|−− c o n t r o l
|−− customfunct ions
|−− devsCore
|−− d i sc re teT i me In teg ra to rs
|−− equat ion
|−− es t i ma t i on
|−− examples

Section B.2: Software Structure

| ‘−− t hes i s
|−− hybr id
|−− i o
|−− qss
|−− qss2
‘−− t o o l s

The following gives a very condensed description of the contents of each package:

TextDocs: contains a note on idead for improvement of the software.

XMLDocs: contains document type definitions and examples of hybrid systems
specified as XML files, e.g. the model of Raibert’s Hopper.

ressources: contains a number of comma separated data files which is used
as input for some of the examples in thedevs.examples package.

rpe contains some out-of-tree updates to the JEP library that isused to increase
performance.

devs.control: contain all controller implementations, i.e. the optimisation
based controller and the sliding mode controller classes.

devs.customFunctions: contains implementations of various mathemati-
cal functions that is used with JEP in the examples.

devs.devsCore: the implementation of the Discrete EVent Specification.

devs.discreteTimeIntegrators: contains an implementation for the
forward Euler algorithm for time discrete integrations.

devs.equation: contains classes used to describe and evaluate equation sets
for the various map implementations.

devs.estimation: contains the Extended Kalman Filter implementation.

devs.example: contains various examples testing/exploring functionality.

devs.example.thesis: contains code for seeting up all the examples that
has been included in the thesis.

devs.hybrid: contains classes for simulating and executing hybrid systems
both for QSS and QSS2 based models.

devs.io: various classes to facilitate input and output to/from the DEVS envi-
roment, e.g. matlab connections, plotting, file IO.

devs.qss: implements the QSS algorithm for quantised state systems - not
discussed during the thesis.

devs.qss2: implements the QSS2 algorithm for quantised state systems,which

188

Chapter B: Software Overview

has been used extensively throught the thesis.

devs.tools: contains various tools; aConnections class to help auto-
mate setting up DEVS connections for complex models and theXMLModel-
Factory to build hybrid system models from XML specifications.

B.3 Getting Started

To get started with the code it is recommended to first take at look at some of the
simple examples in thedevs.examples package. For examples:

Qss2Test : sets up a simple 2nd order model in QSS2, simulates it using a
standard simulationrunner, and plots the results.

CartOnPlane: sets up a model of a cart driving on a plane and composes
it with an optimizing controller, simulates the results andplots it.

DeepSpaceProbeIAV2007: sets up a model of a deep space probe, com-
poses it with the QSS/EKF filter and runs the model with input from datafiles
with results from a truth-model.

To develop new software use the example as templates and makesure to read
the java-doc comments documenting the class interfaces.

189

Code Examples C
This appendix contains an examples of declaring models/controllers/estimators
using the DEVS/QSS framework. The objective of including this in the thesis is to
demonstrate thedeclarativemanner in which a system is set up.

C.1 Code Example for Deep Space Probe Case

package DevsSophy . Examples . t h e s i s ;

import DevsSophy . Qss .∗ ;
import DevsSophy . Tools .∗ ;
import DevsSophy . c o n t r o l .∗ ;
import DevsSophy . cus tomfunc t ions .∗ ;
import DevsSophy . e s t i ma t i o n .∗ ;
import DevsSophy . i o .∗ ;
import Jama. Mat r ix ;
import DevsSophy . DevsCore .∗ ;

/∗∗ This example se ts up a model f o r the Deep Space Probe case study o f
∗ chapter 7 and composes i t w i th an Extended Kalman F i l t e r and a
∗ S l i d i n g mode c o n t r o l l e r which inc ludes a dynamic u n c e r t a i n t y bound
∗ es t ima to r . The complete model i s se t up to run wi th Matlab through
∗ socket communication
∗ @author Lars Alminde (alminde@es . aau . dk)
∗ /

public class DSPEvalSMC {
/ / Main method wi th a l l the a c t i o n
public s t a t i c void main (S t r i n g [] args) {

/ / Declare the Devs−Context and load ing cons tan ts and custom f u n c t i o n
/ /−−
DevsContext con= new DevsContext(0 ,10e−9, t rue) ;
con . addConstant ("J1=30, J2=30, J3=50, Xdsp=1e6, Ydsp=0, Zdsp=0") ;
con . addConstant ("Xsun=0, Ysun=0, Zsun=0, Xstar=0, Ystar=1e6, Zstar=5e6") ;
con . addFunct ion("rotate321" ,new Rotate321 ()) ; / /3−2−1 Eu le r r o t a t i o n
con . addFunct ion("DspGyro" ,new DspGyroCoupling ()) ; / / GyroDynamics

/ / Declare a Sample−Hold f i l t e r f o r EKF
/ /−−
DevsAtomic f i l t e r =new DSPEvalSampleFil ter (con , "Filter" , t rue) ;

/ / Declare the dynamics and k inemat ics i n as an equa t ionsse t and
/ / se t up a t corresponding Qss2Map
/ /−−
RpeEquationSet eqSet = new RpeEquationSet(

new St r i n g [] { "u1" ,"u2" ,"u3" ,"z1" ,"z2" ,"z3" , "z4" ,"z5" ,"z6" }) ;
eqSet . addContext (con) ;
eqSet . addEquation ("" +

Section C.1: Code Example for Deep Space Probe Case

"(1/cos(z2)) * (cos(z2) * z4+sin(z1) * sin(z2) * z5+cos(z1) * sin(z2) * z6)") ;
eqSet . addEquation ("(1/cos(z2)) * (cos(z1) * cos(z2) * z5-sin(z1) * cos(z2) * z6)") ;
eqSet . addEquation ("(1/cos(z2)) * (sin(z1) * z5+cos(z1) * z6)") ;
eqSet . addEquation ("DspGyro(1,z4,z5,z6)+0.5 * (0.0334 * u1+0.0006 * u2+0.0007 * u3)") ;
eqSet . addEquation ("DspGyro(2,z4,z5,z6)+0.5 * (0.0006 * u1+0.0334 * u2+0.0010 * u3)") ;
eqSet . addEquation ("DspGyro(3,z4,z5,z6)+0.5 * (0.0007 * u1+0.0010 * u2+0.0200 * u3)") ;
eqSet . lock () ;

/ / i n i t i a l va lues o f i n p u t
double [] op=new double [] {0 ,0 ,0 ,0 .1 , −1 ,0 ,0 , −0 .03 ,0 .15} ;

/ / c o n s t r u c t the map and d i f f e r e n t i a t e wr t . i n i t . va lue
Qss2Stat ic t = new Qss2Stat ic (con , "Static" , eqSet , 2) ;
t . d i f f e r e n t i a t e (op , 0 . 0 1) ;

/ / S ta te d e c l a r a t i o n s
/ /−−
Qss2ResetIntegrator i n t 1 = new Qss2ResetIntegrator (con , "int1" , op [3] , 1e−5) ;
Qss2ResetIntegrator i n t 2 = new Qss2ResetIntegrator (con , "int2" , op [4] , 1e−5) ;
Qss2ResetIntegrator i n t 3 = new Qss2ResetIntegrator (con , "int3" , op [5] , 1e−5) ;
Qss2ResetIntegrator i n t 4 = new Qss2ResetIntegrator (con , "int4" , op [6] , 1e−6) ;
Qss2ResetIntegrator i n t 5 = new Qss2ResetIntegrator (con , "int5" , op [7] , 1e−6) ;
Qss2ResetIntegrator i n t 6 = new Qss2ResetIntegrator (con , "int6" , op [8] , 1e−6) ;

/ / Declare extended Kalman f i l t e r
/ /−−
/ / Declare measurement equat ions
RpeEquationSet measurements = new RpeEquationSet(

new St r i n g [] { "e1" ,"e2" , "e3" ,"p" , "q" ,"r" }) ;
measurements . addContext (con) ;
measurements . addEquation (

"rotate321(1,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))") ;
measurements . addEquation (

"rotate321(2,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))") ;
measurements . addEquation (

"rotate321(3,e1,e2,e3,(Xsun-Xdsp),(Ysun-Ydsp),(Zsun -Zdsp))") ;
measurements . addEquation (

"rotate321(1,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))") ;
measurements . addEquation (

"rotate321(2,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))") ;
measurements . addEquation (

"rotate321(3,e1,e2,e3,(Xstar-Xdsp),(Ystar-Ydsp),(Zs tar-Zdsp))") ;
measurements . lock () ;

/ / Cons t ruc t and d i f f e r e n t i a t e measurement map
Qss2Stat ic measureMap=new Qss2Stat ic (con , "Measurements" , measurements , 0) ;
measureMap. d i f f e r e n t i a t e (new double [] { op [3] , op [4] , op [5] , op [6] , op [7] , op [8] } , 0 . 1) ;

/ / I n i t i a l paramters f o r the EKF
Mat r ix P=new Mat r ix (new double [] [] { { 0 . 1 , 0 , 0 , 0 , 0 , 0 } , { 0 , 0 . 1 , 0 , 0 , 0 , 0 } ,

{ 0 , 0 , 0 . 1 , 0 , 0 , 0 } , { 0 , 0 , 0 , 1e−4 ,0 ,0} , {0 ,0 ,0 ,0 ,1e−4 ,0} , {0 ,0 ,0 ,0 ,0 ,1e−4}}) ;
Mat r ix Q=new Mat r ix (new double [] [] { { 0 , 0 , 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 0 , 0 , 0 } ,

{ 0 , 0 , 0 , 0 , 0 , 0 } , { 0 , 0 , 0 , 1 , 0 , 0 } , { 0 , 0 , 0 , 0 , 1 , 0 } , { 0 , 0 , 0 , 0 , 0 , 1 } }) . t imes (1e−8) ;

/ / Cons t ruc t the f i l t e r and r e g i s t e r s t a t e s
EKF ekf=new EKF(con , "ekf" ,0 .02 ,2 , P, Q, measureMap, fa lse) ;
ek f . r e g i s t e r S t a t e (new Qss2ResetIntegrator [] { i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 , i n t 6 }) ;

/ / Reg is te r Sun−sensor
Mat r ix Rss2=new Mat r ix (new double [] [] { { 3 e−4 ,0 ,0} , {0 ,3e−4 ,0} , {0 ,0 ,3e−4}}) ;
ek f . registerMeasurement(new i nt [] { 0 , 1 , 2 } , Rss2) ;

/ / Reg is te r Star−Sensor
Mat r ix Rss=new Mat r ix (new double [] [] { { 3 e−6 ,0 ,0} , {0 ,3e−6 ,0} , {0 ,0 ,3e−6}}) ;
ek f . registerMeasurement(new i nt [] { 3 , 4 , 5 } , Rss) ;

/ / Class f o r sampling ou tpu ts a t 100Hz (on ly v i a s u a l i s a t i o n a f t e r s i mu l a t i o n)
/ /−−
Qss2SampledOutput sample=new Qss2SampledOutput(con , "Sample" ,6 ,0 .01 , true , t rue) ;

/ / Declare S l i d i n g Mode C o n t r o l l e r
/ /−−

192

Chapter C: Code Examples

/ / Declare performance Met r ic
RpeEquationSet per = new RpeEquationSet(new St r i n g [] { "z1" ,"z2" , "z3" }) ;
per . addContext (con) ;
per . addEquation ("0.5 * (z1-0.1)^2+0.5 * (z2+0.5)^2+0.5 * (z3-0.7)^2") ;
per . lock () ;

/ / se t up the ’ nega t ivegrad iean t ’ f u n c t i o n
Negat iveGradient con t ro lStage1=new Negat iveGradient (con , "nGrad" , per) ;
con t ro lStage1 . d i f f e r e n t i a t e (new double [] { 0 . 5 , −0.1, 1} ,0.000001) ;

/ / se t up the ’ Sl id ingMode ’ c lass
Sl id ingMode con t ro lStage2=new Slid ingMode(con , "SlidingMode" ,3) ;

/ / se t up the ’ S l i d i n g C o n t r o l l e r ’
S l i d i n g C o n t r o l l e r con t ro lStage3=new S l i d i n g C o n t r o l l e r (con , "SlidingControl" , 3 , 3 , new double

[] { 0 . 0 1 , 0 .01 , 0 .01} , t) ;
con t ro lStage3 . setFul lMap () ;
con t ro lStage3 . s e t Sa t u r a t i o n (new double [] { 0 . 8 , 0 .8 , 0 . 8 }) ;
/ / con t ro lStage3 . se tPropor t iona lGa in (new double [] { 0 . 0 6 , 0 . 0 6 , 0 . 0 6 }) ;
/ / con t ro lStage3 . setSquareGain (new double [] { 0 . 4 7 5 , 0 . 4 7 5 , 0 . 4 7 5 }) ;
con t ro lStage3 . setBoundaryLayer (new TanhLayer (1)) ;

/ / Set up the custon u n c e r t a i n t y c lass − hardcoded wi th r e l e v a n t equat ions
Uncer ta in ty unc=new Uncer ta in ty (con , "Uncertainty") ;

/ / Declare the DEVS c o o r d i n a t o r and add a l l model components to i t
/ /−−
DevsCoordinator coord=new DevsCoordinator(con , "Coord" ,9 ,9 ,15) ;
coord . addAtomic (new DevsAtomic [] { f i l t e r , t , i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 }) ;
coord . addAtomic (new DevsAtomic [] { i n t 6 , ekf , measureMap, sample , unc }) ;
coord . addAtomic (new DevsAtomic [] { contro lStage1 , contro lStage2 , con t ro lStage3 }) ;

/ / Set up a l l the runt ime connect ions between the DEVS Components
/ /−−
/ / Ex te rna l i n p u t s − from matlab
coord . addInput (1 , f i l t e r , 1) ;
coord . addInput (2 , f i l t e r , 2) ;
coord . addInput (3 , f i l t e r , 3) ;
coord . addInput (4 , f i l t e r , 4) ;
coord . addInput (5 , f i l t e r , 5) ;
coord . addInput (6 , f i l t e r , 6) ;
coord . addInput (7 , f i l t e r , 7) ;
coord . addInput (8 , f i l t e r , 8) ;
coord . addInput (9 , f i l t e r , 9) ;

/ / Maps to i n t e g r a t o r s and v isa verca
Connections . mapToInt (coord , t ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 , i n t 6 } , 0) ;
Connections . intToMap (coord ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 , i n t 6 } , t , 3) ;
Connections . intToMap (coord ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 , i n t 6 } , measureMap, 0) ;
Connections . intToMap (coord ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 , i n t 4 , i n t 5 , i n t 6 } , sample , 0) ;

/ / C o n t r o l l e r connect ions
Connections . intToMap (coord ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 } , contro lStage1 , 0) ;
Connections . intToMap (coord ,new DevsAtomic [] { i n t 4 , i n t 5 , i n t 6 } , contro lStage2 , 0) ;
Connections . intToMap (coord ,new DevsAtomic [] { i n t 1 , i n t 2 , i n t 3 } , contro lStage1 , 0) ;

coord . addConnection(contro lStage1 , 1 , contro lStage2 , 4) ;
coord . addConnection(contro lStage1 , 2 , contro lStage2 , 5) ;
coord . addConnection(contro lStage2 , 1 , contro lStage3 , 1) ;
coord . addConnection(contro lStage2 , 2 , contro lStage3 , 2) ;
coord . addConnection(unc , 1 , contro lStage3 , 3) ;
coord . addConnection(f i l t e r , 3 , unc , 1) ;

coord . addConnection(contro lStage3 , 1 , t , 1) ;
coord . addConnection(contro lStage3 , 2 , t , 2) ;
coord . addConnection(contro lStage3 , 3 , t , 3) ;

/ / EKF connect ions
coord . addConnection(t , 7 , ekf , 1) ;
coord . terminateConnect ion (t , 8) ;
coord . addConnection(f i l t e r , 1 , ekf , 2) ;
coord . addConnection(f i l t e r , 2 , ekf , 3) ;

193

Section C.1: Code Example for Deep Space Probe Case

coord . addConnection(ekf , 1 , i n t 1 , 2) ;
coord . addConnection(ekf , 2 , i n t 2 , 2) ;
coord . addConnection(ekf , 3 , i n t 3 , 2) ;
coord . addConnection(ekf , 4 , i n t 4 , 2) ;
coord . addConnection(ekf , 5 , i n t 5 , 2) ;
coord . addConnection(ekf , 6 , i n t 6 , 2) ;

coord . terminateConnect ion (measureMap, 1) ;
coord . terminateConnect ion (measureMap, 2) ;
coord . terminateConnect ion (measureMap, 3) ;
coord . terminateConnect ion (measureMap, 4) ;
coord . terminateConnect ion (measureMap, 5) ;
coord . terminateConnect ion (measureMap, 6) ;

/ / Outputs to Matlab
coord . addOutput(contro lStage3 , 1 , 1) ;
coord . addOutput(contro lStage3 , 2 , 2) ;
coord . addOutput(contro lStage3 , 3 , 3) ;
coord . terminateConnect ion (contro lStage3 , 4) ;

coord . addOutput(sample , 1 , 4) ;
coord . addOutput(sample , 2 , 5) ;
coord . addOutput(sample , 3 , 6) ;
coord . addOutput(sample , 4 , 7) ;
coord . addOutput(sample , 5 , 8) ;
coord . addOutput(sample , 6 , 9) ;

/ / Make runner and do s i mu l a t i o n
/ /−−
/ / Cons t ruc t Matlab Adaptor f o r l o c a l h o s t p o r t 8189
RendevouzAdaptor ada=new MatlabAdaptor(8189) ;

/ / Set up rendevouzrunner f o r 400s o f execu t ion
DevsRendevouzRunner runner=new DevsRendevouzRunner(coord , ada ,399) ;

/ / S t a r t the execu t ion (w i l l awa i t Matlab)
runner . run (DevsRunner .NOREALTIME, 0 .05) ;

}
}

194

Bibliography

[Alamir, 2006] Alamir, M. (2006). Stabilization of Nonlinear Systems Using
Receding-horizon Control Scheme. Springer.

[Alminde et al., 2006a] Alminde, L., Bendtsen, J. D., and Stoustrup, J. (2006a).
A Quantized State Approach to On-line Simulation for Spacecraft Autonomy.
AIAA. In 2006 Modeling and Simulation Technologies Conference Proceed-
ings. American Institute of Aeronautics and Astronautics,Keystone, Colorado,
August 2006.

[Alminde et al., 2007a] Alminde, L., Bendtsen, J. D., and Stoustrup, J. (2007a).
A Quantised State Systems Approach for Jacobian Free Extended Kalman Fil-
tering. IFAC. Submitted for IAV2007.

[Alminde et al., 2007b] Alminde, L., Bendtsen, J. D., Stoustrup, J., and Pettersen,
K. Y. (2007b). Objective Directed Control using Local Minimisation for an
Autonomous Underwater Vehicle. IFAC. In proceedings of IAV2007, 3-5.
September 2007, Toulouse, France.

[Alminde et al., 2006b] Alminde, L., Laursen, K. K., and Bendtsen, J. D.
(2006b). A Reusable Software Architecture for Small Satellite AOCS Systems.
European Space Agency. In proceedings of Small Satellites Systems and Ser-
vices 2006, Chia Laguna, Italy, 25.-29. September 2006.

[Alminde et al., 2007c] Alminde, L., Laursen, K. K., and Bendtsen, J. D. (2007c).
Sophy: A tool for Declarative Control. n/a. Submitted for review for an inter-
national journal on control architectures.

[Ascher and Petzold, 1998] Ascher, U. M. and Petzold, L. R. (1998). Computer
Methods for Ordinary Differential Equations and Differential-Algebraic Equa-
tions. Society for Industrial and Applied Mathematics.

[Back et al., 1993] Back, A., Guckenheimer, J., and Myers, M.(1993).A Dynam-
ical Simulation Facility for Hybrid Systems. Springer-Verlag. In Lecture Notes
in Computer Science no. 736 p. 255-267.

[Bandyopadhyay and Sivaramakrishnan, 2006] Bandyopadhyay, B. and Sivara-
makrishnan, J. (2006).Discrete-Time Sliding Mode Control. Springer.

BIBLIOGRAPHY

[Barton and Lee, 2002] Barton, P. I. and Lee, C. K. (2002).Modeling, Simula-
tion, Sensitivity Analysis, and Optimization of Hybrid Systems. ACM. ACM
Transactions on Modelling and Computer Simulation, Vol 12,No. 4, October
2002, pages 256-289.

[Bemporad and Morari, 1999] Bemporad, A. and Morari, M. (1999). Control of
Systems Integrating Logic, Dynamics, and Constraints. Elsevier. Journal of
Automatica, no. 35, p. 407-427.

[Bernard et al., 1999] Bernard, D., Doyle, R., Riedel, E., Rouquette, N., Wyatt,
J., Lowry, M., and Nayak, P. (1999).Autonomoy and Software Technology on
NASA’s Deep Space One. IEEE. IEEE Intelligent Systems Journal, May/June
1999.

[Bernard et al., 2000] Bernard, D. E., Gamble, E. B., Jr., Rouquette, N. F., Smith,
B., Tung, Y.-W., Muscettola, N., Dorias, G. A., Kanefsky, B., Kurien, J., Millar,
W., Nayak, P., Rajan, K., and Taylor, W. (2000).Remote Agent Experiment DS1
Technology Validation Report. NASA.

[Bhanderi, 2005] Bhanderi, D. D. V. (2005).Spacecraft Attitude Determination
with Earth Albedo Corrected Sun Sensor Measurement. Aalborg University.
PhD thesis.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L.(2004). Convex
Optimization. Cambridge University Press.

[Branicky, 1994] Branicky, M. S. (1994).Stability of switched and hybrid sys-
tems. IEEE. In proceedings of the 33rd IEEE Conference on Decision and
Control, Florida, USA, December.

[Branicky et al., 1998] Branicky, M. S., Borkar, V. S., and Mitter, S. K. (1998).A
Unified Framework for Hybrid Control: Model and Optimal Control Theory.
IEEE. IEEE Transactions on Automatic Control, Vol 43, NO. 1,January 1998.

[Callear, 2003] Callear, D. (2003).Prolog programming for students : with expert
systems and artifical intelligence topics. Thomson Learning.

[Carlo et al., 2000] Carlo, R. A., Branicky, M. S., Pettersson, S., and Lennartson,
B. (2000). Perspectives and Results on the Stabillizability of HybridSystems.
IEEE. In proceedings of the IEEE Vol. 88, No. 7, July 2000.

[Cassandras and Lafortune, 1999] Cassandras, C. G. and Lafortune, S. (1999).
Introduction to Discrete Event Systems. Kluwer Academic Publishers.

[Consortium, 2006] Consortium, W. W. W. (2006).XML Specification. WWWC.

196

BIBLIOGRAPHY

http://www.w3.org/XML/ .

[Dvorak et al., 2004] Dvorak, D., Bollela, G., Canham, T., Carson, V., Cham-
plin, V., Giovannoni, B., Indictor, M., Meyer, K., Murray, A., and Reinholtz,
K. (2004). Project Golden Gate: Towards Real-Time Java in Space Mis-
sions. IEEE. Proceedings of the 7th IEEE International Symposiumon Object-
Oriented Real-Time Distributed Computing (ISORC’04).

[Dvorak et al., 2000] Dvorak, D., Rasmussen, R., Reeves, G.,and Sacks, A.
(2000). Software Architecture Themes in JPL’s Mission Data System. IEEE.
In proceedings of IEEE Aerospace Conference, March 2000, p.259-267.

[Fortescue et al., 2003] Fortescue, P., Stark, J., and Swinerd, G. (2003). Space-
craft Systems Engineering. Willey, 3 edition.

[Fossen, 2002a] Fossen, T. I. (2002a).Marine Control Systems - Guidance, Nav-
igation and Control of Ships, Rigs and Underwater Vehicles. Marine Cyber-
netics.

[Fossen, 2002b] Fossen, T. I. (2002b).Marine GNC Toolbox for matlab. Marine
Cybernetics. available at:www.marinecybernetics.no .

[Gamma et al., 1994] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M.
(1994). Design Patterns: Elements of Reuseable Object-Oriented Software.
Addison-Wesley.

[Gene F. Franklin and Emami-Naeini, 1994] Gene F. Franklin,J. D. P. and
Emami-Naeini, A. (1994).Feedback Control of Dynamic Systems. Addison
Wesley.

[Grewal and Andrews, 1993] Grewal, M. S. and Andrews, A. P. (1993). Kalman
Filtering Theory and Practice. Prentice Hall.

[Habets et al., 2006] Habets, L., Collins, P., and van Schuppen, J. (2006). Reach-
ability and control synthesis for piecewise-affine hybrid systemson simplices.
IEEE Transactions on Automatic Control, 51:938–948.

[Healey and Lienard, 1993] Healey, A. J. and Lienard, D. (1993). Multivariable
Sliding Mode Control for Autonomous Diving and Steering of Unmanned Un-
derwater Vehicles. IEEE. Journal of Oceanic Engineering, Vol. 18, No. 3, July
1993.

[Heemels et al., 2006] Heemels, W. P. M. H., Siahaan, H. B., Juloski, A. L., and
Weiland, S. (2006).Control of Quantised Linear Systems: anl1-optimal ap-
proach. IEEE. In proceedings of the 2006 American Control Conference,

197

BIBLIOGRAPHY

Denver, USA, June 4-6, 2003.

[Henzinger, 1996] Henzinger, T. A. (1996).The Theory of Hybrid Automata.
IEEE. Logic in Computer Science, 1996. LICS ’96. Proceedings., Eleventh
Annual IEEE Symposium on , 27-30 July 1996 Pages:278 - 292.

[Henzinger et al., 2003] Henzinger, T. A., Horowitz, B., andKirsch, C. M.
(2003). Giotto - A Time-Triggered Language for Embedding Programming.
IEEE. Proceedings of the IEEE, vol. 91, no. 1, January 2003.

[Horowitz et al., 2003] Horowitz, B., Liebman, J., Ma, C., Koo, T. J.,
Sangiovanni-Vincentelli, A., and Sastry, S. S. (2003).Platform-Based Embed-
ded Software Design and System Integration for Autonomous Systems. IEEE.
Proceedings of the IEEE, vol. 91, no. 1, January 2003.

[Johnson and Brown, 1998] Johnson, S. A. and Brown, G. M. (1998). An
Overview of the Fault Protection Design for the Attitude Control Subsystem of
the Cassini Spacecraft. IEEE. In proceedings: American Control Conference
1998.

[Khalil, 2000] Khalil, H. K. (2000).Non-linear Systems. Prentice Hall, 3 edition.

[Kofman, 2002] Kofman, E. (2002).A Second Order Approximation for DEVS
Simulation of Continous Systems. SIAM. Journal of Simulation, issue 78, p.
76-89.

[Kofman, 2003] Kofman, E. (2003).Discrete Event Based Simulation and Con-
trol of Continuous Systems. Facultad de Ciencias Exactas, Ingeniería y Agri-
mensura Universidad Nacional de Rosario. PhD-thesis.

[Kofman, 2004] Kofman, E. (2004).Discrete Event Simulation of Hybrid Sys-
tems. SIAM. SIAM Journal on Scientific Computing. 25(5). pp 1771-1797.

[Kofman et al., 2001] Kofman, E., Lee, J. S., and Zeigler, B. P. (2001). DEVS
Representation of Differential Equation Systems: Review of Recent Advances.
IEEE. Proceedings of ESS’01 pp. 591-595.

[Koo et al., 2005] Koo, T., Dubey, A., Wu, X., and Su, H. (2005). Computation
Platform for Automatic Analysis of Embedded Software Systems Using Model
Based Approach. Springer. Lecture Notes in Computer Science - Volume
3707/2005.

[Kreyzig, 1999] Kreyzig, E. (1999).Advanced Engineering Mathematics. John
Wiley and Sons, 8 edition.

[Laursen et al., 2005] Laursen, K. K., Pedersen, M. F., Bendtsen, J. D., and Al-

198

BIBLIOGRAPHY

minde, L. (2005).The SOPHY Framework: Simulation, Observation and Plan-
ning in Hybrid Systems. IEEE. Fifth International Conference on Hybrid Intel-
ligent Systems (HIS05), p 457-462.

[Lieu et al., 1999] Lieu, J., Liu, X., Koo, T.-K. J., Sinopoli, B., Sastry, S., and
Lee, E. A. (1999).A Hierarchical Hybrid System Model and Its Simulation.
IEEE. Proceedings of the 38th Conference on Decision and Control, Phoenix,
December 1999, page 3508-3513.

[Lunze, 1994] Lunze, J. (1994).Qualitative Modelling of Linear Dynamical Sys-
tems with Quantized State Measurements. Pergamon. Automatica, Vol. 30, no.
3, pp. 417-431, 1994.

[Maciejowski, 2002] Maciejowski, J. M. (2002).Predictive Control with Con-
straints. Prentice Hall.

[Nutaro, 2005] Nutaro, J. (2005).Constructing Multi-point Discrete Event In-
tegration Schemes. INFORMS. Proceedings of the 5th Winter Simulation
Conference (WSC), 4-7/12 2005, Orlando, USA.

[Oort et al., 2006] Oort, E., Chu, Q., and Mulder, J. (2006).Robust Model Pre-
dictive Control of a Feedback Linearized F-16/MATV Aircraft Model. AIAA.
In 2006 Guidance, Navigation, and Control Proceedings. American Institute of
Aeronautics and Astronautics, Keystone, Colorado, August2006.

[Pettersson and Lennartson, 1997] Pettersson, S. and Lennartson, B. (1997).
Controller Design of Hybrid Systems. Springer. Lecture notes in Computer
Science 1201, pp. 240-254.

[Philips et al., 2003] Philips, P. P. H. H., Heemels, W. P. M. H., Preisig, H. A.,
and van den Bosch, P. P. J. (2003).Control of Quantised Systems Based on
Discrete Events. Taylor and Francis. International Journal of Control, Vol. 76,
No. 3, pp. 277-294, 2003.

[Quine, 2006] Quine, B. M. (2006).A Derivative-free Implementation of the Ex-
tended Kalman Filter. Elsevier. Automatica volume 42, p. 1927-1934, Septem-
ber 2006.

[Rodrigues and How, 2003] Rodrigues, L. and How, J. P. (2003). Observer-based
Control of Piecewise-affine Systems. IEEE. Internation Jounal of Control 2003,
VOL. 76, NO. 5.

[Sandee and Heemels, 2006] Sandee, J. H. and Heemels, W. P. M.H. (2006).
Practical Stability of Pertubed Event-Driven Controlled Linear Systems. IEEE.
In proceedings of the 2006 American Control Conference, Minnesota, USA,

199

BIBLIOGRAPHY

June 24-16, 2006.

[Sandee et al., 2005] Sandee, J. H., Heemels, W. P. M. H., and Bosch, P. P. J.
(2005). Event-Driven Control as an Opportunity in the Multidisciplinary De-
velopment of Embedded Controllers. AAC. In proceedings of the 2005 Amer-
ican Control Conference, June 8-10, Portland, USA.

[Sandee et al., 2006] Sandee, J. H., Visser, P. M., and Heemels, W. P. M. H.
(2006). Analysis and Experimental Validation of Processor Load forEvent-
Driven Controllers. IEEE. In proceedings of the 2006 IEEE International
Conference on Control Applications, Munich, Germany, October 4-6, 2006.

[Sarjoughian and Cellier, 2001] Sarjoughian, H. S. and Cellier, F. E. (2001).Dis-
crete Event Modeling and Simulation Technologies: A Tapestry of Systems and
AI-Based Theories and Methodologies. Springer Verlag.

[Schei, 1997] Schei, T. S. (1997).A Finite-Difference Method for Linearization
in Nonlinear Estimation Algorithms. Pergamon. Automatica volume 33, No.
11 p. 2053-2058, 1997.

[Seibel, 2005] Seibel, P. (2005).Practical Common Lisp. apress.

[Stern and Spencer, 2003] Stern, A. and Spencer, J. (2003).New Horizons: The
First Reconnaissance Mission to Bodies in the Kuiper Belt. Springer. Journal
of Earth, Moon, and Planets, Volume 99, no. 1-4, P. 477-482.

[Sun_Microsystems, 2007a] Sun_Microsystems (2007a). Enter-
prise Java Beans Product Description. Sun Microsystems.
http://java.sun.com/products/ejb/ .

[Sun_Microsystems, 2007b] Sun_Microsystems (2007b). Enter-
prise Java Beans Product Description. Sun Microsystems.
http://java.sun.com/products/javabeans/ .

[Taylor and Kebede, 1997] Taylor, J. H. and Kebede, D. (1997). A Rigorous
Hybrid Systems Simulation of an Electro-mechanical Pointing System with
Discrete-time Control. AAAC. Proceedings of the American Control Con-
ference, Alberquerque, June 1997, page: 2786-2789.

[Utkin, 1977] Utkin, V. I. (1977).Variable Structure Systems with Sliding Modes.
IEEE. IEEE Transactions on Automatic Control, Vol. AC-22, No. 2, April
1977.

[Vakakis and Burdick, 1990] Vakakis, A. F. and Burdick, J. W.(1990). Chaotic
Motion in The Dynamics of a Hopping Robot. IEEE. In proceedings of the

200

BIBLIOGRAPHY

1990 IEEE conference on Robotics and Control, p. 1464-1469,Cincinnati, OH,
USA.

[Wan and Merwe, 2000] Wan, E. and Merwe, R. V. D. (2000).The Unscented
Kalman Filter for Nonlinear Estimation. IEEE. Adaptive Systems for Signal
Processing, Communications, and Control Symposium 2000, 1-4 Oct. 2000.

[Wertz, 1978] Wertz, J. R. (1978).Spacecraft Attitude Determination and Con-
trol. Kluwer Academic Publishers.

[Wiesniewski, 1998] Wiesniewski, R. (1998).Sliding Mode Attitude Control for
Magnetic Actuated Satellite. IFAC. In Proceedings of the 14th IFAC Sympo-
sium on Automatic Control in Aerospace.

[Williams et al., 2003] Williams, B. C., Ingham, M. D., Chung, S. H., and Elliot,
P. H. (2003). Model-based programming of intelligent embedded system and
robotic space explorers. InProceedings of the IEEE: Special Issue on Modeling
and Design of Embedded Software, vol. 9, no. 1, pp. 212-237.

[Williams and Nayak, 1999] Williams, B. C. and Nayak, P. P. (1999). A model-
based approach to reactive self-configuring systems. In Minker, J., editor,
Workshop on Logic-Based Artificial Intelligence, Washington, DC, June 14–
16, 1999, College Park, Maryland. Computer Science Department, University
of Maryland.

[Zarchan and Musoff, 2000] Zarchan, P. and Musoff, H. (2000). Fundementals of
Kalman Filtering - A Practical Approach. American Institute of Aeronautics
and Astronautics.

[Zeigler, 1976] Zeigler, B. P. (1976).Theory of Modelling and Simulation. John
Wiley and Sons. 1st edition.

[Zeigler et al., 2000] Zeigler, B. P., Praehofer, H., and Kim, T. G. (2000).Theory
of Modelling and Simulation. John Wiley and Sons. 2nd edition.

[Årzén, 1999] Årzén, K.-E. (1999).A Simple Event-Based PID Controller. 1999.
In Proceedings of the IFAC World Congress 1999.

201

