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Abstract

This dissertation treats analysis and state feedback control synthesis of deter-
ministic nonlinear and continuous time systems of ordinary differential equa-
tions. In particular, we are investigating the input-output behavior in terms
of dissipation in the sense of Willems (1972), and the asymptotic behavior in
state space in relation to general compact and invariant sets. Included in this
framework is the well-known # o, state feedback control theory, which forces the
input-output map to have a bounded Lo gain, and ensures local asymptotical
stability of equilibrium points under zero disturbances.

The theory here presented extends the usual H, approach significantly. Apart
from using general dissipation inequalities to describe the desired input-output
performance of the system, we consider stability issues of state trajectories
near compact and invariant sets, which represent the desired behavior in state
space. Hence, oscillatory and any other non-stationary mode of operation is
included in this framework. This set stability approach is not local, but re-
gional (semi-global) insofar as the basin of attraction of the above mentioned
invariant set is estimated by compact sets, here called performance envelopes.
Moreover, under certain conditions we can guarantee that the attractiveness
and/or asymptotic stability of invariant sets in state space is not destroyed by
non-zero, but decaying disturbances. Furthermore, smoothness of storage func-
tions, and practical stability of invariant sets with respect to time-persistent,
not decaying, but bounded disturbances can be obtained.
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Summary

This dissertation deals with control issues of nonlinear systems. We focus on problems
concerning the input-output behavior, and the asymptotic behavior in state space. In
particular, we are investigating the notion of dissipation, the property of set stability, and
the choice of control strategy to obtain these goals.

Chapter 1 gives a general overview of deterministic control problems addressed in this the-
sis. These are formulated in terms of systems of n ordinary differential equations (ODE’s).
The fundamental questions asked concerning stability, robustness, and performance of such
systems - and partially answered in this thesis - are motivated.

Chapter 2 is devoted the subproblem of H, control on compact sets containing equilibrium
points of the system. We are considering the regular case alone, that is, the use of controls is
penalized. Unlike in the linear context, local control does not imply global control, therefore
we can not from local asymptotic stability of equilibrium points deduce the size of the basin
of attraction. The later is estimated by a compact region, called performance envelope.
According to the game theoretic approach to He, theory, we solve a partial differential
inequality, called the state-feedback Hamilton-Jacobi inequality (HJI), to obtain a suitable
control law and a performance envelope. We show how Luke’s approximation scheme can
be implemented in the symbolic language MAPLE to solve HJI’s near equilibrium points.

In the commentary section following the first paper we give a historic overview focusing
on the the game theoretic and the differential geometric approach to Ho, control theory.
Then, state feedback H control techniques for general affine nonlinear systems which are
not simplified by the so-called DGKF-conditions are showed. This generalization allows us
to treat tracking problems.

In chapter 3 we generalize the regional Ho state control problem described in chapter 2
to stabilize invariant compact sets in state space. This is a new approach which combines
elements of La Salle’s invariance principle with H, control and set stability issues. The
here described results on semi-global stability and set-stability by H, control use condi-
tions in terms of the state-feedback Hamilton-Jacobi inequality and the properness of C*
storage functions, provided that a certain detectability property is satisfied. Usual Hqo
control techniques are generalized such that oscillating and other non-stationary modes of
operation can be dealt with.

The commentary section following the second paper mentions briefly non-differentiable
solutions to Hamilton-Jacobi equations, also called weak or viscosity solutions.

12
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Chapter 4 has the purpose to extend the class of disturbances under which attractiveness
of invariant sets can be assured. More precisely, we are investigating robustness properties
of systems with respect to non-zero, but decaying disturbances. The main tool used in
the third paper is the notion of asymptotically autonomous systems, originally developed
by L. Markus (1956). We provide an alternative, detailed proof of his main theorem to
improve the understanding of asymptotic behavior of asymptotically autonomous systems.
Moreover, known results on local asymptotic properties near simple asymptotically stable
equilibrium points are generalized to regional (semiglobal) asymptotic properties of general
invariant and compact sets. These sets have either to be asymptotically stable, or com-
pletely unstable in the sense that they are asymptotically stable under the time-reversed
flow of the system.

The commentary section following the third paper applies the above mentioned findings to
the Hoo control problem with set-stability derived in the previous chapter. A new corollary
formalized the robust set-stabilizing Ho, control approach, where non-zero, but decaying
disturbances are included in the framework of stability analysis.

Chapter 5 presents the author’s main contribution to nonlinear dissipation and it’s relations
to stability issues of general invariant sets. The overall idea is that as much as possible
information on the qualitative behavior of a dissipative system should be extracted from
the data of the system, the structure of the Hamilton Jacobi inequality, and the storage
function found. We start with an introduction to general dissipative analysis in the sense
of Willems (1972). The required regularity properties of storage functions are relaxed: In
the case that we are interested in the dissipation inequality alone, lower semicontinuity
suffices, as pointed out by James (1993). To make investigation of the positive limit sets
of state trajectories treatable, we have to consider continuous and locally Lipschitz storage
functions. The analysis is performed on an open subset called the reachable set.

A novelty is the definition of four different subsets of the state space in terms of generalized
gradients; the relations among these sets are giving valuable information on the (asymp-
totic) stability properties of undisturbed trajectories. Moreover, the use of strict Hamilton-
Jacobi inequalities (these are HJI’s which are satisfied strictly negative) reveals attractive
properties like properness, or positive definiteness of storage functions, and asymptotic sta-
bility of undisturbed trajectories with respect to general invariant sets. The tools used here
are inspirated by La Salle’s invariance principle (1961), and give also useful performance
envelopes.

Then, storage functions are treated as Input-to-State-Stability (ISS) Lyapunov functions
in the sense of Sontag and Lin (1990-1995). This point of view provides existence proofs
for smooth storage functions, and assures robustness of stability properties with respect
to time-persistent, not decaying, but bounded disturbances. Different classes of control
systems are compared to each other, and it is pointed out why the existence of smooth
storage functions is beneficial in practical applications and numerical approximations.

In the commentary section following the fourth paper the existence of storage functions
which are continuous and locally Lipschitz is commented. The problem of state feedback
synthesis is taken care of using the interaction between dissipation, stability issues with
respect to general invariant sets, and state feedback algorithms based on differential games.
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We derive the state feedback Hamiltonian-Jacobi inequality, and discuss asymptotic be-
havior of controlled systems. It is furthermore shown that the minimizing control upyi, and
the maximizing disturbance wmay vanish at positive limit sets, this is a generalization of a
property well known in Hs control. The application of the analysis results to accomplish
smooth and robust state feedback control are mentioned.

Chapter 6 gives a short review of the efforts which have been made to solve the Hamilton-
Jacobi inequalities associated with nonlinear H., control. This chapter displays no original
work of the author, it is mainly included to help the reader in the process of comparing
numerical tools.



Sammenfatning

Denne Ph.D-afhandling beskeaeftiger sig med analyse og regulering af ikke-linezre systemer.
Vi interesserer os for input-output opfgrelsen, og for asymptotisk opfgrsel i tilstandsrum-
met. Specielt undersgges begrebet dissipativitet, egenskaben af maengde-stabilitet og valget
af bedst mulig reguleringsstrategi for at opné disse maél.

Kapitel 1 giver et generelt overblik over den type deterministiske reguleringsproblemer,
som omhandles i neervaerende afhandling. Disse er givet som systemer af n-dimensionale
ordinaere differentialligninger (ODE’s). Vi motiverer de fundamentale spgrgsmal om sta-
bilitet, robusthed og ydelse (performance) af systemer, som er delvist lgst i afhandlingen.

Kapitel 2 beskaeftiger sig med underproblemet om Hso-regulering pa kompakte meengder,
der indeholder systemets kritiske punkter. Kun det reguleere tilfeelde er omhandlet; det vil
sige at brugen af reguleringssignalet bliver altid straffet ved en passende omkostningsfunk-
tion. I modsaetning til lineser regulering medfgrer lokal stabilitet ikke global stabilitet, og
en estimering af stgrrelsen af den tiltraekkende region i tilstandsrummet ved en kompakt
mengde - her kaldet performance envelope - er ngdvendigt. Nar man fglger den spil-
teoretiske indfaldsvinkel til Hoo-regulering, s& skal vi lgse en partiel differential-ulighed -
her kaldet Hamilton-Jacobi-ulighed (HJI) - til at finde en passende reguleringsstrategi og en
performance envelope. Vi viser hvordan Luke’s approksimations-skema kan implementeres
i det symbolske sprog MAPLE til at lgse HJT’er neer kritiske punkter.

I det kommenterende afsnit, som folger den fgrste artikel, gives en kort indfgring i den spil-
teoretiske og den differentialgeometriske indfaldsvinkel til Hoo-regulering. Derefter vises
tilstands-tilbagekobling og Ho-regulering for generelle affine og ikke-linezere systemer, der
ikke er underlagt forenklende, sakaldte DGKF-betingelser. Denne generalisering tillader os
at anvende Ho-regulering pé tracking problemer.

I kapitel 3 generaliseres det i det forgdende kapitel omhandlede regionale H.-regulerings-
problem til ogsé at omfatte stabilisering af kompakte og invariante maengder i tilstand-
srummet. Denne nye indfaldsvinkel kombinerer elementer af La Salle’s invarians-princip
med Ho-regulering, og med analyse af stabilitetsforhold af maengder i tilstandsrummet.
De i beskrevne resultater om regional meengde-stabilitet forudseetter at systemet er de-
tekterbart pd passende made, og at differentiable og radielt ubegreensede lgsninger til
Hamilton-Jacobi-uligheden eksisterer. Seedvanlige Ho-reguleringsalgoritmer er udvidet til
ogsé at omfatte oscillerende og andre ikke-stationzere driftstilstande.

Efter artiklen naevnes kort ikke-differentiable Igsninger til Hamilton-Jacobi-ligninger. Disse
kaldes ogsa svage, eller viskgse lgsninger.

15
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Kapitel 4 har formalet at udvide klassen af forstyrrelser der ikke forhindrer tiltraekning til
invariante meengder i tilstandsrummet. Vi undersgger robusthed af systemer med hensyn
til ikke-trivielle, men i tiden uddgende forstyrrelser. Varktgjet, som bruges i den tredie
artikel, er begrebet asymptotisk autonome systemer, defineret af L. Markus (1956). Vi giver
et alternativt bevis for Markus’ hovedsaetning, forst og fremmest for at forbedre forstaelsen
af den asymptotiske opfarsel af asymptotisk autonome systemer. Desuden generaliseres fgr
kendte resultater om lokal asymptotisk opfgrsel naer asymptotisk stabile kritiske punkter
til regional asymptotisk opfgrsel i forbindelse med kompakte og invariante maengder. Disse
maengder skal enten veere asymptotisk stabile, eller totalt ustabile i den forstand at de er
asymptotisk stabile med hensyn til det tids-inverterede system.

Efter den tredie artikel anvendes de fgr omtalte resultater om asymptotisk autonome syste-
mer pa Hoo-reguleringsproblemet med meengde-stabilitet fra forrige kapitel. Et nyt korollar
formaliserer robust maengde-stabiliserende Hoo-regulering hvor ikke-trivielle, men i tiden
uddgende forstyrrelser er inkluderet i stabilitetsanalysen.

I kapitel 5 praesenterer forfatteren sit vaesentligste bidrag til ikke-lineser dissipativitet og
dennes relationer til stabilitesforhold af invariante maengder. Den overordnede ide er at
man bgr udvinde mest mulig information om systemets kvalitative opfgrsel af systemets
data, af Hamilton-Jacobi-ulighedens struktur, og af de sakaldte storage-funktioners struk-
tur. Fgrst introduceres generel dissipativitet i Willems forstand (1972). Storage-funktionen
behgver ifplge James (1993) kun at veere nedad halvkontinuert, hvis dissipativitet er vores
gnske. P4 den anden side er vi ngd til at beskaeftige os med kontinuerte og lokal Lips-
chitz storage-funktioner for at opné fornuftige udsagn om de positive greensemengder af
tilstandstrajektorier. Analysen begraenses til en 8ben delmaengde af tilstandsrummet, som
vi kalder den tilgeengelige maengde.

For fgrste gang i dissipativitetsanalysen defineres fire forskellige delmaengder af tilstand-
srummet ved hjxlp af generaliserende gradienter af de fgr omtalte storage-funktioner;
veerdifulde informationer om (asymptotiske) stabilitets-forhold af uforstyrrede trajekto-
rier kan udvindes af relationerne imellem disse maengder. Desuden kan brugen af strengt
negative Hamilton-Jacobi-uligheder forarsage meget attraktive egenskaber, sdsom radial
ubegraensethed og positiv definithed af storage-funktioner med hensyn til generelle, in-
variante maengder. Beviserne er inspireret af La Salle’s invarians-princip; disse giver ogsa
brugbare performance envelopes.

Derefter bliver storage-funktionerne betragtet som Input-to-State-Stabilty (ISS) Lyapunov-
funktioner, oprindelig defineret af Sontag og Lin (1990-1995). Denne indfaldsvinkel giver
simple betingelser under hvilken glatte (uendelig mange gange differentiable) storage-
funktioner eksisterer. Ogsa robust stabilitet med hensyn til ikke-uddgende, men begraensede
forstyrrelser er en fglge af ovennzevnte betingelser. Forskellige klasser af dissipative sys-
temer sammenlignes med hinanden, og der papeges vigtigheden af eksistensen af glatte
storage-funktioner i praktiske anvendelser, og i numeriske approksimationer.

I afsnittet efter den fjerde artikel kommenteres eksistensen af kontinuerte og lokal Lip-
schitz storage-funktioner. Problemet at syntetisere tilstands-tilbagekoblingsalgoritmer er
lgst ved at forbinde dissipativitet, stabilitetsforhold med hensyn til invariante maengder og
tilstands-tilbagekoblingsalgoritmer baseret pa differentiable spil med hinanden. Hamilton-
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Jacobi-uligheden svarende til tilstands-tilbagekobling vises, og asymptotisk opfgrsel af reg-
ulerede systemer diskuteres. Desuden vises at den minimerende regulator umi, og den
maksimerende forstyrrelse wmay er lige nul pa positive greensemaengder af tilstandstrajek-
torier, et faktum som har veeret kendt i Hoo-regulering. Der vises hvordan resultaterne
fra analysen af dissipative systemer oversattes til analoge resultater omhandlende glat og
robust dissipativ tilstands-tilbagekobling.

Kapitel 6 fortaller kort hvilke algoritmer til numerisk Igsning af Hamilton-Jacobi-uligheder
er kendte og har veeret benyttet. Dette kapitel er inkluderet i athandlingen for at give
laeseren, der skal implementere numeriske approksimationer, en hjslpende hand. Her findes
ingen original bidrag fra forfatteren.



Chapter 1

Introduction

The purpose of this chapter is to give a general overview over the kind of deterministic
control problems addressed in this thesis. Secondly, we want to motivate the fundamental
questions asked and investigated here, and to display some basic tools used to answer them.

1 The idea of feedback control

This thesis concerns control and regulation issues of physical systems or plants which can be
successfully modelled by systems of n autonomous ordinary differential equations (ODE’s)
of the form

i=X(z) , (1)

where the states z(-) : R — IR™ represent the behavior of the system. It is assumed that
the plant is constructed - or pre-compensated - such that the preferred modes of operation
are represented by an equilibrium point, a periodic orbit, a union of such trajectories, or
more generally, by some compact invariant set S C IR” (a set is compact if it is closed and
bounded, it is invariant if it consists of a union of trajectories defined on R of (1)).

In case that we can guarantee that the model represents the behavior of the physical plant
exactly, and the plant is only started in initial points satisfying o € S, then we know that
the unique trajectory started in z( at time tg, here denoted z(-, z¢, tg) never leaves S, and
perfect behavior of the plant is obtained.

Unfortunately, real world systems do not behave in such an idealized manner. The following
problems are most likely to occur:

stability: The initial point £g may not be inside S, thus possibly leading to mostly un-
desired behavior like unboundedness of z(-, zg, tp), or instability of the set S. Which
stability criteria must be satisfied?

robustness: The model may be oversimplified, and the influence of unknown or unpre-
dictable exterior inputs, here called disturbances, must be taken into account. A
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better model might be a system of perturbed ODE’s of the form
z=X(z,w) , (2)

where the influence of a disturbance signal w(:) : IR — R is reasonably modelled.
But do the desired stability properties still hold for w(-) # 07

performance: Other performance criteria like quality, cost or risk have to be improved.
That is, in addition to the extended dynamics (2), we are interested to assure “nice”
properties of some map w(-) — z(-), where the performance signal z(-) : IR — IRP is
generated by the augmented system

&= X(z,w) ,

z=Z(z,w)

(3)
Which side performance criteria can be achieved without destroying stability?

Even if the plant represented in the model (1) has been designed with care to accomplish
nice behavior on S, it may be mandatory to modify it’s dynamics by an appropriate choice
of feedback devices to improve stability, robustness or other performance criteria. In the
following it is assumed that the states z(-) are accessible. Therefore, after connecting
some actuating devices like motors, valves, or any other devices which use an control input
signal u(-) : R — IR™ to alter the dynamics of (1), after considering the most significant
disturbances, and after defining secondary performance criteria, we have a model of the
form

x. = X(x’ IU/, w) 7

(4)

z=Z(z,u,w)

It is still assumed that the preferred behavior of our model is represented by a compact
invariant set & C IR" of the uncontrolled and undisturbed dynamic part of the system,
that is, of the autonomous sub-system

z = X(z,0,0) . (5)
Now we are faced with the fundamental question investigated in this thesis:

How to design a state feedback law u = u(x) which guarantees sufficient sta-
bility, robustness, and performance?

Let us take a look on some known basic tools which have been used in the past to solve
similar, but less complex problems individually, one by one.

2 Some basic tools

Consider the time-varying, n-dimensional system of ordinary differential equations
(ODE’s) of the form

z = X(z,t) , (6)
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where X : IR" xR — IR" is any sufficient smooth vectorfield. We assume that to each pair of
initial conditions zy € IR™ and t; € R there is a unique state trajectory z(-) : Z C R — IR"
which satisfies z(t9) = zo. We denote the state by z(-) = z(-, zo, tp) when emphasizing on
the initial conditions. We notice that the dynamical part of any of the different models (1),
(2), (3), or (4) with u(-) = u(z) and w(-) = w(t), can be represented in the form (6).

We assume that there is a compact set S C IR™ which represents the desired modes of
operation of the system (6). These might be one or several equilibrium points at which the
physical plant operates efficiently, or these may be closed, periodic orbits, or more general,
a union of state trajectories with beneficial properties. Hence, if z(-) € S, we are on the
safe side. On the other hand, the initial point £y may be unproper set due to disturbances
or inaccuracies in the model, it may be outside S. The interesting question is then: what
happens if initial conditions z¢y # S are considered?

It turns out that all kind of dramatic behavior might happen. We are urged to consider
the continuity properties of z(-, g, %) with respect to zo.

To do so, we need some preliminary definitions: Let |p|s denote the distance between some
closed set S and any point p € IR", that is,

= min|p — 7
[pls = minlp—q| (7)
where | - | denotes the usual Euclidean vector norm on R". We denote the non-negative

reals by IRT. A real valued function « : R" + IR belongs to class K if it is continuous and
strictly increasing, and satisfies @(0) = 0. We say « belongs to class K if it in addition
satisfies a(r) — oo as 7 — oo. Finally, a real valued function 3 : R x RT ~— IRT is of
class KL if it is continuous, and £(r, s) is of class K for each fixed s, and for each fixed r
is monotone (not necessarily strict monotone) decreasing to zero as s — 00. Now we are
able to define the following cases of behavior:

The solution x(-, g, o) is called

bounded (in future) if there exists a constant ¢(xg,t9) such that |z(¢, zo, )| < (o, to)
for all ¢ > tg, or equivalently, if there exists a compact set Q(zg,%y) C IR” such that
z(t, g, tg) € Q(zo, to) for all t > ty;

unbounded if not bounded.
The closed set S C IR" is called

stable if for each ¢ > 0 there is a §(e, tg) > 0 such that |zg|s < ¢ implies |z(t, zo,t0)|s < €
for all ¢t > ty, or equivalently, if there exist a K function oy, such that

|Z(t, o, to)|s < aty(|zols)
for all t >ty and any xzo;

attractive if there exists an r(ty) > 0 and, for each € > 0, a T'(e,t9) > to such that
|zo|ls < r implies |z(t, zo,%0)|s < € for all t > T'(e, tg) (we write shortly z(-) = S);
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asymptotically stable if it is stable and attractive with respect to S, or equivalently, if
there exist a KL function B, such that

|[z(t, 20, t0) s < Bo(|7ols, t — to)
for all t > tp and any xp; and finally,

unstable if it is not stable.

In case that the above properties are not dependent on the initial time ¢y, that is, the
constants can be chosen as ¢(zg), d(¢), and r, or equivalently, the compact set and the
comparison functions are given by Q(x), @ and (3, independently of t;, the properties are
called uniform. This will often be the case in the following chapters.

Any attractive closed set &, and in particular, any asymptotically stable closed set S
has a basin of attraction, denoted AT, that is, the set of initial points zo such that
z(+,zg,t9) — S. Whenever we refer to a stability property for which the basin of attraction
is estimated by some compact set  C AT, we call the stability property regional. In case
that the stability property of concern holds on the entire space R, it is called global, and
in case that the basin of attraction is not estimated, we call the stability property local.

Which of these stability properties are essential in practical applications? More or less, all
of them!

To be more precise, boundedness of all state trajectories z(-) can not be discarded, since
real world systems only do sustain finite stress, and will certainly be destroyed if some
unbounded trajectory x(t,zg,t9) — oo for ¢ — oo exists. Hence, boundedness of all state
trajectories inside some compact set Q(zg,%9) C IR™ has our primary interest, and the
compact set 2 has often to be independent of the initial conditions z¢ and 3. Of course,
we must then be able to guarantee that the initial point satisfies o € 2. Often the strength
of the physical system at hand - the maximal allowable forces, temperatures, or pressures
which can be sustained within some safety margin - define a performance envelope,
that is, a compact set in state space which has to be positive invariant (we call a compact
set © C IR™ positive invariant if for each initial point o € Q there holds z(t, zg,tg) €
for all t > tp).

Moreover, there are some preferred modes of operation, which are represented by the com-
pact set S. There may be many objectives such as quality of production, fuel consumption,
smoothness of a ride in vehicles, generation of preferred signals, or any other preferential
qualities which can be represented by the compact set . Common for all of them is that
we do not want due to reasons of quality, cost or safety, that state trajectories with initial
point inside S, or arbitrarily close to S, drift around such that, after some time, z(t) can
be found any place in €. It follows that stability of the set & must be our next target.

Still, stability alone opens the possibility that the system is performing for all times in
a suboptimal manner. But, in many applications where the difference between subopti-
mal behavior and optimal behavior causes loss of resources, we are urged to ensure the
attraction of the set S, and hence, asymptotical stability is our goal.

To be of practical interest, stability conditions must not require that we explicitly solve (6)
for all possible initial data x¢ and ty. Fortunately, there exists a vast variation of Lyapunov
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function techniques to establish those stability conditions, see for example [SL61, Yos66,
Kha96]| for details. In the following subsection we recall four different Lyapunov-like theo-
rems and a game-theoretic idea, which had great impact on the course of the investigations
presented in this thesis.

2.1 Boundedness and attraction

For the purpose of this thesis it is beneficial to recall boundedness and attraction properties
of smooth autonomous systems of the form

i=X(z) . (8)

A set § C IR™ is called invariant if all trajectories starting in S are defined on IR, and
evolve entirely inside S in past and future, or equivalently, if it consists of a union of
trajectories defined on IR. A set Q is called positive invariant if all trajectories of (8)
with initial point g € Q are never leaving ) for all ¢ > .

We have the following theorem on autonomous systems and invariant sets, which has been
published in the early sixties by La Salle and Lefschetz [SL61]. This theorem is often
referred to as “the La Salle’s invariance principle”.

2.1 Theorem (La Salle and Lefschetz) Let V : R™ +— R be a C! function, and let Q
denote a component of the preimage V(] — 0o, c]) for some ¢ > 0. Assume that Q is
connected and bounded, and that

4y = % X(z) <0 (9)

within Q along any trajectory of the autonomous system (8). Let V C 2 be the largest set
where %V =0, and let § be the largest invariant set contained in V.

Then ) is positive invariant, and every solution in € converges to S as t — oco.
In other words: (2 is an estimate of the basin of attraction for the attractive invariant set S,

and the theorem assures boundedness of state trajectories inside 2 and regional attraction
of the invariant set S.

2.2 Robustness and stability

Assume we have a time dependent system of ODE’s - here called a disturbed, or per-
turbed system - of the form

z=X(z,w) , (10)

where z(-) : R* — IR™ is called the state, w(-) : RT — IR! the exogenous input, also called
disturbance, which is assumed to be an measurable signal taking values in a compact set
W € R!, shortly w(-) € Myy. The symbol X (z,w) denotes a continuous vector field
R™ x W +— R™ which is locally Lipschitz in z, uniformly on W.
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We state the following converse robust Lyapunov theorem which is a slightly simplified
version of a theorem by Lin, Sontag, and Wang. The proof is omitted here, it can be found
in [LSW96].

We assume that there exists some compact set A C IR" which is positive W-invariant (that
is for all initial conditions z¢ € A and all w(-) € My the resulting unique trajectory z(-)
is defined in the future and z (¢, zg, w(:)) € A for all ¢ > 0).

The system (10) is called robust global asymptotically stable (RGAS) with respect
to a compact positive W-invariant set A C IR® and a compact value set W C IR! if there
exist a KL function § such that

|2(t, z0, w(-))]a < B(|zo|a,t) (11)
for all t > 0, any z¢, and any w(-) € M.

A robust Lyapunov function for the system (10) with respect to the compact positive
We-invariant set A4 C IR" is a function V' : R” + IR which is smooth (C*) on IR"\\A, and
which is such that there exists two Ko, functions ay, ao satisfying
ai(|z]la) V() < ax(lz]a)
and a K function as such that for any =z € R"\\A and any w(-) € My
4y =2V ()X (z,w) < —a3(|z]la) on R™\A . (12)
The robust Lyapunov function is called smooth if it is smooth (infinitely differentiable)

on IR™.

It follows from the definition that a robust Lyapunov function is continuous on IR", and
that V : IR™ %%° R*. Moreover, 7 € A < V(z) =0.

2.2 Theorem (Smooth converse robust Lyapunov theorem) [LSW96] Assume
that the system (10) has a nonempty, compact, and positive W-invariant set A C R".
Then the system is RGAS with respect to A if and only if there exists a smooth robust
Lyapunov function with respect to A.

It has been showed in [LSW96] by a counterexample that the assumption of compactness
of the disturbance value set W is crucial. Also, the existence of a robust Lyapunov function
for the system (10) with respect to A implies the existence of a smooth robust Lyapunov
function.

Notice also that we use the expressions positive invariant and robust global asymptotic
stable where [LSW96| uses invariant and uniform global asymptotic stable.

2.3 Performance criteria

The additional performance criteria, which we will allow for uncontrolled systems of
the form

(13)
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are for example passivity, that is, the requirement

T
_ /0 w(t)T2(t) dt < K (z0)

holds along the trajectories of (13) for all T > 0. Another criteria might be an Lo gain
less than or equal vy > 0, that is, any trajectory of (13) is such that

T T
| P de<? [ d+ Ko
0 0
is satisfied for all T > 0. In both cases K is a constant only depending on the initial point.

More generally, the theory of dissipative dynamical systems, which has been developed by
Jan C. Willems [Wil72a] (see also [HM80b]), gives the generalization of additional perfor-
mance criteria which we want to impose besides stability: Assume that an uncontrolled
system is given together with a real valued function s : IR® x IRP — IR, called the supply
rate. Then, the uncontrolled system is called dissipative if there exists a nonnegative
locally bounded function V : IR" — IRT satisfying mingecgre V(z) = 0, called the storage
function, such that

T
V(er) - V(o) < / s(w(t), 2(t)) dt (14)
0
for all initial points zg, exogenous inputs w(-), and times T > 0, where the final point zp
is 7 = z(T,0,z0,w(-)). The above inequality is called dissipation inequality.

It has been shown in [Wil72a] that passivity is equivalent to dissipation with respect to the
supply rate s(w, z) = w” z, and the Lo gain condition is given by dissipation with respect
to the supply rate s(w, z) = y?|w|? — |2|2.

Associated to those performance criteria is a concept of generalized total energy stored
inside the system, which is expressed in differential form by the pre-Hamiltonian function

H(z,p,w) = pX(z,w) — s(w,z) . (15)

In case that there exists a maximizing exogenous input for the pre-Hamiltonian (15)
Wnax(,p) = axg max H(,p,w) | (16)
we define the Hamiltonian function

H*(z,p) = H(z,p, Wmax) = pX (2, Wmax (7, 9)) — $(Wmax(2), Z (2, wmax(z,p))) - (17)

Then we have the following relation between a partial differential inequality - commonly
called Hamilton-Jacobi inequality - and the associated performance criteria:

2.3 Theorem Assume that there is a nonnegative C' solution V : R™ — RR™ to the
Hamilton-Jacobi inequality

H*(z, 2Y) < 0 (18)

> Oz
such that mingcge V(z) = 0, then the dissipation inequality (14) holds, and V' is a storage
function.
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Proof: The Hamilton-Jacobi inequality (18) causes H(z, %—‘;, w) < 0 to hold for all w(-),
and a simple integration with boundary condition mingcge V(z) = 0 implies that the
dissipation inequality (14) holds. O

2.4 Control Lyaponov functions

This thesis is about control design, our goal is to construct state feedback laws such that
- at least - the required stability properties hold. Therefore, we have to consider the
extension of the Lyapunov function tools to a concept called control Lyapunov function.
We define that V : R" — IR™ is positive definite with respect to some compact set S C IR™
if V(z) =0 for all z € § and V(z) > 0 for all z € R"\S, or equivalently, if there exists
two functions oy, and @y of class K such that

ay(lzls) < V() <av(lzls) -

We say that V : R" — IRT is proper if V(z) — oo for |z| — oo, or equivalently, if oy, and
ay are of class K.

Let us assume that we are given the controlled, but undisturbed system
&= X(z,u) , (19)

where u(+) : IR — IR™ represents the control strategy (control signal). We want to construct
a state feedback control law u(-) = u(z) such that some compact set S which is invariant
to # = X(z,0) is asymptotically stabilized, that is, is an asymptotically stable set of the
controlled, or closed loop dynamics

z = X(z,u(x)) . (20)

We can pick an candidate Lyaponov function and require that its derivative along the
solutions of (20) is decreasing. Therefore, we say that a continuous, positive definite and
radially unbounded function V : IR” — IR™ is a control Lyapunov function if in addition

inf Y X(z,q) <0 forall z¢S . (21)
geR™

The results of Artstein, Lin and Sontag show the following conclusion (see [Art83, Son89c,
Son90, LS95]).

2.4 Theorem The existence of a smooth (C*®) control Lyapunov function implies the
existence of a globally stabilizing state feedback u = wu(z) which is smooth on R™\S and
continuous on IR".

2.5 Differential games

As we have seen in the preceding subsections, we can regard the control u(-) as the signal
which has to assure that all the desired and beneficial properties hold, whereas the distur-
bance w(-) acts to worsen things, maybe to destroy stability properties. It must therefore
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be our goal to find a balance between the influence of the disturbance and the control,
and the theory of differential games is a useful approach to this problem. We consider a
controlled and disturbed system of n ODE’s of the form

z = X(z,u,w) (22)

with initial condition zy and payoff

T
P(xo,u(-), w(-)) =g(:vT)+/0 h(z, u(t),y(t)) dt (23)

where T is the terminal time of the play, and u(-) = u(t) is the minimizing player strategy,
whereas w(-) = w(t) is the maximizing player strategy. We assume in the following that
the vector field X is "sufficient nice", that is, locally Lipschitz and bounded from above
(see A.Friedmann [Fri71] for details), and that g and h are continuous and locally Lipschitz
functions.

Suppose that there exists strategies tumin(+) and wmax(+) such that the saddle point property

P (20, umin(), w(+)) < P(z0, Umin(-); Wmax(-)) < P(zo, u("), Wmax(-)) (24)

holds for all other strategies u(-), w(-), than we say that the play given by (22), (23),
and (24), has the value V (T, z¢) = P(tUmin, Wmax). Obviously, if each player assumes that
the other acts sensible and does not make foolish decisions, the best result obtainable is
the value of the game, and the best possible strategy is to use umin, Or Wmax-

It can be showed that the value V' can be presumed to be continuous and locally Lipschitz
on [0,7] x IR", and satisfies V(T',z) = g(z). Isaacs had heuristically derived an equation
[Isa51b], now called the Isaacs equation (see also [Isablal):

2vi(t,z)+ max nhin 9V (t,2) X (z,u, w) + h(z,u,w)} =0 . (25)
This equation can be interpreted as the PDE formulation of the differential game:

2.5 Theorem [Fri71] Denote by V(t,z) the value of the differential game (22), (23),
and (24), then V (T, x) = g(x), and V satisfies the Isaacs equation (25) almost everywhere.

3 Combining these tools

Given a controlled and disturbed system of the type (4) where it is assumed that the
preferred behavior of our model is a compact invariant set S C IR™ of the uncontrolled and
undisturbed dynamics (5), it is the believe of the author that the choice of control strategy
shall be made to accomplish the following five fundamental tasks:

asymptotically stabilization of mode of operation,
estimation of basin of attraction,

improve other dissipation performance criteria,
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achieve robustness with respect to disturbances,

and finally, determine the optimal control strategy.

As we have seen in the preceding section, these problems have been solved partially - one
by one - in the past. Common to all these approaches is that a Lyapunov-like auxiliary
function V : R™ — IR is related to a partial differential inequality, or equality. These
PDI’s or PDE’s are expressing sufficient conditions in theorems 2.1, 2.3, and 2.4; necessary
conditions in theorem 2.5, and both sufficient and necessary conditions in theorem 2.2.
Moreover, we see that the use of the time derivative %V = %—‘;X plays an important role
in all these formulations, and the auxiliary functions have similar interpretations as abstract
energy concept. It seems therefore reasonable to assume that these different formulations
can be unified in one formula.

Indeed, in the extensive literature on dissipative control, and H., control in particular,
some of these concepts have been gathered together in one formulation: in the context
of Hoo control by state feedback for example, the theory of differential games has been
used to identify the optimal control needed to render the controlled system dissipative
with respect to the supply rate y2|w|? — |z|2, but stability investigations have so far been
restricted to local stability issues of the undisturbed system & = X (x, u,0) with respect to
the equilibrium point = 0. Neither stability issues of disturbed systems or stability with
respect to general invariant sets have attracted interest before.

It is the aim of this thesis to show the progress made during the process of solving some
of the fundamental puzzles and riddles: Given a feedback system of the form

z = X(z,u,w)

z=Z(z,u,w) , (26)

does there exists a smooth feedback law u = u(z) which can be found from a saddlepoint
property of some pre-Hamiltonian, and some smooth storage function?

Can the properties of the Lyapunov function, the robust Lyapunov function, the control
Lyapunov function, the storage function, and the game value function be unified in one
and the same function V'?

Will such a unified V' be smooth?

Is there a partial differential inequality involving the supply rate and the time derivative
%V = %—ZX which constitutes an equivalent formulation of the problem?

How is V related to a solution to this partial differential inequality?

Given such a solution, what can we say about the boundedness of state trajectories, the in-
variantness of certain subsets S C IR", robust stability under the influence of disturbances,
dissipativety, and the construction of a (smooth?) control law?

These general problems have not been entirely solved yet. It is the aim of this thesis to
describe some major milestones found on the road to definite answers.



Chapter 2

Regional Nonlinear H o State
Feedback Control

Linear asymptotically stable systems of ODE’s of the form
T = Ax

are exponentially stable, and therefore local asymptotically stability implies global asymp-
totically stability. Hence, in a linear context, local control implies global control.

This property does not hold for nonlinear autonomous systems of the form
i =X(z) ,

and most stability results obtained in nonlinear control so far are local only. Especially in
the field of Hyo control the asymptotic stability of equilibrium points has been confined
to a neighborhood of the critical point of question, which may be arbitrarily small if the
system is ill-constructed. Moreover, no estimates of the size of the basin of attraction of
asymptotically stable equilibrium points have yet been provided.

From an engineering point of view this is a very unsatisfactory state of art, since designers
of real world control systems have to be sure that the designed regulator works as intended
on some given compact region. It is therefore mandatory to consider control on compact
sets here called performance envelopes (in the paper these are called valid region), and
to confine the closed loop state trajectories to these compact sets, a requirement which
we denote regional control. Finally, all trajectories which are confined to some given
performance envelope, and are generated by zero disturbances, are shown to converge to
the equilibrium point of concern for ¢ — oo.

In this chapter the well known game theoretic approach to H, theory is extended with
the use of the storage function as a Lyapunov function to prove a result similar to the La
Salle’s invariance principle described in the preceding chapter.

To solve the state-feedback Hamilton-Jacobi inequality we show how Luke’s approximation
scheme can be implemented in MAPLE. A couple of simple examples are provided to

28
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show that nonlinear state feedback control is an interesting alternative to linear control
techniques, even in the case that the linear control problem can be solved locally. The
use of nonlinear, polynomial control strategies is shown to improve robustness against
disturbances, and to improve the size and shape of the performance envelope (valid region).

The main ideas of this chapter have been published in
Marc Cromme, Jens Mgller-Pedersen, and Martin Pagh Petersen. Nonlinear

Hoo state feedback controllers: Computation of valid region. In Proceedings of
the 1997 American Control Conference, Albuquerque, New Mexico, June 1997.

The following paper is included here exactly as it was printed, except for a changed graph-
ical layout.
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Abstract

“From a general point of view the state feedback H, suboptimal control prob-
lem is reasonable well-understood. Important problems remain with regard
to a priori information of the size of the neighborhood where the local state
feedback Heo problem is solvable, and with regard to the nature of solutions V'
to the Hamilton-Jacobi inequalities ... such as properness of V' as a candidate
Lyapunov function” Citation van der Schaft, 1992 [vdS92a).

The first of these problems is solved regionally (semi-globally) in this paper,
and the obtained control laws are implemented in MAPLE.

1 Introduction

The local nonlinear state feedback H o, control problem has been solved in the early nineties.
Van der Schaft [vdS92a| describes the solution process for affine systems using the theory
of dissipative systems first introduced by Willems [Wil72a|. Isidori [Isi92], and Isidori and
Astolfi [TA92b], [IA92a] approach the problem by the theory of differential games. The
problem has been solved for more general nonlinear plants by Isidori and Kang [IK95],
and Ball, Helton, and Walker [BHW93]. Lukes approximation scheme [Luk69] has been
used to compute solutions of the Hamilton-Jacobi inequalities of the local nonlinear state
feedback Ho control problem [IK95], [MP95].

From an engineering point of view all these results are insufficient: local control laws are
found without any knowledge of boundedness of the closed loop state trajectories, or the
size and shape of the neighborhood where state feedback control works as intended.

State boundedness is an indispensable property of controlled systems for two reasons: state
blow-up leads usually to plant or control system failure or damaging, and local control is
certainly not applicable when the bound on state trajectories is not known a priory.
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The size and shape of the neighborhood where the implemented control law is meaningful
are important design parameters for any practical control purpose. If they do not cover
the intended performance envelope of the plant, another control strategy must be chosen.

Finally, any practical oriented control law should allow for inaccurate setting of initial
conditions. This kind of initial value robustness may be very important when calculating
the secure performance envelope of a closed loop control system.

In the following, given a particular solution V of the Hamilton-Jacobi inequality of concern,
any compact neighborhood ©Q C IR™ of the equilibrium point which has these beneficial
properties is called a valid region. We assume without loss of generality that the equi-
librium point of concern is at the origin. Moreover, a class of disturbances such that some
given (2 is a valid region, is called valid disturbance set, and it is denoted W¢. A set
of initial conditions, denoted Q¢ C €2, is called valid initial set if all state trajectories
driven by valid disturbances renders 2 a valid region. The problem addressed here is:

1.1 Problem Formulation Given a nonlinear state feedback H, control problem and
a formal solution V to the associated Hamilton-Jacobi inequality, find a valid region 2, a
valid disturbance set W€, and a valid initial set ¢ C ) such that every state trajectory
z(-) with initial condition xy € Q¢ subject to disturbances w(-) € W€ satisfies an Lo gain
less than or equal vy, and approaches the origin as time goes to infinity.

2 Local H state feedback control

Let IR denote the real positive closed time axis [0, oo[. In general we consider the plant
z=X(z,u,w) , z=2(z,u) (1)

where z(-) : RT — IR™ is called the state, u(-) : R — IR! the input, w(-) : RT — R the
exogenous input, also called disturbance, and z(-) : R" ~ IR? the performance, or to be
controlled signal. The symbol X (z,u,w) denotes a smooth vector field on IR™, and the
vector valued function Z(z,u) specifies smoothly the performance measure. We assume
the equilibrium conditions X (0,0,0) = 0 and Z(0,0) = 0 to hold.

The open loop system & = X°P"(z,w) = X (z,0,w) subject w(-) = 0 is autonomous, and
by assumption the origin is an an equilibrium point, hence an invariant set. The static
feedback control is given by some vector valued function a : R™ — R!, u = a(z), where
a(0) = 0 is assumed in order to preserve the equilibrium point zero. The closed loop system
is given by the equations

z=X(z,a(z),w) , z=2Z(z,a(zx)) . (2)

Whenever convenient, we use the notation z(-) for the signal z(-, %y, o, u(-),w(-)). It is
assumed that all signals are LY, and that the state exist uniquely for all input, and is a

C' signal.

Let H denote the usual Euclidean norm on the Banach space IRP, then the Lo norm of any
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locally square integrable signal y(+) : RT — IR? | p € IN is for all T € RT defined

T
lolfy = [ ol a . ®)
and the closed loop system (2) has by definition local Ly gain less than or equal v > 0 if
27 < o [lell7. + Va(ao) (4)

for all w(-),z(-) € L¥®, all T € RT and all initial conditions zo € IR™ such that the state
trajectories never leave €). Here the available storage V, : R™ + [0, 00| is a nonnegative
and bounded function with minimum V,(0) = 0 at the origin [vdS92a], [IA92a).

It is known [vdS92a] that the local Ly gain condition is implied by the existence of a non-
negative, bounded C! storage function V : £ + [0, oo[ satisfying the closed loop differential
dissipation inequality

H(u,w) = %V — (72 ‘w‘z — |z‘2)
= %—‘;X(w,u,w) — 2 |w|2 + ‘Z(ac,u)‘2 (5)
<0

for all t € IR™, where the pre-Hamiltonian function H is defined by equation (5). Assuming
that Z(z,u) is such that Z—Z(O, 0) has rank [, it is known [IK95] that H has a unique saddle
point (Umin, Wmax) for all z and all %—‘; near zero, and the extremal functions umin(z, %—Z),
Wmax (7, %—‘w/) are characterized by the equations

%(Umina wmax) =0, umin(oa O) =0

M (tnin Wmax) = 0 5 Wimax(0,0) = 0 .

(6)

We deduce by the saddle point property (6) that umin and wmax are the best possible state
feedback law and the worst possible disturbance respectively.

Hence, we seek for a sufficient small ¥ > 0, and a C' storage function V defined on a
sufficient big neighborhood  around the origin satisfying the Hamilton-Jacobi inequality
[TK95]

H** (z, 57)

2 2
= %X(xaumin($a %_Z)awmaX(xa ?‘9_‘;)) - 72 ‘wmax(xa %_‘;)‘ + |Z(37aumin(-'5a ?9_‘;)‘

<0 forallz e .

(7)

This problem can be solved locally by an polynomial expansion algorithm due to Lukes
[Luk69].
In the case of input affine systems
z = A(z) + By(z)u + By (z)w
z=C(z)+ D(z)u ,
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(here we have A(0) = 0 and C(0) = 0) satisfying DTD > 0 for all z, the worst case
disturbance and the minimizing input can be found completing the squares, they are for
all z and aV given by the expressions [Isi92]

umin = —(DTD) (4 BT 4 DTC) | o)

_ 1 TovT
Wmax = Bw O

Here we seek for a sufficient small y > 0, and a C* storage function V defined on a sufficient
big neighborhood € around the origin satisfying the Hamilton-Jacobi inequality [Isi92]

% (V. 8VT )%
H™ (35, 2) = 5Q(2) 5 + G L(z) + K() (10)
<0 forall:cEQ ,
where the quadratic term Q(z), the linear term L(z), and the constant term K(z) are
defined

4LB Bl —1B,(D"D)"'B}
L(z) = A— B,(D'D) 'DTC (11)
K(z)=C0T(I-DDTD) DT C .

The existence of a C! storage function satisfying (7) or (10) locally guarantees that the
input-output map of the closed loop system has Lo gain less than or equal «y as defined in
equation (4) if and only if every closed loop trajectory is bounded inside Q. Unfortunately,
we do not have any priory estimates on the boundedness or on the asymptotic behavior of
the state.

We will impose in the following a detectability assumption on the system: The control
system (1) is zero-detectable if all bounded trajectories z(:) subject u(-) =0, w(-) =0
generating the zero-output z(-) = 0 are approaching the origin as ¢t — oc.

3 Regional H,, control

A set M C R™ is positive invariant with respect to the autonomous system (2) if all
trajectories starting in M are defined in the future and never leave M as time increases.
It is invariant if z(-) defined in future and past, and evolves entirely in M.

It is our purpose to use a formal solution to the Hamilton-Jacobi inequality as a Lyapunov
function in order to establish regional stability properties of the ., state feedback prob-
lem. Our new theorem is inspired on the proof of the well known La Salle’s invariance
principle for autonomous systems [SL61], which is connecting the existence of a C! Lya-
punov function V : IR™ ~ R with bounded and connected pre-image Q = V(] — oo, c])
satisfying %V < 0, with the positive invariance of 2 and the asymptotic stability property
of largest invariant set contained in the set where 6tV 0.
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Figure 1: Boundedness of state, asymptotic stability

In order to prove the boundedness of state trajectories we have to restrict ourselves to the
class of disturbances

we={w() e Ly(RY) | 2 [wls< e} - (12)

Given some solution V to the standard H., Hamilton-Jacobi inequality, the following new
lemma will help us to construct the valid sets (left part of figure 1). The lemma is proved
in [CMPPY6].

3.1 Lemma Given a formal C! solution V of the Hamilton-Jacobi inequality (7) or (10),
assume that some component of V71(] — 00,cq]), co € R, denoted Q, is connected and
bounded.

Then Q is compact and closed loop positive invariant by use of the state feedback law
a(x) = umin(z) subject to the condition w(-) = 0.

Pick some € < cq, then the appropriate subset Q¢ C Q of V1([—o0, cq — €]) is such that
any closed loop trajectory z(-) with initial condition zy € Q€ is bounded inside ) if driven
by the state feedback law a(x) = umin(x), and by any disturbance w(-) € W¢.

Following the principal idea of the paper [IK95] as outlined in section 2, we conclude that
any C! function V satisfying the Hamilton-Jacobi inequality (7) will also satisfy the Ly
gain (4) in case that the state is bounded inside Q. We take advantage of lemma 3.1 to
state the following theorem, and to follow the above explained ideas to proof it. The proof
is found in appendix A.

3.2 Theorem Assume that some C' solution V : Q — IR of the Hamilton-Jacobi inequal-
ity (7) is defined on a bounded and connected component §2 of V=!(] — 00, ¢q]), ca € R.
Assume furthermore that 2Z(0,0) has rank I*.

Then all closed loop trajectories x(-) subject a(x) = wmin(z) with initial condition zy € Q¢
do not leave Q if driven by some w(-) € W¢, and the system has Ly gain less than or equal
to 7.

Moreover, all such z(-) generated by w(-) € W€ which are identically zero for all times
t>T,T € R, approach the biggest closed loop invariant set M contained in the null set

N={zeQ|H*=,%)=0} .

!To be more precise, the rank condition is necessary, but not sufficient. We must also assume that the
saddlepoint property (6) holds for all z € Q, which implies that H(%min, w) < H** < H(u, Wmax) is satisfied
on (2 for all w and all w.
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Assume furthermore that the control system (1) is zero-detectable, then z(-) approaches
the origin as t — 0.

In other words, given a formal solution V to the associated Hamilton-Jacobi inequality,
the valid region Q is given by some bounded (and connected) component of the pre-image
V=] — o0, c), the valid disturbance set W€ is the set of signals which Ly norm is bounded
by €, and the valid initial set Q€ is then given by the appropriate component of the pre-
image V(] — 0o,c —¢).

4 Lukes approximation

Local solutions of the Hamilton-Jacobi inequality can be obtained by use of an approxi-
mation scheme originally developed by Lukes [Luk69] for quadratic cost functions [IK95].
For computational ease, we discuss in the following sections only affine systems although
Lukes approximation method can be used for general nonlinear systems. We use the MAPLE
implementation [MP95].

Consider the perturbed Hamilton-Jacobi equation

Kok T
H™* (3%, 2) = 3£Q(x) %5 + 55 L(z) + K ()

(13)
=—®(z) forallzeQ ,

where ®(z) : Q — IR is some positive definite perturbation function which we will use as
design parameter to style the size and shape of the valid region.

It is easily seen by (8) (11) that L(z) is of least first order, and K(z), ®(z) and V(z) of
least second. We make the following analytic data expansions

k=3
Q) =Q" +3 QW)
k=1
L(@) = Le + 3 L¥(x) |
k=2

where (-)I¥ denotes k-th order monomials. Then the perturbed Hamilton Jacobi equal-
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ity (13) can be rewritten

0=

oo [m—1 m—2m—k—1
Z Z %_‘;'['mfk—i-l]L[k] +K[m] + (I,[m] + (Z %—Z[mkl+1]Q[k]%_¥[l+l])] ) (14)

m=2 Lk=1 k=0 =1

[m]
Note that %—‘;[m] = B(Igw ) are of order m — 1.

Isolating the second order terms we find the usual Riccati equation of the linearized and
perturbed Ho, control problem

0 = Ly LT yRQllyE 4 g2 g2 (15)

In case that V% is a solution of the Riccati equation (15), the second order terms of the
perturbed Hamilton-Jacobi equation (14) vanish, and the m order terms can be rearranged

%g[ ( A Q[O]VM) T

m—

,_.

m—2m—k—1

k—
v [m—k+1] ]-l—K + Z ( [m—k— H'l]Q[k]%_\;[l"'l})

T
k=2 k= =1

[y

for m=3,4,5,... . (16)

Assuming that the linearized problem (15) has a stabilizing solution V2 the matrix
F = LM 4 Qv is positive definite and has therefore an inverse. Consequently, the
equations (16) can be solved recursively.

5 Example

The theory developed in the former sections is now illustrated by a simplified two-dimen-
sional example arising in the field of robotics. We consider the plant

()2 e

T2 + T3 0
z = T1 + 10| u
1

with equilibrium point zero.

Note that the linearized system is stabilizable by linear feedback, and we want to compare
the quality of a linear controller with a third order controller. The optimal feedback Lo
gain is near 1.2, but we use the suboptimal value v = 2.

Solving the unperturbed Riccati equation (15) (that is ® = 0), we find the formal second
order storage function

Viin(z) = 0.7102% + 3.097z1 22 + 4.037z3
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Figure 2: Unperturbed solution

which gives the linear feedback
’U,lin(.’ﬂ) = —1.421.’131 - 3.097.T2 .

Unfortunately, this storage function satisfies not the Hamilton-Jacobi inequality (7) on a
sufficient large area: in figure 2 the set

A={z|H*(@,2) <0}
is depicted grey.

Now perturbing the Riccati equation (15) with ®(z) = 222 + 23 we calculate the formal
second order storage function

Viin,per (z) = 0.81827 + 3.277x 2o + 4.47023
which gives the linear feedback
Ulin,per(Z) = —1.63621 — 3.277zo .

Now (7) is satisfied on a sufficiently large area around zero. The set A is displayed in
figure 3 (left) (white). The pre-images Q = V1([0,2]) (grey) and Q¢ = V~1([0,1]) with
e = 1 (dark grey) are both inside the set A.

Finally, we find a fourth order Lukes approximation for the Hamilton-Jacobi equation (14),
using the same perturbation function as in the linear feedback case. We compute the formal
storage function

Vith,per () = 0.818z% + 3.277z1 75 + 4.47023
+0.1282222 + 0.311321 23 + 0.02523 25
+ 0.002z7 + 0.412473
which gives the third order feedback
Uspd per (T) = — 1.63621 — 3.277z2 — 0.07627 2
— 0.256z122 — 0.008z3 — 0.311z3 .

Figure 3 (right) shows a slightly improved set A (white). Note that the valid region
Q = V71([0,4]) (grey) is enlarged considerably. The set of valid initial conditions Q¢ =
V1([0,1]) (dark grey) is approximatively the same as for the linear design. Note also that
we have chosen € = 3, thereby allowing for valid disturbances of three times larger energy
that in the linear case.
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Figure 3: Linear and third order control
6 Conclusion

In this paper it is shown that state feedback problems involving the regional stabilization
of the origin can successfully be recast as generalized formulations of nonlinear local state
feedback Heo control problems. Given a formal solution V to a certain Hamilton-Jacobi
inequality, the generalized problem is solved regionally provided V is such that some con-
nected component of the pre-image V~!(] — oo, ¢) for some ¢ € IR is bounded and includes
the to be stabilized origin. The plant is assumed to have the standard zero-detectability
assumption. Sets of allowable initial conditions and disturbance classes are specified.

Performance is guaranteed in a range of operational conditions, in contrast to local Hyo
control. Numerical and symbolic computation methods which apply to local Hs, theory
can without problem be applied in a regional context.

Lukes approximation scheme is explained and implemented in the symbolic language MAPLE,
and a formal, local storage function is computed. An example shows that the theory
developed in this paper can be used to estimate the valid performance region (performance
envelope) of linear as well as nonlinear state feedback controllers.

A  Proof of theorem 3.2

By lemma 3.1 all z(-) are bounded inside €. Therefore, the Ly gain (4) is satisfied.

We show now that all such z(-) generated by w(-) € W¢ which are identically zero for all
times t > T, T € IR, approach the biggest closed loop invariant set M contained in the null
set N. By state boundedness, and time invariance of the system, we can assume without
loss of generality that w(-) = 0 for all + € IRT. The saddle point property (6) implies that
the C! solution V serves as a Lyapunov function for the closed loop dynamics. We have

H(Uminaw) < H(uminawmin) =H" <0 (17)
for all w(-) € W¢. Choosing w(-) = 0 then gives with (5)
2 2
LV —4*10]" + [2]" <0 (18)

for all such z(-). Hence we have %V < 0 for all z(-) evolving on Q/N. Trajectories on N
are satisfying %V = 0 if and only if |z‘2 = |Z(w,umin(x)‘2 =0, and %V < 0 else.
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Now observe that V' (z) by assumption is continuous and defined on a bounded set, hence
V(z) is bounded from below. Given some particular state z(-), the storage function V'(-)
is decreasing and bounded from below, hence approaches some minimal value, say cr € R,
as t — oco. By continuity we conclude that V(z) = cr on the positive limit set I'", and
consequently 4V = 0 on T'*. Rearranging (17) and (18) then shows that

0<+]|z)><H™ <0, (19)

therefore we conclude that I't is a non-empty subset of the null set A. But I'" is an
invariant set, hence contained in the maximal invariant set M, and consequently any
trajectory z(-) is approaching M as t — oo.

We show finally that zero-detectability implies that x(-) approaches the origin as ¢ — oo.
Clearly any trajectory evolving entirely on I't satisfies by (19) that z(-) = 0, hence by
zero-detectability the origin is approached. Finally, any trajectory with the same limit set
' = {0} is by continuity of the closed loop dynamics forced to approach zero as t — oo.
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Comments and References

The theory of Hoo state feedback and measurement feedback control is recently developed.
A major contribution was the state space solution to linear H,, control measurement
feedback problems first published by J. Doyle, K. Glover, P. Khargonekar and B.A. Francis
in 1989 [DGKF89|. Linear Ho, control matured in a couple of years to a well-understood
mathematical theory, see for example the textbook [ZDG95].

Historically seen, the nonlinear theory of H., state feedback and measurement feedback
control is a very young discipline, developed in the nineties, even if the fundamental system
theoretic point of view has been developed twenty years earlier. Among the leading articles
describing the input-output structure and stability issues of nonlinear systems, we must
remember the work of Jan C. Willems. A very good and throughout study of general
dissipation is found in [Wil72a], and the basic properties developed there are applied to
linear control systems with quadratic supply rates in [Wil72b]. The general structure of
feedback systems is investigated in the textbook [Wil71b]. The issues of stability in the
context of input-output maps and in state-space representation (there called Lyapunov
approach) are treated in [Wil7la], and later in [Wil76]. Finally, the system theoretic
background for modelling and analyzing physical systems with the tools of differential
geometry has been discussed in [Wil79].

Three major contributions to the understanding of the Ho, control problem has been the
work of A. J. van der Schaft, Alberto Isidori and Alessandro Astolfi, and J.A. Ball, J.W.
Helton and M.L. Walker. These contributions are discussed in two separate subsections
because they are of different philosophical nature: the game theoretic approach is used in
the work of Isidori, Astolfi, Ball, Helton and Walker, whereas the differential geometric
approach is mainly due to professor A. J. van der Schaft.

The game theoretic approach to H,, control

This approach is based on two fundamental concepts in system analysis: the notion of
dissipation and of differential games. The notion of dissipation shows via the Bounded Real
Lemma that a stable, uncontrolled linear system has an £y gain less than or equal to v > 0
if and only if the system is dissipative with respect to the supply rate s(w, z) = y2|w|?—|z|2.
The theory of differential games shows that the problem of minimizing the Lo gain of a
controlled linear system can be viewed as two person, zero sum differential game, where
the disturbance wmax(+) acts as maximizing player, whereas the control umin(-) represents
the minimizing player. We defer the details of the analysis of the game theoretic approach
to chapter 5, where the notion of general dissipation is used.

Linear Ho, control has used the theory of differential games (see [Fri71] for a throughout
exposition) in the research paper [DGKF89|, and an excellent exposition of this approach
is found in the textbook [BB95] and the Ph.D. thesis [Sch90] and [Sto90], both focusing
on a state space approach to H, control.

The linear approach has been ported to nonlinear systems in the research paper [BH89],
and further investigated in [PAJ91]. Isidori and Astolfi [Isi92, IA92b, TA92a| approach
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the problem of ., measurement feedback control of input affine systems by the theory
of differential games. See also the summarizing exposition [Isi94] and an application for a
special class of composite and/or interconnected nonlinear systems [IT93]. The problem
has later been solved for more general nonlinear plants: Ball, Helton, and Walker [BHW93]
consider systems which are affine only in the exogenous input w(-), whereas Isidori and
Kang [IK95] consider general nonlinear plants without any form of affine structure. We
remark however, that all these approaches to nonlinear Hs, control consider only systems
where the asymptotic stability of state trajectories is confined to a neighborhood of un-
known size around the to-be-stabilized equilibrium point, and moreover, only the stability
issues of undisturbed motions, that is, state trajectories z(-) subject w(-) = 0 are consid-
ered. These restrictions are indeed odd, since they make nonlinear #, theory essentially
worthless for practical applications.

The differential geometric approach to H ., control

In the research paper [vdS89] A. J. van der Schaft describes 1989 a system theoretic ap-
proach to mechanics, where Hamiltonian systems are regarded as conservative “mechanical
m-ports”. It is illustrated in three particular cases how the Hamiltonian structure of a
system can be profitably used for control purposes. More precisely, the Euler-Lagrange
equations

are assumed to be controlled by the variables u. Here, ¢ € IR" are the generalized co-
ordinates, and L(q, ¢,u) is the Lagrangian, that is, the difference of potential and kinetic
energy stored in the system. Notice that the form of the above controlled equations allows
a control input which not necessarily appear as external forces, but which are allowed to
act on the potential or the kinetic energy directly. The Euler-Lagrange equations transform
into the Hamiltonian equations of motions given by

. T
i= 5 (4,p,u)
p=—%(ap ) (21)

Y= —g—E(CIaP,U) )

where H = pg — L, and p € (R™)* are the generalized momenta. We use the convention
that ¢ is a column vector living in the tangent space IR, whereas p is a row vector living
in the co-tangent space (IR™)*. The last equation defines the “natural” outputs, hence a
Hamiltonian input-output system is defined. It is then show in [vdS89] that the Bolza
optimal control problem, which requires minimization of the cost functional

T
J(zo,u(")) = K(2(T)) +/0 L(z(t),u(t)) dt (22)
under the dynamical constraints

z=X(z,u) , z(0)=1z0 , (23)
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can be recast in terms of the Hamiltonian system (21): the Maximum Principle tells us
to consider the pre-Hamiltonian H(z,p,u) = pX(z,u) — L(z,u), with p the co-state. A
necessary condition for the control signal uept(-) on [0,7] to be optimal is that for every
t € [0,T], H(z(t),p(t), uopt (t)) = max, H(z(t),p(t),u), where (z(t),p(t)) is the unique
solution to (21) with initial values z(0) = zo and p(T) = —(%K(m(T)). So we are led to
the following problem: Find for every (z,p) a uop; = Uopt (%, p) such that H(z,p, uept) =
max, H(z,p,u), which implies that g—g(w, p,u) = 0. Hence, the Maximum Principle leads
in a natural way to the Hamiltonian control system (21) with ¢ = z, and a necessary
condition for uept(-) to be optimal is that that the outputs y of this system equal zero.
This Hamiltonian framework is constrained to conservative systems, and can therefore not
include the action of dissipative forces like friction and other kind of energy loss. Also the
optimizing control uqp; of the above sketched optimal control problem has been identified
as a function of the gradient uopi(z) = uopt(z, %Vo(x)) of the optimal value function
Vo(z), and the map (z,p) = (z, %Vo(ac)) represents the unique stable and invariant n-
dimensional sub-manifold of the Hamiltonian system (21) through the point (0,0) [vdS91a]
(that is, the set of all initial points (zg,po) € IR™ x (IR™)* which are attracted to (0,0)
under the dynamics of (21) subject y = 0).

As it has been done previously in the field of linear control, the Hamiltonian approach to
nonlinear optimal control problems has been generalized to H, control problems. First, in
the research papers [vdS91b, vdS91a], the state feedback #H o, control problem is linked to
the solvability of the linearized, algebraic Riccati equation. In contrast to the uniqueness
of the value function belonging to the optimal control problem, there exist in general in-
finitely many storage functions which solve the H o, control problem. Then, the differential
geometric interpretation of the optimal cost Vp(z) has in the papers [vdS91b, vdS91c| been
transferred to any of the possible storage functions V (z) associated with affine H o, control
problems. More precisely, let us assume that some given v > 0 is a suboptimal value of
the Lo gain of the H problem at hand. It has then been shown that any solution V(x)
to the HJI (10) which is such that the control umin(z) = Umin(z, ‘g—‘;(a:)) asymptotically
stabilizes the equilibrium x = 0 of the closed loop system

z = X (2, Umin(Z), Wmax(Z)) , (24)

represents an invariant and n-dimensional Lagrangian sub-manifold (z,p) = (z, %—Z(w))
through (0,0) of the Hamiltonian vectorfield

. onT
r = X

BgH**( ’p) (25)
p=—%(z,p)

on T*M = IR" x (IR")*, where H**(z,p) = H(z, P, Umin, Wmax). The Hamiltonian vector-
field is then hyperbolic at (0,0), that is, its linearization at (0,0) has n eigenvalues in
the left half plane and n in the right half plane (counted with multiplicity). However,
the Lagrangian sub-manifold as such need not to be an asymptotically stable invariant
set under the dynamics of (25). The refinements in [vdS92c| state that the available
storage represents the unique stable invariant and n-dimensional Lagrangian sub-manifold
(z,p) = (z, %Vo(ax)), whereas the required supply represents the unstable invariant and
n-dimensional Lagrangian sub-manifold (z,p) = (z, %VR(.’IJ)). Moreover, the restriction
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of the Hamiltonian vectorfield to any of its Lagrangian invariant manifolds is given by
equation (24).

Without loss of generality we may assume that V(0) = 0, and it can be shown that the
map z — V(z) which represents an invariant Lagrangian sub-manifold (z,p) = (=, %—Z(w))
of (25) is the unique solution to the HJI (10) with boundary conditions

V©)=0, 20)=0 and 2¥(0)=P , (26)
where P : IR" — IR" is the linear map such that the generalized eigenspace of the matrix
I
P

equals the tangent space of (z,p) = (z, %—‘;(w)) at (0,0). The same P is then also a
stabilizing solution to the algebraic Riccati equation

2 2 2 2
PT(’?w(’li-lp(O’O) + gwgp(O’O)P + PT%(QO)P + %(070) =0

belonging to the linearized Hy problem, and since there are in general infinitely many
such solutions P, it follows that infinitely many storage functions V(z) can be found.
In case that we are considering the optimal value 7y < <y of the H control problem,
the Hamiltonian vectorfield (25) is not hyperbolic at (0,0), and the resulting dynamics
restricted on the invariant center manifold of (25) may or may not destroy the stability
property of (0,0).

There is a very important, but often overseen property associated to the Hamiltonian
approach which has been pointed out in [vdS92a]: the regularity of the available storage
V4 equals the regularity of the data of the system. More precisely, assume that the data
A(z), By(z), By(x) and C(z) of the (input-affine) system is C* with k > 2, and that a
suboptimal value y > 0 is considered. Then it follows that the Hamiltonian vectorfield (25)
is C*~1. Hence, the stable and the unstable invariant Lagrangian manifold are C*~! locally
near (0,0) as well, and it follows directly that the available storage Va(z) is bounded for
all z € R", and is C* near (0,0). If IR™ is reachable from z = 0 it follows that the required
supply Vg(z) exists and is C* near (0,0), and bounded for all € IR". Unfortunately,
the solvability of the linearized algebraic Riccati equation implies only that the above
mentioned Lagrangian manifolds are C* near (0,0), there is no indication of the size of the
neighborhood of (0,0) where regularity can be guaranteed. Only a truly nonlinear analysis
can tell ¢f and where problems with the parameterization of invariant Lagrangian manifolds
by the z-coordinates arise.

The H control problem has then in [vdS92b] been extended to output feedback control
(see also the exposition [vdS92a]). Necessary conditions for H, control by dynamic output
feedback control have been derived for input-affine systems, and some sufficient conditions
have been given. Unfortunately, the dynamic measurement feedback problem is closely
linked to the nonlinear observer problem, both can not (in general) be solved globally by
finite-dimensional dynamic feedback. In [vdS93]| van der Schaft describes a subclass of
input affine systems, where B, (z) and B,,(z) are constant in z, and y = Cy(z) is linear in
z. These restrictions allows the use of finite-dimensional dynamic controllers [vdS94].
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There is also an interesting interpretation of the steady state response of a nonlinear system
due to A. Isidori, which has been developed in the context of output regulation by use of
differential geometric tools in the papers [IB89, IB90], and has been transferred to the case
of Heo control in [IA92a|. Assuming that the system

z = X(xaumiﬂ(x)aw) (27)
has a locally exponentially stable equilibrium (z,w) = (0,0), that is, the eigenvalues of the
Jacobian matrix

OX (x, umin(x), w)
ox

are all in the left half plane, and that the exogenous inputs are generated by a nonlinear
system

(0,0)

w = W(w)
in which all trajectories are periodic of a given period Ty, the composed system

T = X(-'E,umin(m)a ’LU)

w =W (w) (28)

has a locally attractive center manifold which can be parameterized by the graph
M = {(z,w) ‘ z=m(w)}

of a suitable C'! mapping = : W — IR™ defined on a neighborhood W C IR of the point w =
0. Since M is locally attractive, it follows for all periodic w(-) € W that the integral curve
of the composed system (28) through the point (zg, wp) converges as t — oo to the integral
curve Ty, (-) of (28) through the point (7(wp), wp) in case that |zo—7(wp)| is small enough.
Moreover, since the center manifold of (28) is invariant, x,,(t) = m(w(t) holds for all ¢,
and it follows that the trajectory z,,(-) and the performance output zy,(:) = Z(Zw,(-))
are periodic with period T as well. Hence, we can view the unique state trajectory ., (-)
as the steady state response of all other trajectories with initial condition zg satisfying
that |xg — w(wy)| is sufficient small. Evaluating (4) for ¢t; — oo yields then

1 1
o Il < ol

which can be regarded as the RMS value attenuation of the periodic steady state response
of the nonlinear and locally exponentially stable system (27). Notice though that the
maximal allowable sizes of the neighborhood W and the maximal distance |zg — 7 (wp)| are
not known. Moreover, system (27) can be designed such that W and |zy — 7(wg)| must be
arbitrarily small to make the above sketched central manifold analysis work.

The output feedback regulation results of the papers [IB89, IB90| have also been used to
prove the existence of a feedback law (under suitable conditions) that solves the prob-
lem of robust regulation for a nonlinear system in presence of an L9 gain bounded, but
otherwise unknown dynamic uncertainty system [IT95], thus extending the well known lin-
ear approach of robust regulation to nonlinear systems by the differential geometric tools
sketched above.
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State feedback H ., control for affine nonlinear tracking problems

Let us take a look on general input affine systems with feed-through from w(-) to z(-), that
is systems of the form

T = A(z) + By(z)u + By (z)w
z=C(z) + Dy(z)u + Dy(z)w ,

satisfying A(0) = 0, C(0) = 0, and DI(z)Dy(z) > 0 for all z. Usually, the simplifying
conditions

(29)

Dy,

(z)
O™ (2) Dy ()
Dy (z)Dy(z)
Dy (2)By(
which are the nonlinear equivalent of the so-called DGKF-conditions [DGKF89], are as-
sumed to hold. While often imposed in nonlinear control, they are not needed, and restrict
the class of input affine systems considerably. For example, nonlinear tracking problems
can not be handled in this restricted H setting. Therefore it is mandatory to examine
the structure of non-linear, but input-affine, control systems not restricted by the equa-

tions (30). We derive here the computations not found in the common literature on Heo
control.

u

(30)

0
0
I
0

"L-) 7

We concentrate on the regular case Dg D, > 0 for all z, which essentially means that all
controls are penalized (The singular case DI (z)D,(z) > 0 has for input affine systems
been solved by W.C.A. Maas and A.J. van der Schaft [MvdS94]). It turns out that the
important feature of the generalized problem at hand is again the saddlepoint property of
the Hamiltonian. We recall that the pre-Hamiltonian function H is defined by
H(u,w) = £V — (V*[wl* — |2])
= %—‘;(A(x) + By(z)u + By(z)w) — v?|w* + |C(z) + Dy(z)u + Dy (z)w|?

=Y A+ 9% [B, By [Z] +2[C*D, C'D,] [Z] +cTc (31)

p’p, DD,

+ [uT wT] [u]
pTp, DID, —~21|

for all t+ € R, hence proceeding as outlined before, we are searching for a saddlepoint
in terms of u and w of the pre-Hamiltonian (31). Since DI D, > 0, and since there is a
Yo > 0 such that

(ol p, —~*1n-nolp, oo, 'pI'D, = DL(1 - D,(DID,) DD, —+*T < 0

for all v > 7y, it follows from the Schur complement formula that the Hessian
DI'D, DID,
H = (32)
DI'p, DID, —~%I
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is regular and defines a saddlepoint in (u,w) for all y > ~y. It follows that H has a unique
saddle point (Wmax, Umin) for all z and all %—‘;, and that the extremal functions upin(z, %—Z),
Wmax (7, %—‘;) are characterized by the equations

g_g(umin,wmax) =0, umin(OaO) =0

(33)
g_r)(umin;wmax) =0, 'wmax(oao) =0 .
We compute explicitly the derivatives
T T
M BI9Y" +2pIC DI'D, DID, "
_ 2 M I
T T T T
o BI9V" 1 2D Dy Dy DyDy — 771
Consequently, the extremal functions are given by setting (34) equal zero, which yields
1pTavT T
Umin -1 Bu bz + Du ¢
w =—-H . (35)
max T
BTV + DIC
It follows that the Hamiltonian is given by
BT .
d - d a
H* = 3% [Bu Bu]H' o+
B,
DI'c BI .
— 19 B, B, H™! i ;[C"D, C'D,]H! . 9= (36)
D,C B,
DI'C
+cc-|[c'D, C'D,|H*
DIC
Hence, the Hamilton-Jacobi inequality can be rewritten
H™(z) = 3L Q(2) 3" + S L(z) + K(z) < 0 (37)
where
1 [P
Qa)=—7[Bu Bu]JH|
B’(U
DIC
L(z)=A-[B, By H (38)
pIC
DI'C
K(z)=c"c-[c"D, C"D,]H™!
DIC

A comparison with (11) shows that the problem at hand has the same structure as the
HJI (10), hence the rest of the paper applies without changes except for formulas of higher
complexity.
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Output tracking of reference signals

While tracking control problems of nonlinear systems also can be solved by geometric,
predictive, and Hg tools (see [Lu94, Lu96]), we want to emphasize the use of H, control
techniques to accomplish this task.

Let us assume that we wish to track a reference signal r(-) with some pre-defined output
function C,(z) subject to unknown disturbances d(-). This task can be reformulated as a
Hoo state feedback control problem of the form (29): Let the to-be-controlled signal z(:)
include some penalty signal p(-) which essentially penalizes the use of control u(-) and the
error signal e(-) = r(-) — Ce(z(-)), that is, let the signals w(-) and z(-) be divided as follows

0= ] e 0= i)

Then the control system (29) is subdivided, it is given by

d

el _ [Ce(=) 0 —1I, 0 r
=[] = [57)+ [t v [0 ] 2]
where A(0) = 0, C¢(0) = 0, and DZ(x)Dp(w) > 0 for all z. Since DI D, = DZDP > 0,
and since there is a 9 > 0 such that

&= A(z) + Bu(z)u+ [0 By(z)] H
(39)

(Dng - 721) - DgDu(DgDU)_ngDw
-1, 0 ] [Ie 0 ] [—I, 0] 2
- B — I, < 0
[0 DIl |0 I,-D,(DID,)"'DI|| 0 D T

for all y > 7y, it follows again from the Schur complement formula that the Hessian (32) is
regular and that the Hamiltonian (36) has the needed saddlepoint property for all y > .
Hence, the output tracking problem sketched above is solved by substitution of the matrices

o) e =[5

into the equations (38), and thereafter solving the HJI (37), and by applying the resulting
feedback law umin given by equations (35).

By,(z)=[0 By , C(z)=[Cc 0] Dy(z)=

Proof of lemma 3.1

The proof, which is found in [CMPP96], is displayed here for the convenience of the reader:

Since V is continuous it follows that Q is closed, hence compact. Moreover (7) implies that
V satisfies the dissipation inequality

T
V(z(T)) = V(20) S/O Plw®)P — |=()* dt
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therefore any trajectory z(-) with initial condition zy € Q subject to w(-) = 0 fulfills
2
V(zr) < V(xo) — Hz”T < cq

for all T € RT (Note that then ||ZH; < V(0) < ¢q is always true). Therefore z(T') € Q for
all T € R™, and the trajectory can not leave .

Now consider components of the sets V~!([~o0,¢]) with ¢ < cq, which are subsets of 2.
These are clearly closed subsets of £, hence compact. Let z(-) be any closed loop trajectory
with initial condition g € Q¢ C V" !([~o00, cq —¢€]), and assume w(-) € W€. Then we have

Vier) < Viwo) = [lofly + 7 |lwlly < en—e+e

for all T € R™ (Note that in this case Hz”; < V(0) 4+ € < cq is always true). Therefore
z(-) does not leave (2.



Chapter 3

Semi-global Ho State Feedback
Control With Set-Stability

In this chapter we are including a new concept to the regional H ., state control problem
described in chapter 2: The wish to stabilize invariant compact sets, as motivated in
the introduction. The here presented approach is a combination of several different tools
presented in the introductory chapter 1. More precisely, we are combining the functionality
of the following tools:

‘Hoo analysis theorem 2.3,

Game theory theorem 2.5,

La Salle’s invariance principle and performance envelopes theorem 2.1,
Set-stability theorem 2.2, and

Control Lyapunov functions theorem 2.4.

Unfortunately, the combination is yet incomplete, several features of these tools are not
perfectly unified. The most important and most bothering deficiencies at this point are
three:

First of all, the set-stabilizing power of theorem 2.2 is only partially exploited. We are
considering the asymptotic properties of compact invariant sets for undisturbed motions,
that is, for trajectories z(-) subject to w(-) = 0, only. As we see in the paper, this approach
can without loss of generality be applied to disturbances of finite £9 norm which are equal
zero for all times t > T € IR. Also, the stability of those compact invariant sets with
respect to undisturbed motions is not proven here. It follows that we have only results on
boundedness of state trajectories, and attraction of sets, no results on asymptotic stability
of compact invariant sets are given. The main tool used to provide attraction of sets is a
very natural, but new, generalization of the well known notion of zero-detectability.

Secondly, only sufficient conditions in terms of the state feedback Hamilton-Jacobi inequal-
ity and the properness of C' storage functions are provided (V : IR” — IRT is called proper

50
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if V() — oo for all z — oc0). This is in contrast to the robust stability theorem 2.2
mentioned in chapter 1, which states sufficient and necessary conditions. Therefore, two
important questions remain unanswered at this stage of our investigations: Do C! storage
functions exist? And do proper storage functions exist? These questions are answered in
chapter 5.

Finally, the possibilities of theorem 2.3 are only partially used, since we are only considering
the special supply rate s(w,z) = y?|w|? — |z|? which belongs to Hs, control problems. As
it is showed in chapter 5, this is only a minor problem which can be resolved easily.

The main part of this chapter consists of a reprint of the paper
Marc Cromme and Jakob Stoustrup. Semi-global H., state feedback con-

trol. In Proceedings of the Furopean Control Conference, pages TU-E J5 1-6,
Brussels, Belgium, July 1997.
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Semi-global H,, state feedback control
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Abstract

Semi-global set-stabilizing Heo control is local Ho, control within some given
compact set 2 such that all state trajectories are bounded inside €2, and are
approaching an open loop invariant set S C 2 as ¢ — oo. Sufficient conditions
for the existence of a continuous state feedback law are given, based on a new
theorem.

1 Introduction

The standard formulation of local state feedback Hoo control is mainly based on the theory
of dissipative systems first introduced by Willems [Wil72a]. In this paper we will approach
the problem by the theory of differential games as outlined in the papers by Isidori [Isi92],
and Isidori and Astolfi [TA92b, TA92a], but we allow for non-zero initial conditions following
van der Schaft [vdS92a]. Recently, the local nonlinear state feedback #Ho, control problem
has been solved for general nonlinear plants by Isidori and Kang [IK95], and Ball, Helton,
and Walker [BHW93]. The standard nonlinear H, control theory is briefly summarized
in Section 3.1.

From an applied point of view the theory of local Ho, control has a severe drawback: It does
not give a bound on the state trajectories, but merely states that it is valid for bounded
trajectories. In fact, a linear controller based on the linearization in an equilibrium point
might even do better in practice than a local nonlinear Ho, controller. Moreover, it can
be argued that the real motivation for nonlinear control theory are applications where
the plant is operating in a significant range of operating points. Otherwise, linear control
theory will work in most cases.

On the other hand, to compute a global nonlinear H, control is not realistic in most prac-
tical cases since it basically requires finding an analytical expression for a global solution
to a Hamilton-Jacobi equation or inequality.

This is the main motivation for the present paper which presents a method to design
Hoo controllers constraining state trajectories to a region of the state space rather than
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operating with local results without knowledge of boundedness of the state. The regions
are specified in terms of invariant sets, and the results are generalizations of local Ho
results. Moreover, the computational methods that apply to local Ho, control extend
directly to the obtained semi-global H, results. This constitutes a much more practical
theory for nonlinear control systems where also oscillating and other non-stationary modes
of operation can be dealt with.

It is described in Section 3.2 how semi-global stability has been obtained for autonomous
systems. The main idea of this paper is based on the proof of La Salle’s invariance principle
[SL61], here restated in Theorem 3.2.

The new contribution to the theory of semi-global stability and set-stability by Hso control
is found in Section 4. In order to prove the boundedness of state trajectories we have to
restrict to a certain class of disturbances denoted W¢. Given some solution V to the
standard H., Hamilton-Jacobi inequality, a new lemma shows how to compute the region
of boundedness €2, and the region of allowed initial conditions £2¢. A new theorem, based on
La Salle’s invariance principle, is the cornerstone of semi-global stability and set-stability
by Heo control provided that a certain detectability property is satisfied.

2 Problem formulation

Let IR denote the real positive closed time-axis [0, oo[. We consider the smooth, continuous
time system

z=X(z,u,w) , z=2Z(z,u) (1)

where z(-) : RT — R" is called the state, u(-) : RT — IR™ the input, w(-) : RT — IR’
the exogenous input, also called disturbance, and z(-) : Rt ~ IRP the performance, or
to-be-controlled signal.

The open loop system
T =XP"(z) = X(z,0,w) (2)

with constant disturbance w(-) = 0 is autonomous, and it’s dynamic is therefore naturally
assumed to have at least one connected, non-empty invariant set such as a closed periodic
orbit or an equilibrium point.

The static state feedback used here is some vector valued function a : IR™ — IR™
u=a(z) , (3)

thus the closed loop system is given by the equations

(4)

Whenever convenient, we use the notation z(-) for the unique signal (-, tg, zg, u(-), w())
generated by the inputs u(-), w(-), where the initial condition at time %y is . It is assumed
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that all signals are LX¢, and that the state exist uniquely for all inputs, and is a C* signal
except on a set of measure zero.

Define the Ly norm for any locally square integrable signal y(-) : RT ~ IRP for all T € R™
by

T
Iolf;= [ ol ar ®)

where || is the usual Euclidean vector norm. By definition, the open or closed loop
system (2) or (4) has local Ly gain less than or equal to v > 0 if there exists a neighborhood
Q C IR" around the origin, and a nonnegative and bounded function V, : IR" + [0, 00|,
called available storage, depending only on the initial condition zg, such that

2117 <7 awllz. + Vazo) (6)

for all T € IRT, all initial conditions zo € ©, and all w(-),z(-) € L¥° such that the state
trajectories never leave €2 [vdS92a, IA92a].

To allow for oscillatory or other non-stationary modes of operation we adopt the notion
of set-stability introduced in [Lin92|, more precisely, we are interested in asymptotically
stabilization of some open loop invariant set S such that the motions on S are unaltered
by feedback.

2.1 Problem Formulation Given a plant (1) whose open loop dynamics (2) subject to
w(-) = 0 has a nonempty invariant set M (e.g. a collection of closed orbits and equilibria),
pick a to be stabilized union S of some components of M, and a v > 0. Find, if possible,
a nonempty compact set §) containing S, and a state feedback law (3) such that the closed
loop Ly gain (6) is less than or equal to 7y, and such that the closed loop system (4) subject
to w(-) = 0 asymptotically stabilizes' the open loop invariant set S.

Find also a class of disturbances W€ such that the state trajectories never leave ) if started
inside some ¢ C 2, and such that all trajectories generated by w(-) € W€ are approaching
the closed loop positive invariant set S.

In other words: we want to solve a local Hy control problem in such a way that all

trajectories are bounded inside some compact €2, and that  is a basin of attraction for
the to-be-stabilized, hence closed loop positive invariant set S.

3 Background

3.1 Local H,, state feedback

The aim of standard local nonlinear H, control is to design a controller (3), and to find
a sufficient small v > 0 such that the Lo gain (6) is satisfied locally on a neighborhood

!The use of the expression “asymptotic stability” in this paper does not match the definition given in
chapter 1. To be more precise, we show only boundedness of trajectories, and attraction of the set S here.
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Q C R™ around the origin. In this subsection the equilibrium condition X (0,0,0) = 0 is
assumed to hold.

It is known [vdS92a, vdS92c| that the local Ly gain condition is implied by (equivalence is
given subject a reachability condition [Wil72a]) the existence of a non-negative, bounded
storage function V : Q +— [0, oo[ satisfying the dissipation inequality

Vi)~ Vi) < [ 67wl = @) dt = 2 folfa~ o

V() =0,

(7)

where 7 = z(T'). Whenever convenient we denote in the following the value of V along a
given path z(-) by the abuse of notation V(-) = V(z(-, to, zo, u(-), w(-))).

In case that V is continuously differentiable almost everywhere, it satisfies the closed loop
differential inequality

2 2 2 2

Hlu,w) = 4V — (v*|w|” - |2|") = Y X (z,u,w) — 7 lw|” +|Z(z,u)|” < 0 (8)

for all t € RT, where the Hamiltonian function H is defined by equation (8). Assuming

that Z(z,u) is such that ‘Z—Z(O, 0) has rank m, it is known [IK95] that H has a unique saddle

point (Wmax, Umin) for all z and all %—‘; near zero, and the extremal functions umin(z, %—‘;),

Wmax (7, %—‘;) are characterized by the equations

g_: (umim wmax) =0

g_:j,(umina wmax) =0

(9)
Umin (0, 0)

=0
wmaX(OaO) =0 . (10)

Clearly, a(z) = umin(z) = Umin(z, %—Z(JZ)) is the best possible state feedback law, and
Wmax(T) = Wmax(z, %—‘w/(:v)) is the worst possible disturbance. Note that Umin and Wmax
vanish at the origin, hence the autonomous closed loop systems

= X"(z) = X (2, Umin(z),0) and

T = X**(x) = X(x, ’umin(l'), wmax(w))

(11)

do preserve the equilibrium point 0.
Thus, we seek a sufficient small v > 0, and a C* storage function V defined on a sufficiently
large neighborhood €2 around the origin satisfying the Hamilton-Jacobi inequality [IK95]

H** (z, %—‘;)

2
= %_‘;X(maumin(x, %_‘;),wmaX(l'a ?9_‘;)) - '72 |wmaX(xa %_Z)‘ + |Z(waumin($a %_‘;:)

<0 forallzeQ . (12)

‘ 2

In case that the locally linearized problem is solvable, it can easily be seen that any v > ~,
can be used, where 7, is some sub-optimal gain of the linearized H o, control problem. See
van der Schaft [vdS91a, vdS92c| for further information.
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The existence of a C! storage function satisfying (12) locally guarantees that the closed
loop system is dissipative in the sense of (7), and the input-output map of the closed loop
system has Lo gain less than or equal to  as defined in equation (6) if and only if every
closed loop state trajectory is bounded inside 2. Unfortunately, local theory does not give
any a priori estimates on the boundedness of the state.

3.2 Set-stability

The basic idea of this paper is that the storage function V satisfying (12) shall serve as a
Lyapunov function to determine the stability properties of the closed loop trajectories x(-)
not only locally, but semi-globally.

For this purpose it is beneficial to recall boundedness and invariance properties of smooth
autonomous systems of the form

i=X(z) . (13)

We assume that the integral curves of (13) are uniquely given on some suitable set, and
we denote them z(-) = z(-, to, o).

3.1 Definition A set M C IR™ is called invariant if all trajectories starting in M are
defined in the future and in the past, and evolve entirely inside M.

The set is called positive invariant if all trajectories starting in M are defined in the
future and never leave M as time increases.

Note that invariance is a stronger property of a set than positive invariance.

It is our purpose to use a formal solution to the Hamilton-Jacobi inequality as a Lyapunov
function in order to establish semi-global stability properties of the H state feedback
problem. Our theorem in the next section will be based on a result published in the early
sixties by La Salle and Lefschetz [SL61].

3.2 Theorem (La Salle and Lefschetz) LetV :IR" — R be a C* function and let
denote a connected component of the pre-image V~1(] — o0, c]), ¢ € IR. Assume that € is
bounded, and that

4y <0 (14)

within Q along any trajectory of the autonomous system (13). Let R C € be the largest
set where %V =0, and let M be the largest invariant set contained in R.

Then $) is positive invariant and every solution in ) tends to M as t — oo.

In other words: € is a basin of attraction for the stable invariant set M. This is in fact a
semi-global stability property of the type we want to establish for the H, state feedback
problem. Note that the original proof of Theorem 3.2 shows that any such C! function
V satisfying %V < 0 is not assumed to be positive definite. Every component of M is
merely a local minimum of the function V(z).
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4 Set-stability in H ., control

This section contains the new contribution to the theory of regional (semi-global) stability
and set-stability by He, control. We want to modify Theorem 3.2 such that the property
of set-stability can be used in Ho, control. We have to use condition (12) instead of (14),
thereby ensuring the Lo gain (6) to hold.

In order to prove the boundedness of state trajectories we have to restrict ourselves to the
class of disturbances

we={w() e Ly(RY) | 2wl < e} - (15)

Given some solution V' to the standard H,, Hamilton-Jacobi inequality, the following new
lemma will help us to construct some appropriate region of boundedness, denoted €2, and
the region of allowed initial conditions ¢ (see figure 1).

Given a formal C! solution V of the Hamilton-Jacobi inequality (12), pick some ¢ € IR such
that some connected component of the pre-image V(] — oo, ¢]), denoted £2, is bounded.
Since V is continuous it follows that € is closed, hence compact. Moreover (12) implies
that V satisfies the dissipation inequality (7), therefore any trajectory z(-) with initial
condition zy € Q subject to w(-) = 0 fulfills

V(zr) < Vi(xg) — ||zH2T <c

for all T € RT (Note that then ||ZH; < V(0) < cis always true). Therefore z(T) € Q for
all T € R™, and the trajectory can not leave .

Now consider components of the sets V~!(] — oo, c — €]) with € > 0 which are subsets of
Q2. These are clearly closed subsets of €2, hence compact. Let z(-) be any closed loop
trajectory with initial condition zy € Q¢ C V(] — 0o,c — €]), and assume w(-) € WE.
Then we have

V(er) < V(wo) = |2l +7 fully < e e te

for all T € IRT (Note that in this case ||ZH; < V(0) + € < cis always true). We conclude
that z(-) is bounded inside Q. Formally we can restate our observations in the following
lemma:

4.1 Lemma [CMPP97] Given a formal C' solution V of the Hamilton-Jacobi inequal-
ity (12), pick some ¢ € R such that some component of V~1(] — oo, ¢]), denoted Q, is
connected and bounded.

Then ) is compact and closed loop positive invariant by use of the state feedback law
a(x) = umin(z) subject to the condition w(-) = 0.

Pick some € > 0, then the appropriate subset Q¢ C  of V™1(] — oo, c— ¢€]) is such that any
closed loop trajectory z(-) with initial condition x¢ € Q¢ is bounded inside ) if driven by
the state feedback law a(x) = umin(x), and by any disturbance w(-) € WE.

Note that the formal solution V may be such that the pre-image V (] — oo, c]) never
has a bounded component, in which case the approach proposed here is not applicable.
Moreover, picking € > 0 too large may result in ¢ = @.
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Figure 1: Boundedness of trajectories

Having taken care of the boundedness of state trajectories, we proceed the discussion
leading to the new theorem, which will be the cornerstone of semi-global set-stability by
H o control.

Assume that the autonomous open loop system (2) subject to w(-) = 0 has an invariant
set M C Q consisting of a collection of disjoint components (for example periodic orbits
and equilibrium points). If we wish to stabilize the motions on an invariant set S C M
consisting of some components of M without change of the motions on S (see figure 2),
we have to use a feedback law a(x) such that

a($)|z68 =0 .

In case that we want to destroy the open loop motions on M /S, we must have in addition
that

a($)|zeM/S #0 .

Moreover, in order to be able to fulfill the Lo gain (6) for all desired motion of the open
loop system (2), the performance measure Z(z,u) must satisfy

Z(2,0)|,es =0 .

Observability of the state trajectory on S, that is Z(z, 0)‘5669/8 # 0, may be too severe an
assumption. Instead we will impose a weaker detectability assumption on the system:

4.2 Definition Given some invariant set S of the open loop system (2) subject to u(-) = 0,
w(-) = 0, the control system (1) is called S-detectable if all bounded trajectories

"'C() = .’L'(', to, Zo, U(), 0)
(subject to w(-) = 0) generating the zero-output z(-) = 0 are approaching S as t — oc.

In case that S is the origin, we say the control system is zero-detectable.

Assuming furthermore that g—f(x, 0) has rank m for all z € 2, a similar argumentation as
in the paper [IK95] shows that H defined in (8) has a unique saddle point (Wmax, Umin) for
all z in Q and all ‘g—‘; near zero, and the extremal functions umin(z, %—‘;), Wmax (T, %—‘;) are

characterized by the equations (9) and

Umin(Z, O)lmES =0

(16)
Wmax(T,0)|zes =0 .



CHAPTER 3. SEMI-GLOBAL H~, CONTROL WITH SET-STABILITY 59

Figure 2: Set-stability

Hence following the principal idea of the paper [IK95] as outlined in Section 3.1, we conclude
that any C' function V satisfying the Hamilton-Jacobi inequality (12) will also satisfy the
dissipation inequality (7), and therefore the Lo gain (6) in case that the state is bounded
inside 2. We take advantage of Lemma 4.1 to state the following theorem, and to follow
the main idea of Theorem 3.2 to prove it.

4.3 Theorem Assume that some C! solution V : Q — R of the Hamilton-Jacobi inequal-
ity (12) is defined on a bounded and connected component Q of V~1(] — 00,c]), ¢ € R.
Assume furthermore that g—g(w, 0) has rank m for all z € Q2.

Then all closed loop trajectories x(-) subject to a(x) = umin(x) with initial condition
zo € Q¢ do not leave  if driven by some w(-) € W€, and consequently the system has Lo
gain less than or equal to 7.

Moreover, all such x(-) generated by w(-) € W€ which are identically zero for all times
t > t*, t* € IR, approach the biggest closed loop invariant set A contained in the null set

NE{mEQ‘H**(z,%—Z)zﬂ} .

Assume furthermore that the control system (1) is S-detectable, where S is a collection
of components of the maximal open loop autonomous invariant set M C €, then z()
approaches § as t — oc.

Proof. By Lemma 4.1 all state trajectories z(-) are bounded inside 2. Therefore, as
outlined in the discussion before Theorem 4.3, the dissipation inequality (7) and the Lo
gain (6) are satisfied for all trajectories.

We show now that all such z(-) generated by w(-) € W€ which are identically zero for all
times ¢ > t*, t* € IR, approach the biggest closed loop invariant set 4 contained in the
null set A. By boundedness of state trajectories and time invariance of the system, we
can assume without loss of generality that w(-) = 0 for all £ € IRT. Then the saddle point
property defined by (9) and (16) implies that the C'! solution V serves as a Lyapunov
function for the closed loop dynamics. More explicitly, we have

H('U/min,w) < H(uminawmin) =H" <0 (17)

2 Again, the rank condition is necessary, but not sufficient. We must also assume that the saddlepoint
property (9) holds for all z € Q, which implies that H(umin, w) < H** < H(u, wmax) is satisfied on Q for
all w and all w.
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for all w(-) € W¢. Choosing w(:) = 0 then gives with (8)
2 2
LV —y* 0"+ 2] <0 (18)
for all such trajectories. Hence we have %V < 0 for all motions evolving on Q/N . Trajec-

tories on N are satisfying %V = 0 if and only if ‘z|2 = |Z(w,umin(a:)‘2 =0, and %V <0
else.

Now, observe that V(z) by assumption is continuous and defined on the bounded set €2,
hence V() is bounded from below. Given some particular state trajectory z(-), the storage
function V (+) is decreasing and bounded from below, hence approaches some minimal value,
say cr € IR, as t — oo. By continuity we conclude that V(z) = cr on the positive limit
set I'", and consequently %V =0 on I'*. Rearranging the inequalities (17) and (18) then
shows that

0< |z <H* <0, (19)

therefore we must conclude that I't is a (non-empty by boundedness of z(-)) subset of the
null set A'. But I'" is an invariant set, hence contained in the maximal closed loop invariant
set A, and consequently any trajectory z(-) satisfying the conditions of the theorem are
approaching A as t — oo.

We show finally that S-detectability implies that x(-) approaches & as ¢ — oo. Clearly
any trajectory evolving entirely on I't satisfies by inequality (19) that z(-) = 0, hence by
S-detectability S is approached. Finally, any trajectory with the same limit set I'" is by
continuity of the closed loop dynamics forced to approach S as t — oo.

Note, that in this case I't C S, and that condition (16) shows that closing the loop with
the feedback a(z) = umin does not change the dynamics on the open loop invariant set S.

Note too, that in the case that S is not connected (it may consist of several open loop
positive limit sets for example), the proof indicates that each component of S is a local
minimum of the function V(z), but the constant value V(z) = ¢r will in general be different
from component to component. In case that S = {0} we can always assume without loss
of generality that V(x) is positive definite. O

Following the proof of Theorem 4.3, it is clear that every connected component of S is a
local minimum of any solution V' of the Hamilton-Jacobi inequality (12), and that %—Zj: =0
along any trajectory evolving inside S.

In case that S = {0}, local solutions can be obtained by use of an approximation scheme
originally developed by Lukes [Luk69]| for quadratic cost functions. It has been used to
compute solutions of the Hamilton-Jacobi inequalities associated with the local nonlinear
state feedback Hoo control problem [IK95|. An implementation in the symbolic language
MAPLE is available for affine control systems [MP95], see [CMPP96] for a calculated example.

4.1 Extending the class of disturbances

From an engineering point of view, the theory so far developed is not yet entirely adequate
for practical control purposes: in real systems the disturbance w(-) is often time persistent,
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and has therefore no finite Ly norm. In linear H o theory standard transformation results
automatically translate the Lo induced norm results into power semi-norm induced or
spectral semi-norm induced equivalent results. This kind of equivalence does of course not
hold for nonlinear systems.

In general the class of allowed disturbances W€ is not conservatively chosen as one might
think. However, assuming that |Z (z, umin(w)‘ is a function of class Ko, and using the prin-
cipal ideas of the input-to-state stability property as outlined in [Lin92, Son95c¢| together
with the improvements on H,, control mentioned here, it is possible to allow for input
and disturbance signals which are time persistent, but bounded in L, norm (essentially
peak bounded). The price to pay is that asymptotic stability of the invariant set S only is
obtained for w(-) = 0, but L, boundedness of w(-) implies then that the state trajectories
are bounded in a neighborhood of § and z(-) — S for w(-) — 0. The proof of a similar
theorem involves decay estimates, and will be published later on.

5 Conclusion

In this paper it is shown that state feedback problems involving the stabilization of open
loop invariant sets can successfully be recast as generalized formulations of nonlinear local
state feedback H,, control problems. Given a formal solution V to a certain Hamilton-
Jacobi inequality, the generalized problem is solved regionally (semi-globally) provided
V is such that the some connected component of the pre-image V!(] — oo,c) for some
¢ € IR is bounded and includes the to-be-stabilized invariant set. The plant is assumed to
have a certain detectability property (which is just the generalization of the standard zero-
detectability assumption) to prove asymptotic stability of the obtained control law with
respect to the invariant set of concern. Sets of allowable initial conditions and disturbance
classes are specified.

Hence, the presented results constitute a natural extension of local H o control theory which
possess most of the advantages of global nonlinear control. In particular, performance is
guaranteed in a range of operational conditions, in contrast to local Hs control. Non-
stationary modes of operation such as stability of periodic orbits are included in this new
theory. Numerical methods which apply to local Hs, theory can without problem be
applied in a semi-global context.
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Comments and References

As mentioned in the introduction to this chapter, one deficiency of the theories presented so
far is that theorem4.3 states only sufficient conditions to solve the problem formulation 2.1,
no equivalent conditions in terms of partial differential inequalities are known so far. One
of the problems in deriving equivalent formulations is the fact that storage functions in
general not need to be C!, nor even continuous. In fact, there are well-known problems
where the existence of C'! storage functions is not given.

To solve this problem, Joseph A. Ball and J. William Helton considered in 1996 the recently
developed notion of viscosity solutions to Hamilton-Jacobi equations [BH96] (A more gen-
eral result including the special case of Hs control has been published in 1993 by James
[Jam93a]). While a general introduction to the theory of generalized gradients and viscos-
ity solutions is out of the scope of this thesis, some of the high-lights of the theory, and it’s
application to Hs control, or general dissipative control, are sketched in chapter 5. We
refer to the articles [CEL84, LS85, CIL90| for concise informations on this matter. The
main idea is that the HJI can be understood in a certain weak sense, and then equivalence
between weak, or viscosity solutions to HJI and existence of storage functions is proved.

The viscosity approach to Heo theory gives us equivalent formulations in terms of storage
functions and weak solutions to HJI’s, but the practical use of such an approach is rather
limited: continuity alone is a weak regularity condition in case that we want to approximate
the weak solution to the HJI numerically. There is hardly any fast working approximation
scheme which works satisfactory with nonsmooth solutions.

Therefore, the ultimate goal is to impose some other system theoretic side conditions on the
problem which can be checked considering the data of the system alone, and which establish
equivalence between the existence of smooth storage functions and smooth solutions to -
somehow modified - HJI’s. This yet not established approach to Hs control would be a
rather powerful theory, which facilitates the use of approximation schemes considerably.

Another important contribution to Hs control theory is the paper [BHW93| by Joseph
A. Ball and J. William Helton and Michael L. Walker considering H o, control for general
nonlinear systems with output feedback. Here, systems which are only affine in the dis-
turbances are considered. Since the problem of output feedback is blurring the clear view
towards set-stabilizing and robust dissipative control, we will not follow this path.

Finally, Declan G. Bates and Anthony M. Holohan compared the properties of linear Hqo,
Ho and L; controllers [BH95]. These results are not comparable to nonlinear related
control strategies due to the lack of a frequency domain interpretation, but nevertheless,
they give another important view on the properties of Hoo controllers.



Chapter 4

Almost Autonomous Systems

In this chapter we provide a new tool which is used to assure certain robustness properties
of systems with respect to non-zero disturbances. Although the main ideas have been
published by L. Markus in 1956, they have not before been applied to robustness analysis
of dissipative systems. Since the proof of the main theorem in Markus article is rather
terse, and gives hardly any help understanding the asymptotic behavior of asymptotically
autonomous systems, the author of the here reprinted paper

Marc Cromme. On Asymptotic Behavior of Almost Asymptotic Systems.
Submitted February 1998

had chosen to provide an alternative, detailed proof. The novelty is however not the im-
proved level of accuracy in the proof, but a generalization of local asymptotic properties
near simple asymptotically stable equilibrium points to regional (semi-global) asymptotic
properties of general invariant, compact, sets. These compact and invariant sets have either
to be asymptotically stable, or completely unstable in the sense that they are asymptoti-
cally stable under the time-reversed flow of the system.

This generalization provides a better tool in the context of nonlinear systems, and can easily
be applied to the Ho, control problem with set-stability derived in the previous chapter.
The commentary section after the included paper describes such an robust set-stabilizing
Hoo control approach.

64



On asymptotic behavior of almost
autonomous systems

Marc Cromme
Department of Mathematics
Technical University of Denmark
DK-2800 Lyngby, Denmark

February, 24th, 1997

Keywords:
ODE’s, non-linear dynamics, asymptotically autonomous systems, positive
limit sets, invariant sets, asymptotically stable sets, completely unstable sets

Abstract

The qualitative behavior of solutions to asymptotically autonomous systems
are investigated. These are time-dependent nonlinear ODE’s which approach
autonomous ODE’s as time ¢ — oo. The asymptotic properties of solutions
near an invariant set are described, and the structure of the positive limit sets
of solutions are investigated.

The findings of this paper are based on the main theorem of the paper “Asymp-
totically Autonomous Differential Systems” published by L. Markus in 1956,
and frequently quoted (and sometimes misquoted) since. Unfortunately, the
proof given there omits rather essential steps.

Therefore, before stating new results, a new proof to L. Markus main theo-
rem is provided, which fills in the gaps of the original proof and gives a more
descriptive understanding of the dynamical behavior of such systems. Then,
a new theorem on semi-global stability of trajectories belonging to perturbed,
asymptotically autonomous systems in relation to general positive limit sets of
the limit autonomous system, is stated and proved.

1 Introduction

The motivation to write this paper arises from non-linear #Ho, control: there [CMPP97,
CS97] the use of a minimizing state feedback control law results in a disturbed closed
loop system of the form & = X (z,w), where the unpredictable and unknown vector signal
w(-), called disturbance, perturbes the nominal, autonomous closed loop vector system % =
X (z,0). The control is usually designed such that the later system has some asymptotically

Mathematics subject classification: 34C35, 34D05, 58F12
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stable equilibrium, or more generally, some asymptotically stable invariant set S describing
the desired motion of trajectories z(-).

It is obvious that the invariant properties of S are usually destroyed when disturbances
w(-) # 0 are feed into the system. However, there might be the hope that the disturbed
system is such that the invariant set S is approached if the disturbance decreases to zero
for time ¢ — oo. In fact, this is trivially true for asymptotically stable equilibrium points
of linear systems. The central questions investigated in this paper are the following:

Under which circumstances does w(t) — 0 for ¢ — oo imply z(¢) — S for general nonlinear
disturbed systems?

When do the positive limit sets of the disturbed motions equal the positive limit sets of
the autonomous system?

To answer these questions we use the notion of asymptotically autonomous systems covering
a slightly broader class of systems than our systems perturbed by an disturbance. In 1956
L. Markus [Mar56] answered our questions partially, namely in the case of asymptotically
stable equilibrium points of nonlinear asymptotically autonomous systems. Unfortunately,
the proof given in [Mar56] omits rater essential steps, which may be the reason that his
main theorem has occasionally been misunderstood and misquoted during the last forty
years.

The more elaborated findings of L. Markus paper on essentially periodic orbits of asymp-
totically autonomous systems, and on behavior of two-dimensional asymptotically au-
tonomous systems of Bendixon-Poincaré type, have recently triggered further research in
this interesting area. The work of H.R. Thieme [Thi92, Thi94a, Thi94b] on a Bendixon-
Poincaré type limit set trichotomerty for planar systems must be mentioned in this context.
While these papers investigate the fine structure of positive limit sets associated to trajec-
tories of asymptotically autonomous systems, yet no stability results for other sets than
locally stable equilibria have been provided.

To solve our problem at hand a more descriptive understanding of the dynamical behavior
of solutions is needed. Therefore this paper re-proves the main theorem of [Mar56] in a
more detailed fashion, filling the gaps of the original proof, before treating the behavior of
state trajectories near asymptotically stable invariant sets, or completely unstable invariant
sets. Finally, the positive limit sets of disturbed motions are proved to equal the positive
limit sets of autonomous systems under certain circumstances. Three simple examples are
shown to stress the findings of this paper.

2 Basics

Let | - | denote the usual Euclidean vector norm (or any other equivalent norm) on IR™.
Given any closed subset A C IR", we define the distance between A and some point p € R™
by

mA=$gm—m-
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Note that the usual Euclidean vector norm then is given by |- | = | - [(o}. Let R denote
the future, that is the nonnegative real axis [0,00), and R™ = (—o0, 0] the past.

A perturbed, or disturbed system is a system of the form
z=X(z,w) , (1)

where z(-) : Rt — IR" is called the state, and w(:) : RT — IR! the exogenous input, also
called disturbance. The symbol X (z,w) denotes a continuous vector field X : IR” x IR!
IR™, which is locally Lipschitz in z, uniformly in w. More precisely, for each compact set
K C R™ there is a constant & > 0 such that

| X (z1,w) — X (22, w)| < k|lz1 — 29|

for all z1, z2 € K and all w € IRL. In case that the local Lipschitz condition can not be
satisfied but on some subset X x W, the following will remain obviously true whenever the
state and the disturbance can be bounded inside the compact set X C IR® and W C IR'.

Applying the theory of ordinary differential equations [BN69, chap. 3] [CL55, chap. 1] on
systems of the form (1), it is easily seen that these conditions ensure the existence and
uniqueness of state solutions whenever the disturbance is a continuous signal. We use the
notation z(-) for the unique signal z(-, ¢, o, w(:)) generated by the input w(-), where the
initial condition at time g is 9. We denote the value of a signal z(-) : Z — IR™ at time ¢
by z(t) € IR". Here Z C IR is the maximal time interval where the signal z(-) is defined.
Some point in IR” is denoted z, and in particular the initial point of some given signal z(-)
at initial time ¢ is defined by zo = z(tp).

It is assumed that all signals are £I°°, that is, the integral f; ly(t)|? dt is finite for all
a,b € I C IR. Moreover, in case that the disturbance is not a continuous signal, we assume
further that the state exist uniquely for all disturbances of concern, and is a C' signal but
on a set of measure zero. In the following it will be important that the state signal is a
continuous function of the triplet (¢,%p, o), and the signal space of disturbances must be
chosen accordingly to this requirement.

One important class of disturbed systems satisfying the later assumptions is given by
the requirements that the disturbance is bounded and piecewise continuous, and %—f is
continuous on IR™ x IR!. Then we can show using the techniques of [CL55, chap. 1 &
2] that the state is a continuous function of the triplet (¢,tp,z¢) which is continuously
differentiable on some neighborhood of (¢g, z) for each fixed ¢, and piecewise continuously
differentiable in ¢ for all fixed (to, zo).

Other interesting classes of problems meeting the above assumptions may be found using
Caratheodory theory [CL55, chap. 2|, but for simplicity we will not follow this path.

Given some unique disturbance signal w(-), the disturbed system (1) can be regarded as a
time variant differential system, and, in case that the disturbance is constant in time, as
an autonomous system. In both cases, we say that the state is defined in the future if
a solution z(-, g, zo, w(-)) exists for all ¢t > tg, it is defined in the past if it exists for
all ¢ < t().
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We say that the state is bounded in the future (bounded in the past, bounded)
if it is defined in the future (past, future and past) and satisfies |z(¢)| < k, £ > 0 in the
future (past, future and past). In case that the state is not defined in the future, it has a
finite escape time 7' € R, and |z(t)| — oo as t = T" from below.

We say that some given trajectory x(-) defined in future approaches S as t — oo,
denoted z(t) — S, if |z(t)|s = 0 as t — oo.

Given any compact set S C IR", we define the family of open neighborhoods
Ne={peR"||pls<e} ,

for all 0 < € < gg, where g9 > 0 is some given constant.

The autonomous system given by some constant disturbance w(-) = ¢ has an stable set
S if for each 0 < ¢ < gg there is a § > 0 such that o € Ny implies that z(t) € N; for
all t > 0. The set S is called asymptotically stable if in addition z(t) — S as t — oo
holds for all 2y € N,.

The basin of attraction A1 of some asymptotically stable set S is the largest set of
initial points such that S is approached. It can be found by backwards integration of state
trajectories from some suitable neighborhood of &, and will always be an open set.

The autonomous system given by some constant disturbance w(-) = ¢ has a completely
unstable set & if S is an asymptotically stable set for the time-inverted system z =
—X(z,c).

The domain of repulsion R71 of some completely unstable set S is the largest set of
initial points such that S is repelled, that is, the basin of attraction of the time inverted
system. It can be found by forward integration of state trajectories from some suitable
neighborhood of &, and will always be an open set.

The positive limit set 't of some trajectory z(-) is - intuitively spoken - the set a state
defined in the future tends to as ¢ — oco. If the state approaches an equilibrium point or
a limit circle, those are the positive limit sets. More formally, z; belongs to the positive
limit set of a bounded state trajectory z(-) if there exists a sequence of time {¢,} with
tn, — oo such that z(t,) = x4+ as n — oc.

A set § C IR" is called invariant with respect to a constant w(-) = ¢, if for any
p € S the trajectory through p is defined in past and future, and is entirely lying in S. This
implies that the boundary dS consists of state trajectories. For example, every equilibrium
point, every closed and bounded periodic orbit, and every collection of trajectories defined
both in future and past are invariant sets. Note that invariant sets are not defined for time
varying systems.

It is known that the limit sets I'" of bounded trajectories generated by time varying systems
of the form & = X(z,t) are nonempty and compact, and z(-) — ' as t — oo [BN69,
chap. 5]. In case that the system of concern is autonomous, that is of form & = X (z), the
positive limit set will be invariant [Yos66, chap. 3] [Kha96, chap. 3].
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3 Asymptotically autonomous systems

Let us in the following investigate the qualitative behavior of disturbed systems of the
form & = X (z,w) subject to Lo disturbances which are bounded, piecewise continuous in
time, and converging to zero, that is |w(t)| — 0 as t — oco. We are inclined to believe that
all bounded trajectories z(-) generated in this way have nonempty and compact positive
limit sets 't which are matching the positive limit sets '}, belonging to the bounded
trajectories Zo(-) of the autonomous system & = X(z,0). Unfortunately, this assert is
not quite accurate, see [Thi94a| for illustrative counterexamples. A more sophisticated
approach than intuition is needed to understand the qualitative behavior of time varying
systems which approach autonomous systems as ¢ — oo. We seek inspiration in the work of
L. Markus [Mar56] and Yoshizawa [Yos66, chap. 3] to generalize their results to a broader
class of positive limit sets than stable equilibria. Furthermore, we allow for piecewise
continuity in the time variable to accommodate the previous mentioned class of systems
with piecewise continuous disturbance signals.

3.1 Definition (Asymptotically autonomous system) Let ¥ : &= X(z,t)
and Bo : & = Xoo(x) be continuous and locally Lipschitz in z for all fixed t € RT, and
piecewise continuous in t for all fixed x € IR". We say that X is asymptotic to X,
denoted X (z,t) — Xoo(x), in case for each compact K C IR" and each € > 0 there is a
T(K,e) € RT such that

|X($at) - Xoo(x)| <e

forall x € K and all t > T(K,¢).

It is easy to tell when disturbed systems of the form (1) are asymptotically autonomous
systems.

3.2 Proposition Given a disturbed system of the form (1), assume that the disturbance
w(-) € LY¢ is bounded, piecewise continuous, and decreasing to zero, that is satisfying
|lw(t)] = 0 as t — oo.

Then the system & = X (z,w(t)) is asymptotic to & = X(z,0).

Proof: Clearly X (z) = X(z,0) is continuous and locally Lipschitz by the same prop-
erties of X (z,w). On any compact set K € IR" there is a §(K, ) such that | X (z,w) —
X (z,0)| < ¢ for |lw| < d (again by smoothness of X (z,w)). Finally, by convergence of the
disturbance there is a suitable T'(K, e) = T (K, 6(K, ¢)) satisfying | X (z,w(t)) — X (z,0)| < ¢
fort > T. O

It seems reasonably to assume that the trajectories of the time variant and asymptotic
autonomous system behave similar to the trajectories of the autonomous system as time
goes to infinity. L. Markus [Mar56| states that the positive limit set I't of a trajectory
of the asymptotic autonomous system ¥ (also called the perturbed system) consists of a
union of autonomous trajectories, and this result is repeated by Yoshizawa [Yos66, chap.
3]. More formally we have the following theorem:
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3.3 Theorem [Mar56] Let the system ¥ : & = X (x,t) be asymptotic to Lo : & = Xoo(),
and denote their trajectories x(-) and z(-) respectively. Then all x(-) which are bounded
in future have a non-empty and compact positive limit set T, and z(t) — I't. Moreover,
'™ consists of a union of autonomous trajectories To(-), that is, ['" is an invariant set of
the autonomous system Y.

3.4 Example: Duffing’s equation
The dynamical system
b4v—evd=0

is conservative with potential energy V(z) = %1)2 — iex‘l. It can be written in the standard

form

1 =T

(2)

To = —T1 — ex‘;’

Figure 1: System which is asymptotically to Duffing’s equation

The orbits of (2) are given by the level curves V(z) = E. For € = 1 > 0 the potential has

a minimum at z1 = z9 = 0 and two maxima at x1; = i\/g = 42, £9 = 0. These are the
location of one center and two saddle points, see figure 1.

Assume that some system & = X(z,t) is asymptotically autonomous to (2), then the
positive limit set I'" of some disturbed trajectory z(-) (shown as a dashed arrow in figure 1)
might be the saddle connection given by V(z) = 1, that is the union of the two saddle
points and the two connecting trajectories. In fact, it suffices to apply a time dependent
vector field in a compact set containing a part of one of the connecting trajectories, which
is oriented orthogonal to the autonomous trajectories and forces the perturbed trajectory
towards the connecting trajectory. To prevent “overshoot” this orthogonal vector field must
decay to zero in an appropriate way.

Note that all trajectories in I't are defined in future and past. The positive limit set I't
consists according to theorem 3.3 of a union of several different autonomous trajectories
defined in future and past, but a few of them being positive limit sets of the autonomous
system. *

The original proof given in [Mar56] on the part concerning the invariantness of T't is as
follows:
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From the uniform convergence of ¥ to ¥4, on compact subsets of IR”, it is clear
that zoo(-) C I'", where zoo(-) is the solution of ¥, through p € I'". Thus,
I't is the union of solutions of Y.

Since the above proof is very short, the principal structure of the problem at hand is not
easily seen. The curious reader might ask the following questions:

I: How comes that the existence of a perturbed trajectory bounded in future of the
system X, that is, the existence of a compact positive limit set I'", implies the existence
of autonomous trajectories belonging to Yo which are bounded in past and future?

IT: Is the positive limit set I'" of z(-) belonging to ¥ a union of positive limit sets UI'%
of trajectories belonging to ¥ ?

III: Does the equality I't = T’} hold?

The last properties have been the source of misunderstandings and misquotings, these
assertions are not fulfilled in general. Illustrative counterexamples can be found in [Thi%4a).
On the other hand, L. Markus states a result where the equality asked for in question III
holds:

3.5 Theorem [Mar56] Let z, be a asymptotically stable equilibrium of ¥.,. Then there
exists a (sufficient small) neighborhood N of z, and a time T such that I't = {z,} for all
solutions z(-) of ¥ intersecting N at a time later than T.

Also here we are inclined to ask curious questions:

IV: Does theorem 3.5 hold for other positive limit sets of the autonomous system Y
than equilibria?

V: How large can the neighborhood A be?
VI: Does theorem 3.5 hold for completely unstable equilibrium points?

We prove in this paper that these questions have positive answers. Indeed, the following
theorem holds:

3.6 Theorem Let the system & = X (z,t) be asymptotic to & = X (), and denote their
trajectories z(-) and T (-) respectively. Let Q C IR™ be a compact set. Assume that T} is
some positive limit set of the autonomous system Y., which is either asymptotically stable
or completely unstable, and let A}, denote the basin of attraction, or R}, the domain of
repulsion, under the dynamics of ¥, Assume that the proper inclusions 't C Q C AL
or ' C Q C RY hold.

Then any trajectory x(-) which enters € in some finite time T, and stays in 2 for all times
t > T, approaches T}, ast — oco. Hence 't C T'L..

Moreover, if 'Y equals an equilibrium point or a periodic orbit, the equality Tt = T'}
holds.
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3.7 Example: Van der Pol equation
The system
i4+e(?—1D)o+v=0, >0

is transformed by the Lienard transformation

1
T =0 , 332:1}—6(0—§U3)

into the standard form
1 4

1 = T9 + 6(.’E1 — §£L‘1)

13.2 = —I

Figure 2: System which is asymptotically to Van der Pol equation

It is known [Gri90] that (3) has a unique limit cycle which is almost global asymptotically
orbital stable, that is, the limit cycle C* is an asymptotically stable limit set '} with
basin of attraction AL = IR?\{(0,0)}. Moreover, the completely unstable equilibrium
point (0,0) has a domain of repulsion R, which equals the interior of C*.

Assume now that there is some system # = X(z,t) which is asymptotically autonomous
to (3). By almost global asymptotically orbital stability of C'* it follows that any perturbed
trajectory z(-) which is defined in the future also is bounded in the future, all unbounded
perturbed trajectories have finite escape time. We apply now theorem 3.6.

Hence any such bounded perturbed trajectory z(-) which stays away from the equilibrium
point at the origin has the asymptotically stable set CT as positive limit set. In this case
we have the identity 't = Ct.

However, there might be some perturbed trajectory z(-) bounded for all times in a compact
set laying inside the periodic cycle CT, and then I'" equals the completely unstable positive
limit set {(0,0)}. *
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4 The proofs

We proceed here to display two essential observations in the following lemmas before re-
proving the main theorem of [Mar56|:

Given a perturbed trajectory z(-), assume we start an autonomous trajectory T (-) at
time 7T in the point xp = z(T'), and that we let both progress a finite time, AT, say.
If both trajectories are defined on the closed time interval [T,T + AT], it is clear that
they are bounded, hence the distance |z(T + AT) — zoo(T + AT)| is finite. The essential
observation is now that this distance can be made arbitrarily small for both positive and
negative finite time increments AT considering a sufficient large T'.

4.1 Lemma Let the perturbed system & = X(z,t) be asymptotic to & = X(x), and
assume that some specific perturbed trajectory z(-) is bounded in the future. Denote the
family of autonomous trajectories starting at time T' in z(T) by zL,(-).

Then for any fixed AT € R such that the members of z. (-) are defined on [T, T + AT]
(or on [T + AT, T) for negative increments) we have

|z(T + AT) — 2zl (T + AT)| -0 as T — oo .

Proof: We see from definition 3.1 that the vector field X (x,t) is closely approximated
by the autonomous vector field X (z) at all z € K, as t — oco. Assume now that a given
time increment AT is positive, then there is a finite time T'(¢) > 0 such that

| X (z,t) — Xo(z)| < €

on any compact set. It follows that the distance satisfies

T+AT
(T + AT) — 23, (T + AT)| < / [ X (2(2+, 8),8) = Xoo(2(24, 8))|ds <6 (4)
T
along the perturbed trajectory z(z.,t) with initial point z(7T") = x,, and this holds for all
0 = eAT > 0. Now, by definition there exists a T'(¢) > 0 for each ¢ > 0, hence it follows
that there exists a T(%) =T(e) > 0 for all § > 0, and clearly § can be chosen to satisfy
¢ — 0 for all fixed AT and T — oo.

The case of a negative time increment AT < 0 is shown analogously considering the integral
f$+AT ds. -

In the course of proving theorem 3.3 we want to use lemma 4.1 to construct sequences
of points 2!, = zIi(T; + AT) which hopefully converge to a point in the compact limit
set I'T. There is still one observation needed to follow this path: The positive limit set is
compact, hence the union of autonomous trajectories considered in theorem 3.3 is bounded.
It follows that each member of this union is defined on IR. On the other hand, the family
of autonomous trajectories used in lemma 4.1 is defined on [T, T + AT (or on [T+ AT, T]
for negative increments), therefore we have yet no indication that the maximal interval of

definition is large enough to make the above mentioned approach work.
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In general we can not show that all members of the family of autonomous trajectories are
defined in past and future, but less can do the job: We are able to show that the members
of the family z () have a maximal interval of definition which approaches IR as T — oo.

4.2 Lemma Assume that the conditions of lemma 4.1 hold. Then the members of z1_(-)
are defined on (a(T),b(T)), where

(a(T),b(T)) =R as T — oo .

Proof: Define a tube of diameter § > 0 around the perturbed trajectory z(-) by
Ts={z € R" | min, g+ |z(t) —z| <8} .

The tube 75 is a compact set because z(-) is bounded in future. Since the the members
of the family x1 (-) are trajectories of an autonomous system, we can without loss of
generality redefine their time axis such that the initial point 7 is met at time ¢ = 0, that
is 2 (0) = 7. Hence we know that the members have a maximal interval of definition,
(a(T'),b(T")) say, which includes 0.

Following the proof of lemma 4.1 it is evident that the members of zL (-) are bounded
inside 75 on [A(T), B(T)] say. Clearly, by boundedness in 7y, it follows that the maximal
interval of definition of the family members satisfies [A(T), B(T)] C (a(T),b(T)).

Finally, we show that A(T) — —oo, B(T) — oo for T' — oo, hence (a(T"),b(T")) — R as
T — oo: By inequality (4) there is a sequence of times Ty < T < -+ < 7T; such that

: )
2(T; + AT) - 25(AT)| <

for all finite AT € [A(Tp), B(Tp)]- Since z1i(AT) are bounded in 7 , it follows that
2%
z%i(+) are bounded in 75 for a larger time interval than [A(Tp), B(Ty)]. More precisely, the

o0

sequence Ty < T; < --- <T; can be chosen such that

€
| X (z,t) — Xoo(z)| < o
for all ¢ > T;. Hence z’ is bounded inside T; at least for all ¢ € [2°A(Ty), 2°B(Ty)]. O

Proof of Theorem 3.3: We remember that all z(-) which are bounded have a non-
empty and compact limit set 't [Yos66, chap. 3].

Take any zo € ', and progress this point any time AT € T along the autonomous
trajectory with initial point o, (0) = zy. By lemma 4.2 IR is the maximal interval of
definition of this particular autonomous trajectory. We show that zar = 2 (AT) € T':

By definition of positive limit sets there is a sequence T; — oo such that z(T;) — xg
as i — 0o, where z(-) is the perturbed trajectory of concern. We are now investigating
the sequence z(T; + AT) as i — o0, hopefully it has the limit z,,(AT). The collection



CHAPTER 4. ALMOST AUTONOMOUS SYSTEMS 75

TAT

Zo

Figure 3: Convergence of z(T; + AT) — zaT

of dashed arrows in figure 3 symbolizes different pieces of the perturbed trajectory z(-),
namely the pieces given by the time intervals (73, T; + AT'), or (T; + AT, T;) in case that
AT < 0. Denote the family of autonomous trajectories with initial point z(73) at t = T;
by 27 ()

By lemma 4.2 we can assume without loss of generality that the autonomous family z%_(:)
is defined on (T;,T; + AT) (or (T; + AT, T;) in case that AT < 0) for all finite AT € R.

From lemma 4.1 we know that the point z(T; + AT) satisfies
|=(T; + AT) — &l (T; + AT)| = 0

as T; — oo, hence as i — 0o. Moreover, it follows from continuity of autonomous trajec-
tories on their initial conditions that

|2k (T; + AT) — 2oo(AT)| — 0
as 1T; — oo.

Consequently, z(T;+ AT) — z(AT) as i — oo. By definition lim;_, o z(T; + AT) belongs
to I't. We conclude that all points of the autonomous trajectory with initial point zg € I'"
belong to I'T.
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We have showed that 7, (t) € 't for all AT € IR. Hence we have the final conclusion: T'"
is a union of autonomous trajectories Z(-) defined in future and past. O

Even if the components of the positive limit set I'" are not necessarily positive limit sets of
the autonomous system, there are some connections between them. The following theorem
is a generalization of Theorem 2 obtained by L. Markus [Mar56|, considering the stability
properties of z(-) near an asymptotically stable invariant set, or a completely unstable
invariant set, of .

4.3 Theorem Let the system & = X (z,t) be asymptotic to & = X (z), and denote their
trajectories z(-) and T () respectively. Let Q C IR™ be a compact set. Assume that S is
some compact invariant set of the autonomous system Y., which is either asymptotically
stable or completely unstable, and let AL, denote the basin of attraction, or R}, the domain
of repulsion, under the dynamics of ¥o,. Assume that the proper inclusions § C Q C AL
or§ C 2 CRL hold.

Then any trajectory x(-) which enters € in some finite time T, and stays in 2 for all times
t > T, approaches S ast — co. Hence I'T C S.

Proof: By definition AL and RY are open sets while Q2 is closed. It follows that there is
a minimal distance ¢ > 0 between the boundary of Al or R}Y and Q. By definition of the
basin of attraction, or the domain of repulsion, it follows that all trajectories going from
dAL to S, or conversely, from 8S to ORY, are not inside Q for all ¢+ € IR. Also, there
are no trajectories in AZ, which do not reach 88, or conversely, there are no trajectories
in R}, which do not leave &S. Moreover, by stability, or complete unstability, of S, there

are no trajectories inside {2 which are defined on IR, leaving 4§, and reaching JS again.

Consequently, the only trajectories of ¥, defined in past and future, and entirely laying
inside ), are those inside the invariant set S. It follows from theorem 3.3 that 't is a
union of trajectories of ¥, defined in past and future, hence '™ C S follows. O

4.4 Example: pathological system
Assume that £ = X (z,t) is asymptotic to a system which is described in spherical coordi-
nates by

r=r(l—r)
6=1—r .

It is easily seen that the union of equilibria other than the origin is forming a unit cir-
cle S, and § = Ur'L\{(0,0)} is a asymptotically stable set with basin of attraction
AL = IR\{(0,0)}. We have a situation which topologically resembles the Van der Pol
equation (3.7). It follows from theorem 4.3 that all perturbed trajectories defined in the
future which are not approaching the origin are approaching S, and then I'" C S holds.
Note though that we are not able to conclude I't = S since theorem 3.6 does not apply,
't might as well consist of only some of the equilibrium points. *
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Proof of Theorem 3.6: The only thing that remains to prove in relation to theorem 4.3
is that if T’} equals an equilibrium point or a periodic orbit, the equality I't = T'%) holds.

In these cases 'L, consists of one single isolated orbit of ¥ defined both in past and future,
and I't = 'L is obvious in the case of an equilibrium point. Assume therefore that T'}
consists of one single periodic orbit, then clearly by theorem 4.3 it follows that 't C T'L.
But by theorem 3.3 the entire orbit is in I't, hence I't = I'%.. O
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Comments and References

The notion of asymptotically autonomous systems has been introduced in 1956 by L.
Markus in the paper [Mar56], and has been studied among few others by T. Yoshizawa
[Yos63], and by Aaron Strauss and James A. Yorke [SY67]. The later research paper
generalizes Markus results to systems of differential equations where state trajectories are
not uniquely given by the initial data. They operate with sets called generalized positive
limit sets. This is then applied to prove global attraction of equilibrium points under
the asymptotical autonomous dynamics. Attraction of general invariant sets has not been
studied there.

In the context of asymptotically autonomous systems we have certainly to remember the
work of Horst R. Thieme from the nineties. Convergence properties of asymptotically
autonomous differential equations are studied in the research paper [Thi92], and these
results are refined in the planar case in [Thi94a| and [Thi94b], where Poincaré or Bendixon
type results are proved to hold in two dimensions.

Finally, the fine-structure of positive limit sets of asymptotically autonomous differential
equations are the concern of Konstatin Mischaikow, Hal Smith, and Horst R. Thieme
in the paper [MST95| “Asymptotically Autonomous Semiflows: Chain Recurrence and
Lyapunov Functions”. There it has been shown that positive limit sets T'" of asymptotically
autonomous systems have to be chain-recurrent. Given an asymptotically autonomous
system ¥ : & = X(z,t) satisfying X (z,t) — Xoo(z) for some autonomous limit system
Yoo : T = Xoo(x), we know that the positive limit sets I'" of 3 are given as an invariant
set of ¥oo. Chain-recurrence of I'" means, loosely explained, that from each xo € I'" there
is a chain of connected autonomous trajectories of the system Y., which lays entirely in
', and which is such that the chain is leading back to z¢ such that the autonomous flow
has only to jump over countable many stagnation points of the flow of % .

For example, the results of [MST95| show then that the invariant set depicted in the left

2

Figure 4: Left: invariant set Right: invariant and chain recurrent set

side of figure 2 can never be a positive limit set of the perturbes system ., because it is
not chain-recurrent, whereas the invariant sets depicted in the right side of figure 4 can.

We can see that the condition of asymptotic stability or complete unstability of S in
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theorem 4.3 is linked to chain-recurrence of positive limit sets of perturbed trajectories
z(-): the basin of attraction, or the domain of repulsion also can be defined for merely
attractive sets, or sets which are attractive under the time-reversed dynamics in a similar
way. But the condition of stability, or complete unstability, is needed to ensure that no
trajectories leaving 08, and reaching 0§, are existing. It follows that all existing chain-
recurrent invariant sets are entirely inside the compact invariant set S.

Robust set-stability in H ., control

Let us short explain how the results of the previous chapter merge with the here derived
theory of asymptotically autonomous systems: We consider the smooth, continuous time
system

= X(z,u,w)

z=Z(z,u) , (5)

and we assume that the system is S-detectable with respect to some compact and invariant
set S C IR™ of the autonomous dynamics

& = X(2,0,0) . (6)

We know from the preceding chapter that a stabilizing control which renders the Lo gain
less than or equal v > 0 can be found whenever there is a positive definite C! solution to
the Hamilton-Jacobi inequality
1%
H™ (z, 57)
2
= %_‘I/X(x,umin(l', %_‘x/), 'wmax(xa %_‘;)) - '72 |wmaX(Ia %_Z)‘ + |Z(~'Eaumin(xa %_Z)

<0 forallzeQ . (7)

‘ 2

It follows then that all bounded state trajectories of the undisturbed closed loop system
& = X (&, Umin(z), 0) (8)
are satisfying z(t) — S for t — oo, that is, S is attractive for all bounded z(:).

We have to impose another condition on the storage function V' to ensure stability, and
hence asymptotical stability of & with respect to the the dynamics (8). We say that
a:RT — R" is a function of class K if a is continuous, strictly increasing, and satisfies
a(0) =0 and «a(r) — oo for r — occ.

4.5 Theorem (Robust Hoo control) Assume that some C! solution V : Q + IR of the
Hamilton-Jacobi inequality (7) satisfies

ay(|zls) <V(z) <av(lzls)

where ay,, @y : R +— IR are functions of class K, and S C IR™ is a compact invariant
set of the open loop dynamics (6). Assume furthermore that the saddlepoint property

H(Uminaw) < H™ = H('Ufminawmax) < H(uawmax)



CHAPTER 4. ALMOST AUTONOMOUS SYSTEMS 81

holds for all z € IR™, and that the control system (5) is S-detectable.

Then the system has Lo gain less than or equal to y, and S is an asymptotically stable set
of the undisturbed, closed loop system (8).

Moreover, all z(-) generated by bounded, piecewise continuous w(-) € Lo satisfying w(t) —
0 for t — oo approach S ast — oc.

Proof: Since the saddlepoint property is assumed to hold globally on IR, it follows that
any positive definite solution to the HJI (7) is a storage function satisfying

T
V(zr) =V (zo) S/O PVlw(®)? —|2(t)] dt . (9)

Hence, it follows that V(zr) < V(o) + |w(-)|% holds for all zo € IR", all w(-) € £LX¢ and
all finite T" > 0.

Since the condition ay (|z|s) < V(z) < @y(|z|s) implies that V : IR™ — IRT is radially
unbounded (that is, V(z) — oo for all z — oo, or equivalently, V~1([0,c]) is compact
for all ¢ > 0), the trajectory z(-) : RT — IR" is bounded on any bounded subinterval
[0,7] C RT. If in addition w(-) € L2, we see immediately that any state z(-) with initial
point x( is bounded inside the compact set

Qzo, [w(-)I?) = V10, V(z0) +7*[w()I]) -

Clearly, by boundedness of the state, the Lo gain <y is obtained.

Consider now all trajectories z(-) of the undisturbed, closed loop system (8). Since w(-) =0
for all such trajectories, it follows that V(z7) < V(x) holds for all T' > 0. Therefore, for
all zq satisfying |zo|s < @y (c), and all T > 0, we have z7 € V1([0,c]), and |z7|s < ay (c)
holds. Global stability of S with respect to the dynamics (8) follows immediately: if we
wish to bound z(+) in N, it suffices to pick § = (@y ! o ay/)(g) and to set zg € Ns.

At this point we have showed that all trajectories generated by w(-) with finite Lo sig-
nal norm are bounded inside the compact set €(zg, |w(-)|?), and furthermore, that S is
globally stable with respect to the undisturbed and controlled dynamics (8). Moreover,
from theorem 4.3 of chapter 3 it follows that the set S is globally attractive, and global
attraction implies that the basin of attraction of S is given by A% = R".

Clearly, the proper inclusions S C Q(z¢,¢) C AL hold for all w(-) € Ly with |w(-)]|? < c.
Finally, the stated result is given by a combination of proposition 3.2 and theorem 4.3 of
the preceding paper. a

We see that a certain degree of robustness under Lo disturbances can be achieved. At
this point, however, it is not at all clear under which circumstances there exists a C'
solution to the HJI of concern. Even more annoying, it is not evident that a solution
satisfying ay (|z|s) < V(z) < ay(|z|s) for two functions of class K exist. We return to
this problem in the next chapter, and give there some sufficient conditions which imply
the above inequality.



Chapter 5

Analysis of Dissipative Systems

In this chapter the author’s main contribution to nonlinear dissipation and it’s relations to
stability issues of general invariant sets is presented. We are combining the functionality
of the following different tools mentioned in the introductiory chapter 1:

General dissipative analysis theorem 2.3,

La Salle’s invariance principle theorem 2.1,

Performance envelopes theorem 2.1,

Set-stability theorem 2.2,

Robustness subject to non-zero disturbances theorem 2.2,

Smoothness of Lyapunov-like functions theorem 2.2,

Control Lyapunov functions theorem 2.4, and

Game theory theorem 2.5.

Although many aspects of these tools work nicely together, there are still open questions

and riddles to be solved.

The overall idea is, that - because it is hard to solve nonlinear Hamilton-Jacobi inequalities -
as much as possible information on the behavior of a dissipative system should be extracted
from the data of the system and the structure of the storage function found.

One of the cornerstones of this chapter is that the required regularity properties of storage
functions are relaxed: In the case that we are interested in the dissipation inequality alone,
lower semicontinuity suffices. Without loss of generality we are considering systems defined
on an open, n-dimensional subset of IR™, called the reachable set. This approach takes
account for the fact that not all systems of interest are reachable on the entire Euclidean
space IR™, and provides a platform for the analysis of regional stability issues.

It is then shown that continuity of all existing storage functions is a simple consequence of
a fundamental property of the system of concern, which we here rename locally bounded

82
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excitation. Although not being a new concept, nor being satisfied in general, it is a useful
result on regularity of storage functions.

To make a thorough investigation of the positive limit sets of state trajectories treatable,
we have to consider continuous and locally Lipschitz storage functions. We can then use
the power of the theory of generalized gradients, which is commonly used in non-smooth
analysis and convex analysis, but has - as far as the author knows - never been applied
before to investigate stability issues of dissipative systems.

The second cornerstone presented in this paper is the definition of four different subsets
of IR" in terms of generalized gradients, which are shown to be closely related to the
dissipative stability analysis of positive limit sets. We can extract valuable information on
the (asymptotic) stability properties of undisturbed trajectories from the relations among
these sets . Similar to the H o, problem presented earlier, a suitable generalization of the
La Salle’s invariance principle provides insight into the structure of the problem.

The third cornerstone is the use of a so-called strict Hamilton-Jacobi inequality, that is,
a HJI which is satisfied strictly negative (not with equality) on IR®\S. Storage functions
which satisfy a strict HJI are then shown to posses beneficial properties like properness,
or positive definiteness. Also, asymptotic stability of undisturbed trajectories are a conse-
quence of the existence of solutions to strict HJI’s.

The fourth cornerstone is the combination of Input-to-State-Stability (ISS) Lyapunov func-
tions in the sense of Sontag and Lin with proper solutions to HJI’s. This merge of different
point of views gives immediately the existence of smooth storage functions under some
additional conditions. It is also very useful to show robustness of stability properties with
respect to time-persistent, not decaying, but L,.-bounded disturbances.

The here reprinted paper

Marc Cromme. On Dissipative Systems and Set-Stability. Submitted April
1998

considers only the analysis of stability properties of dissipative systems; the actual use of
dissipation techniques in set-stabilizing state feedback control is shortly presented in the
following commentary section.

The commentary section starts with some reflections on the existence of continuous and
locally Lipschitz storage functions, which are the regularity conditions imposed on storage
functions in the second half of the paper.

Thereafter, the use of differential games in dissipative state feedback control is shortly
described. We show that the findings of the analysis of dissipative systems hold in general
in state feedback systems, provided that the so-called state feedback Hamiltonian possesses
a saddlepoint condition. In the context of differential games this saddlepoint property
ensures the existence of a value function, which then equals the available storage of the
dissipative problem under suitable conditions.

In particular, we show how former results on the existence of viscosity solutions to the
Hamilton-Jacobi inequality related to system analysis are transformed to equivalent re-
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sults on existence of viscosity solutions to the state feedback Hamilton-Jacobi inequality.
Moreover, the asymptotic properties of controlled, but undisturbed state trajectories are a
simple consequence of the analogous properties of the analysis case described in the paper.

One interesting generalization of the state feedback Ho control case is then shown to hold:
the minimizing state feedback control umin vanishes on the positive limit sets of controlled,
but undisturbed trajectories. While this result is immediately seen in the Hy, case by the
structure of the saddlepoint equations (see the commentary section in chapter 3), it is, in
the general dissipative case, a consequence of the structure of the dissipation inequality.
The importance of this observation is the fact that positive limit sets of the autonomous
undisturbed, but controlled system are also compact invariant sets of the autonomous
undisturbed and uncontrolled system.

Finally, it is briefly shown that the former analysis results on smoothness of storage func-
tions, and on robust set-stability, are still valid in the context of state feedback control.

This chapter provides a set of tools which the modern control engineer may use to solve
robust set-stability problems under the constrain of dissipation. Moreover, for some sub-
classes of control problems, the existence of smooth storage functions is proven. This
implies that fast converging numerical approximation schemes - like higher order FEM or
spectral methods - can be applied.

It is - unfortunately - still an open question whether the existence of smooth storage
functions can be proved for a broader class of dissipative problems than used in the following

paper.
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On dissipative systems and set-stability
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Technical University of Denmark
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Abstract

The theory of state feedback Ho control of nonlinear systems is inherited from
the now well understood linear theory, and so are the questions mostly asked
and answered in the nonlinear context. Unfortunately, this approach does not
touch interesting generalizations which are crucial for a deeper understanding
of nonlinear dissipative control. This paper investigates the relation between
dissipative systems and asymptotic stability properties of more general invari-
ant sets than equilibrium points.

Among other new results, the regional stability of invariant sets of general dis-
sipative systems is studied here. Also the robustness of dissipative control sys-
tems with respect to time-persistent disturbances, and the regularity of storage
functions are investigated. Non-standard modes of operation such as periodic
orbits of nonlinear oscillators, multiple equilibria, or stability of specified state
trajectories are but some areas of application.

The main tools used are a combination of La Salle’s invariance principle and the
input-to-state stability property (ISS) with fundamental properties of dissipa-
tive storage functions. Simple sufficient conditions for the existence of smooth
storage functions are shown.

1 Introduction

Nonlinear systems exhibit behavior essentially different from linear systems. For example,
nonlinear continuous time systems may have multiple equilibrium points, periodic orbits,
or bifurcation phenomena - not to mention chaotic behavior. This vast possibility of
complex motion makes nonlinear systems difficult to treat in the context of regulation and
control. On the other hand, linear control theory is now solid founded and essentially well
understood. As a consequence, many questions asked and investigated in the nonlinear
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universe are inherited from problem formulations belonging to linear control theory, the
modern theory of local nonlinear Ho, control being no exception (see for example the
papers [Isi92, TA92b, TA92a, vdS92a, BHW93, IK95]).

This paper tries to answer questions not commonly asked in the community of nonlinear
Hoo control. More precisely, it generalizes H, analysis - that is, the Lo gain analysis of
the bounded real lemma together with the stability analysis of the equilibrium point zero
- in four main directions to be discussed here:

I The very basic ideas of stabilization by Ho theory can without problems be trans-
ferred to the case of general dissipation in the sense of Willems [Wil72a|. To achieve this
goal, it must be assumed that the supply rate of concern has a certain regularity, which -
of course - is satisfied by the commonly used Ho supply rate.

11 The dogma of to-be-stabilized-equilibrium-at-the-origin is discarded. There is no
reason to carry on this line of approach clearly inherited from linear theory. Here the
stabilization of invariant sets is considered, we are particular interested in stabilizing
positive limit sets of the undisturbed system. Included in this framework is the stabilization
of single or multiple equilibria, periodic orbits, specific trajectories, and any union of such
non-standard modes of operation.

I11 In a linear context local stability implies global stability. This property does not
hold for nonlinear systems, and most results in nonlinear control are local only. From an
engineering point of view this is a very unsatisfactory state of art, since designers of real
world control systems have to be sure that the designed regulator works as intended on
some given compact region. It is therefore mandatory to consider dissipation on compact
sets here called performance envelopes, and to confine the state trajectories to these
compact sets, a requirement which we denote regional stability.

v Fourth, in a linear H,, context asymptotic stability of the origin for zero dis-
turbances implies asymptotic stability of the origin for non-zero, but vanishing-in-time-
disturbances of bounded L2 norm. Moreover, practical stability for non-vanishing, but
bounded in L, norm disturbances is implicitly given because linear asymptotically stable
systems are by force exponentially stable. This is not at all true for nonlinear systems,
and therefore the community of nonlinear #, control considers stability under zero distur-
bances mostly. The practical oriented control engineer is always faced with the existence of
non-zero disturbances, and therefore the impact of time-vanishing disturbances and
time-persistent disturbances on the asymptotic behavior of state trajectories is taken
into account here.

The paper deals with the analysis of dissipative nonlinear systems and regularity of stor-
age functions. Section 2 recalls the basic definitions and properties of disturbed dynamic
systems, that is, nonlinear systems of ODE which are affected by L£Y¢ signals called dis-
turbances.
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Section 3 explains the concept of dissipative systems, mostly following the approach of Jan
C. Willems [Wil72a| but for one refinement: for the use in later sections the concept of
almost regular, regular and strictly regular supply rates is introduced. Then the notion
of viscosity solutions of Hamilton-Jacoby inequalities (HJI) is presented in subsection 3.1
according to James [Jam93a|, and the special cases of the nonlinear generalizations of the
positive real lemma and the bounded real lemma are displayed. In subsection 3.2 the
HJI is investigated on the reachable set, that is the open subset in state space which can
be reached in finite time from any point of minimal storage. In order to introduce the
possibility of multiple points of minimal storage in a natural manner, we have to make a
new assumption on the structure of the dynamical system which will be trivially satisfied
in many applications. The existence of continuous storage functions is also investigated
in subsection 3.2, it will be a consequence of the property of locally bounded excitation.
Finally, subsection 3.3 deals with the new concept of regional stability, that is the property
that even disturbed state trajectories can be bounded in some compact and safe regions
in state space, here called performance envelopes. In contrary to many other expositions
[Isi92, TA92b, TA92a, vdS92a, BHW93, IK95] we do not restrict ourselves to the case of
local dissipation.

The new contribution to the theory of set-stability of dissipative systems is found in Sec-
tion 4. It consists mainly of a novel combination of some dissipative control techniques with
the La Salle’s invariance principle. Preliminary work in this direction has been published
in [CMPP97] and [CS97]. See also the related work of David J. Hill [Hil92] and David
J. Hill and Peter J. Moylan [HM80a]. To be more specific, the present approach accesses
asymptotic stability properties of some invariant set in the framework of general dissipa-
tion in the sense of Willems [Wil72a], by invoking arguments similar to those used in the
proof of La Salle’s invariance principle [SL61]. To do so, the new notions of Hamiltonian
null sets, storage null sets, storage kernels and performance kernels must be introduced. It
is for the first time shown that the maximal disturbance vanishes on the union of positive
limit sets of all bounded and undisturbed trajectories; this is a natural generalization of a
similar, well known property of systems with one equilibrium point only. The convergence
of undisturbed motions in state space in relation to general invariant sets is investigated
in subsection 4.1 (see [Cro96] for possible applications of periodic orbits in control of Hopf
bifurcations in compressor systems). New convergence results with respect to invariant sets
are displayed, grouped in four cases: first, set-detectability which is a generalization of the
usual zero-detectability assumption in H, control, second strict negative definiteness of
the HJI, third, positive definiteness of the performance function, and finally, a combination
of these three cases which results in a remarkable identity of the former mentioned null
sets and kernels.

The standard H, theory is useful for robustness properties with respect to unstructured
modelling errors, but stability of motions is often confined to the case of zero disturbances.
This drawback from an applied point of view is now resolved in Section 5. The qualitative
behavior of disturbed systems subject to disturbances which are bounded, piecewise contin-
uous in time, and converging to zero as t — oo are investigated in subsection 5.1. This ap-
proach is based on the concept of asymptotic autonomous systems introduced by L. Markus
[Mar56] and reworked in [Cro98a]. The attraction properties of compact sets with respect
to bounded trajectories generated by such decaying disturbances is then proved for the first
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time. Differentiability and smoothness of storage functions is investigated in subsection 5.2.
The notion of input-to-state stability (ISS) introduced by Sontag [Son89a, Son89b], and
reformulated by Sontag, Lin, and Wang [Lin92, Son95c, SW95b, SW96] is recalled and used
to show surprisingly simple new sufficient conditions for the existence of smooth storage
functions. It is also shown that dissipative systems of the above mentioned cases two and
three are ISS and admit a smooth ISS-Lyapunov function under some additional condi-
tions. This knowledge is then used in subsection 5.3 to derive useful performance envelopes
and practical stability results for dissipative systems which are under influence of bounded
disturbances. This consists a new and important application of the ISS property in the
context of nonlinear dissipative systems.

Section 6 summarizes the new results of this paper. Classes of dissipative problems are
listed together with their asymptotic properties, regularity results of storage functions, and
robustness results subject to non-zero disturbances. A short discussion on the numerical
aspects of HJI solvers in relation to the presented classes follows. The actual process
of numerical integration of the HJI by polynomial expansion [CMPP97], finite difference
methods [Jam93b|, higher order FEM or smooth spectral methods is not described here.

A later publication is devoted state feedback control of disturbed and controlled dynam-
ical systems. The new results of this paper are used to formulate set-stabilizing regional
feedback laws which are robust with respect to non-zero disturbances. The cornerstone of
this part is a generalization of the saddlepoint property fulfilled by nonlinear H., control.
Various applications in dissipative set-stabilizing control and in particular, in robust Heo
control will be given.

2 Basics

We need some definitions: The non-negative reals are denoted IRT. A real valued function
a: RT — IR belongs to class K if it is smooth, strictly increasing, and satisfies a/(0) = 0.
It belongs to class K if in addition a(r) — oo for 7 — 0.

The symbol R denotes always an n-dimensional open set, more precisely the reachable set
defined later on. A real valued function f : R C R" — IR is locally bounded if it is
bounded on any compact subset of its domain R. A real valued function f: R C R" — IR
is radially unbounded, or proper, if f(z) — oo for all x — OR, where IR is the
boundary of the domain (In the case that R is unbounded we understand by z — dR that
x — 0o whenever appropriate).

A function f : R — R is called locally Lipschitz if for each z € R there exists a closed
ball B, of radius € > 0, centered at z, and a constant & > 0 such that for each pair
T1,Zo € B, there holds

|f(z1) — f(z2)| < klzy — 22| .

Let | - | denote the usual Euclidean vector norm on IR". Given any closed subset A C IR",
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we define the distance between A and some point p € IR” by

=min|p —gq| . 1

[pl.a = minfp —qg| (1)

Notice that the usual Euclidean vector norm then is given by |- | = |- [oy. Let IR* denote
the future, that is the nonnegative real axis [0,00), and R™ = (—o0, 0] the past.

A perturbed, or disturbed system is a system of the form
z=X(z,w) , (2)

where z(-) : Rt +» R C IR™ is called the state, and w(-) : RT — W C IR! the exogenous
input, also called disturbance. The symbol X (z,w) denotes a continuous vector field
X : R x W C R — R?, which is locally Lipschitz in z, uniformly in w. More precisely,
for each compact set X C R there is a constant k£ > 0 such that

| X (z1,w) — X (z2,w)| < k|lz1 — 22|

for all z1, 2o € K and all w e W ¢ R%.

Applying the theory of ordinary differential equations [BN69, chap. 3] [CL55, chap. 1] on
systems of the form (2), it is easily seen that these conditions ensure the existence and
uniqueness of state solutions whenever the disturbance is a piecewise continuous signal.
We use the notation z(-) for the unique signal z(-, to, zg, w(-)) generated by the input w(-),
where the initial condition at time ¢y is p. We denote the value of a signal z(-) : Z — IR"
at time ¢ by z(t) € R". Here Z C R is the maximal time interval where the signal z(-) is
defined. Some point in IR” is denoted z, and in particular, the initial point of some given
signal z(-) at initial time ¢y is defined by zo = z(t).

It is assumed that all signals are £X¢, that is, the integral f: ly(¢)|? dt is finite for all
a,b € I C IR. Moreover, in case that the disturbance is not a continuous signal, we assume
further that the state exist uniquely for all disturbances of concern, and is a C' signal but
on a set of measure zero. In the following it will be important that the state signal is a
continuous function of the triplet (¢,%p,2¢), and the signal space of disturbances must be
chosen accordingly to this requirement.

One important class of disturbed systems satisfying the later assumptions is given by the
requirements that the disturbance is bounded and piecewise continuous, and %—f T RXW =
IR"™ x IR" is continuous. Then we can show using the techniques of [CL55, chap. 1 & 2| that
the state is a continuous function of the triplet (¢, to, zo) which is continuously differentiable
on some neighborhood of (#g, zg) for each fixed ¢, and piecewise continuously differentiable

in ¢ for all fixed (t¢,zo).

Other interesting classes of problems meeting the above assumptions may be found using
Caratheodory theory [CL55, chap. 2], but for simplicity we will not follow this path.

Given some unique disturbance signal w(-), the disturbed system (2) can be regarded as
a time variant differential system, and, in case that the disturbance is constant in time,
as an autonomous system. In both cases, we say that the state is defined in the future
if a solution z(-,tg,zo,w(:)) exists for all ¢ > tg, it is defined in the past if it exists
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for all ¢t < tg. A system where all state trajectories are defined in the future for all initial
conditions and all disturbances is called forward complete, and if the equivalent property
also holds in the past, the system is called complete.

We say that the state is bounded in the future (bounded in the past, bounded)
if it is defined in the future (past, future and past) and satisfies |z(¢)] < k, & > 0 in the
future (past, future and past). In case that the state is not defined in the future, it has a
finite escape time 7' € R, and |z(t)] > cc as t — T

A compact set S C R is called stable under the dynamics of the undisturbed system
& = X(z,0) (3)

if for all € > 0 sufficiently small there exists a § > 0 such that all trajectories of (3) with
initial point |z¢|s < & are defined on IRT and satisfy |z(t)|s < € for all ¢ > 0. The compact
set S is called attractive if there exists a neighborhood AN/ O & such that all trajectories
of (3) with initial point xg € N are defined on IR* and satisfy |z(t)|s — 0 for ¢ — oo.
Then we say that () converges to & as t — oo, and we write shortly (-) — &. The
compact set S is called asymptotically stable if it is stable and attractive.

The basin of attraction AT of some attractive set S is the largest set of initial points
such that § is approached. It can be found by backwards integration of state trajectories
from some suitable neighborhood of S, and will always be an open set.

The positive limit set T't of some trajectory z(-) is - intuitively spoken - the set a state
defined in the future tends to as ¢ — oo. If the state approaches an equilibrium point or
a limit circle, those are the positive limit sets. More formally, x4 belongs to the positive
limit set of a state trajectory z(-) bounded in future if there exists a sequence of time {¢,}
with ¢, — oo such that z(t,) — =+ as n — oo.

A set § C IR" is called positive (negative) invariant with respect to w(-) if all state
trajectories generated by some unique disturbance w(-), and starting in S are defined in the
future (past) and never leave S as t — oo (t = —00). In case that S is positive (negative)
invariant with respect to all w(-) : R — W, where W is some pre-described signal value
set, we say simply that S is positive (negative) W-invariant.

A set § C R" is called invariant with respect to a constant w(-) = ¢, if it is both
positive and negative invariant, and this implies that the boundary 0S consists of state
trajectories. For example, every equilibrium point, every closed and bounded periodic
orbit, and every collection of trajectories defined both in future and past are invariant
sets. Note that invariant sets are not defined for time varying systems.

It is known that the limit sets 't of bounded trajectories generated by time varying systems
of the form # = X(z,t) are nonempty and compact, and z(-) — ' as ¢ — oo [BN69,
chap. 5|. In case that the system of concern is autonomous, that is of form & = X (z), the
positive limit set will be invariant [Yos66, chap. 3] [Kha96, chap. 3|. Therefore, all states
generated by w(-) = ¢, which are entering a compact positive invariant set M with respect
to the same w(-) = ¢, are approaching the biggest invariant set S C M.
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3 Dissipative systems

The theory of dissipative dynamical systems has been developed by Jan C. Willems
|[Wil72a| (see also [HMS80b|) and has been useful in applications like H, control, and
passive systems. It was originally formulated in terms of abstract input, state and output
spaces, the relations among these are described by the state transition function (which
is assumed to be consistent, deterministic, has the semigroup property and the station-
ary property), and the readout function. Here we will restrict ourselves to a subclass of
dynamical systems which have these properties.

An dynamic, or uncontrolled system is a system of the form

z - X(z,w) (1)

z = Z(.’L‘) ’
where z(-) : R* — IR C R" is called the state, w(:) : RT — W C IR the exogenous input,
also called disturbance, and z(:) : RT — IR? the performance, or to-be-controlled
signal. The symbol X (z,w) denotes a locally Lipschitz vector field on R C IR™ uniformly
in w, depending continuously on the input w. Finally, the vector valued function Z(z)
specifies continuously the performance measure.

Assume that a dynamical system is given together with a real valued function s : IR' X IRP —
IR, called the supply rate. The supply rate is a measure of some abstract energy flow fed
into the system. More precisely, we define:

3.1 Definition A supply rate of a system is a real valued, continuous function s :
IR! x IRP — IR which is almost regular, that is, satisfies s(w,0) > 0 for all w, and
s(0,2z) <0 for all z .

All supply rates satisfying s(0,0) = 0, s(w,0) > 0 for w # 0, and s(0,2) < 0 for z # 0 are
called regular.

All supply rates of the form s(w,z) = au(|w|) — a,(|2|), where ay,a, : RT — IRT are
functions of class K, are called strictly regular.

The regularity assumptions specify, loosely speaking, that no energy is fed into a system
without exogenous nonzero input, and that no energy is extracted from the system by a
zero performance output.

3.2 Definition A dynamical system (4) with supply rate s : R x IRP — IR is called
dissipative if there exists a nonnegative locally bounded function V : R C R" — RT,
called the storage function, such that, along the states of (4),

T
Vi(wr) — V() < /0 s(w(t), (1)) dt (5)

for all initial points xy € R, exogenous inputs w(-), and times T' > 0, where the final point
is xp = z(T,0,z9,w(:)). The above inequality is called dissipation inequality.
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Clearly, we must insist that R C IR™ is chosen such that z(¢t) € R for all ¢ > 0 and all
possible w(-). The original definition in [Wil72a| requires not local boundedness of the
storage function, but we are following the definition used in [Jam93a] to achieve viscosity
results in a later section.

3.8 Example: Passive systems

In case that the uncontrolled system satisfies the dissipation inequality with the almost
regular passivity supply rate s(w,z) = w’z, the system can be realized with passive
nonlinear electrical components, and we call the system passive. *

Willems definition is cast in a very general setting, and regularity requirements such as con-
tinuity or differentiability are not imposed on storage functions. However, James [Jam93a)
showed that any dissipative system possesses a lower semicontinuous storage function.

3.4 Proposition [Jam93a] If a locally bounded function V satisfies the dissipation in-
equality (5), so does its lower semicontinuous envelope V, defined by

Vi(z) = liminf V(2)

2=

and hence V, is a lower semicontinuous storage function.

Proof: Fix T > 0, w(-), and z € R C IR". Select any sequence {z;}$°; such that
xo = lim; 00 z; and Vi(xg) = lim;_ o0 V (z;). Since V' > V,, the dissipation inequality (5)
implies

T
Vi(z(T, 0,25, w(-))) — V(z;) S/o s(w(t), Z(x(t,0,z;,w(-)))) dt .

Send 7 — oo to obtain

T
lim inf Vi (z(T, 0, z;, w())) — Vi(xo) S/O s(w(t), Z(z(t,0, 20, w(-)))) dt ,

1—00

since z(-,0,zg,w(-)) is continuous in xy. By definition of lower semicontinuity we have
liminf; o Vi(2(T, 0, z;, w(-))) > Vi(z(T,0,z9,w(-))), hence V, satisfies (5). O

Clearly, the dissipation inequality bounds the difference of the internal energy of the system
in some abstract sense. We are interested to know how much internal energy can be be
extracted from the system.

3.5 Definition The available storage V4 : R C R" — R* U {oo} is the function

T
Va(z) = sup /0 Cs(w(t), 2(1) dt (6)

where the supremum is taken over all w(-), all T > 0, and all signals with initial point
xzo =z € R satisfying z(t) € R for all t > 0.
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The available storage is nonnegative (consider T' = 0 for a proof), and it can be used to
decide whether a given system is dissipative or not.

3.6 Theorem [Wil72a, Jam93a] The available storage is a locally bounded function if and
only if the system of concern is dissipative, and then the available storage is itself a lower
semicontinuous storage function satisfying

0<Va(z) <V(z) forall z€ R CIR"

for all possible storage functions V(x).

3.7 Example: Lo gain
We say that a system has an L9 gain less then or equal to v > 0 if there exists a locally
bounded function K : IR™ — IR such that the £y gain inequality

/ 2(0) dt < 2 / w(®)[? dt + K (o) (7)
0 0

holds for all initial points zo € IR™, all T > 0, and all £¢ disturbances w(-), and the
trajectories z(-) such generated are defined in future. It is not hard to show that all
systems which are dissipative with the strictly regular H, supply rate

s(w,2) = aw(wl) — az(l2]) = Vw2 , (8)

are satisfying the £, gain inequality (7) with the least possible initial point function K (z) =
Va(z). Furthermore, if there exists a radially unbounded storage function, the state space
trajectories are bounded, and the system has an Lo gain less then or equal to v > 0.  *

Let us now investigate the amount of energy required to steer an trajectory from some
initial point z, to any other point z € IR™. Although one could choose any initial point,
it is most logical to assume that the system starts in a state of minimum storage. We say
that x, is a point of minimal storage if z, € &, = ker V4, the kernel of the available
storage.

3.8 Assumption There exists a point z, € R C IR” of minimal storage, and all storage
functions have been normalized such that

Viz,) = ;rg}gV(a:) =0 .

3.9 Definition The required supply Vi : R C R" — R" U {0} of a dissipative system
with supply rate s : R' x IR” — IR is the function defined by

T
Valar) =  inf /0 s(w(t), 2(8) dt | 9)

w(')ax*aT

where the infimum is taken over all w(-), all points of minimal storage x., all T > 0, and
all trajectories with initial point xy = z, and final point zp = z(T,0, z.,w(-)).
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Clearly, for a finite amount of required energy on IR", the system must be reachable from
Zx, that is, for all z € IR" there must exist at least one exogenous input w(-) such that
z = z(T,0,z,,w(-)) for some finite T > 0. In case that z is not reachable from some
point of minimal storage, we define Vi(z) = oo, and then Vi can impossibly be a storage
function on IR™.

Unfortunately, the condition that IR™ is reachable from z, will often be violated in practice.
On the other hand, we may without loss of generality consider the dissipation inequality (5)
only on an open subset of IR".

3.10 Definition The reachable set is the open subset R C IR" defined by
R = {z7 € R"| there are T < oo , w(-) such that zr = z(T,0,z, w(-)) } ,

where the initial point xo = x, is any point of minimal storage.

Often there exists more than one point of minimal storage, and then R may be split into
disjoint components. We will consider this as a collection of several systems, each of them
defined on a connected component of R. We want to avoid unnecessary complications and
assume therefore the following for the rest of this text:

3.11 Assumption (Reachable set) The reachable set R is an open, n-dimensional and
connected subset, and has a sufficient smooth boundary. All other points of minimal
storage are contained in R, and ‘R is invariant under the choice of initial point of minimal
storage. Moreover, the set of all points of minimal storage, denoted X, is compact.

The set R may contain several disjoint points of minimal storage: we see from the dissi-
pation inequality that for each initial point zg = z. € X, an for each path satisfying

T
/O s(w(t), 2(8) dt =0

the final point zr is a point of minimal storage.

In particular it follows by almost regularity of the supply rate that every point on a
trajectory starting at some z¢ = z., and generated by the trivial disturbance w(-) = 0,
is a point of minimal storage. We conclude that the set of all minimal points & is an
invariant set of the undisturbed dynamics (3) that is, X, consists of a union of bounded
trajectories of (3), defined on IR.

Without loss of generality, we consider from now on the dynamics of the system (4) re-
stricted to the reachable set R C R".

3.12 Theorem [Wil72a| Let the system of concern be dissipative with supply rate s :
IR! x IR? — IR, and assume that V : R — R is defined on the reachable set R, and that
there exists a point x, of minimal storage satisfying Va(zs) = 0. Then Vg : R — R
satisfies Vr(z4) = 0 and

0<Va(z) <V(z) <Vg(z) forall zeR .

Moreover, Vg is locally bounded, and the required supply is itself a l.s.c. storage function.
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It follows directly from theorem 3.12 that the set of points of minimal available storage
satisfies X, = ker V4 = ker V = ker V, hence in the following X, is shortly called the set
of minimal storage.

In general, dissipative systems allow for an infinite number of storage functions. Given two
storage functions V; and Vo with respect to the same supply rate s(w, z), it is easily seen
from the dissipation inequality (5) that ¢Vi + (1 — ¢)V5 for all 0 < ¢ < 1 also is a storage
function. This observation is formalized:

3.13 Theorem [Wil72a] The set of all possible storage functions of a dissipative system
is convex. In particular, cV4 + (1 — ¢)Vg for all 0 < ¢ < 1 is a storage function for a
dissipative system whose state space is confined to the reachable set R.

Assume for a moment that the system (4) is dissipative, and that there exists a storage
function V : R C IR™ — IR which is continuously differentiable along any possible trajec-
tory z(-). Then we are able to study the differential dissipation inequality (where we
define V (t) = V(z(t)) for all z(-))

4V (1) < s(w(t), 2(1)) . (10)

which then is equivalent to the dissipation inequality (5). We note that the function
%V — s(w, z) is non-positive for all ¢ € IRT and all w(-) by dissipation of the system (4),
and vice versa, the existence of a non-negative function V satisfying %V —s(w, z) <0 for
all w(-) implies that the system is dissipative with respect to the supply rate s.

More formally, we define the pre-Hamiltonian H : R x IR” x W — IR by the equation
H(z,p,w) = pX(z,w) — s(w, Z(z)) . (11)

Notice that the cotangent vector p is denoted by a row vector. The pre-Hamiltonian is a
continuous and locally bounded function, affine in p. It follows that H(z,p,w) is convex
in p. Moreover, in case that s(w,-) : IRP — IR and Z : R — IR? are locally Lipschitz, it
follows that (z,p) — H(z,p,w) is locally Lipschitz for all w.

It is known [Jam93a| that the Hamiltonian H* : R x IR" — IR U {oco} defined by

H*(z,p) = sup {pX (z,w) — s(w, Z(x))} (12)
weW
is an extended real valued lower semicontinuous function, locally bounded from below. In
case that H* is finite at some point (z,p), then H* : R X IR” — IR is finite, continuous and
locally Lipschitz on a neighborhood around (z,p). Moreover, if only disturbance signals
w(-) : RT — W taking values in a compact subset W C IR! are considered, the Hamiltonian
is continuous on R x IR™.

It follows from the preceding discussion and from (12), that the existence of a C* function
V which satisfies the Hamilton-Jacobi inequality (HJI)

H*(z,2Y) <0 forall z€ R (13)

implies the dissipation inequality (5) to hold for all disturbances w(-).
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In case that there exists a maximizing exogenous input for the uncontrolled system (4)
Wmax (2, p) = arg max H(z,p, w) (14)
weW
the Hamiltonian function is given by

H*(w,p) = H(wapawmax) . (15)

It must be remembered that wmax(z,p) is the worst possible disturbance concerning the
negativity of the Hamiltonian. We will see in the next section that wmax has little effect on
the stability properties of the state, whereas other disturbances may destroy asymptotic
stability completely.

It is important to notice that the dissipation inequality (5) is a variational formulation of
an abstract energy concept, where we consider the variation of a state path from zg to zr
due to different disturbances w(-). On the other hand, the HJI (13) is a partial differential
inequality in z € R, which is valid on a dense subspace, and which is independent of the
actual disturbance, and independent of the path of motion.

3.1 A weak formulation of the HJI

From optimal control theory it is well known that value functions associated with varia-
tional problems can not assumed to be globally smooth. To handle this lack of regularity we
use the recently developed theory of weak (or viscosity) solutions for nonlinear first order
PDE [BP87, CEL84, CIL92|. This theory with its convergence and comparison theorems
has proved to be a powerful tool.

3.14 Definition (Viscosity solution) A locally bounded function V : R C R" — R is
a weak or viscosity solution to the HJI (13) if for every C' function ¥ : R ~ IR and
every local minimum zy € R" of V, — ¥ (where V, is the Ls.c. envelope of V') one has

H* (20, 2 ¥(z0)) <0 .

The following theorem characterizes dissipation in terms of the HJI (13) in the weak sense,
and does not require V' to be a C'! function as in the discussion of the preceding section.

Notice that the supremum in the definition of the Hamiltonian (12) need not to be attained,
hence the weak formulation of the HJI reads

H*(x, %—Z) = sup{%—‘;TX(a:,w) —s(w, Z(z))} <0 . (16)
weW

3.15 Theorem [Jam93a] If the uncontrolled system (4) is dissipative with (locally bound-
ed) storage function V : R C R® — IR, then V satisfies the HJI (16) in the weak sense.

Conversely, if a locally bounded function V : R C IR™ — R is a viscosity solution to the
HJI (16), then the uncontrolled system (4) is dissipative, and its l.s.c. envelope V, is a
Ls.c. storage function.
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Proof: James [Jam93a| considers only systems which are affine in w(-) and have an
equilibrium point at zero. However, since our more general system has an Hamiltonian
which is an extended real valued lower semicontinuous function, locally bounded from
below, the original proof applies as mentioned in [Jam93b]. O

From now on we will assume without loss of generality that each viscosity solution to the
HJI (13), - that is, each locally bounded storage function - is lower semicontinuous and
takes values in the non-negative reals R™T.

The next theorem says that the property of dissipation is not destroyed under perturbations
of the data defining the system.

3.16 Theorem [Jam93a| Let ¥ = (X*¢,Z¢), ¢ > 0 denote a family of systems of the
form (4), and let X¢ — X and Z® — Z locally uniformly as ¢ — 0, for some limit system
¥ =(X,2).

Assume that each system is dissipative with respect to a supply rate s®(w,z) — s(w, z)
locally uniformly, and assume that the (locally bounded) L.s.c. storage functions V¢ : R" —
R satisfy

sup [V zroe <00 .

e>0

Assume furthermore that the corresponding Hamiltonians satisfy

liminf  H*(z,q) > H*(z,p)

e—0,2—x,q—p
Then the limit system ¥ = (X, Z) is dissipative, and
V(z) = liminf V¢(z)

e—0,z—x

is a storage function.

Proof: Note first that V is well defined, locally bounded and lower semicontinuous. Let
¥ :R CR"— IR be C', and assume without loss of generality that V — ¥ attains a local
minimum at xzg € IR™. There is a subsequence ¢; — 0 as i — oo such that

VE(z®) = V(zg) , =% = zo as g — 0 ,

and V& — ¥ attains a local minimum at z® [BP87|. Since each X° is dissipative, by
theorem 3.15 we have
Hi (2%, 20) <0 , i=1,2,--

Send i — oo to obtain H*(z, a%\IJ) < 0. By theorem 3.15 ¥ is dissipative, and V is a
storage function. O

We remember the fundamental lack of uniqueness of storage functions for dissipative sys-
tems. Consequently, we can not expect uniqueness of weak solutions of the HJI (13).
However, the available storage V4 is the minimum solution, and the required supply Vg
the maximum solution of the HJI (13). It is possible to show that V4 and Vg solve the
Hamilton-Jacobi equality H*(z, %—‘;) = 0 in a weak sense under some additional assump-

tions [BH96].
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3.1.1 DPassive systems and the positive real lemma

In this subsection we assume for simplicity of the exposition that the uncontrolled system
of concern is affine in the exogenous input w(-), and has an equilibrium point at z = 0,
that is, the system is of the form

z=A(z)+ B(x)w , A0)=0 (17)
z=C(x) , C(0)=0 .
Moreover, IR' = IRP is assumed. In this context we define that the affine system (17) is

passive if it is dissipative with respect to the almost regular supply rate s(w,z) = w’ z,

and the l.s.c. storage function satisfies V(0) = 0.

The next result is a weak sense version of a nonlinear generalization of the positive real
lemma (also called Kalman-Yacubovitch-Popov lemma) due to Moylan [Moy74], and it is
a corollary of theorem 3.15.

3.17 Theorem [Jam93a] The affine system (17) is passive if and only if there exists a
locally bounded nonnegative function V : R™ — R™ such that V(0) = 0 and such that the
partial differential inequality

9 A(z) + sup {2 B(z)w —w"2} <0 (18)
weWw
is satisfied weakly on IR™.

In case that the disturbance signal is not confined to have values in a compact set, the
above inequality reads

%—‘;A(a:) <0 and

%—‘;B(:v) =C(z) on RR" (19)

with the following meaning: for all C! functions ¥ and all zy € IR™ where the difference
V. — U attains a local minimum, there holds

g—\g(.’ﬂo)A(.’Eo) <0 and

s (z0)B(zo) = C(z0) -

Local stability results for passive, and more general, dissipative systems of the affine
form (17) are well known [BIW91, HM76, HM80b, Wil72a|, and the most common for-
mulation is the following:

3.18 Theorem [Jam93a] Let V : R™ — IR™ be a locally bounded nonnegative function
which is positive definite and continuous at x = 0, and which satisfies V(0) = 0 and the
PDI (18) weakly on R"™. Then z = 0 is a stable equilibrium for the disturbance free system

&= Az) .
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Proof: The positive definiteness of V implies the existence of a function « : R — IR
of class K satisfying V(z) > «(|z|). This implies Vi(z) > «a(|z]). Let € > 0. Since V
is continuous at = 0, there exists a 6 > 0 such that |z| < ¢ implies Vi (z) < a(e). By
theorems 3.15, 3.16 and 3.18, V, is a storage function, and setting w(-) = 0 the dissipation
inequality implies Vi(z(t) < Vi(zo) for all t > 0, where z(-) is the state trajectory with
initial condition zg. Then

alz(t)] < Vi(z(t) < Vi(zo) < afe)

for all t > 0 whenever |zg| < §. Therefore, |z(t)| < ¢ for all ¢ > 0 if |zg| < §, and so z =0
is a stable equilibrium. O

Notice that additional assumptions are made about the storage function. These have
system dependent criteria: continuity follows from a strong form of local controllability
[HMS80b], or from a weaker form of local controllability presented in section 3.2, and there
called locally bounded excitation. Positive definiteness is a consequence of a form of de-
tectability [HM80b|, which is called zero-detectability in section 4.1.

Notice also that theorem 3.18 does not investigate asymptotic stability of the equilibrium
point, and says nothing about the size of the neighborhood of £ = 0 where stability is
achieved. Moreover, no other disturbance free invariant sets than equilibria are considered,
and the boundedness of state trajectories subject to w(-) # 0 is not investigated. We will
touch these questions in the following sections.

3.1.2 Finite L2 gain systems and the bounded real lemma

It is commonly assumed that the plant of concern has an equilibrium point at the origin,
that is, it is of the form

z=X(z,w) , X(0,00=0 ,

z=Z(x) , Z(0) =0 . (20)

We define that the system (20) has L£o gain less than or equal to ~ if there exists a
locally bounded function K : R — IRT with K (0) = 0 such that

T T
/ |z(t)|2dt§72/ lw()[2 dt + K (w0) for all T >0
0 0

where 1z is the initial point of the motion, or equivalently, if (20) is dissipative with respect
to the strictly regular supply rate s(w,z) = v?|w|?> — |z|?, and the l.s.c. storage function
satisfies V'(0) = 0.

The next result is a weak sense version of a nonlinear generalization of the bounded real
lemma (also called the Kalman-Yacubovitch-Popov lemma) due to van der Schaft [vdS92c,
vdS92al, and it is a corollary of theorem 3.15.

3.19 Theorem [Jam93b] Assume that the system (20) is reachable from the
origin. Then (20) has Lo gain less than or equal to «y if and only if there exists a locally
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bounded nonnegative l.s.c. function V : R" — R™ such that V(0) = 0 and such that the
partial differential inequality

* T
H* (z, §%) = Slelgv{%—‘; X (z,w) = Vlwl® +|Z(2)|*} <0 (21)
w

is satisfied weakly on R".

In case that the system of concern is affine in the exogenous input w(-) and has an equi-
librium point at = 0, that is, the system is of the form

= A(z) + B(z)w , A(0)
z=C(x) , C(0)

0
. (22)

bl

then the pre-Hamiltonian is given by
H = 9 (A(z) + B(z)w) — ¥*|w|* + CT(z)C(z) .

A simple completion of the squares argument shows that the supremum in the definition
of the Hamiltonian (12) is attained by the the maximizing disturbance

T
Wmax(T) = #BT(x)%_‘;: (z) ,
hence the Hamiltonian becomes

H' = 1287 (2) B(2)B" (2) 2L (2) + 3 (2)Ala) + " (2)C () -

Also here, Hill and Moylan [HM76, HM80a| have a locally stability result which reads:

3.20 Proposition [vdS92a] Suppose there exists a nonnegative C! solution V to the
quadratic HJI
x _ 1 ovpprovl | av T
H* = =5 BB % + 5, A+CC<L0 , (23)
and assume that the system (22) is zero-observable, that is, z(-) = 0 and w(-) = 0 implies

z(0) = 0. Then V is positive definite, and the origin is a locally asymptotically stable
equilibrium for the autonomous system

i=Az) . (24)

Moreover, if V is proper, that is, for each ¢ > 0 the preimage V ([0, ¢c]) is compact, then
the origin is a globally asymptotically stable equilibrium.

Conversely, if the origin is a globally asymptotically stable equilibrium of (24), then every
C! solution of (23) is nonnegative.

Proposition 3.20 investigates asymptotic stability of the equilibrium point, and tells about
the size of the neighborhood of x = 0 where stability is achieved. But still, no other
disturbance free invariant sets than equilibria are considered, and the boundedness of state
trajectories subject to w(-) # 0 is not investigated. The research article [vdS92c| mentions
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the existence of a locally defined smooth storage function provided that the linearized
Ho problem is solvable. Moreover, it has been showed in [IK95] that also the general
system (20) attains the maximizing disturbance wmay locally near zero.

3.21 Example: Nonlinear oscillator
We investigate the uncontrolled planar system

g1 =z ((r? — 1)(r? — 4) +r(r? — dw) — z9
gy = zo((r? — 1)(r? — 4) + r(r? — dw) + z; (25)

2=r’—1 ,

where 7 = y/z? + 4. In polar coordinates z1 = rcos(f), zo = rsin(@), where 7 > 0 and
0 < 6 < 27, the nonlinear oscillator (25) is given by the equations

F=r(r?—1)(r? —4) + r(r? — dw
6=1 (26)

z=712—-1 .
It is easily seen that the set S defined by
SE{.’L‘ERQ"/‘:I}

is a compact invariant set of the undisturbed system, and is asymptotically stable for all
z(-) subject to w(-) = 0. The open set

RE{xEIR2‘0<r<2}

is the largest possible basin of attraction of S subject to w(-) = 0. Moreover, all points in
R are reached from & in finite time.

Figure 1: Nonlinear oscillator
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We show in the following that system (25) is dissipative with respect to the strictly regular
Hoo supply rate s(w,z) = y2|w|? — |z|2 for all ¥ > 1. To do so, consider the available
storage V4 given by

T
Va(z) = Sup/ —Plw@) + |2@)? dt .
’UJ(),T 0

We see that Va(zg) > fOT |z(t)|?dt > 0 for all initial points zp € R\S implies that all
points inside § are the only possible points of minimal storage. Since any point on S can
be reached in finite time from any initial point g € S by some drifting trajectory z(-)
subject to w(-) = 0, it follows that the set R is invariant under the choice of initial point
zo- Hence, the set S is a candidate for the set of points of minimal available storage Xi,.
Moreover, if § = X, is proven, the fundamental assumption 3.11 is satisfied, and R as
defined before is the reachable set.

Notice that we have not yet showed that system (25) is dissipative. We can show dissipation
by two means: either we show that V4(z) < Vgr(z), and that Vz(z) is locally bounded on
R, hence dissipation follows by theorem 3.6. Or we find some other l.s.c storage function
V satisfying the weak HJI (16), and dissipation follows by theorem 3.15.

To show that the possible storage functions are locally bounded on R if they exist, we
investigate the required supply

0

Vi(z) = inf/ V(@) — |2(0) dt .
w,T -T

Since Vg(z) < fOT |z(t)|? dt < oo for all final points in R it follows that the required supply

is locally bounded on R if existing. Notice that showing V4(z) < Vg(x) requires knowledge

of all trajectories satisfying the inf or sup conditions, hence is a variational problem hardly

solved.

Fortunately, the HJI (13) can be solved analytically: assume that there is a storage function
of the form V = V(r?), then

%—Z = [2.’171 21‘2] % .

The pre-Hamiltonian and the maximizing disturbance become

H= 203" = 1)(® —4) +7(r® — 4ju) =Pl + (2= 1) |

1,22 2_dv
Wmax = 57 (re—4) FICE)

It follows that the HJI (13) reads

2 2
H = (P02 - )% + (2 - 1) — (=P - 22 (%) <0, @)

on 0 < r < 2, and clearly (27) has a solution if and only if v > 1. Moreover, any solution
to the ODE

7‘2(7"2 —4) d’é%) + (7"2 -1)=0



CHAPTER 5. ANALYSIS OF DISSIPATIVE SYSTEMS 103

Figure 2: Smooth Storage Function

with minimal set condition V(1) = 0 solves the HJI (27), hence the smooth storage function
(see the graph in figure 2)

V(r) = —i In(r?) — zln(él —r?) + Zln(3) (28)

solves the HJI (27) for all v > 1.

We see that V is locally bounded on R, V(z) > 0, V(z) — oo for all z — 9R, and
V(z) =0 on S. We have showed that system (25) is dissipative with respect to the strictly
regular Ho supply rate s(w, z) = y2|w|? — |z|2 for all v > 1. Notice that a smooth storage
function exists for all v > 1. *

3.2 On continuity of storage functions

We have seen that any non-negative and continuously differentiable solution V' : R C
IR™ — IRT to the HJI (13) is a storage function of the dissipation inequality (5). The
converse is only true under some more restrictive conditions: in case that there exists a
point of minimal storage z, satisfying V(z,) = 0 for all possible storage functions, and in
case that the system is reachable from z,, theorem 3.12 shows that the required supply Vg
is a bounded storage function. But in general the required supply is not a C! function, an
issue which will be discussed in a later section.

In a recent paper [BH96] J. A. Ball and J. W. Helton investigate the continuity of storage
functions belonging to Ho, control problems. These results are here generalized to include
other supply rates. We have to confine the continuity of storage functions to the reachable
set. Moreover, the system of concern has to have an additional property, implying that
the amount of dissipated or released energy can be related to the distance between initial
and final point of a trajectory. We remember that a real valued function « : RT +— IRT
belongs to class K if it is smooth, strictly increasing, and satisfies (0) = 0.
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3.22 Definition (Excitation) The uncontrolled system (4) has locally bounded exci-
tation if for each point x € R there exists a neighborhood P € R and a class K function
ap : RT — RY such that for each pair of points 1, 7o € P there exists a disturbance w(-)
and a trajectory x(-) which reaches x5 in final time from x1, and such that

2 s(w(t), 2() dt| < ap (a1 — 2s])
holds along this trajectory.

We want to stress that the fulfillment of definition 3.22 has two equally important interpre-
tations: first, a system with locally bounded excitation is locally controllable if we consider
the disturbance as exciting control. Second, there is a path which bounds the amount of
energy exchanged with the surrounding environment, and this energy is uniform bounded
by the distance between initial and final point, and not by the length of the path. We
notice that the minimizing trajectory connecting z; and x5, is not confined to the compact
set P around zg, but clearly it must be entirely inside R. Notice also that the bound ap
is uniform on the above mentioned open neighborhood, but not necessarily uniform on R.
The property of locally bounded excitation has been investigated before in [HM80b|, there
it has been called “locally controllable”. We prefer though to use the term controllable in
systems where a control signal u(-) is applied, based on some control law like state feedback
or dynamic feedback. Since the exogenous disturbance is unknown and unpredictable, the
term excitation seems more logic to use. Notice also that the state universe of all dynam-
ical systems considered in this paper is the reachable set according to definition 3.10 and
assumption 3.11. Therefore the following is a slight variation of lemma 6 in [HMS80b].

3.23 Proposition (Continuous storage function) [HM80b] Given a dissipative un-
controlled system (4) which mets assumption 3.11 and definition 3.22, there exists at least
one storage function V : R — IR, and all existing storage functions are continuous on R.

Proof: Existence of at least one storage function is easily deduced considering the re-
quired supply Vg: by theorem 3.12 there holds

0 <Vu(z) <V(z) <Vg(z) forall ze€R" ,

and by definition 3.9 we have Vgr(z) < oo for all z € R. Hence dissipation implies
that all candidate storage functions are locally bounded on R. On the other hand, by
assumption 3.11 the restriction of the system dynamics onto the reachable set does not
alter the dynamics as such, hence Vi : R ~ IRT, the restriction of the required supply
onto the reachable set, is a storage function.

Continuity of any existing storage function V : R ~ IR™ is shown by contradiction: Assume
that there is a storage function which is not continuous at some point zg. Then there is a
sequence of points z, — z¢ for n — oo such that |V (z,) — V(zo)| > ¢ > 0 for all n € N,
and such that z¢,z, € P. By definition 3.22 we have a sequence of disturbances wy,(-) and
a sequence of minimal trajectories x,(-) which connect the initial point zy and the final
points z,, in time %,,.
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First we assume that there exists a subsequence z,, — x such that V(z,) —V(z¢) > € >0
for all n € IN. Then the dissipation inequality (5) and definition 3.22 show that

0<e<V(zn)— Vi) < ‘fg" s(wa(?), 2(1)) dt| < ap(|zn — zo])

and a contradiction occurs since ap(|z, — xg|) = 0 as n — o©.

In case that there does not exist a subsequence as assumed above, there does certainly
exist a subsequence satisfying V(z,) — V(zy) < € < 0 for all n € IN. Then we consider
sequence of disturbances wy,(-) and a sequence of minimal trajectories z,(-) which connect
the initial points x, and the final point z( in time ¢, (note that the reversion of initial and
final point is possible due to definition 3.22). A similar contradiction occurs if we consider
the difference V(zg) — V(z,). O

3.24 Example: Nonlinear oscillator, continued

We show that, for v = 1, the system (25) has the property of locally bounded excitation.
We see easily from the system dynamics in polar co-ordinates (26) that there is a trajectory
connecting each pair z1,x2 contained in any compact set P C R: in fact, the disturbance
w(+) can steer the trajectory in the radial direction, and the drift vectorfield X (z,0) can
be used to reach any tangential direction - if necessary, we drift almost one circle around
to reach z if the initial point 1 is in the counter-clockwise direction. It is also easily seen
that the integral

|2 72 w@) 2 = =0 | < ap (|1 — 2]

holds along any trajectory in the radial or the counter-clockwise direction. But if we want
to reach a point in the clockwise direction, it is not at all clear that the above integral will
be bounded by the distance between initial and finial point, since then we must drift almost
one entire rotation. We see also from (26) that the constant disturbance w(-) = —(r? — 1)
implies that 7 = 0, hence we can drift along a circle of any radius in the counter-clockwise
direction. Now, in case that v = 1, it follows from z = (r? — 1) that the integrand is zero.
We conclude that ap can be chosen to satisfy the integral condition in the radial directions,
and the system has the property of locally bounded excitation if v = 1 is chosen. It follows
by proposition 3.23 that the case v = 1 possesses a continuous storage function. *

3.3 On the performance envelope of dissipative systems

We remember from the previous section that the reachable set R may be unbounded in
general. But real world systems do only sustain finite stress, and therefore we would like
to be assured that the state trajectories are constrained in some safely bounded and closed
subset €2 C IR", here called performance envelope.

In case that the reachable set R C IR" is a bounded set we can always take the closure
Q) = R as performance envelope if the system stress level is not violated on R.
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If R is unbounded, we have in principle the possibility to investigate the vector field X (z, w)
directly to prove that some given compact set  C IR" is positive invariant for all distur-
bances belonging to some pre-described set w(-) € W, but in practice this investigation
will often be prohibitive complex.

On the other hand, to show dissipation of a system, we have to solve the HJI (13), which
is a rather complicated process. Therefore we are inclined to extract as much information
from any viscosity solution at hand as possible. The boundedness of state trajectories can
be deduced, since the dissipation inequality (5) shows that all trajectories with s(w,z) <0
satisfy V(zr) < V(z¢) for all T > 0. This observation bounds all such trajectories inside
a performance envelope if the storage function has an additional property:

3.25 Lemma Assume that some lLs.c. storage function V : R ~ RRT of a dissipative
system is given, and assume that the set Q C IR", Q = V~1([0,c]) N R for some ¢ > 0 is
bounded, hence compact.

Then all trajectories z(-) with initial condition zo € 2 do not leave ) if driven by some
w(-) such that s(w,z) < 0.

Proof: The conclusion of this lemma is a simple consequence of the dissipation inequal-
ity (5) and l.s.c. of the storage function: By definition (see [Ped89]) V is Ls.c. if and
only if all preimages V !(J¢,00[), ¢ € IR, are open sets. Since V > 0, it follows that
V=10,¢]) = V7] — 00, ¢]) is a closed set, hence €2 is compact. Finally, all trajectories
with s(w,z) < 0 satisfy V(z7) < V(x¢) for all T > 0, hence zr € V 1([0,¢]). But by
definition 3.10 zr € R for all T € IR, hence z7 € Q. O

Notice that the given storage function may be such that the set V1([0,c]) N'R never has
a bounded component, in which case the approach proposed here is not applicable. We
see also that the preimage of the required supply according to definition 3.9 exists for all
¢ > 0 and satisfies Vj;'([0,c]) C R. However, the preimages of other V(z) < Vg(z) need
not to be subsets of R, hence we consider the intersection Q = V~1([0,¢]) N R only.

In praxis we have still the problem to decide which pair of initial points and disturbances
are such that s(w, z) < 0 is satisfied. This problem is partially resolved by the following
corollary.

3.26 Corollary Assume that some ls.c. storage function V : R — IRT of a dissipative
system satisfies lemma 3.25, and that the associated supply rate is almost regular. Then
Q is positive invariant with respect to all trajectories subject to w(-) = 0.

Assume furthermore that the supply rate is strictly regular, and consider all trajecto-
ries with initial condition xq inside a proper, compact subset g C Q of the form Qy =
V=1([0,c0]) "R, 0 < cg < c. Then all such x(-) generated by disturbances which satisfy

T
/O o (lw(®)]) dt < ¢ — co

are bounded inside the performance envelope Q.
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Proof: The first conclusion of this corollary is a simple consequence of definition 3.1: by
regularity of the supply rate we have s(0,z) < 0. Then apply lemma 3.25.

Assume that the supply rate is strictly regular, then the dissipation inequality (5) shows
that all such trajectories satisfy

T
V(wr) < V(zo) + /0 enw(fw))dt <c—co+cp

hence 7 € Q for all T' > 0. O

Corollary 3.26 considers only boundedness of state trajectories subject to w(-) = 0, or
subject to an integral constraint of the form fOT ay (Jw(t)|) dt < ¢ — ¢y, no information on
the asymptotic properties of such state trajectories is given.

The investigation of asymptotic properties of state trajectories subject to w(-) = 0 are
delayed to the following sections 4 and 4.1, whereas the asymptotic properties of state
trajectories subject to |w(t)| — 0 as ¢ — oo are treated in section 5.1.

In practice it may be difficult to assure that the disturbances are of one of the previous
classes, whereas it often will be easy, due to physical properties of the plant, to specify
some constant ¢ € IR" such that |w(¢)| < ¢ for all ¢ € IR. The analysis of performance en-
velopes of systems and the asymptotic properties of state trajectories generated by bounded
disturbances are investigated in section 5.3.

4 La Salle’s invariance principle in a dissipative setting

This section is devoted to the stability analysis of dissipative systems with respect to
invariant sets of the undisturbed dynamics subject to w(-) = 0. The overall idea is to
use the storage function of a dissipative system as a Lyapunov function to investigate the
stability properties of some state trajectories of the system. The notion of almost regular,
regular, and strictly regular supply rates will be useful to prove stability of trajectories
generated by exogenous inputs w(-) = 0. Related work has earlier been published by
David J. Hill [Hil92] in the framework of behavioral systems, where asymptotic stability
of some preferred set of internal states is considered for systems represented by families of
input-output operators, with quadratic supply rates. See also the research paper by David
J. Hill and Peter J. Moylan [HM80a|. We postpone asymptotic stability issues of more
general trajectories not satisfying w(-) = 0 to later sections.

Clearly, boundedness of state trajectories is an important stability requirement in all real
world applications. On the other hand, asymptotic stability of state trajectories may be
mandatory in certain control problems. For this purpose it is beneficial to recall bounded-
ness and invariance properties of autonomous systems of the form

z=X(z) . (29)

We assume that the integral curves of (29) are uniquely given on some suitable set, and
we denote them z(-) = z(-,t9,29). We recall that a set A C IR™ is called invariant



CHAPTER 5. ANALYSIS OF DISSIPATIVE SYSTEMS 108

if all trajectories of the autonomous system (29) starting in A are defined in the future
and in the past, and evolve entirely inside 4. The set is called positive invariant if all
trajectories starting in A are defined in the future and never leave A as time increases.

It is our purpose to use a solution to the Hamilton-Jacobi inequality as a Lyapunov function
in order to establish asymptotic stability properties of dissipative systems. We recall a
theorem knows as the La Salle’s invariance principle, which has been published in the
early sixties by La Salle and Lefschetz [SL61].

4.1 Theorem (La Salle and Lefschetz) LetV :IR" — R be a C' function and let Q
denote a connected component of the pre-image V~'(] — 00, c]), ¢ € IR. Assume that () is
bounded, and that

4y <0 (30)

within ) along any trajectory of the autonomous system (29). Let V C Q) be the largest
set where %V =0, and let A be the largest invariant set contained in V.

Then §) is positive invariant and every solution in €) tends to A as t — oo.

In other words: €2 is a basin of attraction for the stable invariant set A. The original proof
of Theorem 4.1 shows that any such C! function V satisfying %V < 0 is not assumed to
be positive definite.

In the following we are interested in storage functions which are not necessarily continuously
differentiable. On the other hand we want not to burden this exposition with technical
details, and therefore we assume for the rest of this section that continuous and locally
Lipschitz storage functions exists. We follow the standard approach in nonsmooth analysis
[C1a83]. In special, all convex functions and all C' functions are locally Lipschitz on the
interior of their domain [HUL93]. Due to Rademachers theorem any locally Lipschitz
function is differentiable almost everywhere (in Lebesgue measure), so that the following
definition makes sense. We denote by con {p;} the convex hull of the cotangent vectors
pi, that is,

COn{pZ}E{chsz‘CZZO y ZZCZ:]_} .

4.2 Definition The generalized gradient @V of a continuous, locally bounded, and
locally Lipschitz function V : R C R™ — R is the set-valued function which maps to each
z € R a nonempty, closed and convex set of cotangent vectors p € IR"™ in the following
way:

OV (z) = con {limi_,oo %—‘w/(x,-) ‘ Ty > T, T & 0} ) (31)

where O C R is any set of Lebesgue measure zero which includes all the points where V
fails to be differentiable.

In other words, we are considering the sequence of all {z;} converging to z while avoiding

O such that the classical gradient %—‘;(a;i) converges, then the convex hull of all such limit
1 &V
0:

gradients is the generalized gradient V. From now on, we denote by the symbol = any
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function %—Z : R — IR™ such that %—Z(w) € 0V (z) for all z € R. We see immediately that
the generalized gradient for any continuously differentiable function collapses at each x to

a singleton, and then %—‘; denotes the classical gradient.

The generalized directional gradient of a locally bounded function V : R C IR” — IR
is the function V0 : R x IR™ — IR defined by

Vo(z,v) = lim sup { %—‘;(y)v ‘ yg 0}
= max pv .
pedV(x)

In the following we want to investigate the asymptotic properties of state trajectories
subject to w(-) = 0. It turns out that certain subsets of the reachable set, related to the
HJI (13), the storage function and the performance function, play an important part in
this investigation.

4.3 Definition Let V : R C IR — IR denote any continuous, locally bounded, locally
Lipschitz, and non-negative function. We define the following subsets of R C R":
the Hamiltonian null set

N = {z € R | there exists p(z) € OV (z) with H*(z,p(z)) =0} ,
the storage null set
V = {z € R | there exists p(z) € OV (z) with p(z)X(z,0) =0} ,

the storage kernel
kerV={zeR|V(z)=0} ,

and the performance kernel

kerZ={z€eR|Z(z)=0}

We see that the sets ker V' and ker Z are closed sets: they are the preimages of a compact
set under a continuous map. Notice also that the storage null set is defined by specifying
zero disturbances.

There is a relation between the set of points in R where the function V(t) = V(z(t)) is
constant along the trajectories z(-) of the undisturbed system & = X (z,0), and the storage
null set V: in case that V is differentiable, constantness of V() clearly is equivalent to
that the classical gradient satisfies %—‘;X (z,0) =0, and in case that V is not differentiable,
constantness of V(t) implies that the equation ‘?,—‘;X (2,0) = 0 holds for some %—‘; € oV
(and if the equation 2¥ X (z,0) = 0 holds for all £ € 9V, the reverse conclusion is valid).
Hence, the set of points where V' (t) is constant along the trajectories z(-) of the undisturbed
system £ = X (z,0), is a subset of V.

A similar interpretation holds for the Hamiltonian null set N: assume that a maxi-
mizing disturbance wmax : R® — IR! exists, then the set of points where the function
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h(t) = V(z(t)) — s(wmax(x), Z(z)) is constant along the trajectories z(-) of the (maxi-
mally) disturbed system & = X (z, wmax(x)) is a subset of the Hamiltonian null set.

We denote in the following the storage null set of the available storage V4 by the symbol
V4, and the storage null set of the required supply Vg by Vr. We are able to state the
following (quite obvious, but useful) facts on kernel and null sets.

4.4 Proposition (storage kernel and null sets) For any continuous and locally Lips-
chitz storage function V : IR™ + IRT the storage null set is a closed set, and V D ker V
holds.

Assume that the maximal disturbance (14) is a continuous functions on the reachable set
‘R. Then, for any continuous and locally Lipschitz storage function, the Hamiltonian null
set is a closed set.

Furthermore, X, = ker V4 = ker V = ker Vx holds for any possible storage function V.

Proof: Assume that there is a sequence of points {z;} with %—‘;(mi)X (zi,0) = 0 for some
%—‘w/ € 9V, which is converging to z. We have to show that there exists a p € 9V (z)

satisfying pX(z,0) = 0.

Now, the sequence {%—‘;(m,)} is bounded (since V is locally Lipschitz, and we can without
loss of generality avoid @), hence there exists a subsequence converging to some p € V.
Clearly, for this subsequence,

lim 2Y(z;)X (z;,0) = pX(z,0) =0 ,

17— 00 Oz
hence we conclude that V is closed.

It is a simple consequence of definition 4.3 that ¥V D ker V' holds whenever V is a storage
function: Since both V and ker V are closed sets, and p = 0 is included in 9V (z,) for each
z, satisfying V' (z,) = 0, the result follows trivially.

A similar argumentation shows that the Hamiltonian null set under the stated conditions
is a closed set.

Theorem 3.12 implies that Vg is a storage function due to the standing assumption 3.11
that there exists a point of minimal storage x, from which R can be reached. Hence
Va(z) < V(z) < Vg(z), and it follows directly that X, = ker V4 D ker V D ker Vi. Now,
by definition 3.9 we have Vg(z,) = 0 for all z, € X,, and X, = ker V4 = ker V = ker Vg
follows. -

4.5 Theorem (Invariance principle) Assume that the HJI (13) has a continuous and
locally Lipschitz viscosity solution V : R — R. Let  C R™ be any compact set. Assume
that all z(-) with zo € Q generated by w(-) = 0 are bounded in future inside ).

Then all such z(-) approach the largest invariant set A contained in the intersection

A C VYNnONR .
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Proof: By assumption 3.11 we have at least one point of minimal storage z, € R. Then
Vi(z) = V(x) — V(z) also solves the HJT (13) on R, hence we can assume without loss of
generality that V(z) is normed such that V(z,) = minger V(z) = 0, and therefore V is a
l.s.c. storage function on R.

We remember that all bounded z(-) have a non-empty, compact and invariant positive
limit set I't, and z(-) — I'" as t — oo.

Now, observe that V(z) is (lower semi-) continuous and defined on the compact set 2 NR.
Hence V(ﬂ) is bounded from below, and there exists a local point of minimal storage
zo € QN R satisfying V(zq) > V(z.) = 0 [Ped89].

We show now that the positive limit set of any trajectory z(-) subject to w(-) = 0 which is
bounded in future in Q satisfies '™ C V: given any such z(-), the storage function V (z(-))
is decreasing, since the dissipation inequality (5) together with almost regularity of the
supply rate implies that

V(z(t)) = V(zg) <0 forall t>0 .

Also, V(-) is bounded from below, hence approaches some minimal value, say cr > 0, as
t — 0o. By continuity we conclude that V(z) = cr on the positive limit set I'*. It follows
that I'" C V, and in case that V is C*, £V =0 on I'".

Finally, I'" is an invariant set, and contained in the maximal invariant set A C VN QN
R. Therefore any trajectory z(:) subject to w(-) = 0, and which is bounded in Q, is
approaching A as t — oo. O

It is in general not easy to find a weak solution of the HJI (13), and it is not at all clear
nor proved that the sets V and N are invariant under the non-uniqueness of all possible
storage functions. However, the control engineer has in practice the possibility to specify his
favorite performance kernel and Hamiltonian null set, hopefully not excluding the existence
of a storage function by this approach. Then the following theorem may help to identify
the storage null set of a particular storage function.

4.6 Theorem (Subsets) Assume that the HJI (13) has a continuous and locally Lipschitz
viscosity solution V : R +— IR. Moreover, assume that all z(-) subject to w(-) = 0 are
bounded in future inside some compact 2 C IR™. Then V C N holds. If in addition the
supply rate is regular, then V C ker Z follows.

Proof: According to definition 4.3 we have only to consider trajectories subject to w(-) =
0 to investigate the properties of the storage null set V. Therefore theorem 4.5 applies.
Hence, the almost regularity of the supply rate together with (12) and (13) shows that

B X(2,0) < G X (2,0) —5(0,2) <H <0 (33)
holds for all %—‘w/ € aV.

We show first that V C N: by inequality (33) and the previous discussion it follows that
for all %—‘;(w) € 0V (z) such that %—‘;(a:)X(a:, 0) = 0 there holds

0<—-5(0,2) <H* <0 on V , (34)
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hence we have V C V. Notice that the same 2Y(z) € 9V (z) which defines the storage null
set V, defines also the Hamiltonian null set V.

We see easily that regularity of the supply rate implies V C ker Z: any such trajectory
evolving entirely on V satisfies z(-) = 0 by equation (34) and regularity of s. It follows
that V C ker Z. O

Notice also that we have 49X X (z,0) < 0 for all motions evolving on Q\N. Trajectories on
N are satisfying %—‘; (z,0) = 0 only if s(0,z) = 0, which implies z(-) = 0 by regularity of

the supply rate.

In the standard nonlinear H, control theory where the stability of the equilibrium point
zero is investigated, it is known [IA92b, TA92a, vdS92a, IK95, BHW93] that the maximal
disturbance wp,ax vanishes at the origin. A similar property holds for the generalized
problem treated here. We denote the union of all positive limit sets of bounded
z(+, o, £o,w = 0) by the symbol UI‘;';:O.

4.7 Corollary Assume that the supply rate is regular, and the supremum in the definition
of the Hamiltonian (12) is attained at each (z,p) € R x R™. Assume furthermore that the
HJI (13) has a continuous and locally Lipschitz viscosity solution V : R + IR, and define
the set-valued function

Wmax(T) = Wmax(, %_‘;(5"')) ) %_Z eov , (35)

where the maximizing disturbance wmax(z,p) is given by (15). Moreover, assume the
existence of some compact set  C IR"™ such that all z(-) with zy € 2, and generated by
w(-) = 0, are bounded in future inside 2, and assume that the intersection between UT_,
and X, is non-empty. Then there holds

Wmax(z) =0 on Tf_,C X .
Proof: Using the Hamiltonian (12), the maximal disturbance (15) and the HJI (13) we
have the inequalities

%—‘;X(a:,O) —5(0,2) < %—‘;X(m,wmax(m)) — $(Wmax(z),2z) =H* <0 for all %—‘; eav .

The proof of theorem 4.5 and theorem 4.6 shows that I‘;ZO CV CN and F$:0 C ker Z.
Hence, by regularity of the supply rate there follows

0< %_ZX(IE,wmax(x)) — $(Wmax(2),0) <0 on FL_:O :

Since F:;:O C X, is assumed, it follows that for all z € F$:0 the generalized gradient
satisfies 0 € 0V (x). Hence,

—8(Wmax,0) =0 on T_,C X,

follows. Finally, wmax = 0 on Fi:o C X, is a consequence of the regularity of the supply
rate s. O
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In case that the union of positive limit sets U’} _, is not connected, the proof of theorem 4.5
indicates that each component of U’} _, is a local minimum of the function V'(z), but the
constant value V(z) = cp will in general be different from component to component.
Nevertheless, we can assume that V(z) is positive semidefinite.

Theorem 4.5 shows that Ul"qt:0 is a subset of the intersection of the Hamiltonian null set
N, the storage null set V, and the performance kernel ker Z if the supply rate is regular.
In practice, the sets A" and V can not be computed before a solution to the HJI (13) is
known, and - even more inconvenient - the sets A" and ¥V may be depending on the special
storage function found.

4.1 Attraction of compact sets

We may be concerned with the question whether some given compact set S C 2 is attractive
for all bounded trajectories subject to w(-) = 0. By theorem 4.5 and theorem 4.6 we see
that the intersection & Nker Z must be non-empty if the supply rate is regular - otherwise
there will be no positive limit set satisfying I't C S.

In order to conclude attraction of the set S subject to w(-) = 0, we can impose some
conditions on the performance function Z(z). Observability of the state trajectory on S,
that is Z(z)| 2€Q\S # 0, may be too severe an assumption. Instead we will impose a weaker
detectability assumption on the system:

4.8 Definition Given some compact set S C R, the system (4) is called S-detectable
if all bounded trajectories x(-) = z(-,tg, zo,0) (subject to w(-) = 0) generating the zero-
output z(-) = 0 are approaching S as t — oo.

In case that S is the origin, we say the control system is zero-detectable.

Given S-detectability, we can prove attraction of the set S subject to w(-) = 0.

4.9 Corollary (S-detectability) Given a regular supply rate, assume that theorem 4.5
applies, and that the uncontrolled system (4) is S-detectable. Then all z(-) subject to
w(-) = 0 which are bounded in future converge to S ast — oco. Hence I't C A C ker Z
and 't C S hold.

A similar property has been published as theorem 6 in [HM80a] in the context of a family
of input-output operators of a behavioral system with states.

Proof: All such trajectories have due to theorem 4.5 and theorem 4.6 positive limit sets
satisfying 't C ker Z, hence by S-detectability the compact set S is approached. It follows
that 't C S. O

In practice the notion of S-detectability is very awkward: it requires essentially knowledge
of all trajectories satisfying z(-) = 0. This problem can be circumvented if we study



CHAPTER 5. ANALYSIS OF DISSIPATIVE SYSTEMS 114

solutions of the strict Hamilton-Jacobi inequality
H*(.’E, %_‘w/) < _aH(|m|5) ’ (36)

where ay : RT — IRT is any function of class K (see appendix A for the notion of K, Koo,
and KL functions). Clearly, the existence of a l.s.c. viscosity solution of the strict HJI
implies that the dissipation inequality (5) holds for all disturbances w(-).

4.10 Corollary (strict convergence) Assume that all requirements of theorem 4.5 are
satisfied using the strict HJI (36), where S is any compact subset of R. Then theorem 4.5
applies using the HJI (13), and all such z(-) generated by w(-) = 0 which are bounded in
future converge to S ast — oo. Hence 'V C ACV C N C 8 holds.

Proof: Clearly the strict HJI (36) implies the HJI (13), hence theorem 4.5 holds. We
need only to prove the attraction of S. Notice that the strict HJI (36) implies N' C S, and
by theorem 4.6 TT Cc ACV Cc N C S follows. O

The rate of convergence of the motion is dependent on the shape of V' and the magnitude
of %—‘;X(w, 0). The later is by the strict HJI (36) estimated by %—‘;X(w, 0) < —ay. In many
practical applications it will be therefore advantageous to solve the strict HJI using a K or
even Ky function ay as large as possible.

Finally we show that asymptotic stability of some compact set S also can be achieved
using a condition on the performance measure Z(z) instead of forcing the strict HJI (36)
to be satisfied.

4.11 Corollary (performance kernel) Assume that theorem 4.5 applies using a regular
supply rate. Assume furthermore that the uncontrolled system (4) is such that there exists
a compact set S C R and a K function o, : R™ — IR™ such that

az(|zls) < |Z(z)]

Then TT C ACV CkerZ C 8, and all z(-) subject to w(-) = 0 which are bounded in
future converge to S as t — <.

Proof: 1t is easy to see that a,(|z|s) < |Z(z)| implies ker Z C S. By theorem 4.5 and
theorem 4.6 we have I't € A C V C ker Z for all such positive limit sets, hence z(-) - S
as t — oo. O

Also here, the rate of convergence of the motion is dependent on the shape of V' and the
magnitude of %—‘;X(J),O). Now we have the estimate %—‘;X(x,()) < —s(0,ay), and in case
that the supply rate is strictly regular %—‘;X(m,O) < —a, 0 ay. It may be a good idea to
use performance measures which are bounded from below by a K or even K function ay,
as large as possible.

Let us for the moment assume that the uncontrolled system (4) has an invariant set S
when regarded as an autonomous system with respect to the zero disturbance w(:) = 0. If
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we want to prove that the system is dissipative with respect to some given supply rate, and
that the set S is attractive in the sense that all undisturbed motions which are bounded
in future converge to S as t — oo, then we have to find a candidate storage function by
solving the HJI (13). This is in general a difficult task, and may be eased considerably
if we know the kernel ker V, and can use this knowledge to construct a suitable finite
dimensional basis expansion of V. Then we have to compute the null sets A’ and V, and
the kernel ker Z in on order to evaluate the possibility of attraction. Moreover, we have to
know whether the undisturbed motions are bounded in future or not.

These problems can be solved more efficiently if we try to find a storage function which
takes advantage of lemma 3.25, theorem 4.5, the strict HJI (36), and corollary 4.11 simul-
taneously.

4.12 Proposition (identity of sets) Assume that the supply rate is regular and that a
continuous and locally Lipschitz viscosity solution to the strict HJI (36) exists, such that

ay(lels) < V(z) <av(als) , H(z, 5;) < —enllzls) , and az(zls) < |Z(2)]

Here S C R is a compact set, and ay,, @y, ay, and ay are four functions of class K.

Then the identity
N=V=kerV=kerZ=38

holds, and any trajectory x(-) subject to w(-) = 0 which is bounded in future satisfies
z(-) = 8. Moreover, S is locally asymptotically stable, and in case that V is proper,
globally asymptotically stable.

Assume in addition that S consists only of one isolated trajectory of the undisturbed
system (3), then
N=V=kerV=kerZ=S=A=T" .

Proof: The convergence of such trajectories to the set S C A follows by corollaries 4.10,
and 4.11.

Note that the assumption a; < V < @y implies ker V = S§. The strict HJI H* < —ay
implies § D N, and § D ker Z follows from condition a, < |Z|.

Now, by theorem 4.5 we have ¥V O A, and theorem 4.6 implies V C N for almost regular
supply rates, and V C ker Z for all regular supply rates.

Finally, proposition 4.4 implies V D ker V.
Combining these simple facts, we have
TMMfCACV=N=8=kerV forall s(w,z) almost regular, and
IMcAcV=kerZ=S8=kerV forall s(w,z) regular.
hence z(-) — S has been showed.

Now, ay (|z]s) < V(z) < ay(|z|s) implies that there exists a ¢y > 0 such that the preimage
V1([0, ]) is compact for all 0 < ¢ < ¢, hence all such undisturbed trajectories with initial
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point V(zg) < V(cp) are contained in the preimages V ~1([0, V (x)]) for all £ € IRT. Since
clearly limg, ,s V~1([0,V (z0)]) = S, stability of the set S is proven. In case that V is
proper, the same argumentation shows global stability of S. Together with attraction of
S locally or globally asymptotic stability follows.

Assume furthermore that S consists only of one single trajectory of the undisturbed sys-
tem (3). Then the largest invariant set contained in S equals S itself, and A = S follows.
Since the positive limit set of an autonomous system is invariant, we have I't = A = S,
and the result follows as stated. O

4.13 Remark The existence of two K functions ay,, @y satisfying ay (|z|s) < V(z) <
ay(|z|s) implies that the preimage V ~1([0,¢c]) is compact for many c € IR. It follows that
lemma 3.25 or corollary 3.26 can be applied without difficulties to prove boundedness of
State trajectories.

In fact, the existence of two such K functions satisfying ay (|z|s) < V(z) < @y (|z|s) is
often a simple consequence of the structure of the system at hand. We have the following
generalization of a result on positive definiteness of C'! storage functions due to Hill and
Moylan [HMT76]. See also Theorem 1 in the paper [Hil92].

4.14 Definition Any lower semicontinuous and locally bounded function V : IR" — IR
is called positive S-definite with respect to a compact set S C R if there exist two K
functions ay,, @y such that

ay (|z]s) < V(z) <av(|zls)

for all z € R. It is called proper if V(z) — oo for all z — OR.

The usual definition of positive definiteness does not imply V(z) = 0 for all z € S. How-
ever, it is convenient to include this specification, since all storage functions are majorized
by the required supply, which by definition satisfies Vr(z) = 0 for all x € S in case
that S is a suitable compact subset of points of minimal storage, namely in case that
S = ker Vg C X,. Also, the existence of an upper bound @y € K follows from local
boundedness of Vg on R.

4.15 Lemma Assume that S C R is a compact set, and that the uncontrolled system (4)
is dissipative.

1. If the uncontrolled system (4) is S-detectable and the supply rate is regular, then all
points of minimal storage z, ¢ S are connected to S by a trajectory x(-) subject to
w(-) = 0 which consists solely of points of minimal storage.

2. If the performance function satisfies az(|z|s) < |Z(z)|, azy € K and the supply rate
is regular, all l.s.c storage functions satisfy ay (|z|s) < V(z) for some K function ay, .
If in addition Z : R — IRP is proper and s(w, z) is strictly regular, all l.s.c storage
functions are proper.
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3. All 1s.c storage functions satisfying the strict HJI (36) satisfy ay (|z|s) < V(x) for
some K function ay,. If in addition —H*(z, %—‘;(x)) is proper, all such ls.c storage

functions are proper.

4. If in addition § = X, properties 2 and 3 imply that all such storage functions are
positive S-definite.

Proof: To show property 1, take any point of minimal storage xz, € R\S. Then the
trajectory z(-) subject to w(-) = 0 with initial point zy = z, converges to S as t — oo by
S-detectability, hence it suffices to show that V(z(t)) = 0 for all ¢ € R". By regularity
of the supply rate, and by dissipation of the system we have V(z(t)) — V(z,) < 0, and
property 1 follows immediately.

To show property 2, that is, positive definiteness with respect to S we use the available
storage V4. By theorem 3.6 we have

V (20) ZVA(xo)zsup/o —s(w(t),z(t))dtz/o (0, 2(t)) dt

w, T
where the last inequality follows from the sup condition.

Now, to prove the result of property 2 assume that zo € R\S and z(t) = 0 for all ¢ € RT.
This contradicts the assumption on the performance kernel. It follows that z(¢) # 0 on a
set of measure larger than zero for all initial conditions zg € R\S, hence with the regularity
of the supply rate we have

T
V(o) 2/0 —s(0,2(8)) dt > 0 .

Property 2 implies that z(-) — S, and moreover, the function V(t) = V(z(¢)) is by
regularity of the supply rate strictly decreasing on R\S (along the trajectories of the
undisturbed system & = X (z,0)). It follows that the set of points of minimal storage z.
satisfies X, C S§. Hence, the above inequality shows that there exists a K function oy,
satisfying ay,(|z|s) < V(z). In fact, the function defined by

ay(r) = inf V(z)

|lz|s=r
does the job.

We need to show properness of storage functions in property 2. Strict regularity of the
supply rate together with positive definiteness and properness of the performance function
implies that —s(0, Z(z)) is proper. Now V(zg) > fOT —5(0,2(t)) dt for all T € R™ implies
that V is proper.

To prove property 3 , assume that zg € R\S. Then the strict HJI (36) implies that

V(zr) — V(zo) S/O s(w(t), 2(1)) — an(lz(t)ls) dt
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and since V satisfies the common HJI (13), it follows that V' > 0, hence

T
0 <V(zr) < V(zg) +/0 s(w(t), z(t)) — an(|z(t)|s) dt -

Since this inequality is true for all motions starting in zg, all w(-) and all T' > 0 this implies

T
V(o) = Sup/ an(lz(t)ls) — s(w(t), z(t)) dt
w(-),TJ0

T

T
> [ anlettlls) = sz de > [ an(le(vls)dt

where the last inequality follows by almost regularity of the supply rate. Again, property 3
implies that z(-) — S and that X, C S. The existence of a K function ay satisfying
ay(|z|s) < V(z) follows immediately. Clearly, properness of —H*(z, ‘Z—Z) implies proper-

ness of V: We have for all %—‘; € oV
9V X (z,0) — 50, Z(z)) < H*(z,2Y) - —oc0 forall z — IR ,

and by almost regularity of the supply rate —s(0, Z(z)) > 0 is known, hence %—ZX (z,0) —
—oo for all £ — OR. The properness of all V satisfying the strict HJI (36) follows imme-
diately.

The positive S-definiteness in property 4 follows from the fact that (by theorems 3.12
and 3.6, and proposition 4.4) X, = kerVy = kerV = ker Vg = S, hence Vg is zero on
S, and therefore there exists by continuity and local boundedness of V with 0 < V4 <
V < Vg < o0 on R aK function ay satisfying V(z) < ay(|z|s). Finally, if V4 satisfies
properties 2 and/or 3, then ker V4 C S, and therefore there exists - again by continuity of
V - a K function ay satisfying ay (|z|s) < V(z). ]

Lemma 4.15 is very useful in connection with the corollaries 4.9, 4.10 and 4.11, since it
implies the compactness of the preimage V1(]0,c]) for a wide range of ¢, or even for all
¢ € R. Hence, lemma 3.25 or corollary 3.26 can be applied to prove boundedness of state
trajectories. In particular, the condition ay (|z|s) < V(z) < @y (|z|s) of proposition 4.12
is not needed if § = X, since then it is a consequence of the two other imposed conditions.

5 Robustness with respect to non-zero disturbances

The standard H, theory is useful for robustness properties with respect to unstructured
modelling errors. We show that dissipative systems are often also robust with respect
to disturbances. This is a major benefit from an applied point of view, and sufficient
conditions for disturbance robust stability are given, as well as estimates of the maximal
allowable envelope of performance and the maximal allowable L., norm of the disturbance.
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5.1 Set-stability with vanishing disturbances

Let us in the following investigate the qualitative behavior of disturbed systems of the
form & = X (z,w) subject to [,1200 disturbances which are bounded, piecewise continuous in
time, and converging to zero, that is |w(t)| — 0 as ¢ — co. We are inclined to believe that
all bounded trajectories z(-) generated in this way have nonempty and compact positive
limit sets 't which are matching the positive limit sets ') belonging to the bounded
trajectories zoo(-) of the autonomous system & = X (z,0). Unfortunately, this assert is
not quite accurate. A more sophisticated approach than intuition is needed to understand
the qualitative behavior of time varying systems which approach autonomous systems as
t — 0o. We seek inspiration in the work of L. Markus [Mar56] and Yoshizawa [Yos66, chap.
3] to generalize their results to a broader class of positive limit sets than stable equilibria.
Furthermore, we allow for piecewise continuity in the time variable to accommodate the
previous mentioned class of systems with piecewise continuous disturbance signals.

5.1 Definition (Asymptotically autonomous system) Let ¥ : ¢ = X (z,t) and X :
# = Xoo(z) be continuous and locally Lipschitz in x for all fixed t € IRT, and piecewise
continuous in t for all fixed x € IR®. We say that X is asymptotic to X, denoted
X (z,t) = Xoo(x), in case for each compact P C IR® and each € > 0 there is a T(P,¢) €
IR™ such that

(X (2,1) — Xoo(z)| <€

for all z € P and all t > T(P,¢).

It is easy to tell when disturbed systems of the form (2) are asymptotically autonomous
systems.

5.2 Proposition Given a disturbed system of the form (2), assume that the disturbance
w(-) € LY¢ is bounded, piecewise continuous, and decreasing to zero, that is satisfying
|w(t)] — 0 ast — oco. Then the system & = X (z,w) is asymptotic to & = X (z,0).

Proof: Clearly X (z) = X(z,0) is continuous and locally Lipschitz by the same prop-
erties of X (z,w). On any compact set P € IR" there is a §(P,¢) such that | X (z,w) —
X(z,0)| < e for |lw| < ¢ (again by continuity of X (z,w)). Finally, by convergence of the
disturbance there is a suitable T'(P,e) = T'(P, 6(P, ¢)) satisfying | X (z,w(t)) — X (z,0)| < ¢
fort > T. |

It seems reasonably to assume that the trajectories of the time variant and asymptotically
autonomous system behave similar as the trajectories of the autonomous system as time
goes to infinity. L. Markus [Mar56| states that the positive limit set I't of a trajectory of
the asymptotically autonomous system ¥ (also called the perturbed system) consists of a
union of autonomous trajectories, and this result is repeated by Yoshizawa [Yos66, chap.
3]. More formally we have the following theorem:

5.3 Theorem [Mar56, Cro98a] Let the system @ = X (z,t) be asymptotic to & = X (z),
and denote their trajectories x(-) and x(-) respectively. Then all x(-) which are bounded
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have a non-empty and compact limit set 't consisting of a union of bounded autonomous
trajectories T (-), defined in past and future.

Proof: See [Mar56| for a very short proof, and [Cro98a| for a detailed proof. |

Even if the components of the positive limit set I'"™ are not necessarily positive limit sets of
the autonomous system, there are some connections between them. The following theorem
is a generalization of some results obtained by L. Markus [Mar56|.

5.4 Theorem [Cro98a] Let the system © = X (z,t) be asymptotic to & = X (z), and
denote their trajectories z(-) and x(-) respectively. Let @ C IR™ be a compact set. Let
AZ denote the basin of attraction of some asymptotically stable, compact and invariant
set S of the autonomous system Yo, and assume that the proper inclusions § C Q C AL

hold.

Then any trajectory z(-) which enters € in some finite time Ty, and stays in Q for all times
t > Ty, approaches S as t — oo.

Proof: See [Cro98a] for a detailed proof. O

The proof of theorem 5.4 is based on asymptotic stability of some invariant set S C R",
and it shows that the positive limit set of any perturbed trajectory bounded in {2 satisfies
't C S. Tt is interesting to investigate the situation where S consists of one autonomous
limit set T'Z, only, that is, S consists only of one single trajectory z(-) subject to w(-) = 0,
which is bounded in past and future. Clearly, we have I't C T'L..

5.5 Corollary [Cro98a| Assume that the invariant set S in theorem 5.4 consists of one
autonomous limit set I'Y only, then the equality I'" = T'Z holds.

Proof: See [Cro98a| for a detailed proof. O

At this point we are able to investigate the attraction of invariant sets of dissipative systems
also for state trajectories generated by decaying disturbances. Dissipation of the system
is handled by theorem 4.5. Then, any simple combination of former results concerning
the boundedness of state trajectories such as lemma 3.25 or corollary 3.26 with corollar-
ies 4.9, 4.10 or 4.11 concerning the asymptotic behavior of undisturbed motions together
with proposition 5.2 and any of theorem 5.4 or corollary 5.5 gives results on asymptotic
properties of trajectories subject to decaying disturbances. In particular we want to stress
the following combination:

5.6 Proposition (decaying disturbances) Assume that theorem 4.5 is satisfied using
the strict HJI (36) and a regular supply rate, and that there exists a compact set S C R,
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four functions of class K, denoted oy, @y, an, and ay,, and a continuous and locally
Lipschitz viscosity solution V such that

ay(|zls) < V(z) <av(zls) , H'(z, %) < —anllels) , and az(jz|s) <|Z(z)|
Then the set N =V =kerV = ker Z = 8 is asymptotically stable under the dynamics of
the undisturbed system & = X (z,0).

Let © be any compact set (performance envelope) such that the proper inclusions S C 2 C
A% hold, where AZ, is the basin of attraction of S. Consider all disturbance w(-) € LX°
which are bounded, piecewise continuous, and satisfying |w(t)| — 0 as t — oo.

Then any trajectory generated by such decaying disturbances which is bounded in future
in Q satisfies z(t) - S as t — oo.

Proof: Direct consequence of propositions 4.12 and 5.2, and theorem 5.4. O

According to remark 4.13 we can use lemma 3.25 or corollary 3.26 to prove boundedness
of state trajectories in the compact preimage Q = V~1([0, c]) for many c € IR.

5.7 Example: Nonlinear oscillator, continued
The planar system (25) has the compact invariant set

S={zeR’|r=1}

which is asymptotically stable for all trajectories with zg € R, subject to w(-) = 0. The
performance measure is satisfying az(|z|s) = |Z(z)|, where clearly az(|z|s) = |z|s € K.
We showed that the system is dissipative with respect to the strictly regular Hso supply
rate s(w, z) = y2|w|? — |z|? for all y > 1.

It is not hard to prove that the PDI

HY = (127 — 4) s + (2 - 1))2 C (1= L)rt(r2 — 4)2 (dg;g))Q < —(1—L)(r2—1)2

can be satisfied on 0 < r < 2. It follows that there is a solution to the strict HJI H* < —ap
for all v > 1, where ay(|z|s) = (1 — 7—12)|x|48 € K. It follows from lemma 4.15 that there
exists storage functions which are positive S-definite, but not necessarily proper, continu-
ous or smooth. Indeed, the smooth, positive S-definite and proper storage function (28)
satisfies the strict HJI H* < —ay for all v > 1.

By properness of V, any trajectory with initial point zy € R, driven by any disturbance
with finite L9 norm, is bounded in some compact set 2 C R. Since the basin of attraction
of & for all undisturbed motions equals AX = R, it follows by proposition 5.6 that all z(-)
with initial point 2y € R approaches § as t — oo if it is driven by piecewise continuous
disturbances with finite £9 norm satisfying in addition w(t) — 0 as t — oo. *
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5.2 On differentiability of storage functions

As we have seen in the previous sections, storage functions have certain regularity prop-
erties. More precisely, the existence of a viscosity solution to the HJI (13) is equivalent
to the dissipation of the system of concern, and the associated storage functions are lower
semicontinuous without loss of generality (see theorems 3.4 and 3.15). In case that def-
inition 3.22 holds, that is, the system has the property of locally bounded excitation,
proposition 3.23 assures the continuity of all existing storage functions.

On the other hand, there are many situations in applications and in system theoretic
considerations where an higher degree of regularity is essential. For example, in Ho
control it is desirable to use a continuous control feedback which implies that the associated
storage function must be continuously differentiable on R. In case that we want to combine
dissipative control with other design approaches such as backstepping or state feedback
linearization we must consider CP, p > 1, storage functions. Also numerical methods used
to approximate solutions of the HJI (13) may require higher regularity than viscosity or
continuity: higher order FEM solvers need the existence of CP, p > 1, solutions, and the
use of efficient spectral methods with faster-than-polynomial convergence is not applicable
if no C* (smooth) solutions exist. We conclude that it is important to investigate the
existence of solutions of higher regularity than continuity.

In the following we recall an important property of nonlinear systems known as input-
to-state stability, first developed by E. D. Sontag [Son89a, Son89b| for systems with one
equilibrium point (see also the survey [Son95c|), and later generalized by Yuandan Lin
[Lin92] for stability with respect to closed, but not necessarily bounded, positive invariant
sets. This property will in the next section be the cornerstone of the theory of dissipative
control with semi-global set-stability. For more information on the ISS property see also
[SW94, SW95b, SW95a, SWI6].

To avoid unnecessary complications, we assume for the rest of this section that the reach-
able set R equals IR® (These complications arise in defining Ko, functions on bounded
R C IR", see appendix A). Assume that the disturbed system

z=X(z,w) , (37)

has a positive invariant and compact set S subject to w(-) = 0, and suppose that S is
a global attractor for all trajectories generated by zero disturbances. In the following we
are considering disturbances which are locally essentially bounded, that is, w(-) € L£X2°
is assumed. This implies trivially w(-) € £X°. We are interested to know if trajectories
generated by nonzero disturbances have the converging-input-converging-state property

w(t) >0 = z(t) > S for t > 00 ,
or the bounded-input-bounded-state property
w(t) bounded = =z(t) near S for all t € R

Both properties are satisfied for linear systems which are asymptotically stable subject to
w(-) = 0, where § = {0}, but they are not necessarily satisfied for nonlinear asymptotically
stable systems. We tie these properties together in the following definition, see appendix A
for the notion of &, K, and KL functions.
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5.8 Definition The system (37) is input-to-state-stable, shortly ISS, with respect to
a compact set S if there exists a function 8 € KL and a function o € K such that

|z(t, 20, w(-))|s < B(|zols, ) + o (|wlpo,g(+) o)

for all t € R™, where wljo r|(-) is the restriction of w(-) on [0, T)] satisfying w(t) = 0 for all
t>T.

It is immediately seen by causality that o(|w(-)|s) can be used in case that w(-) € L.

The ISS property implies several nice features: first of all, the set § must be positive in-
variant for all trajectories generated by zero disturbances, because for any initial condition
zo € S and w(-) = 0 we have |z(t, 2, w)|s < 0 for all ¢ € IRT.

Second, the bounded-input-bounded-state property follows for all initial points within a
neighborhood of S: For every initial point satisfying |zo|s < k it follows |z(t, zo,w)|s <
Bk, t) + o(Jwyo g (-)loo) < B(k,0) + o(|w(-)|oo) for all £ € IRT, independently of zo.

Third, a system which is ISS is also asymptotically stable with respect to S, subject to
w(-) = 0. To show this, take any initial condition and set w(-) = 0, then |z(¢, zp,0)|s <
B(|zo|s,0) shows that the state is bounded near S, and therefore is defined in the future,
and moreover, |z(t,z0,0)|s < B(|zo|s,t) — 0 as t — oo, which accounts for the asymptotic
stability of S.

Fourth, the converging-input-converging-state property is easily deducted by contradiction:
Given any time sequence {¢;} with ¢; — oo and any decaying disturbance with w; =
lwl; 00 ()l — 0, We assume that there exists an € > 0 such that |z(-)|s > € for all ¢;.
But then there exists a time ¢; € R" such that o(w;) < $, and by the ISS property the set
given by |z(-)|s < § is approached for ¢ — oo, thus contradicting the existence of such an
€>0.

The definition of ISS is as such not easily handled in the context of dissipative systems.
However, it has been shown that the ISS property has an equivalent formulation in terms
of a certain Lyapunov like inequality which can be used to deduce the set-stability of
disturbance free trajectories. We need the following definition.

5.9 Definition Any continuous function V : R" — IR is called ISS-Lyapunov function
with respect to a compact set S if it is positive S-definite and proper, that is, if there
exist two K, functions ay,, @y such that

ay (|zls) < V(z) <av(lzls) (38)

and if there exists some functions o, € Ko and «n, € K such that V satisfies the ISS
partial differential inequality, shortly named ISS-PDI,

W (2)X (z,w) < aw(|w]) — ag(|z]s) (39)

in the weak sense on R, for all w € IR’

The ingenious work of Lin, Sontag and Wang has shown many equivalent formulation of
the ISS property in terms of ISS-Lyapunov functions and various decay estimates. They
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define that a continuous ISS-Lyapunov function is any continuous positive S-definite and
proper function V : R™ — IR which satisfies the ISS-integral inequality

T
V(zr) = V(zo) < /O a([w(?)]) — ez (|z(t)|s) dt (40)

for all w(-) € L£° and all T > 0, and some a,, € K and o, € K. However, since by
theorem 3.15 any viscosity solution V' to (39) also satisfies (40), and conversely, we use (39)
to define continuous ISS-Lyapunov functions. We want to emphasize the connections
between continuous and smooth - that is C* - ISS-Lyapunov functions.

5.10 Proposition [Lin92, Son95c, SW94, SW95b, SW96] Any of the three following state-

ments are equivalent:

1. The system (37) is ISS with respect to a compact set S.
2. The system (37) admits a continuous ISS-Lyapunov function.

3. The system (37) admits a smooth (C*°) ISS-Lyapunov function.

The existence of a smooth ISS-Lyapunov function is hard to prove, it is based on an
partition of the unity argument first proved by Lin, Sontag and Wang [LSW96]. We want
at this point stress that the existence of a continuous ISS-Lyapunov function V satisfying
the ISS-PDI (39) does not imply, that there is a smooth ISS-Lyapunov function V satisfying
the ISS-PDI (39) with the same set of K comparison functions as the continuous V. It
becomes clear implicitly in the proofs of the papers [SW94, SW95b] that there only exists
a smooth ISS-Lyapunov V satisfying

4y = O (1) X (z,w) < aw(jw]) — Gz(jz]s) and

ay(lzls) < V(z) <ay(|z|s)
on R™, where the K functions ay,, ay and @, are such that
ay<ay , ay>ay and G <oy .
The ISS property is interesting not only from a system theoretic point of view; it will help
to construct useful performance envelopes and stability properties in the following sections.

It is easily seen that dissipative systems which satisfy the conditions of corollary 4.10 or
corollary 4.11 have the ISS property.

5.11 Lemma Given a system with a supply rate satisfying s(w,z) < ay,(|w|) for all z,
where a,, € K, assume that there exists a positive S-definite, proper and continuous
viscosity solution to the strict HJI (36), where «, and ay are functions of class K. Then
there exists a smooth ISS-Lyapunov function satisfying the ISS-PDI

dy = W ()X (z,w) < ay(lw|) — an(|z|s)

in the classical sense, with ay > apy € K.

We see that the condition on the supply rate is satisfied for all strictly regular supply rates.
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Proof: By the strict HJI (36) and the definition of the Hamiltonian (12) it follows that
%V = %—‘;(x)X(:B,w) < s(w,z) —an(|z|s) ,

hence %—‘;X < @ — ay is satisfied for all w € IR! and all z € IR". Therefore, the stor-
age function V is a ISS-Lyapunov function, and the existence of a smooth ISS-Lyapunov
function is a consequence of proposition 5.10. O

5.12 Lemma Given a system with strictly regular supply rate s(w, z) = oy, (|w|) —a,(]z])
and a performance function satisfying a,(|z|s) < |Z(z)|, where ay,, o, and a, are func-
tions of class Ko, assume that there exists a positive S-definite, proper and continuous
solution to the HJI (13). Then there exists a smooth ISS-Lyapunov function satisfying the
ISS-PDI

with az(|z|s) < (ay o az)(|z|s), where ay € K.

Proof: By the strict HJI (36) and the definition of the Hamiltonian (12) it follows that
&V = G @)X (2,w) < aw(ul) - ax(l2])

is satisfied for all bounded w € IR! and all z € R". Now, ay(|z|s) < |Z(x)| implies (a, o
az)(|z|s) < a(|Z(x)|) = ay(|z|), hence %—‘;X < @y — ay. Therefore, the storage function
V' is a ISS-Lyapunov function, and the existence of a smooth ISS-Lyapunov function is a
consequence of proposition 5.10. d

It is very desirable to have a similar result as proposition 5.10 for storage functions to prove
that the existence of continuous storage functions implies the existence of smooth storage
functions. Unfortunately, the lemmas 5.11 and 5.12 can not in general be inverted to give
results on smoothness of storage functions given smoothness of ISS-Lyapunov functions.
We have only the following partial result:

5.13 Corollary (smooth storage functions) Given a system with strictly proper supply
rate s(w, z) = ay(|w|) — a,(|z|), assume that all requirements of theorem 4.5 and proposi-
tion 4.4 are satisfied using the strict HJI (36), and that there exists a compact set S C R,
five functions of class K, denoted ay,, @y, an, @z, and az, and a continuous and locally
Lipschitz storage function V such that

ay(jzls) < V(z) <av(sls) , H(z, 5) < —en(lzls) , and
az(|zls) <|Z(z)] <az(|zls) -

Then there exists a smooth ISS-Lyapunov function 1% satisfying the ISS-PDI

4y — OV ()X (2, w) < o l|w]) — @5 (|2]s)
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where the inequalities

az(|zls) < (az 0 az)(|z]s) + an(lzls)
ay(|zls) < ay(lzls) and @y (|zls) < av(lzls)

hold. Assume furthermore that there exists a Ko, function ap satisfying
an(|z]s) < (az 0 az)(|zls) — (az o@z)(|zls) + an(|zls) ,

then the smooth ISS-Lyapunov function V is a smooth storage function satisfying the HJI

H*(z, %) < —an(jls) , and ay(els) < V(z) <av(|zls)

Proof: The existence of a smooth ISS-Lyapunov function as stated follows from lem-
mas 5.11 and 5.12. Then, aj € K« and af < a,0a, —a,oaz + ay directly implies that
Qy — gy < @y — @, — ay, hence the HJT H*(z, %—Z) < —ap is satisfied. O

We see that it may be difficult to prove the existence of a Ky function satisfying ap <
oz 0Qy; — a, 00z + ay, the problems are hidden in the performance function satisfying
only ay(|z|s) < |Z(z)| < az(|z|s). In case that a, = @z we are able to formulate the
desired smooth inverse storage function proposition.

5.14 Proposition Given a system with strictly proper supply rate s(w,z) = au,(|w|) —
a,(|2]), a compact set S C R, and a performance function satisfying |Z(z)| = az(|z|s),
where az is any C* function of class K. Then any of the three following statements are
equivalent:

1. The system (4) is dissipative and ISS with respect to S.

2. The system (4) admits a continuous ISS-Lyapunov function which is also a positive
S-definite and proper viscosity solution to the strict HJI (36).

3. The system (4) admits a smooth ISS-Lyapunov function which is also a positive
S-definite and proper storage function satisfying the strict HJI (36) in the classic
sense.

Proof: Since |Z(z)| = az(|z|s) it follows directly that the HJT (36) and the ISS-PDI (39)
are one and the same if we choose a, = a, o az + ay. Then proposition 5.10 combined
with corollary 5.13 gives the result as stated. O

Notice again that the set of comparison functions associated to the continuous storage
function V is related to the set of comparison functions associated to the smooth V. In
fact, there holds ay < ay, ay > ay and ap < ay.

It is not at all clear at the moment if the condition |Z(z)] = az(|z|s) is a necessary
condition for proposition 5.14 to hold. Also the question whether the continuity of storage
functions can be relaxed to lower semicontinuity or not is part of the author’s current
research.
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5.3 Performance envelopes and practical stability

As it has been pointed out in [SW94|, any system which is ISS with respect to a compact
set &, that is, satisfies definition 5.8, satisfies also an inequality of the form

(2, @0, w())]s < max{B(|zols, 1), 5 (|wljoz(-)oo)} (41)

for all t € R, where 8 = 28 € KL and & = 20 € K. Indeed, since 8 + o < max{ﬁ,&},
the result trivially holds. Hence, given a bounded disturbance |w(:)|e < ¢ € RT we can
define the set

{zerR ‘ lz|s < 20(c) }

which is clearly positive invariant by equation (41), and therefore is a performance envelope.

On the other hand, given a positive S-definite storage function V satisfying the ISS-
PDI (39), it has been showed [Son95¢c, SW96] that

lim sup |z (¢, zo, w(-))|s < o(|w(-)]|e) (42)
t—00
and even
lim sup |z(t, zo, w(+))|s < o(limsup |w(t)|) (43)
t—00 t—o0

holds for all w(-) € L& with
ozg;loavoafoaw . (44)

Moreover, given a positive S-definite storage function V satisfying a slightly stronger PDI
than the ISS-PDI (39), also the K function o of definition 5.8 can be chosen as defined in
equation (44) [Son95c|. In light of equation (42) it seems reasonable to believe that also
the smaller set

{zeRrR ‘ lz|s < olc) }

is positive invariant for all z(-) generated by bounded disturbances |w(:)|c < ¢ € RT.
Unfortunately, this is not true, as we will see during the course of proving the following
theorem.

Nevertheless, it is possible to refine the properties hidden in equations (41), (42) and (43)
to stronger results: given a continuous ISS-Lyapunov functions satisfying exzactly the same
ISS-PDI (39), the K function o of definition 5.8 can be chosen as defined in equation (44).
Also, the max-bound (41) can be achieved with ¢ = 0. These refinements of the results
mentioned in [Son95c, SW94, SW95b, SW95a, SW9I6| give immediately the performance
envelope and practical stability results needed.

For convenience, we define a set of disturbances, denoted W,, by

We = {w(-) € Lo | [0(-)|oo <} , ¢>0 . (45)
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5.15 Theorem (Performance envelope and practical stability) Given
a continuous (and positive S-definite and proper) ISS-Lyapunov function V satisfying the
ISS-PDI (39), the following properties hold with the K function o defined by equation (44):

1. There is a KL function j satisfying the ISS-property (where w(-) € £1¢)
|z(t, 0, w(-))|s < Bllzols, t) + o(wlo()]e0) -

2. There is a KL function 8 such that for all z(-) generated by w(-) € L9 there holds

0.4 ()o)} -

|‘T(t7 Zo, w()) |3 < ma’X{B("TO'Sa t)a O'("’U)
3. The level set 2 C R defined by
Q={zeR|V(z)<(@vooaz'om)(c)}

is globally asymptotically W,-stable and positive W,-invariant, hence a performance
envelope. That is, ) is globally asymptotically stable and positive invariant for all
z(+) generated by w(-) € Lo satistying |w(-)|e < c.

4. If w(+) € Loo, then the set Bo, C R defined by
Bo={zeR||zls <olcx) } (46)
is a global attractor for all z(-) generated by w(-) satisfying lim sup,_, ., |w(t)| < ¢xo-
Before we prove theorem 5.15, we need an auxiliary result which is interesting on its

own, since it gives the sharpest known bounds on positive W,-invariant sets and global
attractors.

5.16 Lemma Given a continuous (and positive S-definite and proper) ISS-Lyapunov func-
tion V satisfying the ISS-PDI (39), the level set Q) defined in theorem 5.15 is positive
W,-invariant, and ) is globally asymptotically stable for all z(-) generated by w(-) € W,.

Moreover, the level set
Qo ={zeR|V(z) < (@yooa,oay)(cx) }

is a global attractor for all z(-) generated by w(:) € Lo satisfying limsup,_, ., |w(t)| < ¢s.

Proof: Let x(k) = a,(kaw(c)), k > 0, then |z|s > x(k) implies az(|z|s) > kaw(|w])
for all |w| < ¢. Hence, with any k£ > 1 we have

aw(Jw]) — az(lzls) < (5 — Deaa(lz]s) < 0

for all z, w satisfying |w| < ¢ and |z|s > x(k). By theorem 3.15 any lower semicontinuous
function V satisfying (39) also satisfies (40). It follows that all trajectories generated by
w(-) € W, satisfy V(zp) < V(z) for all T > 0 if evolving in R\B,,, where

B,={zeR]|lz|s < x(k)}
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Define now the family of level sets
Q={zeR|V()<(@ox)(k)} ,

then ©Q C Q for all £ > 1.

Clearly B, C Q: by assumption V(z) < @y (|z|s), hence (@' o V)(z) < |z|s. It follows
trivially that any z satisfying |z|s < x(k) also satisfies V(z) < (ay o x) (k).

Consequently, all trajectories generated by w(-) € W, satisfy V(zr) < V(zo) for all T > 0
such that x| 7((-) evolves in R\(, hence €l is a global attractor and a positive W,-
invariant set for all k¥ > 1. By continuity it follows that 2 is a global attractor and a
positive We-invariant set. We notice that the following properties hold:

Qk1CQk2 forall 1<k <kq s

lim Q; =Q , and
k—1

lim Q =R" .

k—o0
By positive W,-invariance of each €2, k > 1, it is easily deduced that each Q, & > 1,
is globally W,-stable. It follows that each Qf, k& > 1, and in particular €2, is globally
asymptotically W,-stable.

Finally, we prove that Q4 is a global attractor for all z(-) generated by w(-) € L satisfying
limsup,_, o, |w(t)| < coo : all such z(+) are bounded in V~=1([0, (@y ca; ! oay,)(c)]) for some
¢ > 0, and are therefore defined in future. Take ¢y = limsup,_, ., |w(t)| and any sequence
of times ¢; — oo, then the sequence defined by ¢; = supye[y, 4,1 [w(?)| satisfies coo < ¢; <
and ¢; = coo as ¢ — o0o. Since the flow of the system has the semigroup property (by
causality), the behavior of z(-) with starting point zy for ¢ — oo is given by the behavior
of z(+) with starting point z; = z(t;). It follows that the sets

Q={zeR|V(z)<(@oa; oay)(c)}
are global attractors, and by continuity of the trajectory also Qs = lim; 4 €2; is a global

attractor. Notice however, that asymptotical stability can not be proven. O

The original proof printed in [SW94] used x(k = 3) = az '(5aw(c)) throughout the entire

argumentation. Therefore, it was only possible to prove that €, _1 is a global attractor
2

and a positive invariant set. The continuity argument showing that also 2 = limy_,1 ) is

a global attractor and a positive invariant set was not used there.

Proof of theorem 5.15: In the following we explicitly denote the dependence of the
above defined sets on the constant ¢ > 0, that is, we define the balls

Bc)=B;_1={zeR||zg|ls<x(k=1,¢)} , Blc)={z€R||z|s <0o(c)}
and the level sets

Qec)={zeR|V(z)<(@vox)(k=10)}
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These sets satisfy B(c) C Q(c) C B(c) for all ¢ > 0. Tt follows from lemma 5.16 that Q(¢) is
positive W-invariant, and the sets (¢) and B(¢) are global attractors for all z(-) subject
to w(-) € W, in case that ¢ > ¢. By causality any point z(t), 0 < ¢ < T of a trajectory z(-)
generated by some w(-) € L1 satisfying |lwljo,r(-) oo < ¢ is bounded in (c) if 0 <c <e.
Hence o € B(¢) implies z(t) € B(¢) for all trajectories subject to |wljor (e < e <€
and all 0 < ¢ < T. Tt follows that z(-) subject to |w|j,71(-)[lcc < ¢ can be bounded in two
ways:

2(t)s < (ay o) (|zols) forall0<t<T if 5o € R\B(c)

2(t)]s < o(c) forall0<t<T ifsmeQc)oBe) . )

Notice that (ay o@;')(|zo|s) < o(c) for all zg € B(c), hence z(-) subject to lwlio,r (oo <
¢ is bounded by

|z(t)|s < max{(ay oa')(|zols),a(c)} forall 0<¢t<T .

It follows that all z(-) subject to w(-) € L1 are defined in future and satisfy z(-) € £,
and moreover, that z(-) subject to w(-) € L are defined in future and satisfy z(-) € L.
Also, w(t) — 0 implies z(¢) — S by lemma 5.16.

From now on, we follow the proof of the similar, but slightly weaker lemma 2.10 in [SW94]
to conclude that a suitable XL function 8 exists: by the proof of lemma 5.16 it follows
that V satisfies the PDI

4V (1) < — (0w om7 )V (a())

weakly on R\€(c), hence by a standard comparison principle [LSW96] there exists some
KL function 8 such that

|z(t)|s < B(|zols,t) forall 0<t<T, , (48)

where T, < oo is the time where z(-) enters the set B(c).

Hence, combining inequalities (47) and (48) shows that the max-bound

|z(t, 20, w(:))|s < max{B(|zols,t), o (|wlpo,g(-)|o)}

is satisfied for all z(-) generated by w(-) € £ with o as defined in equation (44). The
ISS-property follows trivially.

The positive W,-invariantness and global asymptotically W,.-stability of 2 has been proved
in lemma 5.16.

Finally, Bso D Qs is a global attractor by lemma 5.16. O

Even in the case that smooth storage functions do not exists, we are able to exploit the
performance envelopes and practical stability results of theorem 5.15 in the context of
dissipative systems by using lemma 5.11 or lemma 5.12 partially to show that a contin-
uous storage function V is a ISS-Lyapunov function. We want to stress the following
combination:
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5.17 Proposition (performance envelope and practical stability) Given a system
with strictly proper supply rate s(w, z) = ay,(|w|) — a,(|z|), assume that all requirements
of theorem 4.5 are satisfied using the strict HJI (36), and that there exists a compact set
S C R, five functions of class K, denoted ay,, @y, an, az, and oz, and a continuous
storage function (viscosity solution) V' such that

ay(lzls) < V(z) <av(als) , H(z,5) < —an(lzls) , and
az(lzls) <|Z(z)] <az(lels) -

Then V is a continuous ISS-Lyapunov function satisfying the ISS-PDI
B (@)X (z,w) < o (Jwl) — ag(|zls)

weakly, where the K, function oy is defined by az(|z|s) = (a0 az)(|z|s) + an(|z|s).

Moreover, the level set Q2 C R defined by
Q={zeR|V(z) < (@vooy'oay)(c)}

is positive W,-invariant, hence a performance envelope; and it is globally asymptotically
W,-stable. The set Boo C R defined by

Boo ={z€R | |2]s < 0lceo) }

is a global attractor for all z(-) generated by w(-) € Lo satisfying limsup,_, ., |w(t)| < ¢x-

Proof: Combination of theorem 5.15 and corollary 5.13 O

5.18 Erample: Nonlinear oscillator, continued

We saw in example 5.7 that the nonlinear oscillator described by the equations (25) satisfies
the bounds az(|z|s) = |Z(z)|, where az(|z|s) = |z|s € K, and that there exists a solution
to the strict HJI H* < —ay for all vy > 1, where ay(|z|s) = (1 — 7%)|x\§ € K. Even if the
requirements of corollary 5.13 or proposition 5.14 are not satisfied since the comparison
functions are not of class Ko, there exists a smooth, positive S-definite and proper storage
function (28) satisfying the strict HJI H* < —ay for all v > 1.

Therefore it seems reasonable to conjecture that the existence of smooth storage functions
may be implied by the existence of suitable K comparison functions ay and a, (which by
lemma 4.15 imply the existence of suitable K comparison functions ay, and @y ).

By properness of the storage function (28) the findings of proposition 5.17 are partially
satisfied. For all disturbances with L, bound ¢ small enough there holds a,(c) <
maxo<,<2 0z (), hence there exists a € > 0 such that the set € is positive W,-invariant for
all 0 < ¢ < e. Then the set By is still an attractor for all motions generated by w(-) € W,
satisfying lim sup;_, o |w(t)| < oo, where 0 < ¢oo < ¢ < €. *
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6 Classes of dissipative problems

In order to get some structure on the vast complexity of interlinked theorems, lemmas
and corollaries developed in the previous sections it is convenient to identify four different
classes of dissipative problems. These classes are identified by the structure of the HJI to
be solved and the data given; class 2 is a superset of class 1, class 3 a superset of class 2
and 1, and so forth. The first row of table 6 defines the key properties of a class, the second
shows the main results stated in this paper, and the third row lists additional properties
of the classes.

Class 1 contains dissipative problems which satisfy the HJI (13) in the weak sense. More-
over, assumption 3.11 is met. This is the class of dissipative problems extensively discussed
in the literature [Wil72a, Jam93a|, often together with the S-detectability assumption
[HM80b, Hil92|, or the zero-detectability assumption for systems with a single equilib-
rium point [HM76, HM80a], or, finally, in the context of nonlinear Ho, control of systems
[Isi92, TA92b, TA92a, vdS92a, BHW93, Jam93b, BH96, IK95, CMPP97, CS97]. Mostly,
assumption 3.11 is trivially met since systems which are global reachable from an equi-
librium point or a single point of minimal storage are considered. The storage functions
considered here are often assumed to be continuous or C', even if the property of locally
bounded excitation often not will be satisfied in practical applications. In this class the
existence of lower semicontinuous storage functions can be guaranteed together with some
weak asymptotic properties of the states subject to zero disturbances. The rate of conver-
gence towards an equilibrium state can not be estimated. Positive definiteness of storage
functions can be obtained in case of S-detectability.

Class 2 counsists of systems which satisfy in addition the strict HJI (36), or which have
positive S-definite and proper performance measures. The work of [Mar56, Cro98a| can be
applied to show convergence of motions subject to w(-) € Lo, w(t) — 0 as t — oo towards
some compact set S. Hence, the stability of the system is robust with respect to non-zero,
but decaying disturbances. Often the storage function can be proved to be positive S-
definite and proper, which implies that powerful performance envelopes can be explicitly
stated. State trajectories can thus be bounded in compact subsets of the Euclidean space.

Class 3 encloses systems of classes 1 and 2 which have positive S-definite and proper
performance measures and where a solution to the strict HJI (36) can be found. Based
on the work [Son89a, Son89b, Lin92, Son95c, SW95b, SWI6]| it is possible to show that
practical stability of trajectories subject to w(-) € L is given if the supply rate is strictly
regular. This is the widest concept of stability investigated in this paper, systems of class 3
are robustly stable with respect to non-zero, non-decaying, but bounded disturbances. The
associated storage functions are always positive S-definite and proper, hence performance
envelopes can be found.

Class 4 contains systems where the performance measure equals a function of class K.
Besides of the nice properties of class 3 problems, the existence of smooth storage functions
has been proved. It is the author’s belief that the existence of smooth storage functions
also can be proved for all class 3 problems, and class 4 is redundant. However, since this
assertion has not been proved yet, it seems appropriate to make a distinction between class
3 and class 4 problems.
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assumption 3.11

az(|zls) < |Z()]

Class 1 Class 2 Class 3 Class 4
H* < 0 weakly H* < —an(|z|s) H* < —an(|z|s) H* < —ay(|z|s)
and or and and

az(|zls) < |Z()]

az(|zls) = |Z(z)|
and

s(w, z) strictly reg-
ular

=

V satisfies dissipa-
tion inequ. (5)
T(t)w(y=0 = A,
ACVYVNONR

the. 3.15 the. 4.5

x(t)w(-):o —+SCA

cor. 4.10 cor. 4.11

=

V pos. S-def. and
proper

N =V =kerV =
kerZ DOADS

pro. 4.12 lem. 4.15

=
smooth V exists

pro. 5.14

+ locally bounded
excitation

=
all Ve C?
pro. 3.23

+ S-detectability
=

.’L‘(t)w(.):o —-SCA
cor. 4.9

+ regular s(w, z)
=

Wmax(z) = 0 on
It o C X

cor. 4.7

+ regular s(w, z)

+ S-detectability
=

trajectory of points
of minimal storage
lem. 4.15

+ z(-) bounded in
Q c AL for all
w() =0

=

z(-) = S for all
w() =0

pro. 5.6

+az(|zls) < 1Z(z)|
+ str. reg. s(w, z)
=

V positive S-de-
finite and proper,
performance en-
velopes

lem. 4.15 lem. 3.25

H* < —an(|z]s)

= V positive S-de-
finite and proper,
performance en-

velopes
lem. 4.15 lem. 3.25

+ s(w, z) strictly
regular

=

performance en-
velopes and practi-
cal stability for all
w() €W,

pro. 5.17

Table 1: Classes of dissipative problems
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Systems of the classes 2, 3 and 4 have not previously caught research interest in the commu-
nity of nonlinear dissipative or Ho control, and nonlinear o, control techniques based on
the knowledge of class 1 problems seems not to have large support among technicians and
engineers which face the problem of implementing these strategies in practical applications.

There are quite good reasons to avoid class 1 problems in applications: first of all, the
regularity of storage functions is often restricted to lower semicontinuity since the property
of locally bounded excitation is not naturally met (after all, real world plants are mostly
designed to minimize the influence of disturbances, and therefore it is avoided to make
them controllable from the terminals where disturbances act!).

Second, the HJI’s to be solved may be very close to Hamilton-Jacobi equalities, which
accounts for a great deal of trouble: solving PDI’s or PDE’s numerically implies that the
problem at hand is discretized to a system of ODI’s or ODE’s, for example by the use
of finite difference or finite volume schemes, finite element methods, Fourier- or spectral
methods. Since usual control problems have a state space of higher dimension than two
or three, the discretization must be rather coarse to allow computation in mortal time.
The approximation error between numerical approximation and true storage function will
therefore often lead to areas in state space where the HJI H* < 0 can not be guaranteed,
even not with equality. It follows that the feedback implemented on basis of the approx-
imated storage function may have very unpleasant destabilizing effects, and dissipation
may be violated.

Third, besides lacking robustness to modelling errors, there is no guaranteed robustness
margin for nonzero disturbances. Therefore, it is the author’s opinion that dissipative
problems of class 1 are only interesting from a system theoretical point of view.

On the other hand, systems of the classes 2, 3 and 4 have appealing robustness properties,
which make successful implementations and applications to real world system possible.
First of all, the existence of smooth storage functions can be shown in special cases of
class 3, and is given for all class 4 problems. The author expects that similar smoothness
results will be found in future for all class 3 problems, and other regularity results than
continuity by locally bounded excitation may be available for class 2 problems in a couple
of years. The seek of numerical approximations makes only sense in case that the existence
of solutions with better regularity than lower semicontinuity can be proved.

Second, the above described destabilization effect of numerical approximations to the true
storage function is less prone to take place when solutions to the strict HJI H* < ay are
found. In case that the approximation error on the gradient %—‘; is known, it is in principle
a simple matter to trace the influence of the errors through the Hamiltonian to decide
which K function ay must be selected to avoid destabilization effects.

Third, dissipative control problems of the classes 2, 3 and 4 give often easy access to
useful performance envelopes, and robustness results in relation to nonzero disturbances.
The practically oriented engineer is always faced with finite strength of the individual
components of a plant, and excessive stress has to be avoided by the choice of a suitable
performance envelope not to be exceeded. Also, robustness and practical stability in the
presence of nonzero disturbances will often be mandatory.
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Shortly, to make nonlinear dissipative and H, control techniques useful in practice, the
community of control researchers has to provide better regularity estimates for class 2 and
3 problems, more resources must be used to find numerical methods which are capable to
exploit the structure of nonlinear HJI (i.e first order problems of high state space dimension
involving only the gradient %—‘;, in case of affine Ho, control HJI’s which are quadratic in
%—‘;), and useful and tight approximation error bounds must be computed together with
the numerical solutions to strict HJI’s. It is the author’s hope that this paper will trigger

further research in the directions sketched above.

6.1 Summary

In this paper it is shown that state analysis of problems involving the stability of open
loop invariant sets can successfully be recast as dissipative problems, that is, generalized
formulations of nonlinear local state Hoo analysis problems. The main tools are a combi-
nation of dissipative techniques with the La Salle’s invariance principle, and a throughout
analysis of the structure of the solution to a certain Hamilton-Jacobi inequality (HJI).

This HJI is not assumed to be solvable on the entire, unbounded state space IR"; the
solvability of the HJI is restricted to the reachable subspace R without loss of generality.
A fundamental assumption of the structure of the reachable subspace is made, which is
mostly satisfied in practice.

Given a solution V to the HJI, the generalized problem is solved regionally provided V is
such that the some connected component of the preimage V ~1([0,¢)) for some ¢ € R is
bounded and includes the to-be-stabilized invariant set. That is, all state trajectories can
be bounded inside a compact set 2 C R called a performance envelope. Unsupportable
strain and stress on real world plants can be avoided by this approach.

The plant is often assumed to have a certain detectability property (which is just the
generalization of the standard zero-detectability assumption) to prove asymptotic stability
of the undisturbed system with respect to the invariant set of concern.

In case that a slightly stronger property holds, namely that the performance measure is
positive definite (and eventually proper), or/and the HJI of concern can be solved strictly
negative outside the to be stabilized set, strong and new results are proved to hold: in
some cases the existence of smooth storage functions is given, in others the system will be
robustly stable with respect to nonzero, but decaying disturbances.

Moreover, combining the input-to-state-stability property with the regional dissipative
analysis mentioned above, it is possible to archive asymptotic stability even under time-
persistent disturbances. The methods described in this paper are showing robust stability
of invariant sets not only with respect to modelling errors, but also with respect to L
norm bounded disturbances. The performance envelope of nonlinear plants is estimated,
and the dissipation of the system (or £9 gain from disturbance to to-be-controlled output)
is guaranteed for all motions inside the performance envelope, and all disturbances bounded
by a certain Lo, norm. The dissipative analysis problem can be showed to be structurally
stable in the following practical sense: a neighborhood of the to be stabilized invariant
set is shown to be an attractor for all trajectories generated by disturbances of sufficient
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small L., bound, and furthermore, the size of the above mentioned practical stability
neighborhood is continuously dependent on the L, bound of the disturbances.

The presented results constitute a natural extension of local H analysis which enables
the control engineer to address general dissipative analysis problems including various
beneficial robustness results and regularity properties of storage functions not investigated
before.

A Comparison functions

A.1 Definition A real valued function a(r) belongs to class K if it is defined, continuous,
and strictly increasing on 0 < r < 7., or 0 < r < 00, and satisfies a(0) = 0.

A real valued function «a(r) belongs to class K if it is defined, continuous, and strictly
increasing on 0 < r < oo, and satisfies a(0) = 0 and a(r) — oo as r — 0.

A real valued function o(s) belongs to class L if it is defined, continuous, and strictly
decreasing on 0 < s, < s < 00, and satisfies o(s) — 0 as s — 0.

Finally, a real valued function ((r,s) is of class KL if it is defined for all r satisfying
0<r<re,or0<r<oo,all swith(<s,<s< o0, isof class K for each fixed s, and for
each fixed r is monotone (not necessarily strict monotone) decreasing to zero as s — 0.

Let us in the following denote the inverse of functions of class K by the exponent —1, then
we have
a Ha(r) =r forall 0<r<r,

and
a(a(R)) =R forall 0<R < afr)

The following properties can be proved:

L. aq(ae(r)) € Kif ai(r), ae(r) €K
2. afo(s)) e L
3. a7l(r) € Ko if a(r) € Koo
4. If B(r, s) is bounded with respect to 7, then S(r, s) < a(r)o(s)
Since this functions are exclusively used in inequalities, we can whenever convenient assume

that they are smooth. They can always be replaced by a smooth function of the same type.

In case that the reachable space R is a proper subset of IR we have to modify the notion
of class Ko functions to make sense. Given a compact and connected set S C R, the
inequalities

ay(lzls) < V(z) <ay(|zls)

with oy, @y € K is to be understood in the following way:
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1. There exists a K function oy, : [0, maxzesr |7|s] — IRT such that oy (r) — oo as
T — maXzeor |Z|s, ay <V, and V(z) = oo as z — IR.

2. There exists a K function @y : [0, mingesr |z|s] — R such that @y (r) — oo as
r — mingeor |z|s, V <@y, and V(z) < oo for all z € R.

It follows that V satisfies the following properties: V(z) > 0 on R\S, V(z) = 0 on S,
V(z) = 00 as  — OR, and V(z) < oo on R.
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Comments and References

The notion of dissipation has also been cast in the framework of indefinite quasimetric
spaces by Eduardo Sontag [Son95a, Son95b|. This makes an abstract approach to dis-
sipation, the starting observation is that the dissipation inequality is equivalent to the
statement that V(zr) — V(z) < W (z9,21), where W (zo,zr) = inf [ s(w(t),2(t)) dt,
and the infimum is over all w(-) that steer z(-) from zy to zp in time 7. It is easily
shown that W (xg,z7) defines a indefinite quasimetric, since W(z,z) = 0 and W(z, z) <
W(z,y)+W/(y,z) for all z,y, z € R". In this framework the choice of control and trajecto-
ries is blurred, and the pure cost structure is abstracted. Several basic facts of dissipative
systems are then consequences of the properties of indefinite quasimetric spaces.

Stability issues of nonlinear state feedback systems in relation to equilibrium points have
been investigated before. Among others, D.J. Hill and P.J. Moylan are concerned with
stability results for nonlinear feedback systems [HM77] and general instability results for
interconnected systems [HMS83].

Stability of equilibrium points in relation to dissipative systems has been described by P.
J. Moylan and D.J. Hill, which focus on the use of dissipativety in the stability analysis of
interconnected systems [MHT78|, see also the overview on dissipation, stability theory and
some remaining problems, given by David J. Hill [Hil88].

In the following we describe the interaction between dissipation, stability issues with respect
to general invariant sets, and state feedback algorithms based on differential games.

Storage functions which are continuous and locally Lipschitz

As we have seen in the preceding paper in section 3.2, all systems which have the property
of locally bounded excitation, have certainly continuous storage functions in case that they
are dissipative. Without the rather restrictive assumption of locally bounded excitation,
the only regularity we can guarantee for storage functions is lower semicontinuity. On the
other hand, the analysis in section 4 of the preceding paper requires continuous and locally
Lipschitz storage functions.

At a first glance, there seems to be a wide gap between the guaranteed and the needed
regularity properties of storage functions. The example of the nonlinear oscillator (which
posses a smooth storage function even if the property of locally bounded excitation is not
satisfied for v > 1), as well as the following argumentation, shows that this gap in practice
often can be closed.

We want to stress that this subsection does not contain rigerous mathematical proofs; it
is included to give a preliminary feeling why the property of locally bounded excitation is
not necessary for a system to posses continuous and locally Lipschitz storage functions.

First of all, let us investigate the continuity properties of the storage function along some
trajectory z(-) = z(-,0,z¢, w(-)) driven by the disturbance w(-), that is, the continuity of
the map V(z(-)) : R — R™.
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We remember that w(:) € L£¥¢ is assumed, and for sufficiently small T > 0 it follows
that z(-),z(-) € LX°([0,T]). In fact, this is a direct consequence of the regularity of the
performance measure Z and the fact that if zy is bounded, then there exists a small time
T > 0 such that z(t) is bounded too for all 0 <¢ < T.

Now, in case that the disturbances are w(-) : R — W, where W C IR! is a compact set,
the dissipation inequality

T
V(or) — V(zo) < / s(w(t), 2(t) dt
0
shows that, for sufficiently small T' > 0, V(z7) is bounded from above by

V(er) < V(zo) + T ma [s(w(®).2(0)] - (19)

It follows that, if the map V(z(-)) : R — IR is not continuous at xo, then

lim V(z(t)) < V(xo) ,

t—0t
that is, the jump must be downwards along the trajectory z(-).

If we make the assumption that the available storage V4 has no jumps downwards along
any trajectory z(-), and the function Va(z(-)) satisfies

Valzr) — Va(zo) > -Tk (50)

where k£ > 0 is the maximal amount of energy dissipated locally near z(, then we make
implicit the assumption that a finite amount of energy can not be dissipated instantly,
that is, the physical system at hand has no such behavior like shock waves, instant phase
shifts, or ideal energy consuming collisions. This assumption may be rather hard to prove
in general, but seems not to be strange for many mechanical or electrical systems.

It follows from (49) and (50) that Va(z(-)) : R + IRT is continuous and locally Lipschitz
along any part of trajectories z(-) which satisfy |‘é—f| > € > 0. Or, to put it in another
way, then the directional derivative of V4 : R + IRT in the directions fli—‘f and —‘fj—f exists
and is bounded for all £ € R which are not near stagnation points of the vector field

z(t) — X (z(t), w(t)).

Assume now furthermore that for each 2y € R there exists n disturbances w;(+) such that
the n vectors given by v; = z(T") — z(0) for all 0 < T < ¢ sufficient small are a basis of
IR™ (that is, the v; are linearly independent, but not necessarily orthonormal), then we can
show that V4 : R — IR is continuous and locally Lipschitz near each zo = z(0).

To do so, let g € R be any point, then we show that there is neighborhood N around z
such that, under the above stated assumptions, V4 : Ny — IR™ is continuous and Lipschitz
on Ny. Define the maps 9; : £x]0,¢] — RR" by 9;(z,T) = z(T,0,%,w;(-)) — &, then clearly
¥; is a continuous map. Hence, for all # € Ny, a sufficiently small neighborhood around
zo, and all 0 < T < ¢ sufficiently small, the set {#;(Z,T)} is a basis of IR". Therefore, at
each Z € R the trajectories z(-,0, Z, w;(-)) are interlacing each other (like an n-dimensional
fibre compound) at finite angles. Since V4(z(+)) is by (49) and (50) continuous and locally
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Lipschitz along each of them, it follows that V4 : Ay — IRT is continuous and locally
Lipschitz on Nj.

Let us briefly discuss the examples 3.21 and 5.7 of the nonlinear oscillator in the above
sketched context. We see from the polar coordinate system

F=rr?—1)(r?—4) 4+ r(r? - dw

2=r2—1 .

that the property of locally bounded excitation is not satisfied for v > 1, since there does
not exist such a class K function according to definition 3.22 in the following case: set
2o = (r = 1.5;60 = 0) an set zp = (r = 1.5;0 = —¢) for any € > 0, then clearly there
exist plenty of trajectories o — x7, for example, we can counteract the drift towards S
by applying a suitable constant w(-) = ¢, and float 27 — € radians to end at z7. However,
for ¢ — 0 it follows that |zg — 7| — 0, but

2P ) = 22 de| 0

can not be obtained for any of these connecting trajectories if v > 1 is chosen.

It follows from the structure of the H problem that any storage function with v =1 is
also a storage function for all y > 1, hence the continuous and smooth storage function (28)
solves the HJI (27) for v > 1, even if property of locally bounded excitation is not satisfied.

Figure 3: Interlacing trajectories

On the other hand, in any sufficient small neighborhood of o = (r = 1.5;0 = 0) we can
generate a basis by the disturbances wi(-) = 0 and ws(-) = —2, since 21 = (—g—g, 1) and
I9 = (g—g, 1) span IR?. Hence, in case that we can assure (50), continuity and the locally

Lipschitz property follows near zq (see figure 3).

We see that the property of locally bounded excitation is a far stronger concept than the
above proposed assumptions: locally bounded excitation implies that any point z7 in a
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neighborhood around each zy € R can be reached by some trajectory which minimizes the
exchange of energy with the surroundings by a function dependent on the distance between
zg and z7. On the other hand, the assumptions here imply only that n different, linear
independent directions zp — zo can be reached from zg.

0.2 Example: Simple systems
It is not hard to prove that the system

[%ijhﬁﬂm

together with many supply rates has the property of locally bounded excitation: the key
observation is that we can excite £ to any desired direction. It follows that storage functions
are continuous, if existing.

On the other hand, the system

Zz =1

has not the property of locally bounded excitation, but has the property that the constant
disturbances w1 (-) = 0 and ws(-) = 1 span the directions (—z3,0) and (—z3,1), hence span
IR? for all 1 # 0. The discussion above can therefore be applied to conclude existence
of continuous and locally Lipschitz storage functions on the left or right half plane, if we
can show that the available storage does not jump downwards along trajectories, and the

system is dissipative with respect to the chosen supply rate.

Finally, the system

has neither of the two properties. However, in the case that
kerVy=X,={z€R® |21 =0} ,

since then R = IR? is an 2-dimensional set, the fundamental assumption on the reachable
set may be satisfied. We can not by the above sketched approach determine whether a
continuous storage function exists - if a storage function exists at all. *

Differential games in dissipative state feedback control

Nine years ago Joseph A. Ball and J. W. Helton described some fundamental connections
between time discrete Hoo control and two-player, zero-sum differential games [BH89|. It
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turned out in the past that the interpretation of the best control strategy of H, control
problems as the minimizing player also is valid for time continuous nonlinear #H, state
feedback control problems. See for example the paper “Structural properties of minimax
policies for a class of differential games arising in nonlinear H, control and filtering” by
Garry Dinisky, Tamer Basar, and Pierre Bernhard [DBB93].

Some inspiration can also be found in the article [LS85] by P.-L. Lions and P.E. Souganidis,
which describes the relations between differential games, optimal control, and directional
derivates of viscosity solutions of Bellman’s and Isaac’s equation.

It seems therefore natural to make a similar generalization to dissipative systems which have
an almost regular supply rate. Since this concept yet has not been throughout investigated,
especially not in the context of general dissipativety where stabilization of invariant sets
is considered, we present only some preliminary results along this line.

We assume that we are given some disturbed control system, together with a performance
measure function Z : IR® x IR™x IR! — IRP, and an almost regular supply rate s : R™ x IRP —
IR, both being continuous and locally Lipschitz. The dynamics of the differential game are
in this context given by the two-player system

= X(z,u,w)

z=Z(z,u,w) (52)

with initial condition zy € IR™. The payoff is defined by

T
P(zo,T,u(-), w(-)) :/0 —s(w(t), z(t)) dt (53)

where T is the terminal time of the play, zr the final point of the motion, and u = u(-)
is the minimizing player strategy, whereas w = w(-) is the maximizing player strategy.
The setup is a two-player, zero-sum, differential game, since we define the success for
the minimizing player by —P(zo, u(-),w(:)), and the success of the maximizing player by
P(zg,u(-),w(-)). Here, the integral (53) is taken along the trajectory z(-) of the dynamical
system (52), with initial condition z(0) = ¢, and P(zg,u(-), w(-)) represents the abstract
“energy” which can be extracted from the system along the path z(-). Since

sup inf P(zg, T, u(:),w(:)) < inf sup P(zo, T, u(:),w(-)) (54)
w(-) u() u(-) w(-)
is always true for all possible initial points and play strategies, in the general case, the
minimizing player u(-) has an advantage over the maximizing player w(-) if he is allowed
to pick his strategy with knowledge of w(-). We will assume for the rest of this thesis that
there exist a control strategy umin(-) such that the infimum is attained.

In the dissipative setup, both players act at the same time, but they have different play
strategies: the minimizing player has to implement a state feedback law u(-) = umin(z),
whereas the maximizing player uses an open loop strategy w(-) = w(t).

It is not reasonable to prescribe that the system (52) is such that the equality

sup H(lf)‘ P(‘T()a T7 ’LL(), ’U)() = l?f)‘ sup (an T7 u()’ ’U)() (55)
w(-) v ut) w()
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holds - in fact, it suffices to consider the upper value P* : R™ +— IR U {400} of the
game. We define

P*(zp) = minsup lim P(zg, T, u(-),w()) , (56)

u(") () T—o0

(in case that the integral is not convergent, we define P*(z¢) = +o00). We assume that
the property of strong time consistency in the sense of T. Basar and P. Bernhard [BB95|
is satisfied, that is, the minimizing control can be chosen as a state feedback law wupyiy(-) =
Umin (%), independently of zy. While this property is not satisfied in general for games, it
is quite natural to assume in this context. We see by the following argumentation that
the value of the game is closely connected to the available storage V4 with respect to the
closed loop dynamics

T = X(m,umin(x)aw) (57)

z = Z(iU, umin(x)a w)

To show this, we remember that V4(zg) is defined by the optimal path in the sense that
maximal energy is extracted. Hence, given any path z(-) driven by some w(-) and by the
minimizing control wumiy(z), which leads from zy to some zp = x(T,0, Umin(-), w(-)) with
free terminal time 7" and terminal point z7, the available storage is defined by

T . T
Va(zo) = e "SRI:_I’) o) /0 —s(w(t), z(t)) dt = tr(lgfulzl))TS;%/o —s(w(t), z(t)) dt .

U = umin(')

On the other hand, the value function is given by

P*(zp) = minsup lim —s(w(t), z(t)) dt .

u(:) () T—o0 Jo

By almost regularity of the supply rate, s(0, z(-)) > 0, it follows that P* > 0, and moreover,
that the map 7' — min, .y sup,,(.) P(zo, T, u(-), w(-)) is monotone increasing in T". It follows
that the value function can be written

T
P*(zy) = infsup sup / —s(w(t), z(t)) dt .
u(’) w(-) TeRt JO

The equality V4 = P* follows in case that the system of concern is dissipative, that is, in
case that V4 < oo, or equivalently, in case that the indefinite integral converges.

There are obviously some open problems concerning the boundedness of state trajecto-
ries: the definition of the payoff function (53) implicitly assumes that the trajectories
z(-,0,u(-),w(-)) do not have finite escape time, which is, after all, an assumption hard to
prove. This could be fixed by showing that all such trajectories are bounded inside some
compact set, but unfortunately, the boundedness or asymptotic stability issues of states
have not gotten that much attention in the differential game circles.
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The state feedback Hamiltonian-Jacobi inequality

One way to arrive at the state feedback Hamiltonian-Jacobi inequality is to assume that
the payoff satisfies the equality (55), and that the resulting value function P* is at least C.
Then we can differentiate the dissipation inequality associated with the value P* = Vy,
which has to hold for all disturbances, to obtain the Hamilton-Jacobi inequality

%P* — S(wmax(x), Z(JI, Umin(.’L'), wmax(‘r)))

= agv*X(x,umin(w),wmax(a:)) — $(Wmax (1), Z (2, Umin (), Wmax(z)) <0 .

This inequality is also often called Hamilton-Jacobi-Isaacs inequality to stress the relation
to differential games. There are some problems hidden in this approach: first of all, it is
not evident that the value function will be continuously differentiable, and secondly, it may
not be defined since the existence of unbounded state trajectories is not a priori excluded,
and the equation (55) is hard to prove in general.

Therefore, we would like to go the other way around: We define the state feedback pre-
Hamiltonian

H("I"apauaw) EpX(.T,’U),U) - S(’ZU,Z(:E,’U,,’U))) ) (58)

and notice that the map (z,p,u,w) — H(z,p,u,w) is continuous, locally Lipschitz, and
affine in p, hence convex in p. We assume for simplicity that there exists a continuous
minimizing control u = umin(z,p) defined by

Umin(7,p) = arg min{ sup H(w,p,u,w)} (59)
u€U weWw

such that the map (z,p,w) — H(z,p, umin(z,p), w) is continuous, locally Lipschitz, and
convex in p. Furthermore, we assume that the saddlepoint property

H(wapaumin(wap)aw) S sup H(wapaumin(xap)aw) S sup H(x,p,u,w) (60)
weWw weWw

holds for all © € U and all w € W. Then we define the Hamiltonian

H**("Eap) = sup H(xapaumin(x’p)aw) ) (61)
weW

and it follows that the map (z,p) — H**(x, p) is lower semicontinuous and locally bounded
from below, but not necessarily convex in p.

At this point we are in the position to study the state feedback Hamilton-Jacobi inequality
(also often called Hamilton-Jacobi Isaacs inequality)

H™ (2, §5) <0 (62)
or the strict state feedback Hamilton-Jacobi inequality
H* (z, 9%) < —an(|z]s) , (63)

where the compact set S C R denotes, as usual, any preferred mode of operation of the
system of concern.
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A weak formulation of the state-feedback HJI

When considering the solvability of a state feedback HJI, it is natural to take a closed look
on the following subproblems: the solvability of non-feedback HJI in the weak sense, and
the existence of weak solutions to the control Lyapunov inequality (21) of chapter 1.

We have seen in section 3.1 of the preceding paper that James proved the equivalence
between the existence of a lower semicontinuous storage function and the existence of a
lower semicontinuous viscosity solution to a HJI (in a weak sense), see theorem 3.15, or
the original paper [Jam93a].

A similar property has been proved by Eduardo Sontag and Héctor J. Sussmann [SS95]
in the context of non-smooth control Lyapunov functions. Consider the question: is the
existence of a continuously differentiable control Lyapunov function equivalent to the pos-
sibility of steering every state asymptotically to zero (or, more general, to §)? The answer
is known to be negative. On the other hand, if the conditions on the control Lyapunov
function is relaxed to continuity, and the generalized directional derivative is used to inter-
pret the control Lyapunov inequality (21) of chapter 1, the answer is positive: A system of
the form & = X (z,u) is asymptotically stabilizable if and only if it admits a weak control
Lyapunov function.

While the power of the two above mentioned tools yet not has been fully combined, we
have a rather simple equivalence between weak solutions to the state feedback HJI (62)
and the dissipation properties of the controlled, closed loop system (57).

0.3 Corollary If the closed loop system (57) is dissipative with (locally bounded) storage
function V : R C R™ — R, then V satisfies the state feedback HJI (62) in the weak sense.

Conversely, if a locally bounded function V : R C IR™ — R is a viscosity solution to the
state feedback HJI (62), then the controlled, closed loop system (57) is dissipative, and its
Ls.c. envelope V, is a Ls.c. storage function.

Proof: Since the state feedback Hamiltonian (61) is lower semicontinuous, locally bound-
ed from below, and convex in p, and the closed loop system (57) is of the form of the
perturbed system (4) in the preceding paper, the original proof in [Jam93a| applies without
changes. O

See also Hitoshi Ishii’s results on representations of solutions of Hamilton-Jacobi equations
[Ish88].

Asymptotic behavior of controlled systems

We see immediately due to the above mentioned structural equivalence between the dissi-
pation problem and the state feedback dissipation problem that each and every lemma,
corollary, proposition and theorem of the preceding paper which holds for the
uncontrolled system (4) using the HJII (13), the weak HJI (16), or the strict
HJI (36), also holds for the controlled, closed loop system (57) using the state
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feedback HJI (62), or the strict state feedback HJI (63). The proof of the equiv-
alent properties is always a combination of the above mentioned game theoretic approach
with the original proof of the properties concerning the uncontrolled case.

In principle, there is not much more to be said about the state feedback dissipative control
problem. However, we would like to restate some of the most important results in the light
of state feedback control. The following set definitions are appropriate in the new context:

0.4 Definition Let V : R C IR" — IR denote any continuous, locally bounded, locally
Lipschitz, and non-negative function. We define the following subsets of R C IR":
the control Hamiltonian null set

N* = {z € R | there exists p(z) € OV (z) with H**(z,p(z)) =0} ,
the control storage null set
V* = {z € R | there exists p(z) € OV (z) with p(2)X (2, Umin(z),0) =0}

the storage kernel
kerV={zeR|V(z)=0} ,

and the control performance kernel

ker*Z = {2z € R | Z(2, umin(z),0) =0}

These definitions are essentially the same as in the analysis, they are always obtained
by setting 4 = umin and w = 0. We deduce directly from the invariance principle of
theorem 4.5 the asymptotic properties of undisturbed, but controlled trajectories:

0.5 Corollary (Invariance principle) Assume that the state feedback HJI (62) has a
continuous and locally Lipschitz viscosity solution V : R +— IR. Let Q C IR™ be any
compact set. Assume that all z(-) with zy € Q generated by u(-) = umin(z) and w(-) =0
are bounded in future inside ).

Then all such z(-) approach the largest invariant set A contained in the intersection

A C V'NONR .

Also in this case the control storage null set is related to the control Hamiltonian null set
and the control performance kernel. There holds a corollary to theorem 4.6:

0.6 Corollary (Subsets) Assume that the state feedback HJI (62) has a continuous and
locally Lipschitz viscosity solution V : R — IR. Moreover, assume that all z(-) subject to
u(+) = umin(z) and w(-) = 0 are bounded in future inside some compact @ C IR". Then
V* C N* holds. If in addition the supply rate is regular, then V* C ker* Z follows.

There is, however, one important issue left to show: Given a compact invariant set S C R
of the uncontrolled and undisturbed system

(64)
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which represents the preferred modes of operation, we must assure that the controlled, but
undisturbed system

T = X(CL', Umin(l')a O)

2z = Z(z, Umin(z),0) (65)

preserves the invariantness of the set S, or even stronger, that the control is such that
Umin(z) =0 on S.

This resembles the situation in standard nonlinear H, control theory where the stability
of the equilibrium point zero is investigated: there it is known that the minimizing control
Umin and the maximizing disturbance wy,ax vanish at the origin [IA92b, IA92a, vdS92a,
IK95, BHW93].

A similar property holds for the generalized problem treated here. We denote the the
union of all positive limit sets of bounded z(-, %y, zg, u(-) = Umin(z), w(-) = 0) by the
symbol UI‘;rmin,w=0'
0.7 Corollary Assume that the supply rate is regular, and the supremum in the definition
of the state feedback Hamiltonian (61) is attained at each (z,p) € R x R", and that the
map u — Z(T4,u,0) is one-to-one for all z, € X,, or equivalently, that g—g(x*,0,0) has
rank m for all z, € X,. Assume furthermore that the HJI (62) has a continuous and locally
Lipschitz viscosity solution V : R — IR, and define the set-valued functions

Umin(Z) = Umin(z, T2 (2)) , L €OV

(66)
wmax(x) = 'wma.x(xa %_Z(x)) ’ (?9_‘; eaov ,

where the minimizing control umin(z,p) is defined by (59), and the maximizing disturbance
Wmax(Z, p) is given by (15). Moreover, assume the existence of some compact set Q C IR"
such that all z(-) with zy € 2, and generated by u(-) = umin(z) and w(-) = 0, are bounded
in future inside ), and assume that the intersection between UI‘;fmimw:O and X, is non-
empty. Then there holds

Umin(T) = Wmax(z) =0 on T?fm,-n,w:o C X .
Proof: We follow exactly the same steps as in the proof of corollary 4.7, and arrive again
at the equation
—5(Wmax,0) =0 on T (CX, .
Therefore, wyax = 0 on F;Lmimw:o C X, follows by regularity of the supply rate.

Now, by wmax = 0 on F:min;w:() and by P:min,w:() C ker* Z it follows that Z(x, umin(z),0) =

0 on F;i—min;w:()' Finally, we remark that the map u — Z(z,,u,0) is assumed to be one-to-

one for all z, € X, and therefore
Umin(z) =0 on F'I—i_min;w:() C X,

follows immediately. O
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It follows that all positive limit sets of the controlled, but undisturbed system (65) which
are inside the set of minimal storage X, also are compact invariant sets of the uncontrolled
and undisturbed system (64).

We remark that the condition that %—Z(w*,(), 0) has rank m for all z, € X, is a nat-
ural generalization of the non-singular H,, condition for affine systems, namely that
DI(z)Dy(z) > 0 holds for all z (see comments and references in chapter 2). However,
the later ensures also the saddlepoint property in the H, case. In the general case treated

here, the saddlepoint property must be imposed additionally to the rank condition of Z.

In addition, we want often to ensure that the set S is asymptotically stabilizable by
the control u(-) = umin(z), that is, the compact set S is asymptotically stable under the
dynamics (65). The state-feedback version of proposition 4.12 reads then:

0.8 Corollary (identity of sets) Assume that the supply rate is regular and that a con-
tinuous and locally Lipschitz viscosity solution to the strict state feedback HJI (63) exists,
such that

ay(|jz]s) S V(z) <av(azls) , H'(z,3;) < —en(lzls) ,
and az(|z]s) <|Z(2,umin(2),0)|

Here S C R is a compact set, and ay,, @y, an, and ay are four functions of class K.

Then the identity
N* =V =kerV=ker*Z =38

holds, and any trajectory x(-) subject to u(-) = umin(z) and w(-) = 0 which is bounded in
future satisfies () — S. Moreover, S is locally asymptotically stable, and in case that V
is proper, globally asymptotically stable.

Assume in addition that S consists only of one isolated trajectory of the undisturbed and
uncontrolled system (64), then

N =V =kerV=ker*Z=8S=A=T7" .

We see that also lemma 4.15 has a straight forward translation to the state feedback case.
It follows that the state feedback storage function V is positive S-definite, and eventually
proper, in case that the strict HJI (63) holds with § = X,

Smooth and robust state feedback control

The last results which we want to emphasize in the case of state feedback is the combination
of the ISS-property with the above mentioned differential game approach to state feedback
control. Analogous to proposition 5.14 the following holds:

0.9 Corollary Given a system with strictly proper supply rate s(w, z) = ay(Jw|)—a,(|z|),
a compact set S C R, and a performance function satisfying |Z(z)| = az(|z|s), where az
is any C'*° function of class K. Then any of the three following statements are equivalent:
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1. The system (65) is dissipative and ISS with respect to S.

2. The system (65) admits a continuous ISS-Lyapunov function which is also a positive
S-definite and proper viscosity solution to the strict state feedback HJI (63).

3. The system (65) admits a smooth ISS-Lyapunov function which is also a positive
S-definite and proper storage function satisfying the strict state feedback HJI (63)
in the classic sense.

Finally, the last result we want to stress in the context of state feedback control is the
combination of proposition 5.17 with the theory of differential games. Here we have the
possibility to estimate performance envelopes and sets of practical stability.

0.10 Corollary (performance envelope and practical stability) Given a system
with strictly proper supply rate s(w, z) = ay(|w|) — @,(|z|), assume that all requirements
of corollary 0.5 are satisfied using the strict state feedback HJI (63), and that there exists
a compact set S C R, five functions of class K, denoted ay,, @y, an, az, and &z, and a
continuous storage function (viscosity solution) V such that

ay(|zls) < V(z) <av(zls) , H"(z, 5;) < —an(lzls) , and
az(|z]s) <1Z(z; umin(z),0)| < @z(lz]s) -

Then V is a continuous ISS-Lyapunov function satisfying the ISS-PDI

B (@)X (2, w) < aw(jw]) — az(|z]s)
weakly, where the K, function oy is defined by az(|z|s) = (a, o ay)(|z|s) + an(|z|s).

Moreover, the level set 2 C R defined by
Q= {:v eER \ V(z) < (@yoaz! Oaw)(c)}

is globally asymptotically W,-stable and positive W,-invariant, hence a performance enve-
lope. The set By, C R defined by

Bo={z€R||z|s <olcxo) }

is a global attractor for all z(-) generated by w(-) € Lo satisfying limsup; ., |w(t)| < ¢x.



Chapter 6

Solving Nonlinear Hamilton-Jacobi
Inequalities

In case that only stability has our interest, we can use backstepping methods to find control
Lyapunov functions [KKK95]|, but in general, it is not at all easy to find solutions to the
partial differential inequalities (PDI’s) arising in nonlinear control. Various efforts have
been made to solve the Hamilton-Jacobi inequalities associated with nonlinear H, control.
We discuss here some of the main ideas previously applied to Hs control problems. We
remember that the resulting HJI associated with the analysis, that is the bounded real
lemma, is of the form

H* (, 22) = B X (2, wimax (7, 25)) — 72 [wmax(®, 22)[* + | Z(2)|”
<0 forallz e Q ,

(1)

whereas HJI’s belonging to state feedback problems are of the form
H™(z, 57)
2
= %—‘;X(x, umin(l'a ?9_‘;)3 wmax(x; %_‘;)) - '72 ‘wmax(xa %_‘;)‘ + |Z(.’L‘, umin(-Ta ?9—‘;)

<0 forallz e Q .

‘ 2

(2)

In case that we are studying input affine systems, all HJI’s are of the form

*xk T
H (%—‘;,x) = %—ZQ(:E)%—Z + %—ZL(&:) + K(x)
<0 forallz e Q .

(3)

Here the quadratic term Q(z), the linear term L(z), and the constant term K(z) are
defined by

Y
Lz)=A (4)
K@z =c"C ,
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in the case that we are investigating the bounded real lemma, or of the form
Q(z) = gz BuwBy, — {Bu(D"D)"'By
L(z) = A— B,(DTD)'DTC (5)
K(z)=CT(1-DD"D)'DT) C ,

for state feedback systems satisfying the DGKF simplifying assumptions, or more generally
defined by (see chapter 2)

BT
1 u
Q@) =—-7[B. B,JH™
B,
DIC
L(z)=A—-[B, B, H* (6)
DIC
DI'C
K(z)=c"C - [c"D, CTD,]H™!
DIC

Of course, the simplest approach is to try inserting a quadratic storage function in the HJI
of concern. This approach equals solving the algebraic Riccati inequality

2 2 2 2
PTEH(0,0) + £45(0,0)P + PTG (0,0)P + §2H(0,0) < 0
associated to the linearized Ho control problem, and can therefore not regarded to be a
non-linear approach.

Singular H ., control is not considered here, mainly because it is not mature in the nonlinear
context (in contrast to linear singular H, control theory, see for example Pascal Gahinet
and Alan J. Laub [GL97] for numerical techniques).

1 Luke’s approximation scheme

If we formally insert a polynomial expansion of higher degree than two at the place of the
storage function in the HJI (2) or (3), and sort the polynomial coefficients according to their
order, we use Lukes approximation scheme [Luk69], which was originally developed to HJT’s
belonging to optimal control problems with quadratic cost functions. Lukes approximation
scheme has been proposed in [IK95] to solve the HJI’s of general H o, control state feedback
problems, and has been implemented in the symbolic language MAPLE in the masters thesis
[MP95]. See also the application in [CMPP96, CMPP97| described in chapter 2. Lukes
approximation scheme is easily implemented, either in a symbolic language, or numerically
for larger problems. Since this approach consists of a polynomial expansion around the
critical point of concern, it is a regional method restricted to a neighborhood, whose size
can be estimated. However, it is not at all clear how the permuting terms ®(z) should
be chosen to maximize the valid region of the problem at hand. Another drawback of
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this method is that the linearized problem - that is the algebraic, permutated Riccati
equation - must have a stabilizing solution to ensure a unique choice of the m-th order
coefficients in equation (2.16). Despite these drawbacks, Lukes approximating scheme is
an attractive and simple method suited for many problems where regionally control around
some equilibrium point is needed.

2 The method of characteristics

There have also been multiple efforts to solve Hamilton-Jacobi equalities (HJE’s). These
are PDE’s of first order, and the method of characteristics can therefore be applied. It
follows that successive approximating solutions to the HJE’s belonging to the Ho, control
problem can be found. I. Norman Katz and Jerry Markmann [KM96] proposed an iterative
algorithm to solve HJE’s arising in Ho, control (see also [KS]) which takes the stabilizing
solution of the linearized problem - that is the stabilizing matrix solving the algebraic
Riccati equation - as starting point to iterate successive approximation solutions by the
method of characteristics. As far as the author is informed, it seems to be difficult to prove
stringent convergence bounds.

Another method for solving Hamilton-Jacobi equalities has been proposed and imple-
mented by Kevin A. Wise and Jack L. Sedwick [WS94]. This approach is essentially a
combination of Lukes approximation scheme with the method of characteristics. Only al-
most linear, input affine systems - the nonlinearities are only found in the driving term
A(z) = Ajr + 6A(z) with §A(x) being O(z?) - can be solved: the storage function is then
of the form V(z) = 27 Xz + 6V (z), where X is the solution to the linearized algebraic
Riccati equation, and 6V () is of order O(z*). This ansatz results in a quadratic, first
order PDE in §V which is then successively solved by the method of characteristics. This
approach will probably soon be forgotten, since it combines elegantly the drawbacks of
Lukes method with the drawbacks of the method of characteristics, and restricts the class
of solvable problems efficiently to very special systems.

3 Nonlinear matrix inequalities

Linear H o, control problems have recently been transformed to Linear Matrix Inequalities
(LMI’s). These are equivalent to convex constrained optimizing problems which can be
solved very efficiently to high accuracy, even if the state space has quite large dimensions.
See the plenary lecture [Boy93| by S.P. Boyd, the overview article [BBFE93|, and the Ph.D
thesis by Ph.D Eric B. Beran [Ber97] and the references therein. A similar transformation
to convex constrained optimizing problems via Nonlinear Matrix Inequalities (NLMI’s)
has been proposed by Wei-Min Lu and John C. Doyle in the technical reports [LD93a,
LD93b], and in a short version in the conference paper [LD93c|. Also robustness analysis
of uncertain nonlinear systems can be cast in the frame of NLMI's [LD94a, LD94b|. Let
us sketch the approach briefly in the case of £y gain analysis (the case of state feedback
control is very similar, it consists of a combination of the here sketched tools with the
differential game theoretic interpretation of the Hamiltonian; only the formulas are more
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complicated). The nonlinear system is assumed to have the form

z = A(z)z + B(z)w

z=0C(z)z+ D(z)w , ()

where A, B, C and D are sufficient smooth matrix valued functions of suitable dimensions.
Notice the slight abuse of notation in contrast to the standard form of the input affine
system (2.8), there A and C' are vector valued functions. Also, without loss of generality,
the technical reports [LD93a, LD93b]| consider only the Ho, control problem with v = 1.
Let us assume that suitable reachability conditions are given, and assume that the available
storage V4, and any other storage function V are C' functions, and can be written

Valz) =27 Quz +ra(z) , V(z)=2"Qz+r(z) (8)
for some Q4,Q > 0 and some C' functions 74,7 : IR" = R satisfying

lim 7A ()

b o =0, lim@:() .
T—

z—0 |.’17‘2

Since V4(0) = V(0) = 0 and %4(0) = 9%(0) = 0, there are continuous matrix valued
functions P4 and P such that

Wi (z) = 22" Pa(z) , 9¥(z)=22TP(x) .

Simple computations show now that the Hamiltonian can be rewritten in the form
T
H*(z, %—‘;) =z H"(z, P)z
where the Hamiltonian matrix H* is given by

H*(z, P) =
PT(A-BR'DTC)+ (AT —CTDR TBT)P + PTBR'BTP+ CTR'C . (9)

Here we suppress the dependency on z for notational ease, and we use the short hand
R(z) = I — DT (2)D(xz). It follows from the results published in [vdS92c, LD93a] that the
existence of a C! function V satisfying %—‘;(x) = 2T P(x), where P satisfies the nonlinear
matrix inequality (NLMI) H*(z, P) < 0, implies that the HJI H*(z, %—‘;) < 0 holds, hence
the system (7) has L9 gain less than or equal to one. Conversely, the £5 gain v < 1 implies
together with 9% (z) = 2T P(z) or %4 (z) = 27 Pa(z) that the NLMI #*(z,P) < 0, or

or
ox
even the nonlinear matrix equality (NLME) H*(z, P4) = 0 holds.

In case of state feedback control, the system equations are given by

T = A(z)x + By(z)u + By (x)w
z =C(x)x + Dy(x)u + Dy(z)w

and a simple saddlepoint analysis shows that the Hamiltonian is given by

H** (z, V) = £TH** (z, P)z

’» Oz
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where the Hamiltonian matrix H** is given by similar, but more complicated, formulae
than the case of the bounded real lemma.

The NLMI's H*(z, P) < 0 and H**(x, P) < 0 are quadratic in P, hence not necessarily
convex in P. Fortunately, the use of Schurs complement formula can be used to convexify
the problem at hand. It is easy to show that the following are equivalent:

1. P satisfies
H*(z,P) < 0

2. P satisfies
_[ATP+PTA+C"C P'"B+C'D

* —_
M@ P)= | prpy preo p'p-1 | ="
3. P satisfies
ATP+PTA PTB C7
M*(z,P) = BTP -I DT| <0,

C D I

where the dependency on z has been suppressed toe ease the notation. The similar equiv-
alent convex formulations in the case of state feedback are given by essentially the same
matrix inequalities: the structure is not altered, only the complexity of the formulas is
increased (see [LD93a, LD93b] for the details).

More general, the control problems at hand can be convexified to the following standard
form: let S be the set of all symmetric n-dimensional matrices, and P the subset of positive
semi-definite symmetric matrices. Then the solution set to the NLMI’s considered so far
can be regarded as the level set

L(z) ={P(z) eP | M(z,P(z)) <0} (11)
of a continuous matrix-valued map M : P x IR® — S which satisfies in addition
M(z,aPi(z) + (1 — &) Pa(z)) = aM(z, Pi(z)) + (1 — o) M(z, P2 (z)) (12)

for all Pj,P, : R® — P, all z € R” and all 0 < o < 1 (the later is a consequence of
linearity in P), hence, £(z) is convex in P(z).

It has been showed in [LD93a, LD93b| using arguments of lower semicontinuous set-valued
functions and from Michael’s selection theorem that the existence of a not necessarily
continuous matrix valued map P : IR" — P satisfying the strict NLMI

M(z,P(z)) <0
implies the existence of a continuous matrix valued map P : R” — P satisfying the NLMI
M(z, P(z)) <0 .

It seems therefore not to be very restrictive to assume that the members of the level set
L(z) are continuous in z.
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Unfortunately, we have to make the more restrictive assumption that the strict NLMI
M(z,P(z)) <0 forall ze€ (13)

can be solved by a continuous P : IR" — P, where Q@ C IR" is a suitable compact set.
Since, by equation (12) the matrix-valued function M satisfies

N N N
M(Z a;P;,z) = ZaiM(Pi,w) forall P,€P andall o; >0 with Zai =1,
i=1 i=1 i=1
(14)
we are able to implement the following approximation scheme for one of the continuous
solutions P : IR™ — P: First, the compact subset 2 is discretized by choosing a suitable
fine grid {z;}Y ;, where z; € Q for all 1 < i < N. Then, a covering {A;}¥, satisfying
QC Ui]\;lj\/}, where each N; is a neighborhood of the associated z;, is constructed. This
allows us to implement a suitable continuous (or even smooth) partition of the unity, that
is a set of continuous (or smooth) functions {e;(z)}Y,, a; : UY | N; — R which in addition
satisfies

N
ai(z) =0 forall z¢&N; , and Zai(:v) =1 forall z€Q . (15)
i=1

In case that the grid is fine enough, it follows from the strict NLMI (13) and from the
continuity of the map M : P x R™ + S that there exists for each z; a constant P; € P
satisfying

M(z;, P) <0 forall i =1,2,--- ,N , (16)

and in addition, P; can be chosen to be positive definite. Furthermore, in case that the grid
{z;}}¥, is fine enough, the solutions P; to the N linear matrix inequalities (LMI’s) (16)
are solutions to the N local NLMI’s

M(z,P) <0 forall z€N; , i=1,2---,N , (17)

because the map M : P xIR" — § is continuous. Finally, it follows from (14), (15) and (17)
that the continuous (or smooth) approximation

B N
P(z) =) ai(x)P; (18)
=1

solves the NLMI M (z, P(z)) < 0, or equivalently, is a member of the level set (11).

Given a continuous P(z) € L(z), we have to make sure that a C! storage function V
satisfying %—‘;(w) = 227 P(z) exists, since only then the HJT H*(z, ‘?9—‘;) < 0 holds. Therefore,
let us consider the one-form (we use the convention that one-forms are denoted by row-
vectors, whereas vector fields are denoted by column-vectors)

w=2z" P(z) = 227 Z ai(z)P; . (19)
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Then, there is a real function V satisfying %—Z(m) = 227 P(z) if and only if w is exact, that
is w equals the differential dV, or equally, if w is closed. Hence, as it has been pointed out
in [LD93b], a sufficient condition is that w is C!, and satisfies

N
Oa; . OV, o oV, B o
; (8xj (z) B2y (z) — o2, (z) oz, (:v)> =0 foral j,l=1,2,---,N , (20)

where V;(z) = 7 Pyz. It follows that the Hs control problem is solvable in case that the
convex solution set of the IV linear matrix equalities

N/ da; Ou;
> (aw’_(x) T — a—x:(x) xj) P, = 0 forall j,l=1,2,---,N (21)
i=1 J

intersects with the convex level set £(x) defined in (11). It is not at all clear under which
circumstances this intersection will be non-empty.

To summarize, the algorithm used to solve H, control problems of the form (9) or (10)
via NLMJIs is the following:

1. Construct a grid {z;}}¥; on €, and a covering satisfying Q C UN | N;
2. Construct a partition of the unity (15) over the grid {z;}Y,

3. Solve the N linear matrix inequalities (16) with positive definite P; by convex opti-
mization techniques - if possible

4. Verify that the positive definite P; satisfy (21)

5. Construct an approximation P(z) of a solution to the NLMI M(z, P(z)) < 0 by (18)

Despite the fact that the above sketched approximation scheme does not answer clearly
the question of the existence of a storage function satisfying %—‘;(w) = 22T P(z), it is very
promising, and deserves further research. There are also strong connections to convex
optimization techniques, which may be exploited successfully (see for example Stephen
Boyd and Lieven Vandenberghe’s course reader [BV97]).

4 A finite difference method for ., problems

Recently M.R. James implemented a finite difference scheme to solve the HJI related to
the general formulation of the bounded real lemma (See [Jam93b| and chapter 5 subsec-
tion 3.1.2). Since it is not implicitly assumed that a maximizing disturbance exists, the
HJI (1) takes the following form: The plant (5.20) has Lo gain less than or equal to 7y if
and only if there exists a locally bounded nonnegative l.s.c. function V : IR" i IR™ such
that V' (0) = 0 and such that the partial differential inequality

T
H(z, 5) = S‘é%{% X(z,w) = y’lwl* +|Z(2)]} <0 (22)
w
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is satisfied weakly on IR™.
To motivate the approach used by M.R. James, let us consider the available storage

T
Valw)=  sup / Pl + 2P dt
T>0 , w(-)eLlpew) Jo

where the initial point is £(0) = z. Note that V4 is a solution to (22). To approximate the
available storage, consider the finite time horizon problem

,
Valr)=  swp [ i) + 20 d

w()eLye(w) Jo
with initial data z(0) = x. This function is a solution to the partial differential equality
(PDE)

T
Vi = sup {3L" X (z,w) —V*lwl* +|Z(z)*} (23)
wew

with initial data V(z,0) = 0. Since clearly by definition

lim Vg(z,7) = Vy(x) ,

T—00

it follows that Vg (z,7) for sufficient large 7 will give an arbitrarily exact approximation
of Vy.

Now, a finite difference scheme has been used in [Jam93b] to solve the time dependent
PDE (23) on a compact subset Q C IR". More precisely, the finite difference scheme pro-
posed by Kushner and Dupuis [KD92] to approximate solutions to dynamic programming
equations arising in stochastic optimal control is described in the following:

Let (R™)° denote a coordinate grid of mesh size § > 0, centered at the origin. Define a
system of discrete neighborhoods Nj(z) for all z € (IR™)® by

Ns(z)={z€(R")’ |2=2 or z=z+6e;} ,

where e;, for some i = 1,2,--- ,n is the i-th unit vector in IR". We define the discretized
disturbance space W? = W N (IR!)?, and the real positive number (norming factor)

As = sup | X(z,w)|;
TEQ , wEW

where the one-norm is defined by |X|; = Y 7 |X;| for all X € IR". Define furthermore
the normed finite difference approximation

1—%|X(:p,w)|1 it z=2 ,

Xs(z,z,w) = +-L X, (z, w) if z=xz=+de; ,

X5

0 if z#Ns(z) ,
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then the finite difference analogy of the HJI (22) is given by the discrete inequality

Vs(xz) > sup Z Xs(z, z,w)Vs(z) — i(72|w\2 —1Z(z))?)  forall z e (R")’ .
weWs | (s As

(24)

As it has been pointed out in [Jam93b]|, this discretization can easily be interpreted in
terms of a controlled Markov chain with transition probability Xs(z, 2z, w) and state space
(R™)%. Unfortunately, the discrete HJI (24) has in general more than one unique solution,
if v is chosen large enough. Therefore M.R. James considers the analogous finite difference
approximation to the time variant PDE (23), where the finite time horizon available storage

Vi (z, ) is discretized by a time partition t; = k)‘f—é, k=1,2,---, the numerical scheme is
given by
B )
Vi) = sup ¢ > Xs(w,2,0)VH(2) = = (4" |wf* = | Z(z)]) (25)
WEWs | Le(Rm) As

forallz € Q5 = QN(R™)° and all k = 1,2, . It follows that V}¥(z) approximates V4(z, ;)
for § > 0 sufficient small, and an approximated solution to the discretized HJI (24), and
hence to the continuous time HJI (22), on a compact  C IR” can be found in finite time by
iterating (25) forward in time until a stationary solution is obtained. Appropriate boundary
conditions, such as von Neuman type boundary conditions, must be imposed to ensure
convergence of the iterations. To summarize shortly, the finite difference approximation
scheme works as follows:

1. Select the discretization size § > 0

2. Choose ay; >0

3. Tterate (25)forward in time

4. If a stationary solution is obtained, choose a 9 < 1, otherwise choose a 5 > 71
5. Repeat step 2-4 until desired accuracy is obtained

6. If necessary, adjust the discretization size ¢ and repeat step 1-5

There are some implicit assumed properties hidden in this approximation scheme which
have not been justified in [Jam93b|. First of all, any use of a difference scheme needs the
existence of continuous solutions, otherwise there is no reason to try a pointwise approxi-
mation. While a certain acceptable degree of smoothness is probably given for any solution
to a strict HJI, the available storage V4 is only known to be a viscosity solution to the
associated HJE, and moreover, the existence of examples where the available storage is
not continuous has been described in the literature (See for example [BH96]). Hence, this
approximation scheme should only be invoked when the existence of continuous solutions
to the HJE is known.
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Next, in the paper [Jam93b]| there is no proof, nor any indication that the proposed finite
difference approximation (25) to the PDE (23) has a fixpoint V5 = limy_,, V:;’“ for all
v solving the original Hs, problem. It has however been showed in [Jam93b] that the
discretized HJI (24) has a solution for each v > 0 which admits a solution to the continuous
time HJI (22), and the lacking proof of the existence of a fixpoint seems only a technical
matter.

Third, while the interior point condition V(0) = 0 is mandatory, the determination of
appropriate boundary conditions on R may be very difficult, if not impossible. This
very important step in the algorithm is not explained. Especially, the use of von Neuman
boundary conditions is not justified. It is easily seen that the use of a homogeneous von
Neuman boundary condition is not what we want, since then the directional derivative of
the storage function in the inwards direction is forced to be zero. It follows that stability
properties of disturbed trajectories are worse near 0R than in the center of R, thereby the
system will be vulnerable for crash due to small disturbances in case that trajectories near
OR are considered.

Finally, one should be very cautious when using any form of approximation scheme to solve
a HJE: while the exact solution to a HJE also solves the HJI and therefore the feedback law
computed from such an exact solution stabilizes the origin as intended, the implemented
feedback law computed from an approximating solution to the HJE may de-stabilize the
origin, no matter how fine an approximating grid size is chosen. On the other hand, there
is a finite small grid size such that the feedback law implemented from an approximating
solution to a strict HJI with certainty stabilizes the origin.

Despite these words of caution, the finite difference scheme proposed by M.R. James in
the research paper [Jam93b]| is worth to consider, since it is easy to implement and finite
difference schemes are known to perform well under various circumstances. Another ad-
vantage of this method is that it can be easily generalized to problems involving general
supply rates, and to application where the stabilization of other invariant sets than the
origin is wanted.

5 A Galerkin spectral method for optimal control problems

Very recently R.W. Beard, G.N. Saridis and J.T. Wen presented, and proved the con-
vergence, of an algorithm which computes approximated solutions to the time-invariant
Hamilton-Jacobi-Bellmann equation arising in nonlinear optimal control [BSW98|. The al-
gorithm contains two main steps: First, successive approximations are used to reduce the
nonlinear Hamilton-Jacobi-Bellmann equation (HJB) into a sequence of linear partial dif-
ferential equations, there named generalized Hamilton-Jacobi-Bellmann equation (GHJB).
Second, these linear GHJB are then approximated via the Galerkin spectral method.

The presented algorithm has many advantages: the resulting control is in feedback form,
and it’s associated region of attraction is well defined and estimated. In addition, all
computations can be made off-line, and only a coefficient set belonging to the control has to
be stored to implement the algorithm in real time. Moreover, the successive approximation
part of the algorithm ensures that the solution found to the HJB not only satisfies the
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optimal performance criterion, but on the same time is a stabilizing solution to the HJB.
Finally, the use of a Galerkin spectral method gives very fast convergence in case that the
optimal cost function is known to be smooth.

The theory of optimal control, and the methods of dissipative control are closely related
to each other, which makes a successful application of a modified Galerkin spectral algo-
rithm in general dissipative control probable. Indeed, R.W. Beard, G.N. Saridis and J.T.
Wen announce in [BSW98] the application of a modified algorithm to the HJE arising in
nonlinear Ho control.

This promised modified algorithm seems to have many advantages over other numerical
schemes discussed here: first of all, the successive approximation results in a series of linear
first order PDE which are less demanding to solve than the nonlinear counterparts of the
competing numerical schemes. Secondly, appropriate stability properties of the closed loop
system are ensured together with satisfaction of the performance criteria. Third, spectral
methods are known to converge fast - if a smooth solution is known to exist.

The comparative overview of rates of convergence for approximation schemes in optimal
control by Paul Dupuis and Matthew R. James [DJ98] is interesting reading in this context.

Without having studied the algorithm yet, some words of caution are probably worth to
mention: again, it seems desirable to solve Hamilton-Jacobi inequalities instead of equali-
ties, since these give better stability results of the closed loop dynamics. Moreover, HJI’s
are more likely to have smooth solutions (if solutions to HJI’s exist!), and therefore the
faster-than-polynomial convergence of spectral methods, which is a considerable advantage
over other numerical schemes, can then be fully exploited.

Having said this on a rather weak knowledge of the modified algorithm, the author looks
forward to see this promising spectral Galerkin method implemented.
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