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Abstract

Global efforts to reduce emissions of carbon dioxide drives the introduction of renewable
power production technologies into the existing power system. The real-time balance
between production and consumption must, however, still be maintained at all times.
Unfortunately, this is becoming increasingly challenging due to the intrinsic variability of
production technologies such as photovoltaics and wind turbines. In a Smart Grid system
the balancing task will therefore be handled by mobilizing flexibility on the consumption
side.

This Thesis assumes that the Smart Grid should be commercially based rather than
funded by subsidies. Consequently the Smart Grid provides a business opportunity for
so-called Virtual Power Plants. A Virtual Power Plant is an independent commercial
operator, which provides Smart Grid capabilities to flexible consumers. This means that
the Virtual Power Plant is the technical and commercial entity in charge of mobilization
and control of flexible consumers. This Thesis addresses some of the challenges relating
to the Smart Grid and Virtual Power Plant visions with special attention to flexibility,
value creation and portfolio coordination.

The term flexibility is central to the Smart Grid discussion, but it is difficult to give
a precise definition of flexibility. This Thesis therefore suggests the use of a simple tax-
onomy for modelling consumer flexibility. The taxonomy consists of three archetypal
flexibility models, but it does not exhaust the flexibility term. It does however signifi-
cantly sharpen the discussion of the flexibility concept and provides a categorization of
flexible systems.

This Thesis also investigates what value can be created from the different types of
flexibility by assuming that the Virtual Power Plant will generate profit by trading flexi-
bility in electricity markets. Based on the taxonomy and a model of the Nordic electricity
markets it is explored how differences between flexibility types affects profit margin. It
is found that revenue potential depends strongly on the quality of flexibility.

Finally the subject of portfolio coordination is addressed, since a major challenge in
developing the Smart Grid is that thousands or even millions of flexible consumers must
be coordinated to operate in a sensible, interconnected manner. Due to the sheer size
of the coordination problem, however, the computation time associated with coordina-
tion can be problematic. This issue is first investigated through analytical contributions
on the circumstances under which portfolio coordination becomes computationally chal-
lenging. Next, several options for finding optimal solutions of the coordination problem
are investigated, namely use of the software package CPLEX, Dynamic Programming
and Dantzig-Wolfe Decomposition. Since non of these efforts scale to large problem in-
stances the option of heuristic optimization is explored. Several methods are investigated
and promising results are found both regarding computation time and solution quality.
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Synopsis

Den globale indsats for at reducere udledningen af CO2 medfører, at vedvarende pro-
duktionsteknologier bliver introduceret i det eksisterende elsystem. Dermed bliver det
stadigt mere udfordrende at opretholde balancen mellem produktion og forbrug på grund
af den naturligt svingende produktion fra teknologier som solceller og vindmøller. I et
Smart Grid system skal denne balanceringsudfordring løftes ved at mobilisere fleksibilitet
på forbrugssiden.

Denne afhandling antager, at Smart Grid systemet skal være kommercielt baseret og
ikke blot finansieret af offentlige tilskud. Dermed skaber Smart Grid systemet en forret-
ningsmulighed for de såkaldte Virtuelle Kraftværker. Et Virtuelt Kraftværk er en kom-
merciel operatør, som leverer Smart Grid funktionalitet til fleksible forbrugere. Dette
betyder, at det Virtuelle Kraftværk er den tekniske og kommercielle enhed, der håndterer
mobilisering og kontrol af fleksible forbrugere. Denne afhandling adresserer nogle af ud-
fordringerne omkring Smart Grid systemet og de Virtuelle Kraftværker. Fokusområderne
er fleksibilitet, værdiskabelse og porteføljekoordinering.

Begrebet fleksibilitet er centralt i Smart Grid diskusionen, men det er vanskeligt at
give en præcis definition af fleksibilitet. Denne afhandling foreslår derfor brugen af
en simpel taksonomi til modellering af forbrugerfleksibilitet. Den foreslåede taksonomi
etablerer tre fleksible arketyper, men er ikke udtømmende for fleksibilitetsbegrebet. Dog
nuancerer den diskussionen af begrebet fleksibilitet og fremsætter en mulig kategorisering
af fleksible systemer.

Efterfølgende undersøges det, hvilket afkast et Virtuelt Kraftværk kan forvente af hver
af de tre fleksibilitetstyper. Dette gøres ved at antage, at det Virtuelle Kraftværk skaber
profit ved at handle fleksibilitet på elmarkederne. Baseret på taksonomien og en model
af de nordiske elmarkeder, undersøges det, hvordan forskellene mellem fleksibilitetstyper
påvirker indtægten. Det findes, at det potentielle afkast er stærk afhængig af kvaliteten af
fleksibilitet.

Til sidst adresseres porteføljekoordinering, da en stor udfordring i at udvikle Smart
Grid systemet er, at tusinder eller måske millioner af fleksible forbrugere skal koordineres
og operere på en fornuftig, sammenkoblet måde. Den blotte størrelse på koordiner-
ingsproblemet gør derfor, at beregningstiden forbundet med koordinering kan blive prob-
lematisk. Denne problematik undersøges først ved analytiske bidrag omkring hvornår
porteføljekoordinering bliver beregningsmæssigt problematisk. Dernæst undersøges forskel-
lige muligheder for at beregne optimale løsninger til koordineringsproblemet. Specifikt
undersøges brug af softwarepakken CPLEX, dynamisk programmering og Dantzig-Wolfe
dekomposition. Desværre skalerer ingen af disse metoder til store problemer og derfor
undersøges heuristisk optimering. Dette giver særdeles lovende resultater både med hen-
syn til beregningstid og løsningskvalitet.
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1 Introduction

1.1 Motivation

Global efforts to reduce CO2 emissions has driven the introduction of renewable power
generation technologies into the power system. However, since these new generation
technologies harvest energy from sun and wind the power availability is becoming in-
creasingly changeable and difficult to predict. The Smart Grid is born out of the need to
maintain the balance between production and consumption in this far more volatile power
system (see Figure 1.1). In the Smart Grid a communication link to the consumption side
is to be established, such that flexible consumers like electric vehicles, heat pumps and
HVAC-systems can be mobilized, organized and activated to follow power availability
and scarcity.

This thesis takes a top-down and commercial approach to the Smart Grid, by assuming
that the Smart Grid must eventually become self-financing and that Smart Grid players
must develop their business within the existing frame works of deregulated electricity

Figure 1.1: Balancing: When electricity is produced it is consumed instantly, so produc-
tion and consumption must be precisely balanced at all times.
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Introduction

markets [8]. Under these assumptions, however, becoming a part of the Smart Grid is by
no means a trivial task.

Consider an asset owner, who owns a system, which is flexible in some way. The asset
owner then has an opportunity to become a Smart Grid player by offering flexibility to
the power system. The majority of assets have, however, been installed for some primary
purpose and a Smart Grid service add on would in most cases be a secondary goal. The
motivation for introducing a Smart Grid service add on should be a reduction of electricity
costs.

To become a Smart Grid player the asset owner must develop extensive in-house
Smart Grid capabilities, such as system modelling and control, establishment of a se-
cure and stable communication structure, development of market forecasting and trading
capabilities etc. It can therefore be argued, that ”while transaction costs [...] provides an
impetus to move activities inside the boundaries of the firm, [..] envy and resulting social
comparison costs motivate moving activities outside of the firm, [9].

The Smart Grid thus provides a business opportunity for third party aggregators de-
noted Virtual Power Plants (see Figure 1.2). A Virtual Power Plant is an independent
commercial operator, which provides Smart Grid capabilities to asset owners, [10]. This
means that the Virtual Power Plant does not have ownership of the flexible systems in
its portfolio, but only provides services such as control, communication and/or trading
facilities to asset owners. To make a profit the Virtual Power Plant must therefore build a
lucrative portfolio of assets and manage this in the electricity markets. Some contract be-
tween the Virtual Power Plant and asset owners should then specify how profit is shared,
see [11]. With this vision, flexibility becomes a commodity in itself and multiple Vir-
tual Power Plants can compete for flexible assets in order to obtain the most profitable
portfolio.

This thesis addresses some of the challenges faced by a Virtual Power Plant with
special attention to flexibility modelling, value creation and computational complexity of
portfolio coordination.

Flexibility

The flexibility of the aggregated assets is the value-adding resource of the Virtual Power
Plant, since its total profit gain comes from trading the portfolio in the electricity markets.
A first challenge for the Virtual Power Plant is therefore how to model the assets and
flexibility in the portfolio.

The flexibility of a given system is intrinsic and both state- and time dependent. It
is therefore very difficult to give a formal definition of that all-important Smart Grid
keyword: Flexibility. And it is perhaps even more difficult to determine whether one
system is more flexible than another.

In this Thesis we therefore propose the use of abstracted flexibility models rather than
detailed system models. The concept is similar to how markets operate today: When
power producers submit bids to electricity markets they specify commodity relevant data
such as time of delivery, activation time, quantity, price and location, [12] and [13]. They
do not, however, specify system data such as fuel type, generator efficiency or correlation
to district heating, [14]. Such details are abstracted from in the bidding process, and this
abstraction enable the markets to operate efficiently.

In this thesis flexibility will therefore be described by a simple taxonomy (see Section

2



1 Motivation

Figure 1.2: Virtual Power Plant: A Virtual Power Plant can pool a large number of con-
sumption units such as cooling systems, heat pumps and electric vehicles in order to
generate the flexibility on the consumption side, which is decreasing on the production
side.

3.1), rather than detailed system models, such as those given in [15], [16] and [17]. The
taxonomy is denoted Buckets, Batteries and Bakeries and the formulation is a proper
taxonomy in the sense that there is a hierarchical relationship between the different types
of flexibility. This still does not allow us to state formally whether one system is more
flexible than another, but it does allow us to state in a meaningful way that certain types
of flexibility is of better quality than others.

Market Integration

To make competition fair Virtual Power Plants must compete on equal terms with other
players such as wind farm operators and traditional power plants by offering flexibility
through the electricity markets. The market integration of a Virtual Power Plant can be
direct, through integration with a higher level Virtual Power Plant or through integration
with a larger portfolio of production units, see Figure 1.3. Virtual Power Plants will
then help the system wide goal of load balancing simply by increasing the capacity in
the markets. Market mechanisms should then generate a utilization of the total available
capacity, which is cheaper and more efficient than the current configuration.

In a deregulated electricity market the balance between supply and demand is main-
tained though the electricity markets all of which are potentially open to Virtual Power
Plants. Electricity markets operates in a series one after the other as the time of deliv-
ery approaches (see Figure 1.4). On each market producers and wholesalers make bids
for future time slots based on the best available knowledge, such as wind forecasts, con-
sumption forecasts or general market knowledge and experience. Electricity prices are
then determined based on these bids, and a balanced plan for production and consump-

3
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balance production in real time.

tion is generated. Once prices on an electricity market are settled (Market Clearing) that
market is closed.

At some point, however, it is so close to the time of delivery, that ”the price mecha-
nism cannot work fast enough to balance consumption and production in real time” [18].
At this point the so called reserves (ancillary services) take over the responsibility of
keeping production and consumption balanced in real time. Traditionally, reserves are
provided by power plants, which are operating at less than full capacity. Consequently
these power plants can ramp up or down as needed. The task of reserve ”standby” is traded
in designated reserve markets. These markets are also open to Virtual Power Plants and
could be especially attractive as reserves can be compensated with an availability payment
as well as an activation payment (see Section 2.1 for further details).

Portfolio Coordination

A major challenge in developing the Smart Grid is the sheer size of the optimization
problems involved. Solving a dispatch problem for a traditional power system with tens
or hundreds of generators is a challenge, which has been researched for decades, see [19],

4



2 Research Questions

[20], [21]. Moving to the Smart Grid, however, will expand that problem with additional
thousands or even millions of units. This means that the computation time associated
with determining an optimal dispatch configuration is very likely to be unacceptable in
practice, especially because the system must operate in real time.

A Virtual Power Plant does not require the construction of a facility as such, but there
are a number of fixed costs, which must be covered in order for the Virtual Power Plant
to be profitable. Examples of such expenses are

• marketing, billing and accounting,

• installation and maintenance of metering equipment,

• installation and maintenance of communication equipment and

• development of IT-platform.

To benefit from economies of scale to recover these fixed costs the Virtual Power Plant
must therefore accumulate a portfolio of a considerable size. Consequently this thesis
will address the challenge of computational complexity in the Smart Grid by investigating
portfolio coordination of a Virtual Power Plant.

1.2 Research Questions

The focus of the PhD project has been flexibility, value creation and computational com-
plexity of portfolio coordination for a Virtual Power Plant. These themes are investigated
from different perspectives in papers [1] to [5]. In this thesis the main contributions of
the project will be presented by investigating the following research questions:

1. Is a better quality of flexibility also more valuable?
Once the taxonomy for defining flexibility has been introduced the concept of qual-
ity of flexibility follows directly. It then remains to be verified that a better quality
of flexibility is also more valuable. Here more valuable means that it can generate
larger revenues when traded in electricity markets.

2. How can the Virtual Power Plant preserve the quality of the flexibility in the
portfolio as flexible units are dispatched?
If certain forms of flexibility are both of better quality and higher value than others
then the Virtual Power Plant should attempt to maximize the quality of the portfolio
during operation. This means that when a portfolio of diverse units are available
the worst quality units should be dispatched first. It will be investigated how to
achieve this.

3. Is coordination of a large portfolio of flexible units computationally challeng-
ing for the Virtual Power Plant? How can this issue be mitigated?
As discussed above the Virtual Power Plant must accumulate a portfolio of a cer-
tain size to cover fixed costs. This might however mean that portfolio coordination
could become computationally challenging. It will be investigated when this issue
becomes critical and what method are available to handle the problem.

Responses to these Research Questions 1 to 3 based on findings from papers [1] to [5]
are presented in Chapter 3.

5



Introduction

1.3 Outline of the Thesis

This thesis is presented as a collection of papers and it is divided into two main parts:
Thesis Details and Contributions.

Thesis Details

The first part of the Thesis, Thesis Details, has already begun with motivation and re-
search questions. Thesis Details is a coherent summary of the main scientific contribu-
tions of the PhD project based on Papers [1] to [5].

An additional contribution is presented in Section 3.7 under Prediction & Agility.
This contribution consists of the novel algorithms Predictive-Balancing-with-Agility and
Agile-Balancing-with-Prediction, which have not been previously published. These algo-
rithms combine prediction and agility, which leads to solutions of far better quality than
the algorithms Agile-Balancing and Predictive-Balancing, which have been published
in [3].

Contributions

The second part of the thesis, Contributions, is a presentation of the five publications
made during the project. Papers are presented in the following order

• Exploring the Value of Flexibility: A Smart Grid Discussion, [1]
This paper describes the motivation behind the more theoretical contribution of [2].
It thus discusses how the value of flexibility in an electricity system is determined
by markets, forecasts and physics. It also reviews the many constraints that are
relevant to determining the value of a flexible resource and introduces the ideas of
quality of flexibility and agility.

• Optimal Dispatch Strategy for the Agile Virtual Power Plant, [2]
In this paper it is proved formally that when local units are power and energy con-
strained integrators with P = E = 0 there exists a dispatch strategy, which is
optimal regardless of future load/imbalances. It is also proved that the optimal
dispatch can be obtained by solving a quadratic program at each sample.

• A Taxonomy for Modelling Flexibility and a Computationally Efficient Algo-
rithm for Dispatch in Smart Grids, [3]
This paper presents the Buckets, Batteries and Bakeries taxonomy for modelling
flexibility in Smart Grids as well as two heuristic algorithms for solving the bal-
ancing task: Predictive-Balancing and Agile-Balancing. Predictive-Balancing is a
traditional moving horizon algorithm, where power is dispatched based on perfect
predictions of the power supply. Agile-Balancing, on the other hand, is strictly
non-predictive, but designed to exploit the heterogeneity of the flexible units.

It is demonstrated that in spite of being non-predictive, Agile-Balancing can in
some cases out-perform Predictive-Balancing even when Predictive-Balancing has
perfect prediction over a relatively long horizon. This is due to the flexibility-
synergy-effects, which Agile-Balancing generates. As a further advantage Agile-

6



3 Outline of the Thesis

Balancing is extremely computationally efficient since it is based on sorting rather
than solving a linear program.

• Market Integration of Virtual Power Plants, [4]
In this paper a three-stage market model is developed. The model includes the Day-
Ahead (Spot) Market, the Intra-Day Market and the Regulating Power Market. The
main hypothesis is that the Virtual Power Plant can generate additional profit by
trading across several markets. It is found that even though profits do increase as
more markets are penetrated, the size of the profit is strongly dependent on the
quality of flexibility.

• Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Prob-
lem, [5]
In this paper the considered flexible consumers are discrete batch processes, and
the associated optimization problem is denoted the Discrete Virtual Power Plant
Dispatch Problem. It is proved formally that the Discrete Virtual Power Plant Dis-
patch Problem is NP-complete. Next tailored versions of the heuristic algorithms
Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP) are de-
veloped. The algorithms are tuned and tested on portfolios of varying sizes. By
far the best results are obtained by the method GRASP Sorted. This method can
determine solutions, which are both agile (sorted) and have very little slack even
for problems of 100.000 units and 100 samples with a computation time of just 10
seconds.

Notice that throughout the thesis certain terms are used interchangeably depending on
the context e.g. assets/facilities/systems/units and balancing/dispatch/scheduling/portfo-
lio coordination.
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2 Background

This section provides a background and state-of-the-art overview for Research Question
1 to 3 proposed in Section 1.2.

As discussed earlier this Thesis makes the assumptions that the Smart Grid must even-
tually become self-financing and also assumes that Smart Grid players must develop their
business within the existing frameworks of deregulated electricity markets. Section 2.1
therefore gives an introduction to the Nordic electricity markets, as this introduction will
be used to investigate Research Question 1 in Section 3.2.

What has so far been denoted portfolio coordination is more generally referred to as
demand side management. Demand side management falls into the main categories of
indirect and direct control. In this Thesis the control strategy discussed in Section 3.2
falls closest to indirect control, whereas the control strategy considered in Section 3.3 to
3.7 falls in the direct control category. Background on indirect and direct control will
therefore be reviewed in Section 2.2.

In Section we will suggest the Buckets, Batteries and Bakeries taxonomy for mod-
elling flexibility, so background on flexibility modelling is given in Section 2.3. Finally
Section 2.4 discusses optimization in Smart Grid literature.

2.1 Nordic Electricity Markets

In the Nordic countries the balance between production and consumption at the mar-
ket level is maintained by means of Day-Ahead Markets, Intra-Day Markets, Regulating
Power Markets and Balancing Power Markets (after-day settlement) [22], see Figure 2.1.

Market

Intra−DayDay−Ahead

Market Power Market

Regulating Balancing

Power Market

Time 

of

Delivery

Figure 2.1: Timeline of Nordic electricity markets.

As the name suggests, the Day-Ahead Market (the Spot Market) operates before the
actual time of delivery. Producers and wholesalers make bids for production and con-
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sumption in future time slots and prices are settled based on a double auction. Once
prices on the Day-Ahead Market are settled (Market Clearing), the market is closed.

On the Day-Ahead Market producers and wholesalers have made bids based on the
best available knowledge at the time of bidding. As time progresses, however, better
forecasts become available. The Day-Ahead Market is therefore followed by the Intra-
Day Market (the Elbas Market), where players have the option of adjusting their initial
production and consumption schedules in future time slots. The Intra-Day Market is a
continuous market where trading takes place up until one hour before the hour of delivery.
The Intra-Day Market consists of two lists, which are continuously updated: One list for
power purchases and one for power sales. Whenever there is a match within these lists
(meaning that a player is willing to purchase power at a price, which is higher than another
players sales price), these two bids are activated and removed from the lists. This means
that the Intra-Day market is more bilateral in nature than the other markets.

If players do not follow the schedule generated on the Day-Ahead and Intra-Day mar-
kets, they generate a need for balancing, i.e. up- or down-regulation. Up- and down-
regulation are performed by spare capacity denoted reserves, [23]. Traditionally, reserves
are provided by specific power plants, which are operating at less than full capacity, so
they can ramp up or down as needed.

In the Nordic markets reserve services are traded on the Regulating Power Market.
Having a designated power market ensures that a competitive price is paid for Regulating
Power. In the Regulating Power Market, bids can be made up to 15 minutes before the
hour of delivery. If a need for regulation arises during the hour of operation, then bids are
activated in accordance with the highest price of the block of most inexpensive bids until
the requested regulation is accumulated.

Since reserves are the ’back-up plan’ of the power system it is important to insure
sufficient capacity is available in the Regulating Power Market. Therefore certain sup-
pliers of reserves are given an availability/reservation payment for each hour of the day
(price/MW/Hour). By accepting this availability payment suppliers commit to supply-
ing a certain quantity to the Regulating Power Market during a specific hour. Thus, on
the Regulating Power Market there are both suppliers who have and have not received a
reservation payment, [24].

After the actual time of delivery, metered data of actual production/consumption is
evaluated. In the after-day settlement (or Balancing Power Market), producers and whole-
salers are invoiced according to their trades across the Day-Ahead, Intra-Day and Reg-
ulating Power Markets. In the Balancing Power Market the cost of Regulating Power is
therefore transferred to any players who have not provided what they have committed to
in the Day-Ahead and Intra-Day Market.

2.2 Indirect and Direct Control

Indirect Control

Indirect control is also denoted price signalling. This is because indirect control consist of
transmitting a price signal to flexible consumers in order to incentivise a certain behaviour.
Flexible units are, however, not obliged contractually to respond to the price signal. The
main benefits of indirect control is the simplicity and unit autonomy provided by the set-
up. Simplicity follows from, that prices have to be transmitted the consumer, but two
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way communication is not required. Settlement can simply be done off-line based on
measurements of consumption. The autonomy of flexible units is also well preserved
as they can simple choose not to respond to the given incentives. Also, flexible units
are not required to disclose any private information about system characteristics or state.
A conceptual analysis of indirect control is given in [25] and examples of demand side
management via price signalling are given in [26], [27] and [28].

An argument against price signalling is that some consumers might be incapable of
identifying their own demand curve (i.e., instantaneous quantity responsiveness as a func-
tion of real-time price). This can happen when their objective is to receive a service,
which is a function of energy use over time rather than instantaneous consumption, [29].
In [28], however, it is demonstrated that a flexible consumer can reduce electricity cost
by approximately 7% by basing consumption decisions on instantaneous and past prices
only. In [28] a so-called relative price is computed from recent and current prices. This
means that the consumer perception of whether prices are high or low is based on recent
price levels and fluctuations, but no price projections are provided. Through an experi-
mental set-up, which includes a micro-CHP unit (Combined Heat and Power) and a space
heating system, it is verified that the price responsive consumer can reduce electricity cost
by the aforementioned 7%.

A further argument against price signalling is the issue of stability. Stability concerns
of indirect control are investigated in [30], where it is assumed that consumers are given
an estimated price signal spanning a future horizon. Two kinds of consumers are investi-
gated, namely solely-price-optimized consumers and comfort consumers. Based only on
a price minimizing objective the solely-price-optimized consumers construct their con-
sumption schedule. The comfort consumers on the other hand also include a discomfort
term to their objective, specifically a cost of too high or low indoor temperature levels.
Based on this setup it is demonstrated that if more than two solely-price-optimized con-
sumers are considered then the system can become unstable. Here unstable means that
prices and consumers behaviour do not converge over time. It is also demonstrated that if
the discomfort term is large enough then stability can be guaranteed for arbitrarily large
populations of comfort consumers.

Direct Control

The alternative to indirect control is direct control. In direct control a nonprice-based
signal such as temperature setpoint or direct dictation of power consumption is used to
control flexible units. The control signal is provided by a third party and there exists a
contractual agreement between third party operator and flexible units. Flexible units are
therefore contractually obliged to follow the provided reference as long as the utilization
of the flexible system stays within the bounds of the contract. An information modelling
architecture for direct control of flexible units is presented in [31].

In [32] a three level hierarchical direct control set-up is developed for a portfolio of
Bucket type consumers. The hierarchical structure is designed to facilitate plug-and-play
control and remain stable for an increasing number of units. It is demonstrated though
simulations that the proposed architecture can supply reference tracking by distributing
imbalances to the flexible units.

Direct control based on more complex consumers models is investigated in [33] and
[34]. Two systems are considered, namely a supermarket refrigeration system and a
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chiller with ice storage. Both papers investigate how to supply downward regulating
power from the two-system portfolio. In [33] it is demonstrated that with the direct con-
trol set-up, the aggregator will be better able to follow the considered power reference
than what can be achieved with a proposed indirect control set-up. In [34] it is concluded
that under the direct control framework the power reference level (low, medium, high)
determines how power should be distribute between the refrigeration system and the ice
storage. This demonstrates that when considering a heterogeneous portfolio under a di-
rect control policy a better utilization of flexibility can be obtained by coordinating the
portfolio than what could be achieved by considering units individually.

Paper [35] looks into the problem of managing a large number of thermostat-based
appliances with on/off operation. First it is concluded that the memory and computa-
tion time requirements associated with a centralized MPC coordination strategy renders
that approach impossible. A distributed control structure is therefore developed based
on an aggregated consumer response model and a single global coordination signal. It is
demonstrated that the proposed architecture can efficiently coordinate the consumption of
1000 thermostat-based devices. This efficiency is however derived from the aggregated
model of consumer responsiveness of the relatively homogeneous units under consider-
ation. It could therefore be argued, that such an aggregated responsiveness model for
heterogeneous units would be far more complex and possibly less accurate.

2.3 Flexibility

As discussed earlier flexibility is central to the Smart Grid discussion, but a formal defi-
nition of flexibility is difficult to give. We have therefore suggested the Buckets, Batteries
and Bakeries taxonomy as way of formalizing flexibility. The taxonomy focuses on the
constraints of

1. Power Capacity,

2. Energy Capacity,

3. Energy level at a specific deadline, and

4. Runtime,

since these are widely found in physical systems. Based on these constraints three archety-
pal flexibility models are defined. The archetypes are denoted Buckets, Batteries and
Bakeries and they are presented in Section 3.1. A review of flexibility modelling in Smart
Grid literature reveals that the generic models of Buckets, Batteries and Bakeries are not
in themselves novel concepts. Several works have been identified (see Table 2.1), which
model flexibility in ways very similar to the Buckets, Batteries and Bakeries taxonomy.
Most existing literature, however, focuses on optimized operation of one particular tech-
nology. Two examples of papers which also seek to formalize the flexibility concept are
however [43] and [36].

In [43] a modelling framework denoted Smart Finite State Devises are presented. Four
types of units are included in the framework, namely optional loads, deferrable loads,
controllable loads and storage devices. Units are described as Markov Decision Processes
where the switch between states are stochastic processes [55]. The approach is similar to
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Reference [36] [37] [38] [39] [40] [41] [42] [43] [44] [45]
Bucket x x x x x x x (x)
Battery (x) x (x) x x
Bakery (x) (x)

Reference [46] [47] [48] [49] [50] [51] [52] [53] [54]
Bucket
Battery x x x x x x x
Bakery x x x x

Table 2.1: Review of flexibility modelling in Smart Grid literature.

the Buckets, Batteries and Bakeries framework in the sense that the description of flexible
consumers is highly abstracted and therefore allows for a categorization of diverse types
of units. A weakness of the presented technique is that since the modelling is based on
probability it does not guarantee upper and lower bounds in consumer discomfort such as
waiting time or temperature levels.

The so-called Power Nodes Framework suggested in [36] is in a sense an even more
general setup than both the Buckets, Batteries and Bakeries taxonomy and Smart Finite
State Devises, since a single generic model is suggested to describe anything from storage
units and thermal loads to wind farms and conventional generation. The model includes
power constraints, ramp-rate constraints, efficiencies and storage capacities. The authors
argue that these constraints are included because the grid-relevant aspects of units should
be captured by the model while technology-dependent and physical unit properties should
be abstracted from. They also note that apart from the constraints included there may be
additional ones imposed on the variables, e.g. in order to define certain standard unit
types with characteristic properties. It is therefore difficult to determine the boundaries of
the framework: Where do we draw the distinction between an extended power node and
a conventional system model? And, is e.g. a minimum runtime constraint grid-relevant
and should thus be included or is it technology-dependent and should thus be abstracted
from?

2.4 Optimization in Smart Grid Literature

When formulating an optimization problem for further research within the Smart Grid
area how to model flexibility and whether to investigate direct or indirect control are not
the only central choices. There are also several relevant objectives, which can be included
in the problem formulation, such as

• consumption Scheduling, [53],

• grid congestion management, [56],

• minimization of generation cost, [57],

• minimization of user discomfort, [62], and
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Reference Simulation samples Num. units Comp. time
[53] 144 <20 1.2 sec
[56] 24 600 30 sec
[57] 24 5 50 sec
[58] Unclear 20858 1.1 min
[59] 288 6 3.7 hours
[60] 24 3504 6 hours
[61] 24 50 83 hours

Table 2.2: Overview of computation times reported in recent scientific publications on
optimization in Smart Grid applications. Simulation samples is the number of discrete
time steps that the considered simulation horizon has been split into, [5].

• management of reactive power and voltage control, [58].

Depending on the objectives included the optimization problem can again be formulated
as

• mixed integer linear programming, [53],

• non-linear optimization, [58],

• quadratic optimization, [61], and

• stochastic optimization, [62].

Based on the type problem formulation countless methods and solution techniques are
the available within the vast area of optimization. A review of computation times for
optimization in Smart Grid literature, however, reveals that computation time is still a
very real challenge. Table 2.2 summarizes problem size and computation times for recent
scientific publications related to Smart Grid optimization. Obviously computation times
are highly dependent on the specific structure of the considered problem and the software
and platform used for calculation. Nonetheless, Table 2.2 does give the general impres-
sion that computation times are still quite a lot longer than what one can expect to be
acceptable for a fully deployed Smart Grid operating in real time. This is the case even
though several of the cited references investigate heuristic rather than exact optimization
methods.

In this Thesis we will investigate consumption scheduling formulated as a mixed in-
teger linear program. This has also been investigated in [53] and [57].

In [53] indirect control of Bakery type consumers are considered. The formulated
optimization problem is solved using the commercial software package CPLEX, [65].
This software package offers the functionality of terminating as soon as a feasible solution
is found and this functionality is thoroughly investigated in [53]. Through simulations it is
found, that when considering only one unit, the difference between the optimal solution
and terminating as soon as a feasible solution is found is only 1% in terms of solution
quality. The difference in computation time between the two approaches is not clear from
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the context. It is also found, however, that the first feasible solution method fails for more
than 20 units due to lack of memory.

In [57] the mixed integer program is formulated using fuzzy set logic and solved using
a Genetic Algorithm and Evolutionary Particle Swarm Optimization. The algorithms are
tested on an experimental set-up, which includes a photovoltaic panel, a wind turbine, a
fuel cell, light bulbs and a storage device. It is found that the Genetic Algorithm and Evo-
lutionary Particle Swarm Optimization can obtain comparable results in terms of solution
quality and computation time, but the Genetic Algorithm requires nearly twice as much
memory as Evolutionary Particle Swarm Optimization.
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3 Summary of Contributions

This section provides responses to the Research Questions 1 to 3 formulated in Section
1.2. Responses are based on findings from papers [1] to [5] and these papers are ref-
erenced throughout. This Chapter does not give consecutive summaries of papers, but
instead contents is summarized in the following main contributions:

1. Introduction of taxonomy for modelling of flexibility, [3], [4],

2. Demonstration of that better quality flexibility is more valuable, [4],

3. Introduction of the concept of agility and demonstration of that agility can create
value, [1], [2], [3],

4. Demonstration of and proof that computational complexity of portfolio coordina-
tion can become critical for the Virtual Power Plant and the development of heuris-
tic algorithms to mitigate the challenge, [3], [5],

These four subjects will be addressed in Section 3.1, 3.2, 3.3 and 3.4 to 3.7 respec-
tively.

After the introduction of the Buckets, Batteries and Bakeries taxonomy in Section 3.1
several different concepts and methods are presented. Most of these will be illustrated by
examples or simulations. Each concept or method is illustrated with the most appropriate
portfolio, which means that the considered portfolio will change several times throughout
the Chapter. To assist the reader light blue is used for Buckets, medium blue for Batteries
and dark blue for Bakeries (See Figure 3.1) throughout. Furthermore Table 3.1 gives an
overview of the portfolios considered in each section.

In Sections 3.4 to 3.7 the computational complexity of portfolio coordination is in-
vestigated. In Section 3.5 the term exact method is used to oppose heuristic optimization
methods. By exact method we therefore denote an optimization technique, which will
determine an optimal solution of a given problem if provided with sufficient computation
time.

3.1 Flexibility

To investigate the research questions posed in Section 1.2 a first critical choice is how
to model the flexibility of the systems in the Virtual Power Plant portfolio. In this thesis
this is done by defining a taxonomy to express flexibility in a consistent manner. The
taxonomy is denoted Buckets, Batteries and Bakeries and it focuses on the constraints of
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Section Subsection Page Portfolio

3.1 17
A Bucket, a Battery and a Bakery as depicted in

Figures 3.2, 3.3 and 3.4.

3.2 23
A Bucket, a Battery and a Bakery with parameter

values P = −1MW,P = 1MW,E =
0MWh,E = 3MWh. Drain of 10% on Bucket.

3.3
Agility and
Prediction

Errors
28

Three Bakeries with parameter values as depicted
in Figure 3.10.

3.3

Agility and
Length of
Prediction
Horizon

30 Nine Buckets having P = E = 0 and additional
parameters as given in Table 3.4.

3.5 CPLEX 37 First 50 Bakeries then 100 Bakeries.

3.5
Dynamic

Programming 37 Portfolios of 10 to 15 Bakeries.

3.5

Dantzig-
Wolfe

Decomposi-
tion

41
Four Batteries with parameter values P = 2 and
E = 2. After that four Bakeries with identical

parameter values.

3.7
Hill Climber
and GRASP 48 Portfolios of 1.000, 10.000 and 100.000 Bakeries.

3.7
Prediction
and Agility 54

Portfolios of 5 Buckets, 50 Batteries and 50
Bakeries.

Table 3.1: Overview of portfolios considered in each section of Chapter 3.

1. Power Capacity,

2. Energy Capacity,

3. Energy level at a specific deadline, and

4. Runtime,

since these are widely found in physical systems. Obviously, this is by no means an ex-
haustive definition, since there are numerous other constraints, parameters and dynamics,
which could also be considered (See Paper [1] for further discussion). In fact, almost ar-
bitrarily detailed modelling of any real world system can be imagined. However, if highly
customized models are used at the lowest level as the Smart Grid is deployed, then algo-
rithms and interfaces at higher levels must also be able to handle such arbitrarily complex
models. In practice this would be very challenging and costly, so the taxonomy should be
seen as an attempt at simplification and standardization.

Taxonomy

The Bucket, The Battery and The Bakery are three simple flexibility models, which are
constructed based on the constraints 1) to 4).

18



1 Flexibility

Figure 3.1: Buckets, Batteries and Bakeries is a taxonomy for modelling flexibility in
Smart Grids. Light blue, medium blue and dark blue will be associated with Buckets,
Batteries and Bakeries respectively throughout this section.

The suggested framework is a proper taxonomy in the sense that there is a hierarchical
relationship between the three models. This means that a Bucket provides a better quality
of flexibility than a Battery, which is again superior to a Bakery (see Figure 3.1). Here,
better quality means less constrained, not necessarily more flexible or valuable. This
distinction must be made because the flexibility of a system is not just determined by
constraints, but also by the specific parameter values of the system. That is, a large
Battery could in some situations be considered ”more flexible” or ”more valuable” than a
small Bucket, even though the Bucket is a better quality flexibility than the Battery.

Formal definitions of a Bucket, a Battery and a Bakery are given in Definition 1, 2 and
3 below. Ts denotes the size of the time step, P and P denote limits on consumption rate,
E and E denote limits on energy storage levels and v(k) is a boolean-valued variable
stating whether or not a Bakery is running at sample k.

The first model in the taxonomy is denoted the Bucket and it is a power and energy
constrained integrator. The Bucket could for example be a simplified model of a house
with a heat pump, which is used for energy storage. The average consumption of the
heat pump should then be considered as a fixed load, and the Bucket seen as only the
controllable consumption around that average. Thus, the ”negative energy” illustrated in
Figure 3.2 indicates that the thermal energy stored in the house is below the average for
that time of day. The Bucket is defined by

Definition 1 (Bucket). The dynamics and constraints of a Bucket are

Bucket(k): E(k + 1) = E(k) + TsP (k) (3.1)

P ≤ P (k) ≤ P (3.2)

E ≤ E(k) ≤ E (3.3)
E(0) = E0, (3.4)
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where k = 0, 1, . . . ,∞, P ≤ 0 ≤ P and E ≤ E0 ≤ E.

Time

Time

Power

Energy

P

P

E

E

Figure 3.2: Example of a consumption profile for a Bucket. The Bucket is equivalent to a
power and energy constrained integrator.

Like the Bucket, the Battery is a power and energy constrained integrator, but with the
added restriction that the unit must be fully charged at a specific deadline. The Battery
could be emulating an electric vehicle, which must be ready for operation at a specific
time. The Battery is defined by

Definition 2 (Battery). The dynamics and constraints of a Battery are

Battery(k): E(k + 1) = E(k) + TsP (k) (3.5)

0 ≤ P (k) ≤ P (3.6)

0 ≤ E(k) ≤ E (3.7)
E(0) = E0, (3.8)

E(Kend) = E, (3.9)

where k = 0, 1, . . . ,∞, Kend ∈ N, 0 ≤ P and 0 ≤ E .

20



1 Flexibility

Energy

Time

Power

Time

KEnd

E

P

KEnd

Figure 3.3: Example of a consumption profile for a Battery. The Battery is a power and
energy constrained integrator, which must be ”charged” to level E by time Kend.

Finally the Bakery extends the Battery with the additional constraint that the process
must run as one continuous batch and at constant power. The Bakery could be a com-
mercial green house, where plants must receive a specific amount of light each day. This
light must, however, be delivered continuously and at a constant level to stimulate the
photosynthesis of the plants. A similar requirement exists for baking bread: To achieve
a nice loaf of bread we must bake for thirty minutes at approximately 200◦C. Baking for
two hours at 50◦C, however, will just leave us with warm dough. Hence the name Bakery
for the batch model. The Bakery is defined by

Definition 3 (Bakery). The dynamics and constraints of a Bakery are

Bakery(k): E(k + 1) = E(k) + TsP (k), (3.10)

P (k) = Pv(k) (3.11)

0 ≤ E(k) ≤ E, (3.12)
E(0) = E0, (3.13)

E(Kend) = E, (3.14)

0 ≤
k+Krun−1∑

l=k

v(l)−Krun

(
v(k)− v(k − 1)

)
, (3.15)

where k = 0, 1, . . . ,∞, 0 ≤ P , E = PKrun, v(k) ∈ {0, 1}, Kend ∈ N and Krun ∈
N. Here, inequality (3.15) is the minimum runtime constraint, which ensures that if
v(k) − v(k − 1) is one, then v(l), l = k + 1, k + 2, . . . ,KRun − 1 must also be one;
that is, once the Bakery is activated, it must complete its consumption immediately and

21



Summary of Contributions

continuously. Obviously more complicated power sequences than constant consumption
can be imagined, but the main point is that the only flexibility is in the activation time.

Energy

Time

Power

Time

E

KRun

KEnd

KRun

KEnd

P

Figure 3.4: Example of a consumption profile for a Bakery. The Bakery is a batch process,
which must be finished by time Kend. The process has constant power consumption and
the run time is Krun.

22



2 Value of Flexibility

In the remainder of the thesis a flexible consumer will also be denoted a local unit. A
portfolio ofN local units of the type Buckets, Batteries and Bakeries will then be denoted
{LUi}i=1,2,...,N . The aggregated consumption of a portfolio consisting of the Bucket, the
Battery and the Bakery depicted in Figure 3.2, 3.3 and 3.4 respectively is given by the
profile in Figure 3.5.

Power

Time

Time

Energy

Figure 3.5: The dashed line corresponds to the aggregated consumption for the Bucket,
Battery and Bakery depicted in Figures 3.2, 3.3 and 3.4 respectively.

3.2 Value of Flexibility

In this section the taxonomy will be used to test the hypothesis that different quality of
flexibility have different revenue potential. This was investigated in [4] where it was at-
tempted to assign monetary value to different flexibility qualities. The hypothesis is tested
in a simple set-up, which is intentionally not extended with assumptions and correlations,
which might and might not turn out to hold true for a fully deployed Smart Grid. There-
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Bids based on:
eIntra-Day with Day-Ahead Padding

Prices settled based on:
eIntra-Day with Regulating Power Padding

Bids based on:
eIntra-Day with Day-Ahead Padding

Bids activated based on:
eRegulating Power

Prices settled based on:
eIntra-Day with Regulating Power Padding

Bids based on:

Prices settled based on:
eDay-Ahead

ePredictions of Day-Ahead

Prices settled based on:
eRegulating Power

Figure 3.6: Timeline of electricity market model.

fore the market model was developed to include historic prices only. Since the model is
based on historic data there is no feedback in the formation of prices, meaning that prices
are not generated dynamically. Consequently, the model is only valid under the assump-
tion that the total amount of flexibility bid into the system is small enough not to affect
the formation of prices significantly.

The considered portfolio consists of one unit of each type in the taxonomy and the
same parameter values are used for all three units. This means that units are not modelling
the flexibility of any specific systems, but instead it is possible to directly compare the
effects that different constraints have on the revenue potential. Notice that a drain of 10%
has been added to the Bucket model meaning that 10% of the energy stored in the model
(that is E(k) in Equation (3.1)) drains from the Bucket with each sample/hour.

Model of Electricity Markets

To perform calculations a three-stage market model (see Figure 3.6) is developed based
on the market description in Section 2.1. The model consists of a series of optimization
problems, which the Virtual Power Plant solves one by one to determine how to bid
into the different markets. With each optimization problem the latest and most updated
information is used. All optimization problems are formulated explicitly in Paper [4], but
here we will just give a short summary and state the main results.

The first stage of the market model is the Day-Ahead Market, which the Virtual Power
Plant can bid into based on predictions of market prices (in Paper [4] sensitivity to pre-
diction quality is also investigated). Remember that the portfolio consist of a Bucket, a
Battery and a Bakery, so the Virtual Power Plant must purchase the baseline power re-
quired to charge the Battery and run the Bakery. The Virtual Power Plant can also start to
gain a profit from the Bucket if there is a step up in prices from one hour to the next. The
Virtual Power Plant can then purchase power for the Bucket at the lower price in the first
hour and sell the remaining 90% at the higher price of the next hour to make a profit.

In the second stage of the model the Intra-Day market is opened. If there is activity
on the Intra-Day market, the Virtual Power Plant can do additional trading here to further
increase its profit. This means that the Virtual Power Plant has the option of selling
power bought on the Day-Ahead Market and change the consumption schedule for each
local unit if this can increase earnings.

In the third stage of bidding the Virtual Power Plant must make up- and down-
regulation bids into the Regulating Power Market. This is done one hour at a time and
again the Virtual Power Plant must solve a specific optimization problem to determine the
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price, which should be bid into the market. Price-wise up-regulation bids should be as
low as possible to get activated and down-regulation bids should be as high as possible to
get activated. Still, however, the Virtual Power Plant should of course only bid at prices,
which it projects will make a profit.

Finally, there is an independent stage for the Balancing Market, where the appropriate
imbalances are paid/compensated at the price of Regulating Power.

Results of Electricity Market Trading

The analysis focuses on the Danish electricity market, so Day-Ahead prices, average
Intra-Day prices and Regulating Power prices from price zones DK1 and DK2 (see Figure
3.7) in 2010, 2011 and 2012 are used in calculations. The data can be downloaded from
[63]. Portfolio parameters are P = -1 MW, P = 1 MW, E = 0 MWh, E = 3 MWh
for all three units, which corresponds to a run time of three hours for the Bakery, that is
Krun = 3 hours.

Figure 3.7: The price zones of western and eastern Denmark are referred to as DK1 and
DK2 respectively.

Simulations show that for the Bucket it is possible for the Virtual Power Plant to
achieve a profit in all three considered years in both DK1 and DK2, see Table 3.2. For
the Battery and Bakery, however, the base load requirements mean that the Virtual Power
Plant cannot make a profit on these two types of units, see Table 3.3. It is, however,
possible for the Virtual Power Plant to achieve considerable savings for the Battery and
Bakery in the second and third market stages after the initial purchase of base load power
in the Day-Ahead Market. For the Battery these savings are in the order of 3% to 24%
and for the Bakery between 1% and 10% depending on the year and price zone.

A sensible contractual agreement between asset owner and Virtual Power Plant could
thus be that the asset owner should pay the expense of purchasing base load power in the
Day-Ahead Market. Any additional profit gained in the Intra-Day and Regulating Power
Markets should then be shared evenly between asset owner and Virtual Power Plant. With
this setup, Figure 3.8 shows which flexibility type is most profitable for the Virtual Power
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Bucket
Year Zone Day-Ahead Intra-Day Regulating

2010 DK1 -6.823 -7.544 -20.792
DK2 -21.409 -21.998 -28.937

2011 DK1 -8.655 -9.969 -27.880
DK2 -10.156 -11.386 -30.047

2012 DK1 -11.707 -14.639 -35.981
DK2 -14.541 -17.383 -39.282

Total -73.292 -82.919 -182.919

Table 3.2: Profit (Negative numbers) in e obtained by trading the Bucket according to the
developed model.

Battery Bakery
Year Zone Scenario Day-Ahead Intra-Day Regulating Day-Ahead Intra-Day Regulating

2010
DK1 Day, 50.984 51.281 48.877 51.307 51.432 50.793

Night 38.154 38.047 35.083 38.233 38.095 35.605

DK2 Day 62.139 62.367 58.965 62.453 62.872 61.609
Night 44.067 43.927 42.775 44.170 43.935 43.329

2011
DK1 Day, 53.178 52.488 47.403 53.404 52.440 50.425

Night 37.376 36.873 34.103 37.463 37.041 35.686

DK2 Day 55.192 55.001 47.221 55.460 55.786 51.084
Night 37.539 37.449 35.430 37.621 37.403 36.638

2012
DK1 Day, 39.843 39.345 31.409 40.059 40.058 37.176

Night 26.638 26.296 24.587 26.682 26.531 25.895

DK2 Day 41.171 40.186 31.188 41.420 40.757 37.393
Night 26.724 26.317 24.716 26.752 26.449 26.048

Total 513.005 509.576 461.757 515.025 512.799 491.681

Table 3.3: Costs in e accumulated by trading the Battery and Bakery according to the
developed model. The first market stage is the Day-Ahead Market, the second market
stage is the Intra-Day Market and the third market stage is the Regulating Power Market.
Notice that considerable savings are obtained in the second and third market stages after
the initial purchase of base load power in the Day-Ahead Market.

Plant. It is found that the Bucket is far more profitable than the Battery, which again
generates much larger profits than the Bakery. This is the case for both DK1 and DK2
in 2010, 2011 and 2012. If total profits for DK1 and DK2 and all three considered years
are summed up the Battery earns 14% and the Bakery only 6% of the profit earned by
the Bucket. This confirms the hypothesis that a better quality of flexibility is also more
valuable.

Paper [4] also gives a detailed Single-Day illustration of how the three flexibility
qualities should have been traded on February 3rd, 2012 according to the model. This
example also clearly establishes how different types of constraints prompt that units can
be offered to the markets at different times. Consequently the revenue potential depends
strongly on the quality of flexibility.

Additional contributions of Paper [4] are the results that the Virtual Power Plant can
increase its profit by trading in several markets and that bidding into several markets also
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Figure 3.8: Estimated Virtual Power Plant profit in e for each type of flexibility in DK1
and DK2 respectively.
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Figure 3.9: The Virtual Power Plant Dispatch Problem.

makes profits surprisingly robust to errors in Day-Ahead price predictions.

3.3 Agility in Dispatch

Since it has been demonstrated that better quality of flexibility is also more valuable the
idea of agility is developed. The term agility means to maximize the quality of flexibility
in the portfolio as flexible units are dispatched. This section will first introduce the Vir-
tual Power Plant Dispatch Problem and then illustrate the benefits of agility in different
unfavourable situations.

To formulate the Virtual Power Plant Dispatch Problem, see Figure 3.9, let
PDispatch(k), k = 1, 2, · · · ,K denote a fluctuating power supply, which must be dis-
patched to the portfolio. As discussed in Section 1.1 depending on the market integration
of the Virtual Power Plant the signal PDispatch could be generated by a master controller,
a higher level Virtual Power Plant or be the result of direct market trading (See Figure
1.3). Remember that a portfolio of N local units of the type Buckets, Batteries and Bak-
eries is denoted {LUi}i=1,2,...,N . At sample k also let Pi(k) denote the power dispatched
to unit i, and any portion of PDispatch(k) which cannot be dispatched to the portfolio is
denoted S(k).

The objective is to minimize the residual power, that is |S|, so the Virtual Power Plant
Dispatch Problem can be formulated as
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f(Pi(·)) = min
Pi(·)

K∑
k=1

|S(k)| (3.16)

s.t.

N∑
i=1

Pi(k) + S(k) = PDispatch(k), (3.17)

and also subject to the dynamics and constraints of {LUi}i=1,2,...,N .
The remainder of this section will demonstrate the advantages of adding agility to the

standard formulation of the Virtual Power Plant Dispatch Problem. Adding agility to the
dispatch problem is really an attempt to maximize the solution space, which is the basis
of dispatch problems to be solved in future time steps. There are therefore two situations
in which agility is beneficial:

1. when predictions of PDispach are erroneousness, and

2. when the length of the prediction horizon of PDispatch is not sufficient.

Firstly the benefit of agility in case of erroneous predictions is demonstrated, which
is done by considering a simple dispatch problem for a small portfolio of Bakeries. Next
results from Papers [1] and [2] are summarized to illustrate the benefit of agility when
prediction horizons are not sufficiently long. Here the portfolio is composed of Buckets
having P = E = 0. Finally it is demonstrated how to build agility into a portfolio
of mixed units by use of so-called Agility Factors. This also demonstrates how agility
depends not only on the type of flexibility but also on parameter values.

Agility and Prediction Errors

To illustrate the usefulness of agility in case of erroneous predictions, consider a portfolio
consisting of Bakery1, Bakery2 and Bakery3 each having a run time of one hour and
deadlines of 17:00, 14:00 and 15:00 respectively, see Figure 3.10. Also say that at 12:00
it is predicted that sufficient power to satisfy all three Bakeries will be available between
the hours of 12:00 and 15:00, see Figure 3.11.
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Figure 3.10: Consider a portfolio consisting of Bakery1, Bakery2 and Bakery3 each hav-
ing a run time of one hour and deadlines of 17:00, 14:00 and 15:00 respectively.
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Figure 3.11: Power availability forecasted at 12:00.

Given this setup dispatching in the order A = {Bakery1,Bakery2,Bakery3} and in
the order B = {Bakery2,Bakery3,Bakery1} both yield optimal solutions of the dispatch
problem, see Figure 3.12. Now, if the projection of power availability is correct, then
it is obviously unimportant to distinguish between dispatch A and B as they are both
optimal given that they have zero slack. However, if the power thought to be available
between 14:00 and 15:00 is delayed by two hours (see Figure 3.13) then dispatch B can
remain optimal by moving the start time for Bakery1 from 14:00 to 16:00. For dispatch
A, however, this is not an option, because at 14:00 only Bakery3 remains to be started and
this unit has deadline at 15:00.
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Figure 3.12: If power is available between the hours of 12:00 and 15:00 then dispatch A
and dispatch B are both optimal solutions of the considered dispatch problem.
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Figure 3.13: As time progresses the agile dispatch B can remain optimal even when the
power thought to be available between 14:00 and 15:00 is delayed two hours. Dispatch A
cannot do this, since at 14:00 only Bakery3 remains to be started and Bakery3 has deadline
at 15:00.

The reason dispatch B can remain optimal is that it is the more agile of the two since
Bakeries are dispatched in the order of deadlines. This means that dispatch B has left
more manoeuvrability for the optimization in later time steps. This illustrates how adding
agility to the dispatch problem maximizes the solution space, which is the basis of dis-
patch problems to be solved in future time steps.

Agility and Length of Prediction Horizon

We first investigated the relationship between agility and prediction horizon in Papers [1]
and [2]. Here the portfolio consists of Buckets having P = E = 0. The main contribution
of Paper [2] is a formal proof that for this type of portfolio there exists an optimal, agile
dispatch strategy, which can be found at each sample by solving a quadratic program (see
Theorem 1 in Section 3.4 for further details). This dispatch strategy is denoted the agile
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strategy and it is strictly non-predictive since at sample k it determines a dispatch based
only on the current state of the portfolio and the value of PDispatch(k).

The agile strategy is juxtaposed to a moving horizon strategy denoted the predictive
strategy. The predictive strategy is given perfect prediction of a number of samples of
PDispatch. Problem (3.16) to (3.17) is then solved and the results for the first sample is
implemented.

Let PReserve,i(k) denote the upper bound on the power, which can be dispatched to
local unit i at sample k. Since only Buckets having P = E = 0 are considered it follows
that

PReserve,i(k) = min(P i, Ei − Ei(k)),

and the maximum power, which can be dispatched to the portfolio at sample k, is

PReserve(k) =

N∑
i=1

PReserve,i(k).

Since only positive power is considered PReserve can be used as a measures of the
quality of the portfolio. A high value of PReserve thus means that a better service is
provided to the market/master controller.

To compare the agile and predictive dispatch strategies a small simulation example is
given. Nine local units are included in the simulations and parameters for these are given
in Table 3.4. We set Ts = 1 and the predictive strategy is given three samples of perfect
prediction of PDispatch.

i P i Ei Ei,0

1 1 40 0
2 2 50 0
3 3 45 0
4 4 120 0
5 5 175 0
6 6 270 0
7 7 35 0
8 8 160 0
9 9 90 0

Table 3.4: Parameters for the local units.

The simulation results are given in Figure 3.14. It can be seen that after 90 samples the
agile and the predictive strategies both run out of flexibility, which is obviously because
the two methods have the exact same portfolio at their disposal and have to balance the
exact same load. Before that, however, the agile approach does a much better job at
preserving PReserve than the predictive strategy. This illustrates to important points:

1. Agility can create value: If the Virtual Power Plant is given not only an activation
payment, but also an availability payment (price/reserved quantity/time unit) as
explained in Section 2.1, then the higher value of PReserve will translates directly
to higher profit.
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2. Correct predictions do not translate into agility: The previous example demon-
strated that agility could make dispatch more robust of prediction errors. In this
example, however, the forecasts, which the predictive strategy is given are actually
correct, but clearly this does not in itself translate to agility. The predictive dispatch
approach must have a very long (in theory infinite) prediction horizon in order not
to violate the agility property.

Figure 3.14: PReserve is an upper bound on the amount of power, which can be dispatched
to the portfolio at each sample.
At each sample the predictive dispatch strategy has perfect prediction of PDispatch over
the next three samples; An assumption which is not made by the agile strategy.
In the first part of the simulations the two methods perform equally well. After sample
15, however, the agile dispatch strategy is able to compensate for a larger imbalance than
the predictive dispatch strategy. This happens eventhough the two methods have the exact
same portfolio at their disposal and have to balance the exact same load.

Agility Factors for Mixed Portfolios

As it has just been demonstrated correct predictions do not in itself translate into agility.
This means that agility must be handled explicitly, and to do this so-called Agility Factors
are introduced. Agility Factors reflect the quality of units in the portfolio, so by introduc-
ing Agility Factors an ordering of units by quality can be achieved. Section 3.7 will then
introduce different concepts for how to incorporate agility based on Agility Factors into
algorithms for solving the Virtual Power Plant Dispatch Problem.

Notice that Agility Factors are defined in the way that is most intuitive for each type of
unit. This means that for mixed portfolios sorting according to Agility Factors becomes
slightly more involved, as summarized in Remark 1:
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Remark 1: (Sorting mixed portfolios according to Agility Factors) When mixed portfolios are
sorted according to Agility Factors Batteries and Bakeries are sorted in increasing Agility Fac-
tor order followed by Buckets sorted in decreasing Agility Factor order. This way an ordering by
quality is obtained.

Though a bit unintuitive in practice the ordering specified in Remark 1 is easily im-
plemented and does not in any way affect results or computation time.

The agility attributes of the Bucket are investigated in [1]. Here it is concluded that
the Agility Factor of a Bucket should be the number of samples that it can operate at
maximum power without becoming inactive/saturated. The Agility Factor of the Bucket
is therefore defined as

Definition 4. The Agility Factor of Bucket i at sample k is

KBucket
i (k) =

Ei − Ei(k)

TsP i

.

Batteries and Bakeries have quite different agility attributes than Buckets, because
they have an energy requirement, which must be met. This means that as the deadline
approaches the Battery or the Bakery will go from being a flexible resource to being a
constraint. Consequently Agility Factors for the Battery and Bakery state how close we
are (in terms of samples) to being forced to start the unit:

Definition 5. The Agility Factor of Battery i at sample k is

KBattery
i (k) = KEnd,i − k −

Ei − Ei(k)

TsP i

.

Definition 6. The Agility Factors of Bakery i at sample k is

KBakery
i (k) = KEnd,i −KRun,i − k.

3.4 Analytical Results

During the project several analytical contributions have been made relating to the com-
putational complexity of the Virtual Power Plant Dispatch Problem. These contributions
are summarized below.

The term Information State and causality were first introduced in [51]. Adapting to
the notation of this Thesis these concepts are defined as follows:

Definition 7 (Information State). The information state Ik at time k consists of

1. Parameters for all units {LUi}i=1,2,...,N at time k,

2. Energy level Ei(k) for all units {LUi}i=1,2,...,N at time k, and

3. Realized values of PDispatch up until time k, that is PDispatch(0), PDispatch(1),
. . . , PDispatch(k).

Definition 8 (Causality). A dispatch strategy is causal if its allocation at time k depends
only on the information state at time k.
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If optimal, causal dispatch strategies exist for a given dispatch problem, then this
problem can be solved ”one sample at a time”, which significantly reduces the computa-
tional complexity. By Theorem 1 to 4, however, it is shown that optimal, causal dispatch
strategies for Buckets, Batteries and Bakeries portfolios only exist in the very specific
case where the portfolio consists of only Buckets all having E = P = 0.

Theorem 1. Let {LUi}i=1,2,...,N denote a portfolio of Buckets all having E = P = 0.
There does exist an optimal, causal dispatch strategy for {LUi}i=1,2,...,N . This dispatch
strategy can be obtained by solving a quadratic dispatch problem given by replacing the
cost function in the Virtual Power Plant Dispatch Problem given by (3.16) to (3.17) with

max
Pi(k)

N∑
i=1

(Ei − Ei(k)− Pi(k))2

−2P i

.

Proof. Omitted for brevity, see [2].

Theorem 2. Let {LUi}i=1,2,...,N denote a portfolio Buckets. There does not exist an
optimal, causal dispatch strategy for {LUi}i=1,2,...,N .

Proof. Proof is done by counterexample, [3]. Consider a portfolio consisting of the fol-
lowing two Buckets

Bucket1: E1(0) = 0,

P 1 = 1, E1 = 1,

P 1 = −1, E1 = −1,

Bucket2: E2(0) = 0,

P 2 = 1, E2 = 3,

P 2 = −1, E2 = −3,

Next define the following dispatch profiles

PA
Dispatch = (0, 2, 2),

PB
Dispatch = (0,−2,−2).

Observe that it is possible to dispatch sequence PA
Dispatch in such a way that

∑2
k=0 |S| =

0. However, this is only achievable if P1(0) = −1 and P2(0) = 1. Observe also that
equivalent arguments hold for PB

Dispatch if P1(0) = 1 and P2(0) = −1. At k = 0
a causal dispatch strategy must offer allocations of power based only on information
available at time k = 0. Notice, however, that PA

Dispatch(0) = PB
Dispatch(0) and since

optimal dispatch of PA
Dispatch and PB

Dispatch requires different allocations at time k = 0,
a causal dispatch strategy cannot exist.

Theorem 3. Let {LUi}i=1,2,...,N denote a portfolio of Batteries. There does not exist an
optimal, causal dispatch strategy for {LUi}i=1,2,...,N .

Proof. See [51].
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Theorem 4. Let {LUi}i=1,2,...,N denote a portfolio of Bakeries. There does not exist an
optimal, causal dispatch strategy for {LUi}i=1,2,...,N .

Proof. [3] Proof is done by counterexample. Consider a portfolio consisting of the fol-
lowing two Bakeries

Bakery1: E1(0) = 0,

P 1 = 1, E1 = 1,

Krun,1 = 1,Kend,1 = 2,

Bakery2: E2(0) = 0,

P 2 = 3, E2 = 3,

Krun,2 = 1,Kend,2 = 2.

Next define the following dispatch profiles

PA
Dispatch = (2, 1),

PB
Dispatch = (2, 3).

Observe that the optimal dispatch of either sequence PA
Dispatch or sequence PB

Dispatch

to the portfolio has
∑1

k=0 |S| = 1. However, for PA
Dispatch, this is only achievable if

P1(0) = 0 and P2(0) = 3. For PB
Dispatch the required configuration is P1(0) = 1 and

P2(0) = 0. The argumentation that a causal optimal dispatch strategy does not exist now
follows as in the proof of Theorem 2.

Since it has been showed that optimal, causal dispatch strategies do not generally
exist, perfect prediction of PDispatch is needed in order to determine the optimal dispatch
at time k. Even with the assumption of perfect prediction of PDispatch though, Theorem
5 below states that the dispatch problem is NP-complete if Bakeries are included in the
portfolio. NP-completeness means that the computation time associated with finding an
optimal solution using currently known algorithms grows extremely fast with the problem
size.

Definition 9 (Subset-Sum Problem). Let there be given a finite set S ∈ N and a target
T ∈ N. Is there a subset S′ ∈ S whose elements sum to T ?

Lemma 1. The Subset-Sum Problem is NP-complete.

Proof. See [64].

Theorem 5. Let {LUi}i=1,2,...,N denote a portfolio of Bakeries. Then problem (3.16) to
(3.17) is NP-complete.

Proof. Let K ∈ N+ and K ∈ N+ be given and assume without loss of generality that
K < K. Next define portfolio {LUi}i=1,2,...,N consisting of all Bakeries having P i =

1, KEnd,i = K and
∑N

i=1KRun,i = K + K. Also define PDispatch(k) = 2, k =
1, 2, . . . ,K and PDispatch(k) = 1, k = K+ 1,K+ 2, . . . ,K (see Figure 3.15).
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Figure 3.15: For the considered instance of the Virtual Power Plant Dispatch Problem a
solution of problem (3.16) to (3.17) such that f(Pi(·)) = 0 can exist if and only if there
also exists a subset of KRun,i, i = 1, 2, . . . , N , which sums toK.

To prove NP-completeness the following decision problem is formulated: Given the
Virtual Power Plant Dispatch Problem instance constructed above does there exist a solu-
tion of problem (3.16) to (3.17) for which f(Pi(·)) = 0?

First observe that
∑K

k=1 PDispatch(k) = K+K and
∑N

i=1KRun,iP =
∑N

i=1KRun,i

= K + K as well. This means that exactly two Bakeries must be on at any sample until
sampleK and that exactly one Bakeries must be on at any sample after sampleK in order
for a solution with zero slack to exist. However, such a solution can exist if and only if
there also exists a subset of KRun,i, i = 1, 2, . . . , N , which sums toK.

This, however, corresponds exactly to the Subset-Sum Problem for the set S =
KRun,i, i = 1, 2, . . . , N and T = K since K and K are arbitrarily chosen positive
integers. Thus, if there exists a polynomial time algorithm for solving the considered in-
stance of the Virtual Power Plant Dispatch Problem then this algorithm could also solve
the Subset-Sum problem in polynomial time. It now follows from Lemma 1 that the
Virtual Power Plant Dispatch Problem is NP-complete for a portfolio of Bakeries.

3.5 Exact Methods

Even though it has have proven that the computational complexity of the Virtual Power
Plant Dispatch Problem is high, there are still options for achieving optimal solutions of
problem (3.16) to (3.17). The question is whether these methods can be developed/tuned
to solve large problem instances (>100 units) within a reasonable time frame. Achieving
such solutions has been a significant, but not very successful part of the project. For the
sake of completion, however, this section documents these efforts and specifically looks
at solving the Virtual Power Plant Dispatch Problem by use of

• The commercial software package CPLEX,

• Dynamic Programming, and
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• Dantzig Wolfe decomposition.

CPLEX [5]

In the industry a commonly used option for solving integer problems is to use the com-
mercial software package CPLEX [65]. It has therefore been explored whether CPLEX
can solve the Discrete Virtual Power Plant Dispatch Problem to optimality within a rea-
sonable time frame. Computations are performed on a standard laptop.

The CPLEX performance is tested on two data sets: The first data set consists of ten
randomly generated portfolios of 25 Bakeries and a simulation horizon of 100 samples.
For this data set five of ten problems were solved successfully with an average computa-
tion time of 8 minutes. In the remaining five cases, however, computations are terminated
with an error message stating that the computer has run out of memory and therefore no
optimal solution is found.

The second data set consists of ten randomly generated portfolios of 50 Bakeries
also with a simulation horizon of 100 samples. For this data set ten of ten problems
terminated with the error message stating that the computer had run out of memory. Since
all calculations finish due to lack of memory for 50 units and 100 samples, there is little
hope that this option will scale to large problem instances.

Dynamic Programming

Dynamic Programming is an optimization technique which can be applied to problems,
which exhibits optimal substructure and overlapping sub-problems. As will be demon-
strated below the Virtual Power Plant Dispatch Problem does have these properties, so it
has been investigated whether Dynamic Programming is an efficient method for solving
the problem.

Optimal Substructure

Let Γ∗ be an optimal solution of the Virtual Power Plant Dispatch Problem for a given
portfolio of Bakeries. Then for each sample k the Bakeries can be partitioned into the sets
of Finished, Running and Pending, see Figure 3.16. The task of scheduling the Finished
Bakeries before sample k can then be considered a sub-problem of scheduling the entire
portfolio before sample K. The solution specified by Γ∗ for solving the sub-problem
must, however, also be optimal if Γ∗ is an optimal solution of the full problem. If there
was a way of scheduling the Finished Bakeries with less slack before sample k than what
is specified by Γ∗, then this sub-solution could be replaced in Γ∗ to obtain a lower total
cost. Then, however, Γ∗ could not be optimal.

Algorithm

Each Bakery can be started at KEnd −KRun different samples. This means that the total
number of integer solutions is

ΠN
i=1KEnd,i −KRun,i. (3.18)

A brute force algorithm would systematically generate all of these solutions and check,
which one is optimal. At each sample, however, a Bakery can only have KRun + 2
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Figure 3.16: At sample k the Bakeries can be partitioned into the sets of Finished, Run-
ning and Pending.

different states, namely

1) Pending,
2) Started last sample,
3) Started two samples ago,
4) Started three samples ago,

...
KRun+1) Started KRun samples ago,
KRun+2) Finished,

so the number of states at sample k is only

ΠN
i=1KRun,i + 2. (3.19)

The number (3.19) still grows very fast with the size of the portfolio, but much slower
than (3.18). This is exactly the insight, which is utilized in the Dynamic Programming
algorithm described below.

Before sample 0 all Bakeries are in the Pending category. At sample 0 there are then
2N combination for starting Bakeries and in the first stage of the algorithm all of these
states are generated. This data set is denoted the state set. Now, it follows from the
property of optimal substructure, that one of the generated combinations in the state set
corresponds to the optimal way of starting Bakeries at sample 0, we just do not know yet,
which one it is. The algorithm therefore generates a new state set for sample 1 based on
the state set of sample 0.

An example is given in Figure 3.17 for a portfolio of two Bakeries. At sample zero,
there a 22 combination for starting the Bakeries: Start both Bakeries, start Bakery1 only,
start Bakery2 only or do not start any Bakeries. Each of these combinations correspond
to a Pending, Started, Finished distribution for sample 1 and based on these the states for
sample 1 can be generated as also depicted in Figure 3.17.
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The size of the state set grows very quickly, but as time progresses there are more
and more ways of arriving at the same state. This is also exemplified in Figure 3.17: At
sample 2 three ways of putting both Bakery1 and Bakery2 in the Finished category have
been found. Fortunately, however, it is only necessary to store the best way of arriving
at this state and in our case this corresponds to starting Bakery1 at sample 1 and Bakery2
at sample 0. Due to the property of optimal substructure the other two options cannot be
optimal and are therefore discarded.

For larger portfolios and longer simulation horizons the size of the state set there-
fore stops growing at some point, see Figure 3.18, because more and more overlapping
sub-problems are found and only the best combination has to be stored for further inves-
tigation.

Minimizing the State Set

To speed up computations the state sets depicted in Figure 3.18 should be as small as
possible. To cut down the set two bounds are derived:

• For a given state and a given sample k a lower bound on the cost of scheduling the
Pending Bakeries after sample k, and

• An upper bound on the optimal solution.

If the lower bound on the total cost associated with a given state is larger than an
upper bound of the optimal solution, then this state can obviously not lead to an optimal
solution. It can therefore be discarded, which reduces the remaining computations.

A lower bound on the cost of scheduling the Pending Bakeries of given state can be
obtained as follows: At sample k assume that a portfolio is given with a Finished, Run-
ning, Pending distribution. A lower bound, Φ(k), on the cost of scheduling the pending
Bakeries after sample k is then given by

Φ(k) =

∣∣∣∣∣
K∑
k

(∣∣∣PDispatch(k)−
∑

Running at k

P (k)
∣∣∣)− ∑

Pending

E

∣∣∣∣∣.
This corresponds to ignoring the run time and constant power constraints of the Bakeries.
In the best case the energy remaining in PDispatch after sample k and the energy required
by the pending Bakeries will be able to map together perfectly except for differences in
absolute magnitude between two.

An upper bound on the optimal solution is obtained by running a heuristic algorithm
parallel to the Dynamic Programming algorithms. In the implementation the heuristic
algorithm GRASP Sorted presented in Section 3.7 is started in a parallel thread. This
means that a tighter and tighter upper bound on the optimal solution is generate over
time.

Based on the lower bound of a given state and the upper bound of the optimal solution
states are checked for possible optimality before they are added to the state set.

Results

The following simulation example considers randomly generated problem instances with
a simulation horizon K = 10 and portfolios of ten to fifteen Bakeries. In all simulations
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Figure 3.17: Example of state sets generated by Dynamic Programming algorithm.
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Figure 3.18: Size of state sets generated by Dynamic Programming algorithm.

Ts = 1 and Ei,0 = 0 for all units. The Dynamic Programming algorithm has been
implemented in C#, [66]. Computations are performed on a standard laptop PC.

In Figure 3.19 the average computation time for the Dynamic Programming algorithm
is depicted as a function of portfolio size for a simulation horizon fixed at K = 10. It can
be seen that the computation time grows faster than exponentially and for just 15 units
the average computation time is nearly five minutes. Again there is therefore little hope
that this option will scale to large problem instances.

Dantzig-Wolfe Decomposition

This section investigates the usefulness of the Dantzig-Wolfe decomposition for solving
the Virtual Power Plant Dispatch Problem. Dantzig-Wolfe is a decomposition method,
which can be used to solve linear programs. It is especially useful for problems with
block-angular structure and as will be illustrated later the Virtual Power Plant Dispatch
Problem does have block-angular structure. Furthermore, Dantzig-Wolfe decomposition
can in some cases be used to solve linear mixed integer problems e.g. the cutting stock
problem (see [67]). It was therefore investigated early in the project whether Dantzig-
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Figure 3.19: Computation time as a function of problem size for the Dynamic Program-
ming implementation.

Wolfe decomposition was suitable for solving the Virtual Power Plant Dispatch Problem.
It was found that Dantzig-Wolfe decomposition is indeed useful for solving the Virtual
Power Plant Dispatch Problem if only Buckets and Batteries are included, but that the
method cannot handle Bakeries.

The theoretical explanation why Dantzig-Wolfe decomposition can be used to solve
the Virtual Power Plant Dispatch Problem when only Buckets and Batteries are consid-
ered is that in this case the problem is a nice, benign linear program. When Bakeries
are added, however, the problem becomes a much more malignant mixed integer pro-
gram, and although Dantzig-Wolfe decomposition is suitable for solving some of these,
the method is unfortunately not well suited for solving the Virtual Power Plant Dispatch
Problem.

This Section will document the results described above. Rather than a strict theoret-
ical description and proof of convergence of the Dantzig-Wolfe decomposition method
(see [19] and [68] for those results) the structure of the method will be described more
intuitively. To further simplify the explanation agility will not be included in the prob-
lem formulation. When explaining the Dantzig-Wolfe decomposition method a portfolio
of Batteries is first used to illustrate how Dantzig-Wolfe decomposition will generate a
solution for the Virtual Power Plant Dispatch Problem. After that it is illustrated how and
why the method will stall when Bakeries are added to the portfolio.

The Dantzig-Wolfe method relies on the following three key concepts

1. Iterative solution method for problems with block-angular structure,

2. Shadow prices and column generation, and

3. Convex combinations.
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Figure 3.20: Block-angular matrix structure of the Virtual Power Plant Dispatch Problem.

Iterative Solution Method for Problems with Block-Angular Structure

A problem with block-angular structure is a problem where a number of independent
systems must cooperate to meet a common goal or share a scarce resource. The block-
angular structure of the Virtual Power Plant Dispatch Problem is depicted in Figure 3.20.
Here each block in the diagonal of the constraint matrix describes the constraints and dy-
namics of a local unit. The common goal of following PDispatch is given by the transverse
constraints. Since PDispatch(k) is considered for k = 1, 2, · · · ,K in Problem (3.16) to
(3.17) there areK complicating constraints, one for each considered time step. The trans-
verse constraints are also denoted the complicating constraints. This name is appropriate,
because if the cross-portfolio requirements were not present the problem could simply
be completely separated into the N much smaller block-problems. These could then be
solved in parallel on several CPUs to really speed up computations.

The strategy applied by the Dantzig-Wolfe decomposition methods is to split the full
problem into a Master Problem and a Sub-Problem. The Master Problem consists of the
cost function and the complicating constraints and the Sub-Problem is the block-angular
constraints, see Figure 3.20. Finding an optimal solution of the full problem is then
accomplished through an iterative procedure where a Master Problem and a Sub-Problem
is solved once per iteration, see Figure 3.21. The Dantzig-Wolfe decomposition method is
especially useful for problems with block-angular structure, because the Sub-Problem can
apply the strategy discussed earlier of solving all blocks in parallel since the complicating
constraints have been eliminated in the sub-problem. The Dantzig-Wolfe decomposition
method is, however, not only applicable for problems with block-angular structure.

The Master Problem and the Sub-Problem are both updated at each iteration and it
can be proven that the solutions of the Master Problem converges to the solution of full
problem, see [19] and [68].
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Figure 3.21: The Dantzig-Wolfe decomposition method solves the full optimization prob-
lem through an iterative procedure where a Master Problem and a Sub-Problem is solved
once per iteration. Iterations continue until the solution of the Master Problem has con-
verged to the optimal solution of the full problem.

Shadow Prices and Column Generation

As depicted in Figure 3.21 there is an interface between the Master Problem and Sub-
Problem in which the Master Problem sends prices to the Sub-Problem and the Sub-
Problem returns a consumption plan to the Master Problem. For our problem this interface
summarized shadow prices and column generation.

The prices, which the Master Problem sends to the Sub-Problem, are the so-called
shadow prices or Lagrange multipliers for the complicating constraints1. The shadow
prices of a constraint measures the rate at which the objective would change if the con-
straint was slightly relaxed, see [64]. This means that the shadow price is a sort of shared
measure of the cost function and complicating constraints. In our case, since there are K
complicating constraints (one for each time step) there are also K shadow prices.

Based on the prices received from the Master Problem the sub-problem generates a
new consumption plan. A high price associated with a time step is therefore a signal
from the Master Problem to the Sub-Problem that the Sub-Problem should generate a
consumption plan, with a high value at this sample. The consumption plans generated by
the Sub-Problem are always feasible, but not necessarily optimal. The new consumption
plans are communicated back to the Master Problem and here they are denoted columns.
The name column generation therefore stems from the fact that a new column is generated
once per iteration.

Convex Combinations of Batteries

To understand convex combinations first consider a portfolio of four Batteries with pa-
rameter values P = 2 and E = 2 and PDispatch as depicted in Figure 3.22.

As just explained, the Master Problem receives a new consumption plan from the
Sub-Problem once per iteration. At each iteration the Master Problem then computes a
solution of the full problem as a convex combination of the consumption plans generated
so far. An example of a convex combination of consumption plans is given in Figure

1Since the objective is to determine the shadow prices of the complicating constraints it is really the dual
Master Problem rather than the primal, which is solved.
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Figure 3.22: PDispatch considered to explain convex combinations.

A B

1
2
· +1

2
· =

Figure 3.23: A convex combination of feasible dispatch plans of Batteries is also a feasi-
ble dispatch plan.

3.23. The considered portfolio consists of four Batteries all having P = 2 and E = 2.
For this portfolio A and B in Figure 3.23 are both feasible dispatch plans, which could
have been generated by the Sub-Problem. A convex combination of A and B is then
a linear combination of A and B for which the fraction of A plus the fraction of B is
less than or equal to one; that is αAA + αBB is a convex combination of A and B if
αA + αB ≤ 1.

It can be proven that when the solution space is continuous, closed and bounded then
any convex combination of feasible columns is also a feasible column (see [19]). When
considering Batteries (or Buckets), these requirements are satisfied. Therefore consider
the portfolio of four Batteries with P = 2 and E = 2 and assume that A and B have
been generated by the Sub-Problem. Since the Master Problem is attempting to solve the
full problem, that is balance PDispatch in Figure 3.22 as closely as possible, the Master
Problem will generate the convex combination of A and B given on the far right of Figure
3.23. Here the slack is zero, so an optimal solution has been determined and the iteration
procedure will terminate.

Convex Combinations of Bakeries

We have now obtained the necessary understanding of the Dantzig-Wolfe decomposition
method to see why the method is not suitable for solving the Virtual Power Plant Dispatch
Problem for Bakeries. Lets consider a portfolio of four Bakeries also having P = 2 and
E = 2. This means that the Bakeries must have a runtime of one sample at power
consumption P = 2. consequently dispatch plans A and B in Figure 3.24 could be
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Figure 3.24: A convex combination of feasible dispatch plans for Bakeries is not neces-
sarily a feasible dispatch plan. In this case the Bakeries must have a runtime of one sample
at power consumption P = 2. Consequently A and B are feasible dispatch plans, but the
convex combination does not respect the integer constraints and is therefore infeasible.

generated by the Sub-Problem even when the Sub-Problem respects the integer constraint
(3.15).

The problem arises because the Master Problem will generate the convex combination
of A and B given on the far right of Figure 3.24 and terminate since it seems that an
optimal solution of the full problem has been determined. The problem is, however,
that the convex combination in Figure 3.24 is not feasible since it does not respect the
minimum runtime constraint (3.15). This illustrate why the Dantzig-Wolfe decomposition
method is not suitable for solving the Virtual Power Plant Dispatch Problem for Bakeries.

3.6 Agility in Dispatch 2

In Section 3.3 it was explained how to add Agility Factors to a portfolio and obtain an
ordering by quality. This section returns to the subject of agility in dispatch and explains
how to incorporate agility directly into the Virtual Power Plant Dispatch Problem formu-
lation given by equation (3.16) to (3.17). To do this let {LUi}Sorted

i=1,2,...,N denote a set of
local units, which is sorted according to Agility Factors as specified by Remark 1. Then
associate an agility weight, wi,k ∈ R, with each unit and time step and incorporate these
into the cost function (3.16) as follows:

min
Pi(·)

K∑
k=1

(
|S(k)|+

N∑
i=1

wi,k|Pi(k)|

)
. (3.20)

The agility weights should now be chosen such that local unit i is dispatched before local
unit j, if local unit i is less agile than local unit j. To achieve this agility weights should
add a penalty to increasing the energy term of each local unit. This penalty should be
proportional to the unit index after sorting, so the cost function (3.20) is replaced with

min
Pi(·)

K∑
k=1

(
|S(k)|+

N∑
i=1

i|Ei(k)|

)
. (3.21)

46



7 Heuristic Methods

However, since Ei(k) =
∑k

l=1 TsPi(l) Equation (3.21) can be written as

min
Pi(·)

K∑
k=1

(
|S(k)|+

N∑
i=1

i (K + 1− k) Ts |Pi(k)|

)
.

The agility weights are therefore given by

wi,k = i (K + 1− k) Ts (3.22)

where i is the unit index after sorting according to Remark 1.
By adding agility to the Virtual Power Plant Dispatch Problem, the solutions found

will be more robust of prediction errors and short prediction horizons as explained in
Section 3.3. A further modification of the problem formulation is obtained by adding
so-called impatience weights to the cost of slack, as

min
Pi(·)

K∑
k=1

(
wk|S(k)|+

N∑
i=1

wi,k|Pi(k)|

)
. (3.23)

s.t.

N∑
i=1

Pi(k) + S(k) = PDispatch(k). (3.24)

where wk1
> wk2

if k1 < k2. Adding the impatience weights, wk, to the cost function
ensures that if the problem cannot be solved without introducing slack, then imbalances
will appear as late on the prediction horizon as possible.

In the remaining sections the formulation (3.23) to (3.24) of the Virtual Power Plant
Dispatch Problem will be used and it will be denoted the Virtual Power Plant Dispatch
Problem with Agility.

3.7 Heuristic Methods

It has now been demonstrated that several efforts to determine exact optimal solutions of
larger instances of the Virtual Power Plant Dispatch Problem have not been fruitful. It
has also been proven in Theorem 1 that the Virtual Power Plant Dispatch Problem is NP-
complete. In this section we will therefore explore the alternative to exact optimization
methods, which is to use heuristic optimization in order to determine solutions, which are
sub-optimal, but fast to compute.

Intuitively the idea of heuristic optimization seems applicable: As seen in the case
of dynamic programming the computation time grows faster than exponentially with the
problem size. So lets assume that the algorithm could be tuned and run on a fast enough
computer to make the it useful in real time for, say, 1.000.000 consumption units. If at this
point, however, just one more unit was added to the portfolio, then all efforts would be in
vain as computation time would again explode. From a more application-oriented point
of view, however, the consumption of the 1.000.001th unit is irrelevant compared to the
remaining portfolio. The marginal computation time is therefore growing exponentially
with the number of units while the marginal significance is vanishing.
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In this section the option of solving the Virtual Power Plant Dispatch Problem with
Agility using heuristic optimization will therefore be investigated. In the first efforts the
focus is on Bakeries and it is explained how the two methods known in literature as Hill
Climber , [69], and GRASP (Greedy, Randomized, Adaptive Search Procedure), [70], can
be adapted to solve the Virtual Power Plant Dispatch Problem with Agility for a portfolio
of Bakeries.

Next focus is on developing fast algorithms for solving the Virtual Power Plant Dis-
patch Problem with Agility for mixed portfolios. This is done by exploring the relation-
ship between prediction and agility further and by developing sorting-based algorithms
for solving the problem.

Hill Climber and GRASP

In this section the performance of Hill Climber and GRASP for solving the Virtual Power
Plant Dispatch Problem with Agility will be investigated. Other heuristic methods that
could also be considered for solving the problem are Ant Swarm Optimization [58], Ge-
netic Algorithms [69] and Tabu Search [71]. These algorithms are, however, all based on
manipulating a set of candidate or tabu solutions. They thus have a tendency to drown in
logistics as the majority of the available computation time is spent running through and
updating solution sets.

As explained above heuristic optimization methods are used to determine solutions,
which are sub-optimal, but fast to compute. For Hill Climber and GRASP this means that
the longer the method runs the better quality solution it will find. Computation time is
therefore a parameter and the methods will terminate when the time limit is reached and
return the best solution encountered so far.

The generic descriptions of the Hill Climber and GRASP algorithms goes as follows:

• Hill Climber, [69]: To solve an optimization problem the Hill Climber method first
generates a random initial solution for the considered problem. Next it is attempted
to improve the current solution through some update procedure. If the cost of the
updated solution is less than the cost of the current solution, then the updated solu-
tion will take place as current solution. This procedure is continued until the time
limit is reached.

• GRASP, [70]: To solve an optimization problem the GRASP method constructs an
initial solution one element at a time by use of a greedy algorithm. The choice
of next element to be added to the initial solution is determined by constructing a
candidate list of most beneficial choices. The probabilistic element in GRASP is
then introduced by randomly choosing one of the candidates in the candidate list,
but not necessarily the top candidate. After an initial solution has been generated
Hill Climber is called to achieve a further improvement of the solution.

In the remainder of this section the generic algorithms of Hill Climber and GRASP are
tailored to the Virtual Power Plant Dispatch Problem. This results in four new methods
and the choice of initial solution and update procedure for these methods are summarized
in Table 3.5. Pseudo-code for the algorithms are given in [5]. All algorithms are explained
below, but as they are all based on the idea of an n-move that concept is explained first.

48



7 Heuristic Methods

Method Initial Solution Update Procedure
Uniform Selection Hill Climber Uniform Probability Uniform Probability
Weighted Selection Hill Climber Uniform Probability Weighted Probability

GRASP Random Weighted Probability Hill Climber
GRASP Sorted Agility Sorted Hill Climber

Table 3.5: Choice of initial solution and update procedure for the tailored versions of Hill
Climber and GRASP.

n-move

The idea of an n-move is central to the Hill Climber and GRASP adaptations described
below. When considering only Bakeries a solution of the Virtual Power Plant Dispatch
Problem with Agility is described by a set of feasible start samples, one for each Bakery
in the portfolio. An n-move consists of changing the start sample of any n units to other
feasible locations. An example of a 3-move is depicted in Figure 3.25. Here the start
sample of Bakery1 is changed from 5 to 6, the start sample of Bakery3 is changed from
sample 1 to 4 and the start sample of Bakery4 is changed from sample 0 to 5.

Uniform Selection Hill Climber and Weighted Selection Hill Climber

To adapt the generic Hill Climber method to solve the Virtual Power Plant Dispatch Prob-
lem with Agility it must be specified how to generate the initial solution and what sort of
update procedure to use.

The first version of the Hill Climber method is denoted Uniform Selection Hill Climber.
Uniform Selection Hill Climber generates an initial solution by randomly choosing feasi-
ble start samples for each Bakery. This is a very fast procedure for generating an initial
solution, but it also means that the initial solution has no similarity to PDispatch. We will
return to this problem later.

In Uniform Selection Hill Climber the update procedure consist of a random n-move.
The n-move is performed by choosing n Bakeries from the portfolio with uniform prob-
ability and then choosing feasible start samples for each Bakery also with uniform prob-
ability.

The second version of the Hill Climber method is denoted Weighted Selection Hill
Climber. This version also generates the initial solution by randomly choosing feasible
start samples for each Bakery. When performing the n-move in the update procedure,
however, start samples are given higher priority if they give a relatively larger improve-
ment of the objective.

The difference between the two methods is depicted in Figure 3.26 and Table 3.6:
Suppose that at some iteration the distribution in the top illustration on Figure 3.26 has
been obtained. Suppose also that a 1-move has to be performed of Bakery4 and that
Bakery4 has deadline at sample 9. For Uniform Selection Hill Climber samples 0 to 8 will
be chosen as new start samples with equal probability of 1

9 since there are nine remaining
options for starting Bakery4. For Weighted Selection Hill Climber the calculations are
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Figure 3.25: Example of a 3-move.

slightly more involved: If agility and impatience weights are ignored2 then the slack of
the solution depicted in the top illustration on Figure 3.26 is 12. The slack will drop to 10
if Bakery4 is started at sample 1 or 4 and drop to 6 and 8 respectively if Bakery4 is started
at sample 7 or 8. Given that a 1-move has to be performed of Bakeryi Weighted Selection
Hill Climber thus chooses sample k with probability relative to the benefit of starting at
each feasible sample, that is

pWeightedSelection,i(k) =
∆Cost(k)∑KEnd,i−KRun,i

m=0 ∆Cost(m)
.

In the example illustrated by Figure 3.26 and Table 3.6 the sample probabilities for per-
forming a 1-move of Bakery4 will thus be 2

14 for sample one or four and 6
14 and 4

14
respectively for sample 7 and 8. Consequently it is much more likely that Weighted Se-
lection Hill Climber will choose the best available option of sample 7 for starting Bakery4
than it is that Uniform Selection Hill Climber will make the same choice.

It might seem from the description above that Weighted Selection Hill Climber will
always perform better than Uniform Selection Hill Climber since it makes more intel-

2Agility and impatience weights are included in the simulation results presented below.
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Figure 3.26: Example used to illustrate probability of Uniform Selection Hill Climber
and Weighted Selection Hill Climber respectively choosing each sample as new start time
when performing a 1-move of Bakery4. Probabilities are given in Table 3.6.

Sample 0 1 2 3 4 5 6 7 8 Sum
∆Cost 0 -2 0 0 -2 0 0 -6 -4 -14

pUniformSelection
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9 1

pWeightedSelection 0 1
7 0 0 1

7 0 0 3
7

2
7 1

Table 3.6: Probability of Uniform Selection Hill Climber and Weighted Selection Hill
Climber respectively choosing each sample as new start time when performing a 1-move
of Bakery4 in Figure 3.26.

ligent choices about when to start Bakeries. The drawback of Weighted Selection Hill
Climber is, however, that it has to spend time computing differentiated probabilities. This
means that fewer iterations can be performed within the time limit. To determine whether
computation time is best spend on performing more random n-moves or on computing dif-
ferentiation probabilities the two methods must be implemented, tuned and tested. This
is done in the Results section below.
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GRASP Random and GRASP Sorted

A weakness of the Hill Climber methods described above is that the initial solution is
generated by choosing both Bakeries and start samples with uniform probability. This
means that the initial solution has absolutely no similarity to PDispatch. This problem is
mended by GRASP.

Again two adapted versions of the algorithm have been developed, namely GRASP
Random and GRASP Sorted. GRASP Random falls closest to the generic description
of the GRASP algorithm, but as illustrated later it has some challenges related to the
Virtual Power Plant Dispatch Problem with Agility. To address this issue GRASP Sorted
is developed.

To adapt the generic GRASP method to solve the Virtual Power Plant Dispatch Prob-
lem with Agility it must be specified how to construct the candidate list and how to choose
an element from the list. In GRASP Random this is done based on two lists: The Unit
list and the Candidate List. The Unit List consist of m Bakeries, which are chosen ran-
domly from the portfolio with uniform probability. For each Bakery in the Unit List the
relative benefit of starting at each feasible sample is again computed as exemplified in
Figure 3.26 and Table 3.6. The Candidate List is then constructed as the l most bene-
ficial Bakery-sample combinations. This means that the Candidate list consist of the l
best sample choices for starting the randomly chosen Bakeries in the Unit List. Finally,
the next element to add to the initial solution is chosen from the Candidate List with
uniform probability. After the initial solution has been generated Uniform Selection Hill
Climber or Weighted Selection Hill Climber is called to achieve a further improvement of
the solution.

When exploring GRASP Random it was discovered that the method generates initial
solutions, which overshoot PDispatch in the beginning of the simulation horizon and fall
lower than PDispatch towards the end of the horizon. This behaviour can be explained as
follows:

When the impatience weights defined in Section 3.6 are added to the problem it means
that slack becomes ”cheaper” towards the end of the horizon than in the beginning. When
GRASP Random builds the initial solution one Bakery at a time it will therefore ini-
tially start units early on the simulation horizon. Now, at some point a good match with
PDispatch is obtained for, say, the first 10 samples. However, if a Bakery then remains in
the portfolio at this point, which has deadline 10 or less, then it can only be added to the
initial solution in such a way that it makes the accumulated power consumption overshoot
PDispatch somewhere in the first 10 samples. When this has happened a number of times
(see Figure 3.27) the result is a consumption profile, which overshoots PDispatch in the
beginning of the horizon and falls lower than PDispatch towards the end of the horizon.

GRASP Sorted is developed to alleviate this problem. The algorithm is identical to
GRASP Random except that when generating the Unit List, Bakeries are not chosen with
uniform probability. Instead units are sorted according to Agility Factors as specified in
Remark 1. The Unit List then consists of the m least agile Bakeries. The Candidate
List is again generated based on the Unit List as with GRASP Random and also the next
element to add to the initial solution is chosen from the Candidate List with uniform
probability. Again, after the initial solution has been generated Uniform Selection Hill
Climber or Weighted Selection Hill Climber is called to achieve a further improvement of
the solution.

52



7 Heuristic Methods

1/4 of portfolio 2/4 of portfolio

3/4 of portfolio 4/4 of portfolio

Figure 3.27: GRASP Random builds an initial solution one Bakery at a time and above it
is depicted how the initial solution looks, when 1/4, 2/4, 3/4 and 4/4 of the Bakeries in a
portfolio have been added.
Since slack is cheaper towards the end of the horizon, GRASP Random will first start
units early in the horizon. When 1/4 of the portfolio has been added a decent fit with
PDispatch has been obtained for sample 0 to 18. However, there are still Bakeries re-
maining in the portfolio, which have deadline 18 or less, and now GRASP Random can
only add these in such a way that the accumulated power consumption before sample 18
overshoots PDispatch even further. This means that as Bakeries are added more and more
positive slack builds up at the beginning of the simulation horizon, as can be seen from
the progression of the figures.

Results

Before the algorithms can be compared they must be properly tuned. Tuning results can
be found in [5]. The algorithms have been implemented in C# [66], computation time
is fixed at 10 seconds and calculation are performed on a standard laptop PC. The algo-
rithms are tested in randomly generated portfolios of 1.000, 10.000 and 100.000 Bakeries
and a simulation horizon of 100 samples. In order to compare performance on problem
instances with very different absolute values the percentage gap and percentage deviation
are calculated. Since no procedure has been found to determine the actual optimal solu-
tions of problem instances of the considered size, the percentage gap and the percentage
deviation is computed relative to the minimum value found over all calculations on each
particular problem instance.

It is found that for all problem sizes the Hill Climber methods and GRASP Random
have very similar performance, with no clear winner. GRASP Sorted, on the other hand,
outperforms all the other methods by at least an order of magnitude both in terms of
percentage gap and percentage deviation and for all problem sizes.
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1.000 Bakeries 10.000 Bakeries 100.000 Bakeries
E σ E σ E σ

Uniform
Select.

32.4 7.7 58.6 3.6 47.8 1.5

Weighted
Select.

38.0 8.6 62.5 4.5 59.3 1.7

GRASP
Random

23.7 3.1 65.3 2.5 32.9 1.4

GRASP
Sorted

0.6 0.4 2.5 0.3 0.7 0.5

Table 3.7: Percentage gap and percentage deviation for Uniform Selection Hill Climber,
Weighted Selection Hill Climber, GRASP Random and GRASP Sorted.

Method Type
First

Presented Based on

Predictive-Balancing Pure [3] Moving Horizon
Agile-Balancing Pure [3] Sorting

Predictive-
Balancing-with-

Agility
Hybrid Novel Moving Horizon

Agile-Balancing-
with-Prediction Hybrid Novel Sorting

Table 3.8: Overview of methods.

Figure 3.28 depicts solutions found using each algorithm for a randomly generated
simulation problem with 100.000 Bakeries. The agility of the solutions is illustrated by
green, red, cyan and magenta lines, which is the accumulated consumption of the first,
second, third and fourth quarter of Bakeries, respectively, when the portfolio is sorted
according to agility as specified in Remark 1. A visual inspection confirms the gen-
eral conclusions that Uniform Selection Hill Climber, Weighted Selection Hill Climber
and GRASP Random have very similar performance, as the curves can hardly be distin-
guished. However, GRASP Sorted is clearly superior. It can be seen that particularly in
the beginning of the simulations GRASP Sorted has less slack than the other methods and
GRASP Sorted has furthermore found a far more agile solution, which can be seen by the
very steep slopes of the quarter lines for this method.

Prediction & Agility

In this section the objective is to develop heuristic optimization methods specifically de-
signed to have short computation times. We will do this by investigating the importance
of prediction and agility further and present different ways of combining the two.

This section will present four heuristic methods (see Table 3.8) for solving the Virtual
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Uniform Selection Hill Climber Weighted Selection Hill Climber

GRASP Random GRASP Sorted

Figure 3.28: Solution of problem instance of the Virtual Power Plant Dispatch Prob-
lem with 100.000 Bakeries computed by use of the algorithms Uniform Selection Hill
Climber, Weighted Selection Hill Climber, GRASP Random and GRASP Sorted. The
agility of the solutions is illustrated by green, red, cyan and magenta lines which is the
accumulated consumption of the first, second, third and fourth quarter of units, respec-
tively, when the portfolio is sorted according agility as specified by Remark 1.

Power Plant Dispatch Problem with Agility for mixed portfolios. Two of the methods
are so-called pure methods, denoted Agile-Balancing and Predictive-Balancing and these
methods were first presented in [3]. In the simulation example presented in [3] it is illus-
trated that Agile-Balancing can out perform Predictive-Balancing both in terms of compu-
tation time and solution quality. A more systematic analysis (see Table 3.9) has, however,
revealed that on average the solution quality obtained by Agile-Balancing is only slightly
better than that of Predictive-Balancing. The pure methods thus illustrate that although
prediction and agility are both important concepts to consider, when developing heuris-
tic dispatch algorithms, neither one is sufficient in itself. Therefore two so-called hybrid
methods are presented, which propose two very different ways of combining the advan-
tages of prediction and agility. The hybrid methods are denoted Predictive-Balancing-
with-Agility and Agile-Balancing-with-Prediction and they have not been previously pub-
lished in [3].

Predictive-Balancing and Predictive-Balancing-with-Agility will be presented first.
These methods are moving horizon approaches where a solution of the Virtual Power
Plant Dispatch Problem is found by solving a series of smaller optimization problems.
In later simulations CPLEX [65] will be used to solve sub-problems. The alternatives
Agile-Balancing and Agile-Balancing-with-Prediction have been developed specifically
for speed and are therefore based on sorting rather than solving optimization problems.
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First Optimization Problem

Implemented

Second Optimization Problem

Implemented

Etcetera

10 2 3 4 5 6 7 8

1

0

2

3

4
Power

PDispatch

Figure 3.29: Moving horizon approach of Predictive-Balancing and Predictive-
Balancing-with-Agility for a prediction horizon KPrediction = 3 and an implementation
horizon of one sample.

Predictive-Balancing and Predictive-Balancing-with-Agility

The algorithms Predictive-Balancing and Predictive-Balancing-with-Agility are moving
horizon approaches and the difference between the two methods is that they solve the
Virtual Power Plant Dispatch Problem and the Virtual Power Plant Dispatch Problem
with Agility respectively.

To determine a solution of problem (3.16) to (3.17) Predictive-Balancing is given
perfect prediction of PDispatch over a certain prediction horizon KPrediction < K, and
the following optimization problem is solved:

min
Pi(·)

KPrediction∑
k=1

wk|S(k)| (3.25)

s.t.

N∑
i=1

Pi(k) + S(k) = PDispatch(k), (3.26)

where wk1 > wk2 if k1 < k2. Remember that adding the impatience weights, wk,
to the cost function ensures that if the problem cannot be solved without introducing
slack, then the imbalances will appear as late on the prediction horizon as possible. The
Virtual Power Plant Dispatch Problem is solve by using moving horizon approach, so
after solving problem (3.25) to (3.26) the results for the first sample is implemented and
the optimization problem is progressed one sample (see Figure 3.29).
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The method Predictive-Balancing does not consider agility in any way, which means
that it will often run into the problem of having a to short prediction horizon as de-
scribed in Section 3.3. This will also be demonstrated in the simulations below. Agility
is therefore added to Predictive-Balancing in order to arrive at Predictive-Balancing-
with-Agility. To do this agility weights, wi,k, are introduced as described in Section
3.6. Again perfect prediction of PDispatch is given over a certain prediction horizon
KPrediction < K, and the following optimization problem is solved:

min
Pi(·)

KPrediction∑
k=1

(
wk|S(k)|+

N∑
i=1

wi,k|Pi(k)|

)
(3.27)

s.t.

N∑
i=1

Pi(k) + S(k) = PDispatch(k). (3.28)

Using the moving horizon approach the results for the first sample is implemented
and problem (3.27) to (3.28) is progressed one sample (see Figure 3.29).

Agile-Balancing and Agile-Balancing-with-Prediction

The algorithms Agile-Balancing and Agile-Balancing-with-Prediction have been specif-
ically designed for speed of computation and therefore uses sorting based approaches to
determine a solution of the Virtual Power Plant Dispatch Problem with Agility.

The algorithm Agile-Balancing is based on the idea of agility maximization, where
the worst quality units are dispatched at each sample. The idea is simple: At each sam-
ple the algorithm will first focus on the assignments of charging Batteries and starting
Bakeries. The most pressing task is solved first and the unit with the smallest Agility
Factor is the most critical asset in need of service. At sample k Agile-Balancing there-
fore dispatches as much power as possible to the Batteries and Bakeries, but no more
than PDispatch(k). Secondly, Agile-Balancing uses the buffer available in the Buckets to
minimize any remaining imbalance.

Since there are no energy requirements on a Bucket, it can only constitute a resource
and never a constraint. There are, however, both power and energy constraints on the
Bucket, so only a limited amount of power can be dispatched to the Bucket-portion of the
portfolio at each sample. The maximum amount of power, which can be dispatched to a
portfolio containing NBuckets Buckets is therefore

P Bucket
Reserve(k) =

NBuckets∑
i=1

min

(
P i,

Ei − Ei(k)

Ts

)
.

Furthermore, Agile-Balancing handles any dispatch to Buckets by implementing the linear
cost function given in [2]. Pseudo-code for Agile-Balancing is given in Algorithm 1.

As discussed in Section 3.6 a Battery or a Bakery can go from being a flexible resource
to becoming a constraint as the deadline, KEnd, approaches. Forced consumption on
Batteryi or Bakeryi at sample k can be computed based on the Agility Factors introduced
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in Section 3.3, as

P Battery
Forced,i(k) =

{ 0 KBattery
i > 1

P i(1−KBattery
i ) 1 ≥ KBattery

i > 0

P i KBattery
i = 0

and

P Bakery
Forced,i(k) =

{
0 KBakery

i > 1

P i KBakery
i = 0,

and these requirements are of course also respected by the algorithm.

Algorithm 1:
Agile Balancing

(
{LUi}i=1,2,...,N , PDispatch

)
1: for k = 1 to K do

2: PForced(k) =
∑NBatteries

i=1 P Batteries
Forced,i(k) +

∑NBakeries

j=1 P Bakeries
Forced,j(k).

3: if PForced(k) > PDispatch(k) then
4: P Batteries(k) = P Batteries

Forced(k),
5: P Bakeries(k) = P Bakeries

Forced(k).
6: else
7: Sort Batteries and Bakeries according to increasing Agility Factors.

8: Distribute PDispatch(k) to Batteries and Bakeries in increasing Agility Factor order and such that
P Batteries(k) + P Bakeries(k) is as large as possible, but less than or equal to PDispatch(k).

9: end if
10: P Buckets(k) = min

(
P Buckets
Reserve(k), PDispatch(k)− P Batteries(k)− P Bakeries(k)

)
.

11: Distribute P Buckets(k) to the Buckets in decreasing agility Agility Factor order, [2].

12: S(k) = PDispatch(k)− P Buckets(k)− P Batteries(k)− P Bakeries(k).

13: end for

The method Agile-Balancing is very computationally efficient, but it has one ma-
jor flaw: Since the algorithm is strictly non-predictive it can sometimes start too many
Bakeries at times when a drop in power is closely pending. If the Bucket buffer is not
sufficiently large, then this can cause significant slack (see the Results section below). To
remedy this problem the element of prediction is introduced to arrive at Agile-Balancing-
with-Prediction.

Prediction is added to Agile-Balancing in the form of a prediction test, which is per-
formed before starting each Bakery. In the prediction test it is checked whether starting
the current Bakery in combination with all other running units will cause imbalances in
the next KPrediction samples. If this is the case, then Agile-Balancing-with-Prediction
will not start this Bakery just yet, but move on to the next unit.

The prediction test means that occasionally Bakeries are skipped even though they
have the same Agility Factor as one or more Batteries. It is therefore necessary to give
Bakeries slightly higher priority than Batteries throughout the simulations. A scaling
factor α < 1 is therefore introduced and Batteries and Bakeries are sorted according to
KBatteries and αKBakeries. This insures that Bakeries are given higher priority than Batteries
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when running the algorithm and balances out the prediction test. Again to test the algo-
rithm it must first be properly tuned to find the appropriate value of α. This is done in the
results section below.

Pseudo-code for Agile-Balancing-with-Prediction is given in Algorithm 2 and 3.

Algorithm 2:
Agile-Balancing-with-Prediction

(
{LUi}i=1,2,...,N ,{PDispatch,k}k=1,2,...,K ,

KPrediction, α
)

Pseudo-code is the same as Algorithm 1 except insert the following initialization before main for loop

1: Define {PBakeries}k=1,2,...,K as array of zeros of length K.

also replace line 7 with

2: Compute KBatteries and αKBakeries and sort Batteries and Bakeries according to these factors.

and line 8 with

3: Distribute PDispatch(k) to Batteries and Bakeries in sorted order and such that P Batteries(k)+P Bakeries(k)
is as large as possible, but less than or equal to PDispatch(k). However start each Bakery only if
Prediction-Test(Bakery, k,KPrediction, PBakeries, PDispatch) is true.

Algorithm 3:
Prediction-Test(Bakery, k,KPrediction, PBakeries, PDispatch)

1: for m = 1 to KPrediction do
2: if PDispatch(k +m)− PBakeries(k +m)− P Bakery < 0 then
3: return false
4: end if
5: end for
6: for n = 1 to KRun,Bakery do
7: PBakeries(k + n) = PBakeries(k + n) + P Bakery
8: end for
9: return true

Results

In the following simulation example a randomly generated portfolio of 105 units is con-
sidered with NBuckets = 5 and NBatteries = NBakeries = 50. All units have E

TsP
≤ 10

and
∑

PortfolioE = 50. In all simulations Ts = 1 and Ei,0 = 0 for all units. Solu-
tions of problems (3.25) to (3.26) and (3.27) to (3.28) are computed by use of CPLEX,
[65]. Agile-Balancing and Agile-Balancing-with-Prediction have been implemented in
C#, [66]. Computations are performed on a standard laptop PC.

To compare algorithms Agile-Balancing-with-Prediction must first be tuned to find a
suitable value of the parameter α. Tuning is performed on a separate training set of 100
problem instances with the same structure as described above. The parameter α is tested
for the values 1

2 ,
2
3 ,

3
4 ,

4
5 and the result of the parameter tuning test is that α should be 2

3
for this problem structure.

The results of running Predictive-Balancing for KPrediction = 10 are given in Fig-
ure 3.30. It can be seen that the utilization of the portfolio is very erratic, and also
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considerable slack is introduced around sample 25 and 50. When there is a drop in
PDispatch, Predictive-Balancing attempts to use the Buckets as buffer to maintain the
balance between supply and demand. Towards the end of each low power period, how-
ever, Predictive-Balancing has significant slack. This is of course due to the prediction
horizon not being sufficiently long, and the problem could be mended by increasing the
prediction horizon. This modification, however, comes at the price of computation time.

The results of running Agile-Balancing on the considered portfolio is given in Figure
3.31. Again considerable slack is introduced during the second low power period, but
now there is a very different explanation: Since Agile-Balancing is strictly non-predictive
it has no information about the sudden drop in power at sample 40. It therefore starts a
significant number of Bakeries just before that time. When the power drops, the Battery
portion of the portfolio can be turned down, but the Bakeries cannot. Agile-Balancing
also attempts to use the Buckets as buffer to maintain the balance between supply and
demand, but the reservoir is not large enough to achieve this goal.

The results of running Predictive-Balancing-with-Agility and Agile-Balancing-with-
Prediction for KPrediction = 10 and α = 2

3 are given in Figure 3.32 and 3.33 respec-
tively. Inspecting Figure 3.32 and 3.33 it can be seen that both hybrid methods gener-
ate very good solutions of the considered dispatch problem, as neither method have to
introduce any slack. Towards the end of the first low power period Agile-Balancing-
with-Prediction has to start some Batteries due to approaching deadlines, but as it is well
prepared, there is enough buffer in the Bucket portion of the portfolio to still maintain
balance between supply and demand.

Figure 3.30: Power dispatched at each sample for each type of unit by Predictive-
Balancing when K = 10.
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Figure 3.31: Power dispatched at each sample for each type of unit by Agile-Balancing.

Figure 3.32: Power dispatched at each sample for each type of unit by Predictive-
Balancing-with-Agility when K = 10.

61



Summary of Contributions

Figure 3.33: Power dispatched at each sample for each type of unit by Agile-Balancing-
with-Prediction.

In the next simulation example computations are repeated for 100 randomly generated
portfolios each of 105 units, where NBuckets = 5 and NBatteries = NBakeries = 50. Again
all units have E

TsP
≤ 10 and

∑
PortfolioE = 50. The results are presented in Figure 3.34

and Table 3.9.

Figure 3.34: Results of 100 runs of Predictive-Balancing, Agile-Balancing, Predictive-
Balancing-with-Agility and Agile-Balancing-with-Prediction. Red crosses are the geo-
metric mean. Axis scales vary.
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From Table 3.9 it is clear that the best results by far are obtained by the hybrid
methods, with Predictive-Balancing-with-Agility out-performing Agile-Balancing-with-
Prediction with about 13%. This illustrates that both agility and prediction must be con-
sidered when designing dispatch methods. Table 3.9 also shows that the sorting-based
algorithms are much faster at finding a solution than the moving horizon methods. This
means that the average 13% improvement in objective cost from Predictive-Balancing-
with-Agility to Agile-Balancing-with-Prediction takes more than 700 times as long to
compute.

Notice also that although Agile-Balancing-with-Prediction has to do the Prediction-
Check in Algorithm 3, the average computation time is the same as that of Agile-Balancing.
For Predictive-Balancing and Predictive-Balancing-with-Agility, however, adding agility
gives an increase in average computation time from 4.76 seconds to 7.12 seconds.

Comp. Time [s]
∑
|S(·)|

Predictive-Balancing 4.76 0.8437
Agile-Balancing 0.01 0.8156

Predictive-Balancing-with-Agility 7.12 0.0381
Agile-Balancing-with-Prediction 0.01 0.0436

Table 3.9: Computation time and the average sum of numerical imbalances for 100 runs
of Predictive-Balancing, Agile-Balancing, Predictive-Balancing-with-Agility and Agile-
Balancing-with-Prediction.
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This Thesis has investigated some of the challenges relating to the development of Virtual
Power Plants with special attention to flexibility, value creation and computational com-
plexity of portfolio coordination. In this section the main conclusions are summarized
based on Research Questions 1 to 3 as formulated in Section 1.2. After this perspectives
on future work are given.

4.1 Conclusions

Our first contribution was given in Section 3.1 with the introduction of the Buckets, Bat-
teries and Bakeries taxonomy for modelling flexibility. Although the archetypal flexibil-
ity categories are very simple and not novel as such (see Table 2.1), hopefully we have
demonstrated throughout Section 3 that having a short and concise taxonomy for defin-
ing flexibility is very useful. In a way the strength of the taxonomy is that it provides a
vocabulary for discussing flexibility, see [33], [72] and [73]. It is simply far more practi-
cal to say ”the Battery” than have to state ”a power and energy constraint integrator with
charge constraint at user specified deadline” over and over again. We have also shown,
that though simple the models are sufficiently complex to capture and illustrate many
interesting points and issues relating to agility, value creation and dispatch methods.

Research Question 1: Is a better quality of flexibility also more valuable?

To investigate Research Question 1 a three stage market model was developed in Section
3.2. The model includes the Day-Ahead Market, the Intra-Day Market and the Regulating
Power Market. Historic prices from the Nordic electricity markets and price zones DK1
and DK2 were used in calculations. To capture flexibility of different quality the consid-
ered portfolio consisted of one unit of each type in the taxonomy. The same parameter
values were used for all three types of units, which made it possible to directly compare
the effects that different constraints have on the revenue potential.

It was found that the revenue potential is highly dependent on the quality of flexibil-
ity. The fixed energy requirement of the Battery and Bakery meant that the full costs of
the baseline energy purchase could not be recovered. Still, however, it was shown that
significant savings can be achieved from trading across several markets. Specifically it
was found that the Battery can earn 14% of the total profit earned by the Bucket and the
Bakery can earn 6% of that profit. This confirms the hypothesis that a better quality of
flexibility is also more valuable.
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Research Question 2: How can the Virtual Power Plant preserve the quality
of the flexibility in the portfolio as flexible units are dispatched?

In Section 3.3 the concept of agility was introduced in order to investigate Research Ques-
tion 2. Agility means to maximize the quality of flexibility in the portfolio as flexible units
are dispatched. It was demonstrated that agility can make the Virtual Power Plant more
robust in situations

1. when predictions of PDispach are erroneousness, and

2. when the length of the prediction horizon of PDispatch is not sufficient.

The increased robustness is a result of the fact that agility generates more manoeuvrability
or a larger solution space for dispatch problems to be solved in future time steps.

Agility Factors were introduced in Section 3.3 to illustrate how flexibility quality can
be preserved as units are dispatched. The Agility Factor of a unit reflects the flexibil-
ity quality of the unit and through Agility Factors an ordering by quality of the flexible
units in a portfolio can be achieved. In Section 3.6 it was demonstrated how to build
Agility Factors into the Virtual Power Plant Dispatch Problem formulation to find so-
lutions, which minimizes slack, but are also agile. By solving the Virtual Power Plant
Dispatch Problem with Agility it is therefore possible to preserve the quality of the flexi-
bility in the portfolio as units are dispatched.

Research Question 3: Is coordination of a large portfolio of flexible units
computationally challenging for the Virtual Power Plant? How can this
issue be mitigated?

Research Question 3 has been addressed through analytical contributions, by investigating
exact methods for finding solutions of the Virtual Power Plant Dispatch Problem and by
investigating heuristic optimization:

Analytical contributions relating to the Virtual Power Plant Dispatch Problem and
the Buckets, Batteries and Bakeries taxonomy were given in Section 3.4. It was proven
that optimal, causal dispatch strategies do not generally exist for a portfolio of Buckets,
Batteries and Bakeries. In the special case of a portfolio of only Buckets having P = E =
0, however, an optimal, causal strategy does exist. This strategy can be found by solving
a quadratic problem at each sample. It was also proven that when the portfolio contains
Bakeries the Virtual Power Plant Dispatch Problem is NP-complete. This means that
the computation time associated with finding an optimal solution using currently known
algorithms grows extremely fast with the problem size.

In Section 3.5 several attempts were made to determine optimal solutions of larger
problem instances of the Virtual Power Plant Dispatch Problem. Specifically the software
package CPLEX was used and Dynamic Programming and Dantzig-Wolfe Decomposition
was investigated. For CPLEX and Dynamic Programming is was found that the methods
could successfully solve the Virtual Power Plant Dispatch Problem, but did not scale to
very large problem instances (>50 units). This is because the introduction of Bakeries
to the portfolio makes the dispatch problem mixed integer/combinatorial in nature. For
Dantzig-Wolfe Decomposition the method was inapplicable due to a more structural is-
sue: As iterations progresses the Master Problem can generate convex combinations of
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Bakery consumption plans, which are not feasible. The method will then terminate with
an infeasible solution even though the Sub-Problem does respect the run time constraints
of Bakeries.

In Section 3.7 the option of solving the Virtual Power Plant Dispatch Problem by use
of heuristic optimization was investigated.

In initial efforts Hill Climber and GRASP (Greedy Randomized Adaptive Search Pro-
cedure) were adapted to solve the Virtual Power Plant Dispatch Problem for a portfolio
of Bakeries. Four algorithms were developed, denoted Uniform Selection Hill Climber,
Weighted Selection Hill Climber, GRASP Random and GRASP Sorted. After tuning and
testing, by far the best results where obtained by GRASP Sorted. This method can de-
termine solutions, which are both agile and have very little slack even for problems of
100.000 units and 100 samples with a computation time of just 10 seconds.

Next the objective was to investigate the relationship between prediction and agility
further and develop heuristic optimization methods specifically designed to have short
computation times. Four methods were presented: Two pure methods and two hybrid
methods. The pure methods were denoted Predictive-Balancing and Agile-Balancing.
Predictive-Balancing has perfect prediction of PDispatch over a certain horizon, but does
not consider agility in any way. Agile-Balancing, on the other hand, is strictly non-
predictive and generates a dispatch based only on agility information about the portfolio
and the current value of PDispatch. It was found through simulations, that the perfor-
mance of the two methods is comparable in terms of solution quality. The computa-
tion time for Agile-Balancing is however nearly 500 times less than that of Predictive-
Balancing for the considered set-up.

The pure methods illustrated that although prediction and agility are both impor-
tant concepts to consider when developing heuristic optimization algorithms neither is
sufficient in itself. Consequently two hybrid methods were developed, since the hy-
brid methods propose two very different ways of combining the advantages of predic-
tion and agility. The first hybrid method is denoted Predictive-Balancing-with-Agility.
Like Predictive-Balancing this method generates a dispatch based on perfect prediction
of PDispatch over a certain prediction horizon, but Agility Factors are also added to the
formulation of the Virtual Power Plant Dispatch Problem. The second hybrid method is
denoted Agile-Balancing-with-Prediction. Like Agile-Balancing this method generates a
dispatch based on agility information about the portfolio, but it also performs a predic-
tion test to foresee rapid fluctuations of PDispatch in the near future. It was again found
through simulations that the performance of the two hybrid methods is comparable in
terms of solution quality. The computation time for Agile-Balancing-with-Prediction is,
however, 700 times less than that of Predictive-Balancing-with-Agility for the considered
set-up.

4.2 Future Work

The work presented in this Thesis has investigated Research Questions 1 to 3 as for-
mulated in Section 1.2. There are, however, several ways to extend and elaborate the
presented concepts and ideas. Suggestions for such future work is given below.
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Flexibility

The presented taxonomy could be extended with several other models to include con-
straints such as ramp rates, activation time or multi-phase batch processes. With this
extension the hierarchy of flexibility quality would most likely be lost. It might however
be possible to formulate Agility Factor type values based on statistical analysis of the
portfolio and feasible progressions of PDispatch. Such estimations would probably be
highly problem specific, but a general methodology might be obtained.

A different extension of the propose flexibility modelling is to evaluate to what extent
the utilization of simplified models at the aggregator level leads to reasonable utilization
of real systems. Certainly flexibility models such as Buckets, Batteries and Bakeries do
not capture all dynamics and features of a real system. A continuous update of parameter
values in the simple aggregator models based on feedback from the actual system could
however lead to at better utilisation of actual systems. This would of course require
fast and reliable two way communication, but it would not complicate the computational
complexity at the level of the Virtual Power Plant. This line of work has already begun
with [74].

Value Creation

An interesting extension of the presented set-up would be to introduce several Virtual
Power Plants, which are competing in a market environment similar to the one presented
in Section 3.2. To do so, however, it must first be determined how prices should be settled
on those markets to achieve some form of feedback in the formation of prices. It could
then be investigated how well agility is obtained ”system wide” if each Virtual Power
Plant is individually maximizing its own flexibility quality. It would also be interesting
to see whether ”system wide agility” is dependent on how units are distributed among
the Virtual Power Plants. It could then be examined whether it is better that each Virtual
Power Plant has a mixed portfolio of units or if similar units should be grouped in a
designated Virtual Power Plant.

Portfolio Coordination

The presented dispatch problem could be extended with geographical information by in-
cluding a power grid in the problem formulation. The cost function should then include
balancing, grid congestion management and agility. If an effective way of included the
grid could be encoded, then for the exact optimization methods the seeming complica-
tion of the problem given by including a grid could actually be a blessing in disguise.
This is because many combinations of starting Bakeries would become infeasible due
to violation of grid constraints. The sheer number of feasible combination is the main
challenges for e.g. the Dynamic Programming algorithm presented in Section 3.5, so it
can be expected that much larger problem instances could be solved within a reasonable
computation time.

It would also be interesting to see whether the sorting based methods could be adapted
to include grid limitations such that computation times comparable to the ones seen for
Agile-Balancing and Agile-Balancing-with-Prediction could still be obtained.
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1 Introduction

Abstract

This paper investigates how the value of flexibility in energy systems is deter-
mined by markets, forecasts and physics. Both a traditional and a Smart Grid system
are discussed.

In a traditional energy system, where flexibility is provided by power plants, the
quality of a given flexible resource can be determined fairly unambiguously by acti-
vation time, length of reservation period and capacity. In a Smart Grid system, flexi-
bility should be provided by flexible consumer appliances, which are not created for
power management. Determining the quality and value of a flexible resource there-
fore becomes far more multifaceted, since additional performance constraints such as
storage capacity, minimum runtime, temporal constraints (deadlines), ramp rates etc.
must be considered.

To explore the value of flexibility, this paper defines two distinct operation strate-
gies for a Virtual Power Plant: The predictive and the agile. A predictive Virtual
Power Plant will generate predictions of future market prices, and based on these it
will operate the portfolio in a least cost manner. An Agile Virtual Power Plant, on the
other hand, operates its portfolio based on an analysis of the quality of the individual
flexible resources. The Agile Virtual Power Plant is therefore reluctant to expend its
flexible resource and does so in a worst-quality-resource manner.

1 Introduction

A successful Virtual Power Plant operator must answer the question: Which is more
valuable: A heat pump, an electric vehicle or a freezer? The answer to this question lies
somewhere between the Spot Market and Kirchoff’s circuit law, so a good Virtual Power
Plant-operator must be just the right combination of stockbroker and engineer. This paper
explores how the value of flexibility is determined by markets, forecasts and physics both
in a traditional energy system and a Smart Grid system.

Electricity is a just-in-time product, which means that it is instantly consumed at
production. Electricity production and consumption must therefore be closely balanced
at all times or the system will crash. Production technologies which harvest energy from
natural sources such as wind, sun and waves are however unpredictable and fluctuating
by nature. This means that the introduction of large ratios of renewable energy into the
existing power system poses a significant challenge in terms of maintaining the real-time
balance between production and consumption.

Traditionally, the Danish power system is dominated by power plants and inflexible
consumption. The flexibility needed to balance production and consumption in real-time
is therefore provided by power plants running at less than full capacity, the so-called re-
serves. The quality of reserves in such a power system is considered in [4]: “Various
quality of reserves are graded by the quickness and sureness of response. This classifica-
tion provides an unambiguous ordering by value with the best quality of reserve always
preferred to the second best, and so on”. In Smart Grid systems, the flexibility of con-
sumer appliances, such as heat pumps, electric vehicles, cooling systems, micro CHP’s,
emergency generators etc. should be mobilized and play an active part in solving the
balancing task. Discrepancies between supply and demand should then be evened out
via (short-term) storage of energy, [1], or by voluntarily displacing consumption in time,
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Figure 5.1: Energy markets operate in several cycles. As the time of delivery approaches,
reserves take over the balancing task as energy markets cannot operate fast enough to
balance production and consumption in real time.

so-called demand-side management, [2]. With this vision, however, the unambiguous
ordering by value is lost.

Unlike traditional power plants, flexible appliances were not created for power man-
agement. This means that inherent comfort demands must be adhered to when utilizing
the flexibility of the individual units. The quality of flexibility thus becomes multifaceted
and ambiguous, when many factors besides quickness and sureness of response must be
considered. Examples of such factors are storage capacity, minimum runtime, temporal
constraints (deadlines), ramp rates etc.

In order to investigate the value of flexible resources in a Smart Grid system, this
paper assumes that the link between flexible units and energy markets is facilitated by
an independent, commercial aggregator. This commercial aggregator is denoted a Virtual
Power Plant. The Virtual Power Plant gains its profit from trading a portfolio of flexible
units in the energy markets. We make the following distinction between quality and
value: Quality refers to the physical capabilities and limitations of a portfolio, which
dictates how much flexibility is available for market trading. Value on the other hand is
the monetary profit, which is gained by that trading.

This paper makes the assumption that a better quality portfolio will also generate
more value. We therefore propose that a Virtual Power Plant must decide whether to
adopt a predictive or an agile strategy. We also argue that a clear distinction between
these two concepts is needed in order to adequately assess the relative quality of units in
a heterogenous portfolio of flexible resources.

The contribution of this paper is to link the Agile Virtual Power Plant to value cre-
ation in a liberalized market set-up. The present paper thereby frames and motivates the
theoretical work developed in [12]. In [12] the existence of an optimal dispatch strategy
for the Agile Virtual Power Plant imbalance compensation problem is formally proved.

2 Balancing at the Market Level

At the market level, the balance between production and consumption is maintained by
means of energy markets, after-day settlement, imbalance penalty, reserves and power
markets, see Figure 5.1. This section gives a general description of these concepts with
special attention on the price determining mechanisms.
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2 Balancing at the Market Level

Energy Markets

Energy markets (or forward markets) operate before the actual time of delivery to produce
a schedule for how consumption and production should be balanced in the near future.
Producers and wholesalers make bids for future time slots based on the best available
knowledge, such as wind forecasts, consumption forecasts or general market knowledge
and experience. Energy prices are then determined based on these bids, and a balanced
plan for production and consumption is generated. Once prices on an energy market are
settled (Market Clearing), then that market is closed. An important implication of this is
that prices and quantities are fixed simultaneously.

Energy markets operate in several cycles, where early markets are followed-up by
later ones. Producers and wholesalers make bids based on their best estimation of the
future events and needs, and as time progresses better estimations become available. Early
markets are therefore followed by later ones, where players have the option of adjusting
their initial production and consumption schedules.

Electricity prices are predicted based on different data sets, such as weather forecast,
commodity prices (oil, gas, biomass etc.) and 24-hour power consumption traces. Ac-
cording to [8], however, price spikes are highly randomized events, which can be caused
by market power, transmission contingency, transmission congestion, generation contin-
gencies, fuel prices, plant operating costs, weather conditions etc.

In [4] the link between expectations/forecast and price is formulated as: ”In a well ar-
bitraged market the forward price for delivery at time T will equal the expected spot price
at time T”. Since energy markets operate in cascades this statement could be extended
to: In a well arbitraged market the forward price at time TPresent for delivery at time
TFuture will equal the spot price, which is expected for time TFuture at time TPresent.

This formulation reflects that if forecasts and assumptions made on earlier markets
were accurate, then little correction is needed to the agreements made on the early market.
This means that the price on later markets is the same as on earlier markets, since the
expected spot price is unchanged. On the other hand, if forecasts on earlier markets were
erroneous, then a lot of adjustment is needed. This means that prices on either up or down
regulation in the later markets will be high.

After-Day Settlement and Imbalance Penalty

In the schedule generated by the energy markets, consumption and production are always
balanced. After-day settlement and imbalance penalties assure that the actual execution
of the plan is also balanced.

After the actual time of delivery, metered data of actual production/consumption is
evaluated. In the after-day settlement producers and wholesalers are then invoiced ac-
cording to their trades across all energy and power markets. Players are also given an
imbalance penalty if they have deviated from the market agreements. The imbalance
penalty is given if players deviate from the agreed schedule in either direction, so they are
also fined for over-producing and under-consuming.

The actual size of the imbalance penalty is settled based on the size of the over/under
production/consumption and the general electricity prices at the time when the imbalance
was incurred.

81



Paper A

Figure 5.2: Timeline for operation phases of a Virtual Power Plant.

Reserves and Power Markets

The reason for implementing the imbalance penalty is that if you deviate from the market
schedule you generate a need for up- or down regulation. Up regulation and down regula-
tion are performed by spare capacity (flexibility), which is standing by in order to step in
and stabilize the balance if needed. The spare capacity is denoted reserves. Reserves are
in place because ”the price mechanism cannot work fast enough to balance consumption
and production in real time”, [3]. Reserves are provided by specific power plants, which
are operating at less than full capacity. This allows the power plant to ramp up or down
as needed.

Operating at less than full capacity constitutes an expense to the asset owner, since
spare capacity cannot be traded on the energy market. The asset owner is therefore given a
reserve payment, independent of whether the reserve (up or down regulation) is activated
or not. In a deregulated market, the reserve service is traded in designated power markets.
This ensures that a competitive price is paid for reserves.

3 Virtual Power Plant Operation

This paper assumes that the link between flexible units and energy markets is facilitated by
a commercial aggregator, denoted a Virtual Power Plant. The flexibility of the aggregated
consumers is the value-adding resource of the Virtual Power Plant, since its only profit
gain comes from trading the portfolio in the energy markets. This obviously means that a
larger portfolio has a larger potential for revenue, but there is also a number of expenses,
which grows with the size of the portfolio. Such expenses are marketing, installation
and maintenance of communication and metering equipment plus customer billing and
accounting. These fixed costs make it vital to the Virtual Power Plant that the aggregated
flexibility is utilized to its absolute optimum. Another challenge for the Virtual Power
Plant is that if the commercial Virtual Power Plant concept proves economically viable
then several competing Virtual Power Plants will eventually emerge. With this vision,
flexibility becomes a commodity in itself and multiple aggregators compete for flexible
units in order to obtain the most profitable portfolio.

Operation phases for a commercial Virtual Power Plant are depicted in Figure 5.2
and similar considerations can be found in [9]. For the Virtual Power Plant value is
created across operation phases, so the profitability of a given Virtual Power Plant will be
determined by its ability to
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3 Virtual Power Plant Operation

• build and manage a lucrative portfolio of flexible units (Quality), and

• trade the portfolio in the power and energy markets (Value).

The Quality of Flexibility

In a traditional power system, flexibility is provided by power plants running at less than
full capacity. The quality of such a reserve is determined by

• Capacity: How much imbalance will the resource be able to compensate, both in
terms of power and energy,

• Length of reserve period: How long is the unit committed to stand-by, and

• Activation time: How fast can the reserve be activated.

For the commercial Virtual Power Plant, however, determining the quality of a flexible
resource is far more complex. The primary purpose of flexible consumer appliances is
not power management. Certain inherent comfort demands must therefore be adhered to.
These comfort demands characterize the flexible resource, but also limit its quality and
thus value. Characteristics, which must be considered by the Virtual Power Plant when
assessing a flexible resource, are:

1. Power capacity

2. Length of reserve period

3. Activation time

4. Base load requirements

5. Temporal constraints (Deadlines)

6. Ramp rates

7. Storage capacity

8. Storage period/drain

9. Min/max run/down time

10. Warranty

In the following sections, it is argued that as a result of this setup the quality and value
of flexibility in a Smart Grid system is poorly investigated via a predictive approach. The
alternative of the Agile Virtual Power Plant is therefore suggested.
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Figure 5.3: The market access of the Virtual Power Plant can be direct (VPP1), through
integration with another Virtual Power Plant (VPP2) or through integration with a larger
portfolio of production units (VPP3).

4 Predictive Virtual Power Plant

In recent years, the predictive Virtual Power Plant strategy has been explored in a variety
of setups. The predictive strategy consists of predicting future market prices (or imbal-
ances) as best as possible and operating the portfolio in a least-cost manner based on these
predictions.

The operation of a portfolio of micro-combined heat and power plants is examined
in [7], where the operation of the portfolio is optimized against spot market prices. This
study uses spot prices from NordPool, [10], and perfect prediction of spot market prices
is assumed.

A similar investigation is provided in [11], where optimal charging of electric vehi-
cles is studied. Here electricity prices are estimated using multivariate regression, with
regression variables for forecasted demand, forecasted wind power, hydro power, coal
price, gas price and emission allowance price. Once forecasted these prices are assumed
to be accurate for the following six hours.

5 Agile Virtual Power Plant

When correlating the predictive Virtual Power Plant strategy with the flexibility charac-
teristics (1) - (10) it is clear that the predictive strategy is only optimal if predictions are
correct and the length of prediction horizon is sufficiently large. The basic idea of the
Agile Virtual Power Plant strategy is therefore to maximizes the quality of the portfolio
rather than the predicted value. The Agile Virtual Power Plant thus operates the portfolio
based on an analysis of the quality of the flexible resources themselves. The main mo-
tivation for exploring the Agile strategy is therefore to make the portfolio more robust
(and thus profitable in later markets) when forecasts are erroneous or insufficiently long.
A second motivation for exploring the Agile Virtual Power Plant strategy is that if the
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Virtual Power Plant is to supply services similar to traditional power plant reserves, then
any assumption of predictability is simply self-contradictory.

Clearly, the value that can be gained from the agile strategy is entirely dependent on
the quality of forecasts and predictions. If forecasts and predictions are accurate then the
cost minimization tactic of the predictive Virtual Power Plant is obviously the better of
the two. It can, however, be argued that making accurate price projections for the Danish
Smart Grid system will become increasingly difficult, due to

• Significant wind penetration level, [5], implies that forecasting errors will have a
large impact on production schedules and thus impact prices in later markets closer
to operational time,

• Integration of the European market and grid, [6], which means that market players,
transmission congestion and events in larger areas will have to be considered in
price projections, and

• Addition of flexible production and consumption increasing the price projection
complexity in itself, since actions of major competitors influence market prices.

6 Simulation Example

This simulation example illustrates how the agile analysis can improve Virtual Power
Plant performance. The considered portfolio is heterogeneous, but units differ only in
power- and energy capacity. The market access of the Virtual Power Plant can be direct,
through integration with another Virtual Power Plant or through integration with a larger
portfolio of production units (see Figure 5.3). In either case, we let PReserve(k) denote
the aggregated power capacity, which can be offered for trading at sample k. In our
simulation we do not assign market prices to samples. Instead we assume that the market
trading is handled properly such that maximizing PReserve (quality) also generates higher
profit (value).

The Virtual Power Plant has control of a set of local units {LUi}i=1,2,...,N , which
are governed by individual dynamics and constraints. We model the local units simply as
power and energy constrained integrators and let Ei(k) denote the energy level in local
unit i at sample k:

LUi(k): Ei(k + 1) = Ei(k) + TsPi(k)

P i ≤ Pi(k) ≤ P i

Ei ≤ Ei(k + 1) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,∞, i ∈ N, P i ∈ R−, P i ∈ R+, Ei ∈ R−, Ei ∈ R+ and Ei ≤
Ei,0 ≤ Ei. With the choice of power and energy constrained units we have

PReserve,i(k) = min

(
P i,

Ei − Ei(k)

Ts

)
.

At each sample some volume, PDispatch(k), is received, the size of which depends on
market trading and current imbalances. We assume that 0 ≤ PDispatch(k) ≤

∑N
i=1 PReserve,i(k).

85



Paper A

The Virtual Power Plant must dispatch the full volume PDispatch(k) to the local units,
corresponding to

∑N
i=1 Pi(k) = PDispatch(k). Since the goal of the Virtual Power Plant

is to service the power system as well as possible it should maximize the flexibility, which
can be offered to the market, so the optimization problem of the Virtual Power Plant is

max
Pi(·)

∞∑
k=0

N∑
i=1

PReserve,i(k) (5.1)

s.t.

PReserve,i(k) = min

(
P i,

Ei − Ei(k)

Ts

)
(5.2)

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k) (5.3)

N∑
i=1

Pi(k) = PDispatch(k) (5.4)

Ei(k + 1) = Ei(k) + TsPi(k) (5.5)

P i ≤ Pi(k) ≤ P i (5.6)

Ei ≤ Ei(k + 1) ≤ Ei (5.7)
Ei(0) = Ei,0. (5.8)
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Predictive Virtual Power Plant

The predictive Virtual Power Plant strategy consists of predicting future imbalances as
best as possible and operating the portfolio according to these predictions. At each sam-
ple k, the Predictive dispatch strategy is therefore obtained by solving the optimization
problem (5.1) - (5.8) with perfect prediction of PDispatch over the horizon NPredict:

max
Pi(·)

NPredict∑
n=0

N∑
i=1

PReserve,i(k + n)

s.t.

PReserve,i(k + n) = min

(
P i,

Ei − Ei(k + n)

Ts

)
0 ≤ PDispatch(k + n) ≤

N∑
i=1

PReserve,i(k + n)

N∑
i=1

Pi(k + n) = PDispatch(k + n)

Ei(k + 1 + n) = Ei(k + n) + TsPi(k + n)

P i ≤ Pi(k + n) ≤ Pi

Ei ≤ Ei(k + 1 + n) ≤ Ei

Ei(0) = Ei,0.

Agile Virtual Power Plant

The Agile Virtual Power Plant strategy is to analyze the portfolio and dispense flexible
resource in a least valuable unit manner. When we simply consider power and energy
constrained integrators, then the value of the individual units is given by

Ki(k) =
Ei − Ei(k)

TsP i

,

which is the ratio between the energy reserve and the upper power limit. This factor states
how many samples unit i can operate at its maximum before it becomes inactive (full). A
higher Ki-value thus means that the local unit can remain active through a longer period
of high load. It is therefore reasonable to suggest the following linear cost function to
obtain the Agile Virtual Power Plant dispatch strategy

max
Pi(k)

N∑
i=1

Ki(k)Pi(k), (5.9)

as this will ensure that PDispatch is distributed to the least valuable units. The Agile-
Linear dispatch strategy is therefore obtained by minimizing (5.9) subject to (5.2) to (5.8).
In [12] the authors demonstrated that while (5.9) generates a good dispatch strategy for
the considered problem it is not optimal. The optimal dispatch strategy can however be
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Table 5.1: Parameters for the local units.

i P i P i Ei Ei Ki(0)
1 1 -1 0 1 1
2 1 -1 0 10 10
3 1 -1 0 100 100
4 10 -10 0 10 1
5 10 -10 0 100 10
6 10 -10 0 1.000 100
7 100 -100 0 100 1
8 100 -100 0 1000 10
9 100 -100 0 10.000 100

obtained by using the cost function

max
Pi(k)

N∑
i=1

(
Ei−Ei(k)

Ts
− Pi(k)

)2
−2P i

, (5.10)

so the Agile-Quadratic dispatch strategy is obtained by minimizing (5.10) subject to (5.2)
to (5.8). In [12] the optimality of the Agile-Quadratic dispatch strategy is formally proved
under the added assumption P i = Ei = 0.

Simulation Results

The following simulation example illustrates the Agile-Quadratic, Agile-Linear and Pre-
dictive strategies. At each sample k, we choose PDispatch(k) randomly from a uniform
distribution subject to the constraint

PDispatch(k) ≤ min
[
PReserve,Agile−Quadratic(k),

PReserve,Agile−Linear(k),

PReserve,Predictive(k)
]
,

which ensures that all optimization problems are feasible.
Nine local units are included in the simulations and parameters for these are given in

Table 5.1. Additional simulation parameters are Nsim = 30, Ts = 1 and NPredict = 5.
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Figure 5.4: The upper bound on the amount of imbalance which can be dispatched to the
Virtual Power Plant is denoted PReserve. A high value of PReserve thus means a better
utilization of the available flexibility. At each sample the predictive dispatch strategy has
perfect prediction of PDispatch over the next five samples; An assumption, which is not
made by the two agile strategies.
In the first part of the simulations, the three methods perform equally well. After sam-
ple 13, however, the agile strategies are able to compensate a larger imbalance than the
predictive strategy. This happens even though the three methods have the exact same
portfolio at their disposal and have to balance the exact same load.

The simulation results are depicted in Figure 5.4. In the first part of the simulations,
the three strategies perform equally well. After sample 13, however, the agile strategies
can compensate larger imbalances, even though the three methods use the same portfolio
to balance the same variations. The Agile-Linear strategy performs worse than the Agile-
Quadratic, but still much better than the Predictive.
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The explanation for why the agile strategy performs better than the predictive strategy
can be found in Figure 5.5, which depicts the energy levels in each of the nine local
units. The Agile-Quadratic strategy is able to get a better utilization of LU9 early in the
simulations and is better at rebuilding the flexibility of unit 1 and 4.

Figure 5.5: Energy level for each of the nine energy and power constrained local units
(LUs) considered in the simulations (Parameters for the local units are given in Table
5.1). Blue depicts the Predictive strategy and green depicts the Agile-Quadratic strategy.
Notice that the agile strategy has a better utilization of LU9 (the largest individual unit)
early in the simulations and does better at rebuilding the flexibility of unit 1 and 4.

7 The Real World Rarely Provides Extreme or Pure Cases [13]

This paper has presented the agile and predictive Virtual Power Plant strategies and made
a strict distinction between the two. This distinction is useful for the sake of discussion,
and because the predictive strategy is already well researched. In a practical setting,
however, a combination of the two is far more meaningful. The intent of this article
is therefore not to render the use of predictions impossible, but rather to comment that
additional value can be gained by performing an analysis of the quality of the individual
flexible resources and thus avoiding the prediction pitfall.
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1 Introduction

Abstract

The introduction of large ratios of renewable energy into the existing power sys-
tem is complicated by the inherent variability of production technologies, which har-
vest energy from wind, sun and waves. Fluctuations of renewable power production
can be predicted to some extent, but the assumption of perfect prediction is unrealis-
tic. This paper therefore introduces the Agile Virtual Power Plant. The Agile Virtual
Power Plant assumes that the base load production planning based on best available
knowledge is already given, so imbalances cannot be predicted. Consequently the
Agile Virtual Power Plant attempts to preserve maneuverability (stay agile) rather
than optimize performance according to predictions.

In this paper the imbalance compensation problem for an Agile Virtual Power
Plant is formulated. It is proved formally, that when local units are power and en-
ergy constrained integrators a dispatch strategy exists, which is optimal regardless of
future load/imbalances. The optimal dispatch is obtained at each sample by solving
a quadratic program. Finally a simulation example illustrates the optimal dispatch
strategy and compares the performance with a (non-optimal) MPC-strategy.

1 Introduction

Electricity is a so-called just-in-time product, which means that it is instantly consumed
at production. This means, that electricity production and consumption must be closely
balanced at all times. Production technologies, which harvest energy from natural sources
such as wind, sun and waves, are unpredictable and fluctuating by nature. This means that
the introduction of large ratios of renewable energy into the existing power system poses
a significant challenge in terms of maintaining the real-time balance between production
and consumption.

In Smart Grid systems the flexibility of consumers, such as electric vehicles, heat
pumps and HVAC-systems, should be mobilized and play an active part in solving the
balancing task. With this vision the discrepancies between supply and demand should be
evened out via (short-term) storage of energy [5] or by voluntarily displacing consumption
in time, so-called demand-side management [6].

A Virtual Power Plant is a collection of flexible consumers, which are grouped to-
gether and controlled centrally, see [3]. In this paper the flexible consumers are denoted
local units and are modeled simply as power and energy constrained integrators.

The considered Virtual Power Plant is part of a larger portfolio of production units,
such as wind turbines, solar panels, power plants etc. The entire portfolio is managed by a
master controller, which trades the production capacity on the energy markets, see Figure
6.1. Based on the market trading a production schedule for the portfolio is obtained (for
more on energy markets see [7] and [8]).

Electricity production and consumption in the (near) future can be estimated based
on weather forecast and 24-hour power consumption traces. However, the assumption of
perfect prediction is unrealistic, so this paper explores a dispatch strategy for an Agile
Virtual Power Plant. Because base load production is already given the master controller
utilizes the Virtual Power Plant to compensate unforeseen errors and imbalances, such
that the portfolio as a whole is following the agreed schedule, see Figure 6.2. The Agile
Virtual Power Plant therefore attempts to ”stay agile”, rather than optimize performance
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Figure 6.1: The Virtual Power Plant is part of a larger portfolio of production units, such
as wind turbines, solar panels, power plants etc. The portfolio is controlled centrally by
a master controller, which utilizes the capacity of the Virtual Power Plant to compen-
sate imbalances in production, such that the portfolio as a whole is following an agreed
schedule.

patched to the VPP.

Actual production.
Imbalance, which is dis-

Production schedule
obtained by market trading.

12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15 14:30

Figure 6.2: A production schedule for the production portfolio is obtained by market trad-
ing. Any imbalance is then dispatched to the Virtual Power Plant, such that the portfolio
as a whole is following the production schedule.

according to predictions. The Agile Virtual Power Plant thus plays a role similar to that
of traditional power plant reserves in a typical European power system (see [9]).

A similar balancing setup is considered in [1], which investigates energy storage in
power system operations. In this work the flexible units are denoted power nodes. These
power nodes are essentially energy and power constrained integrators, but ramp con-
straints and storage loss are also included in the modeling. A Model Predictive Control
(MPC) approach is taken, with the assumption of perfect prediction of imbalances. Values
for the dispatch parameters are obtained by manual tuning in order to obtain the desired
system behavior.

Also [2] considers the operation of storage devices in power systems. In this paper
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the storage units are also modeled as power and energy constrained integrators, but in-
dividual charging and decharging costs are include for each unit. Like [1] the paper [2]
also takes an MPC approach to the balancing problem and imbalances are modeled as
stochastic processes with diurnal components. It is not explained how values for the dis-
patch parameters are obtained, but it is indicated that they reflect the monetary costs of
charging/decharging and the cost of load shedding.

In the work described above values for the dispatch parameters are fixed based on
heuristics or monetary costs. This paper proposes that the dispatch parameters be chosen
based on the individual local units’ ability to compensate imbalances. Dispatch param-
eters are therefore calculated based on the state and characteristics (constraints) of each
local unit itself.

The contribution of this paper is to formulate the imbalance compensation problem
for an Agile Virtual Power Plant. It is proved formally that when the local units have
a specific, simple form an optimal dispatch strategy can be obtained at each sample by
solving a quadratic optimization problem. Finally, simulation studies show, that for the
considered optimization problem the assumption of perfect prediction over a certain hori-
zon does not guarantee optimality.

The remainder of this paper is structured as follows: In Section 2, we formulate the
imbalance compensation problem for an Agile Virtual Power Plant. Section 3 presents
the main contribution of this paper, namely an optimal dispatch strategy for the imbal-
ance compensation problem. In Section 4, a simulation example illustrates the optimal
dispatch strategy and compares the performance with a (non-optimal) MPC-strategy. Fi-
nally, Section 5 gives concluding remarks and suggestions for further work.

2 Problem Formulation

General Form of the Agile Virtual Power Plant Imbalance Compensation
Problem

As explained earlier we consider a Virtual Power Plant, which is part of a larger portfolio
of production units. A master controller has direct control of the entire portfolio and
trades the production capacity on the energy markets. Based on the market trading, a
base load schedule for the production units is obtained. The Virtual Power Plant is then
utilized to compensate for unforeseen errors and imbalances in production, such that the
portfolio as a whole is following the agreed schedule.

The Virtual Power Plant has control of a set of local units {LUi}i=1,2,...,N , which
are governed by individual dynamics and constraints. The Virtual Power Plant offers the
capacity of the local units to the master controller and we let PReserve,i(k) denote the
capacity of local unit i, which can be offered to the master controller at sample k. The
Virtual Power Plant must offer its full available capacity to the master controller, so the
offered capacity at sample k is

PReserve(k) =

N∑
i=1

PReserve,i(k).

At each sample some volume, PDispatch(k), is received from the master controller.
It is assumed that 0 ≤ PDispatch(k) ≤ PReserve(k), such that it is always possible
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to dispatch PDispatch to the portfolio. The Virtual Power Plant must dispatch the full
volume PDispatch(k) to the local units and we let Pi(k) denote the quantity dispatched
to unit i, so

N∑
i=1

Pi(k) = PDispatch(k).

The goal of the Virtual Power Plant is to service the master controller as well as
possible. The objective is therefore to dispatch PDispatch(k) to the local units such that
PReserve(k), k = 0, 1, . . . ,K, is maximized. This can be formulated as

max
Pi(·)

K∑
k=0

N∑
i=1

PReserve,i(k)

s.t.

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k)

N∑
i=1

Pi(k) = PDispatch(k)

and also subject to the dynamics and constraints of {LUi}i=1,2,...,N . This is the general
form of the Agile Virtual Power Plant imbalance compensation problem.

Remark 2: (Optimization Target)
In the formulation given above only the upper bound on the available capacity is considered as an
optimization target. With this setup we obtain a clear objective, namely maximizing PReserve. If
both the upper and lower bounds on the available capacity are included, that is introducing both
PReserve and PReserve, then the objective becomes less clear. This is because a gain in PReserve

will introduce an equivalent loss in PReserve. The problem could be handled by considering a less
intuitive objective function than the one presented above, but the penalty for the trade off between
positive and negative reserve will invariably be based on heuristics. For now we will therefore only
consider the upper bound on the available reserve and as a result it is assumed that the imbalance,
PDispatch, is also positive, though this is obviously not a realistic assumption.

Agile Virtual Power Plant Imbalance Compensation Problem for Power and
Energy Constrained Local Units

In this paper the local units are modelled simply as power and energy constrained inte-
grators and we let Ei(k) denote the energy level in local unit i at sample k.

Definition 10 (Power and Energy Constrained Local Unit). The dynamics and constraints
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of a power and energy constrained local unit are

LUi(k): Ei(k + 1) = Ei(k) + TsPi(k)

0 ≤ Pi(k) ≤ P i

0 ≤ Ei(k + 1) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,K, i ∈ N, 0 ≤ P i, 0 ≤ Ei and 0 ≤ Ei,0 ≤ Ei.

For ease of notation we assume that Ts = 1 in the following and let LUN (k) denote
a set of N ∈ N local units, that is {LUi(k)}i=1,2,...,N .

With the choice of power and energy constrained local units we obtain that

PReserve,i(k) = min(P i, Ei − Ei(k)),

so the Agile Virtual Power Plant imbalance compensation problem for power and energy
constrained local units is

max
Pi(·)

K∑
k=0

N∑
i=1

PReserve,i(k) (6.1)

s.t.

PReserve,i(k) = min(P i, Ei − Ei(k)) (6.2)

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k) (6.3)

N∑
i=1

Pi(k) = PDispatch(k) (6.4)

Ei(k + 1) = Ei(k) + Pi(k) (6.5)

0 ≤ Pi(k) ≤ Pi (6.6)

0 ≤ Ei(k + 1) ≤ Ei (6.7)
Ei(0) = Ei,0, (6.8)

where Ei,0 is the initial energy level of unit i.
To simplify the setup it has been assumed that the Virtual Power Plant is offering

PReserve to the master controller at every sample. When power and energy constrained
units are considered, however, PReserve could be offered for more than one sample with-
out any loss of information using Resource Polytopes as described in [4]. This would
give the master controller the benefit of knowledge of future balancing capacity.

3 Optimal Dispatch Strategy

This section presents the main contribution of the article, namely the result, that the op-
timal dispatch at each sample is independent of future load/imbalances; And the optimal
dispatch can be obtained at each sample by solving a quadratic program.
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Definition 11 (Agility Factor).
Let LUi(k) denote a power and energy constrained local unit. The Agility Factor of local
unit i at sample k is defined as

Ki(k) =
Ei − Ei(k)

P i

.

Lemma 2. At sample k let LUN (k) denote a finite set of power and energy constrained
local units. A dispatch strategy for problem (6.1) - (6.8) can be obtained by solving the
program

max
Pi(k)

N∑
i=1

(Ei − Ei(k)− Pi(k))2

−2P i

(6.9)

s.t.

PReserve,i(k) = min(P i, Ei − Ei(k)) (6.10)

0 ≤ PDispatch(k) ≤
N∑
i=1

PReserve,i(k) (6.11)

N∑
i=1

Pi(k) = PDispatch(k) (6.12)

Ei(k + 1) = Ei(k) + Pi(k) (6.13)

0 ≤ Pi(k) ≤ Pi (6.14)

0 ≤ Ei(k + 1) ≤ Ei (6.15)
Ei(0) = Ei,0. (6.16)

and for this dispatch strategy the marginal cost/gain of dispatching to local unit i is
Ki(k + 1).

Proof. First observe that the constraints (6.2) - (6.8) are the same as (6.10) - (6.16), so at
sample k a feasible dispatch strategy for problem (6.1) - (6.8) can be obtained by solving
(6.9) - (6.16).

Next define

f(Pi(k)) =

N∑
i=1

(Ei − Ei(k)− Pi(k))2

−2P i

,
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so

∇f(Pi(k)) =

[
E1 − E1(k)− P1(k)

P 1

, ...,

E − EN (k)− PN (k)

PN

]
=

[
E1 − E1(k + 1)

P 1

, ...,
E − EN (k + 1)

PN

]
= [K1(k + 1), ...,KN (k + 1)].

Definition 12 (Feasible Dispatch Sequence).
Let LUN (k) denote a finite set of power and energy constrained local units. The se-
quence {PDispatch(k)}k=0,1,...,K is a Feasible Dispatch Sequence associated withLUN (k)
if problem (6.1) - (6.8) is feasible for PDispatch(k) = PDispatch(k), k = 0, 1, . . . ,K.

Definition 13 (Set of Feasible Dispatch Sequences).
Let LUN (k) denote a finite set of power and energy constrained local units. The Set of
Feasible Dispatch Sequences over horizon K for LUN (k) is denoted ΩK

(
LUN (k)

)
.

Definition 14 (Integer Agility Factor System).
A set of KMax power and energy constrained local units, for which

E1 = P1,E2 = 2 · P2, . . . ,EKMax
= KMax · PKMax

is denoted an Integer Agility Factor System. Observe that for an Integer Agility Factor
System the index number, i, equals Ki.

The set {LUj(k)}j=1,2,...,KMax
is denoted LUKMax(k).

Lemma 3. For any finite set of power and energy constrained local units, LUN (k),
there exists an integer KMax and an Integer Agility Factor System, denoted LUKMax(k),
such that

ΩK

(
LUN (k)

)
= ΩK

(
LUKMax(k)

)
.
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k

Ei

P dKi(k)e

bKi(k)c

dKi(k)e

1 2 3 4 5

P i

0

Ei(k)

P bKi(k)cLUbKi(k)c

LUdKi(k)e

Figure 6.3: Lemma 3: Any power and energy constrained local unit can be expressed as
two equivalent units, which have integer Agility Factors.

Proof. For each local unit in LUN (k) define LUdKi(k)e by

P dKi(k)e = Ei − Ei(k)− bKi(k)c · P i,

EdKi(k)e =
(
Ei − Ei(k)− bKi(k)c · P i

)
· dKi(k)e

and LUbKi(k)c by

P bKi(k)c = P i − P dKi(k)e,

EbKi(k)c =
(
P i − P dKi(k)e

)
· bKi(k)c,

so ΩK

(
LUi(k)

)
= ΩK

(
{LUdKi(k)e, LUbKi(k)c}

)
, see Figure 6.3. Next group these

units according to equalK-value to obtain LUKMax(k), where KMax = maxi=1,2,...,NdKi(k)e.

Lemma 4. Let there be given an Integer Agility Factor System, LUKMax(k), and a se-
quence {PDispatch(k)}k=0,1,...,K and define

`n =
{
k = 0, 1, . . . ,K|PDispatch(k) >

KMax∑
j=n

Pj

}
for n = 1, 2, . . . ,KMax. Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
LUKMax(k)

)
,

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K (6.17)
K∑

k=0

PDispatch(k) ≤
KMax∑
j=1

Ej (6.18)

`1 = ∅ (6.19)
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and ∑
k∈`n

(
PDispatch(k)−

KMax∑
j=n

Pj

)
≤

n−1∑
j=1

Ej (6.20)

for n = 2, 3, . . . ,KMax, see Figure 6.4.

Proof. Consider an Integer Agility Factor System consisting of just one local unit {LU1(k)},
where

E1 = P1.

Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
{LU1(k)}

)
,

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K

K∑
k=0

PDispatch(k) ≤ E1

and

`1 = ∅.

Next consider an Integer Agility Factor System consisting of two local units {LU1(k), LU2(k)},
where

E1 = P1,E2 = 2 · P2.

Then

{PDispatch(k)}k=0,1,...,K ∈ ΩK

(
{LU1(k), LU2(k)}

)
,

if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K

K∑
k=0

PDispatch(k) ≤
2∑

j=1

Ej

`1 = ∅.

and ∑
k∈`2

(
PDispatch(k)− P2

)
≤ E1

Using equivalent reasoning, in the general case, that is when considering LUKMax(k), we
obtain (6.17) to (6.20).
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∑KMax

j=n Pj

LUn

LUKMax−1

LUKMax

1 2 n KMax

PKMax−1

PKMax

Pn

n− 1 KMax − 2 KMax − 1

LU1P1

LU2P2

∑n−1
j=1 Ej

Figure 6.4: Lemma 4: Samples where PDispatch(k) exceeds
∑KMax

j=n Pj are denoted

`n. For these samples any quantity larger than
∑KMax

j=n Pj must be dispatched to units
{LUj(k)}j=1,2,...,n−1.

Lemma 5. Let LUN (k) denote a finite set of power and energy constrained local units
and let some quantity PDispatch,0 satisfying 0 ≤ PDispatch,0 ≤

∑N
i=1 PReserve,i(k) be

given.
Also let LUR

N(k + 1) be a set of local units obtained by a feasible dispatch of
PDispatch,0 to LUN (k) and let LUQ

N(k + 1) be the set of local units obtained by dis-
patching according to the solution of problem (6.9) - (6.16). Then

ΩK

(
LUR

N(k + 1)
)
⊆ ΩK

(
LUQ

N(k + 1)
)
.

Proof. First let LUKMax(k) be the Integer Agility Factor System associated with LUN (k)
as given by Lemma 3. Then by Lemma 4 the set of feasible dispatch sequences is given
by (6.17) to (6.20).

Next for each n = 2, 3, . . . ,KMax let αn denote the ratio of PDispatch,0, which is
dispatched to units j = 1, 2, . . . , n − 1. After dispatch of PDispatch,0 we have that
{PDispatch(k)}k=0,1,...,K is a feasible dispatch sequence of the system if and only if

PDispatch(k) ≥ 0, k = 0, 1, . . . ,K

K∑
k=0

PDispatch(k) ≤
KMax∑
j=1

Ej − PDispatch,0

`1 = ∅
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3 Optimal Dispatch Strategy

and

∑
k∈`n

(
PDispatch(k)−

KMax∑
j=n

Pj

)

≤
n−1∑
j=1

Ej − αn · PDispatch,0 (6.21)

for n = 2, 3, . . . ,KMax.
It follows from (6.21), that the maximum set of feasible dispatch sequences after

dispatch of PDispatch,0 is obtained by minimizing αn for all n, that is

min
Pj(k)

αn, n = 2, 3, . . . ,KMax,

subject to (6.12) to (6.16). This also means for each n dispatch as much as possible to the
local units n+ 1, n+ 2, . . . ,KMax and it follows by Lemma 2, that this is exactly what is
obtained by the dispatch strategy (6.9) to (6.16).

Finally ΩK

(
LUR

N(k + 1)
)
⊆ ΩK

(
LUQ

N(k + 1)
)
, since no other dispatch can

generate higher upper bounds on (6.21) than what is obtained by (6.9) to (6.16).

Theorem 6. Dispatching according to the solution of (6.9) to (6.16) at each sample,
yields an optimal dispatch strategy for (6.1) to (6.8).

Proof. Let LUN (k) denote a finite set of power and energy constrained local units. Ob-
serve, that at any sample n ≥ k

PReserve(n) =

max
PDispatch(·)∈ΩK

(
LUN (n)

)PDispatch(n). (6.22)

Next let {PDispatch(k)}k=0,1,...,K be any sequence in ΩK

(
LUN (k)

)
. Also let

{LUOpt
N (k)}k=0,1,...,K denote the optimal sequence of sets of local units, that is the

sequence of sets of local units obtained by dispatching according to the solution of (6.1) to
(6.8). Finally let {LUQ

N(k)}k=0,1,...,K denote the sequence of sets of local units obtained
by dispatching according to the solution of (6.9) to (6.16) at each sample. By Lemma 5

ΩK

(
LUOpt

N (k)
)
⊆ ΩK

(
LUQ

N(k)
)
, k = 0, 1, . . . ,K.

It now follows from (6.22) that dispatching according to the solution of (6.9) to (6.16) at
each sample, yields an optimal dispatch strategy for (6.1) to (6.8).
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Remark 3: (Agile, Linear Dispatch Strategy)
By using the Agility Factors of the local units before dispatch as weights in the objective function,
we can formulate a linear problem, which also generates a ”K-greedy” dispatch strategy. This
strategy is denoted the linear strategy and at sample k it is obtained by

max
Pi(k)

N∑
i=1

Ki(k)Pi(k) (6.23)

subject to (6.2) - (6.8).
The linear strategy, however, is not optimal, which is illustrated by the following example:

Consider a system of the two local units given in Table 6.1 and let PDispatch(k) = 10. The
solution of problem (6.23) subject to (6.2) - (6.8) is then P1(k) = 10 and P2(k) = 0. This means
that PReserve(k + 1) = 15, since E1(k + 1) = 15 and E2(k + 1) = 6. A higher value of
PReserve(k + 1), however, is obtained by setting P1(k) = 5.5 and P2(k) = 4.5, since this makes
E1(k + 1) = 10.5 and E2(k + 1) = 10.5, so PReserve(k + 1) = 19. This shows that the linear
strategy is not optimal.

The problem is that the linear strategy distributes according to Ki(k), that is, the state before
dispatch, and does not consider the dynamic effects of the current dispatch. Since the quadratic
optimization problem has marginal costs/gain ofKi(k+ 1) it exactly considers the dynamic effects
of the current dispatch.

LU1 LU2

P 10 10
E 20 20

E(k) 5 6
Ki(k) 1.5 1.4

Table 6.1: System of local units for which the agile, linear strategy is not optimal for
PDispatch(k) = 10.

4 Simulation Example

To illustrate the different dispatch strategies a simulation example has been constructed
and implemented. The performance of the optimal and linear dispatch strategies are com-
pared to a predictive dispatch strategy in which perfect prediction of PDispatch is assumed
over a certain prediction horizon.

At each sample k the optimal dispatch strategy solves the optimization problem (6.9)
- (6.16) and the linear strategy solves problem (6.23) subject to (6.2) - (6.8). At each
sample k the predictive dispatch strategy solves the optimization problem (6.1) - (6.8) by
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4 Simulation Example

assuming perfect prediction of PDispatch over the horizon NPredict:

max
Pi(·)

NPredict∑
n=0

N∑
i=1

PReserve,i(k + n) (6.24)

s.t.

PReserve,i(k + n) = min(P i, Ei − Ei(k + n)) (6.25)

0 ≤ PDispatch(k + n) ≤
N∑
i=1

PReserve,i(k + n) (6.26)

N∑
i=1

Pi(k + n) = PDispatch(k + n) (6.27)

Ei(k + 1 + n) = Ei(k + n) + Pi(k + n) (6.28)

− P i ≤ Pi(k + n) ≤ Pi (6.29)

0 ≤ Ei(k + 1 + n) ≤ Ei (6.30)
Ei(0) = Ei,0, (6.31)

where NPredict is less than K.
At each sample k in the simulations we choose PDispatch(k) randomly from a uni-

form distribution subject to the constraint

PDispatch(k) ≤ min
[
PReserve,Optimal(k),

PReserve,Linear(k),

PReserve,Predictive(k)
]
,

which insures that problem (6.9) - (6.16), problem (6.23) subject to (6.2) - (6.8) and
problem (6.24) - (6.31) are all feasible.

Nine local units are included in the simulations and parameters for these are given in
Table 6.2. Additional simulation parameters are K = 90, Ts = 1, and NPredict = 3.

i P i Ei Ei,0 Ki(0)

1 1 40 0 40
2 2 50 0 25
3 3 45 0 15
4 4 120 0 30
5 5 175 0 35
6 6 270 0 45
7 7 35 0 5
8 8 160 0 20
9 9 90 0 10

Table 6.2: Parameters for the local units.

The simulation results are depicted in Figure 6.5. In the first part of the simulations
the three methods perform equally well. After sample 15, however, the optimal and linear
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Figure 6.5: Simulation Results: PReserve is an upper bound on the amount of imbal-
ance which could potentially be dispatched to the Virtual Power Plant. A high value of
PReserve thus means a better utilization of the available flexibility. At each sample the
predictive dispatch strategy assumes perfect prediction of PDispatch over the next three
samples; An assumption which is not made by the optimal and linear strategies.
In the first part of the simulations the three methods perform equally well. After sample
15, however, the optimal and linear dispatch strategies are able to compensate for a larger
imbalance than the predictive dispatch strategy. This happens even though the three meth-
ods have the exact same local units at their disposal and have to balance the exact same
load.

strategies are able to compensate for a larger imbalance than the predictive strategy, even
though the three methods have the exact same local units at their disposal and have to
balance the exact same load. As expected, the linear non-predictive strategy performs
worse than the optimal strategy, but still much better than the predictive strategy.

The explanation for why the optimal strategy outperforms the predictive strategy can
be found in Figure 6.6, which depicts the energy levels in each of the nine local units.
The optimal strategy is able to get a better utilization of e.g. LU7 and LU9 early in the
simulations, which allows it to stay clear of E for all local units until sample 70.

5 Discussion

This paper presented the imbalance compensation problem for an Agile Virtual Power
Plant and proved the optimality of an associated dispatch strategy when the local units
are power and energy constrained integrators. Furthermore, simulation results indicated,
that for the considered optimization problem the assumption of perfect prediction is not
enough to insure optimality.

Further research will address an extension of the setup by adding availability and
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5 Discussion

Figure 6.6: Simulation Results: Energy levels for each of the nine energy and power
constrained local units (LUs) considered in the simulations (Parameters for the local units
are given in Table 6.2). Blue depicts the predictive strategy and green depicts the optimal
strategy.
Notice that the optimal strategy has a better utilization of e.g. LU7 and LU9 early in the
simulations. This allows the optimal strategy to stay clear of E for all local units until
sample 70.

minimum runtime constraints to the local unit models. When such temporal constraints
are added it seems unlikely that an optimal strategy can be found for any future trajectory
of PDispatch. It might, however, be possible to formulate general strategies or rules-of-
thumb for these models even without the assumption of prediction. This would be highly
advantageous for large scale problems where computational demands become significant.
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1 Introduction

Abstract

The word flexibility is central to Smart Grid literature, but to this day a formal
definition of flexibility is still pending. This paper present a taxonomy for modeling
flexibility in Smart Grids, denoted Buckets, Batteries and Bakeries.

We consider a direct control Virtual Power Plant (VPP), which is given the task
of servicing a portfolio of flexible consumers by use of a fluctuating power supply.
Based on the developed taxonomy we first prove that no causal optimal dispatch
strategies exist for the considered problem. We then present two heuristic algorithms
for solving the balancing task: Predictive-Balancing and Agile-Balancing.

Predictive-Balancing, is a traditional moving horizon algorithm, where power is
dispatched based on perfect predictions of the power supply. Agile-Balancing, on the
other hand, is strictly non-predictive. It is, however, explicitly designed to exploit the
heterogeneity of the flexible consumers.

Simulation results show that in spite of being non-predictive Agile-Balancing
can actually out-perform Predictive-Balancing even when Predictive-Balancing has
perfect prediction over a relatively long horizon. This is due to the flexibility-synergy-
effects, which Agile-Balancing generates. As a further advantage it is demonstrated,
that Agile-Balancing is extremely computationally efficient since it is based on sorting
rather than linear programming.

1 Introduction

The introduction of renewable energy production into the existing power system is com-
plicated by the inherent variability of production technologies, which harvest energy
mainly from wind and sun. This means that it becomes increasingly challenging to main-
tain the real-time balance between production and consumption as the ratio of renewable
energy production increases. In a Smart Grid system, on the other hand, the inherent
flexibility of consumers, such as electric vehicles, heat pumps and HVAC-systems, may
be mobilized to play an active part in solving the balancing task.

The flexibility of a given system is a unique, innate, state- and time dependent quality.
In conversation it is therefore sometimes said that flexibility is the ability to deviate from
the plan. That characterization of flexibility is very insightful, but it still leaves us with
the problem of defining both the ability to deviate and the plan.

In this paper we focus on the ability to deviate by proposing a taxonomy for model-
ing flexibility. The numerous constraints that characterize a given flexible system were
first investigated in [19]; in the present paper, however, we have chosen to focus on the
constraints of

I) Power Capacity,

II) Energy Capacity,

III) Energy level at a specific deadline, and

IV) Minimum runtime,

since these are widely found in practical systems.
Our taxonomy is denoted Buckets, Batteries and Bakeries and precise definitions are

given in Section 4. The Bucket, The Battery and The Bakery are three simple flexibility
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Figure 7.1: Buckets, Batteries and Bakeries is a taxonomy for modeling flexibility in
Smart Grids.

models, which are constructed based on the constraints I) to IV). The first model, denoted
the Bucket, is a power and energy constrained integrator. The Bucket could be used as a
simplified model of a house with a heat pump, which is used for energy storage. The
Battery is also a power and energy constrained integrator, but with the added restriction
that the unit must be fully charged at a specific deadline. The Battery could be modeling
an electric vehicle, which must be ready for operation at a specific time. Finally the
Bakery extends the Battery with the additional constraint that the process must run in one
continuous stretch at constant power consumption. The Bakery could be a commercial
green house, where plants must recieve a specific amount of light each day. This light
must, however, be delivered continuously to stimulate the photosynthesis of the plants.

The suggested framework is a proper taxonomy in the sense that we have imposed a
hierarchical relationship between the three models. This means that a Bucket provides a
better quality of flexibility than a Battery, which is again superior to a Bakery (see Figure
7.1). Here, better quality means less restricted, not necessarily more flexible. The reason
for this distinction is that the flexibility of a system is not just determined by constraints,
but also by the specific parameter values of the system. That is, a “large” Battery could
therefore be said to be more flexible than a “small” Bucket, even though the Bucket is a
better quality flexibility than the Battery.

Based on the hierarchical relationship between models we will develop an algorithm,
Agile-Balancing, which exploits the heterogeneity of flexible systems. This makes Agile-
Balancing robust against prediction errors and computationally efficient at the same time.

The paper is structured as follows: First, Section 2 gives an extensive review of how
flexibility is modeled in Smart Grid literature today. Next, Section 3 and 4 present the
considered optimization problem and the taxonomy. Following this, it is proved formally
in Section 5 how causality [16] relates to the taxonomy. Finally, Section 6 and 7 present
Predictive-Balancing and Agile-Balancing and give comparative simulation examples.

2 State-of-the-Art

A review of how flexibility is modeled in Smart Grid literature reveals that the generic
models of Buckets, Batteries and Bakeries are certainly not novel concepts. Several works
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3 Problem Formulation

Reference Perfect prediction Bucket Battery Bakery
[1] Yes x
[2] Yes x
[3] No x
[4] Yes x
[5] No x
[6] No x (x)
[7] Yes x x
[8] No x (x)
[9] No (x) (x) (x)

[10] Yes x
[11] Yes x
[12] Yes x
[13] Yes1 x
[14] No x
[15] Yes x
[16] No x x
[17] Yes x x
[18] Yes x

Table 7.1: Review of flexibility modeling in Smart Grid literature.

have been identified (see Table 7.1), which model flexibility in ways very similar to a
Bucket, a Battery or a Bakery. Most existing literature, however, focuses on optimized
operation of one particular technology. This means that the advantages of heterogeneity
are not investigated.

In [9] a modeling framework for demand response technologies is formulated based
on Markov Chain processes. This framework has some similarity to the taxonomy sug-
gested in the present work. The authors of [9] subscribe to the concept of price-signalling,
however; possible synergies between heterogenous subsystems are therefore not investi-
gated, since these can only really be exploited though direct control.

The work closest related to the concepts investigated in this paper, is [16]; in fact, the
term laxity, as used in [16], is almost synonymous with the term agility used in [5]. Only
the Battery-model is investigated [16], however.

In our literature review we have also charted the use of the assumption of perfect
prediction1, which is found to be quite widespread.

3 Problem Formulation

Consider a Virtual Power Plant, which must provide power to a portfolio of flexible sys-
tems by dispatching a fluctuating power supply. The fluctuating power supply is denoted
PDispatch(k), k = 1, 2, . . . ,K, and the flexible systems are denoted local units. A port-

1Paper [13] does assume perfect prediction as indicated in Table 7.1, but the effects of uncertainty are also
investigated.
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folio of N local units is denoted {LUi}i=1,2,...,N . At sample k we let Pi(k) denote the
power, which is dispatched to unit i, and any quantity, which cannot be dispatched to the
portfolio, is denoted S(k). The objective is to minimize the residual power, that is |S|.

The problem can be formulated as

min
Pi(·)

∞∑
k=0

|S(k)| (7.1)

s.t.

PDispatch(k) ∈ R, k = 0, 1, ...,∞ (7.2)
N∑
i=1

Pi(k) + S(k) = PDispatch(k) (7.3)

and also subject to the dynamics and constraints of {LUi}i=1,2,...,N .

4 Taxonomy: Buckets, Batteries and Bakeries.

This section defines the Buckets, Batteries and Bakeries-taxonomy for modeling flexibil-
ity in Smart Grids.

Formal definitions of a Bucket, a Battery and a Bakery are given in Definition 15, 16
and 17 respectively, and the models are further illustrated in Figure 7.2, 7.3 and 7.4. In the
following Ts denotes the size of the time step, P i and P i denote limits on consumption
rate, Ei and Ei denote limits on energy storage levels and vi(k) is a boolean-valued
variable stating whether or not a Bakery is running at sample k.

Definition 15 (Bucket). The dynamics and constraints of a Bucket are

Bucketi(k): Ei(k + 1) = Ei(k) + TsPi(k)

P i ≤ Pi(k) ≤ P i

Ei ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBuckets, P i ≤ 0 ≤ P i and Ei ≤ Ei,0 ≤ Ei.

Definition 16 (Battery). The dynamics and constraints of a Battery are

Batteryi(k): Ei(k + 1) = Ei(k) + TsPi(k)

0 ≤ Pi(k) ≤ P i

0 ≤ Ei(k) ≤ Ei

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBatteries, Tend,i ∈ N, 0 ≤ P i and 0 ≤ Ei .
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Definition 17 (Bakery). The dynamics and constraints of a Bakery are

Bakeryi(k): Ei(k + 1) = Ei(k) + TsPi(k),

Pi(k) = P ivi(k)

0 ≤ Ei(k) ≤ Ei,

Ei(0) = Ei,0,

Ei(Tend,i) = Ei,

0 ≤
k+Trun,i−1∑

l=k

vi(l)− Trun,i
(
vi(k)− vi(k − 1)

)
,

where k = 0, 1, . . . ,∞, 0 ≤ P i, Ei = P iTrun,i, vi(k) ∈ {0, 1}, i = 1, 2, . . . , NBakeries,
Tend,i ∈ N and Trun,i ∈ N.

iE

iE

Time

Energy

Figure 7.2: A Bucket is a power and energy constrained integrator.

iE

Tend,i

Time

Energy

Figure 7.3: A Battery is a power and energy constrained integrator, which must be
”charged” to level Ei by time Tend,i.
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Tend,iTrun,i

iE

Time

Energy

Figure 7.4: A Bakery is a batch process, which must be finished by time Tend,i. The
process has constant power consumption and the run time is Trun,i.

5 Causality

In [16] a dispatch strategy was defined as causal if it depends only on the information
state at time k. The authors of [16] also proved that an optimal causal dispatch strategy
does not exist for a portfolio of Batteries. It was shown in [5] that adding the constraint
P = E = 0 for a portfolio of Buckets induces that an optimal causal dispatch strategy
does exist. For the sake of completion this section will prove that an optimal causal
dispatch strategy does not, in general exist for a portfolio consisting of only Buckets or
only Bakeries.

Proposition 1. There does not exist an optimal causal dispatch strategy for a portfolio of
Buckets.

Proof. Proof is done by counterexample. Consider a portfolio consisting of the following
two Buckets

Bucket1: E1(0) = 0,

P 1 = 1, E1 = 1,

P 1 = −1, E1 = −1,

Bucket2: E2(0) = 0,

P 2 = 1, E2 = 3,

P 2 = −1, E2 = −3,

Next define the following dispatch profiles

PA
Dispatch = (0, 2, 2),

PB
Dispatch = (0,−2,−2).

Observe that it is possible to dispatch sequence PA
Dispatch in such a way that

∑2
k=0 |S| =

0. However, this is only achievable if P1(0) = −1 and P2(0) = 1. Observe also that
equivalent arguments hold for PB

Dispatch if P1(0) = 1 and P2(0) = −1. At k = 0
a causal dispatch strategy must offer allocations based only on information available at
time k = 0. Notice, however, that PA

Dispatch(0) = PB
Dispatch(0) and since optimal

dispatch of PA
Dispatch and PB

Dispatch requires different allocations at time k = 0, a causal
dispatch strategy cannot exist.
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Proposition 2. There does not exist an optimal causal dispatch strategy for a portfolio of
Bakeries.

Proof. Proof is done by counterexample. Consider a portfolio consisting of the following
two Bakeries

Bakery1: E1(0) = 0,

P 1 = 1, E1 = 1,

Trun,1 = 1, Tend,1 = 2,

Bakery2: E2(0) = 0,

P 2 = 3, E2 = 3,

Trun,2 = 1, Tend,2 = 2.

Next define the following dispatch profiles

PA
Dispatch = (2, 1),

PB
Dispatch = (2, 3).

Observe that the optimal dispatch of either sequence PA
Dispatch or sequence PB

Dispatch

to the portfolio has
∑1

k=0 |S| = 1. However, for PA
Dispatch, this is only achievable if

P1(0) = 0 and P2(0) = 3. For PB
Dispatch the required configuration is P1(0) = 1 and

P2(0) = 0. The argumentation that a causal optimal dispatch strategy does not exist now
follows as in the proof of Proposition 1.

6 Algorithms

Since we have proven that causal optimal dispatch strategies do not exist, this section
will present two heuristic algorithms for solving problem (7.1) - (7.3). The algorithms
are denoted Predictive-Balancing and Agile-Balancing.

Predictive-Balancing

A strategy for solving problem (7.1) - (7.3) is to use a moving horizon approach. To do
this, we assume perfect prediction of PDispatch over a certain prediction horizon K, and
solve

min
Pi(·)

K∑
k=1

wk|S(k)| (7.4)

s.t.

PDispatch(k) ∈ R, (7.5)
N∑
i=1

Pi(k) + S(k) = PDispatch(k), (7.6)

where wk1
> wk2

if k1 < k2. Adding the impatience weights wk to the cost function en-
sures that if the problem cannot be solved without introducing slack, then the imbalances
will incur as late within the prediction horizon as possible.
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Agile-Balancing

The main objective of the present paper is to investigate heterogenous systems and we do
this by introducing agility factors for each class of flexibility. The agility factor of a given
unit should express the quality (see [19]) of the flexibility, which the unit represents.

The authors of the present paper first investigated the agility attributes of the Bucket-
model in [5]. Here agility factors for the Bucket-model were defined as

Definition 18 (Agility Factor, Bucket).
Let Bucketi(k) denote a Bucket. The agility factor of Bucket i at sample k is

KBucket
i (k) =

Ei − Ei(k)

TsP i

.

With this definition of the agility factor for the Bucket-model we obtain thatKBucket
i (k)

denotes the number of samples that the Bucket can operate at maximum power without
becoming inactive/full.

Introducing Batteries and Bakeries to the portfolio means that in addition to balancing
PDispatch the Virtual Power Plant must solve a set of fixed tasks, namely charging the
Batteries and starting the Bakeries in due time. This means that as a deadline, Tend,
approaches, a Battery or a Bakery can go from being a flexible resource, which can help
to minimize our objective, to being a constraint. We therefore define agility factors for
the Battery- and Bakery models, which state how close we are (in terms of samples) to
being forced to charge a battery or start bakery:

Definition 19 (Agility Factor, Battery).
Let Batteryi(k) denote a Battery. The agility factor of Battery i at sample k is

KBattery
i (k) = Tend,i − k −

Ei − Ei(k)

TsP i

.

Definition 20 (Agility Factor, Bakery).
Let Bakeryi(k) denote a Bakery. The agility factor of Bakery i at sample k is

KBakery
i (k) = Tend,i − Trun,i − k.

Notice that the definition of agility factors for the Battery is the same as the definition
of a flexibility factors used in [16].

As the deadline of a Battery or a Bakery approaches the Virtual Power Plant can be
forced to charge that Battery or start that Bakery irrespective of whether this is beneficial
to its objective. Forced consumption on LUi at sample k can, however, be computed
based on the agility factors, as

P Battery
Forced,i(k) =

{ 0 KBattery
i > 1

P i(1−KBattery
i ) 1 ≥ KBattery

i > 0

P i KBattery
i = 0

and

P Bakery
Forced,i(k) =

{
0 KBakery

i > 1

P i KBakery
i = 0.
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The algorithm Agile-Balancing is based on the principle of flexibility maximization
[19], where the worst quality units are dispatched first at each sample. The idea is simple:
At each sample the Virtual Power Plant will first focus on the set assignments of charging
Batteries and starting Bakeries . The Virtual Power Plant will solve the most pressing
task first and the unit with the smallest agility factor is the most critical asset in need of
service. At sample k Agile-Balancing therefore dispatches as much power as possible to
the Batteries and Bakeries, but no more than PDispatch(k). Secondly, Agile-Balancing
uses the buffer available in the Buckets to minimize any remaining imbalance.

Since there are no energy requirements on a Bucket, it can only constitute a resource
and never a constraint. There are both power and energy constraints on a Bucket, however,
meaning that only a limited amount of power can be dispatched to the Bucket-portion of
the portfolio at each sample. The maximum amount of power, which can be dispatched
to Bucketi at sample k is denoted P Bucket

Reserve,i(k) and is given as

P Bucket
Reserve,i(k) = min

(
P i,

Ei − Ei(k)

Ts

)
.

At sample k the upper reserve bound on a portfolio containing NBuckets Buckets is there-
fore

P Bucket
Reserve(k) =

NBuckets∑
i=1

min

(
P i,

Ei − Ei(k)

Ts

)
.

Furthermore, Agile-Balancing handles any dispatch to Buckets by implementing the linear
cost function given in [5]. Pseudo-code for Agile-Balancing is given in Algorithm 4.
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Algorithm 4 :
Agile Balancing

(
{LUi}i=1,2,...,N , PDispatch

)
1: for k = 1 to K do

2: Compute PForced(k) =
∑NBatteries

i=1 P Batteries
Forced,i(k) +

∑NBakeries

j=1 P Bakeries
Forced,j(k).

3: if PForced(k) > PDispatch(k) then

4: P Batteries(k) = P Batteries
Forced (k),

5: P Bakeries(k) = P Bakeries
Forced(k).

6: else

7: Sort Batteries and Bakeries according to increasing agility factor.

8: Distribute PDispatch(k) to Batteries and Bakeries in increasing agility factor
order and such that P Batteries(k) + P Bakeries(k) is as large as possible, but less
than or equal to PDispatch(k).

9: end if

10: Define P Buckets(k) = min
(
P Buckets
Reserve(k), PDispatch(k) − P Batteries(k) −

P Bakeries(k)
)

.

11: Distribute P Buckets(k) to the Buckets as prescribed in [5] that is in decreasing agility
factor order.

12: Set S(k) = PDispatch(k)− P Buckets(k)− P Batteries(k)− P Bakeries(k).

13: end for

7 Simulation Examples

This section presents two simulation examples. The first simulation example compares
the performance of Predictive-Balancing and Agile-Balancing. The second simulation
example investigates the computational efficiency of Agile-Balancing. In all simulations
we have Ts = 1 andEi,0 = 0 for all units. Solutions of problem (7.4) - (7.6) are computed
by use of CPlex, [20]. Agile-Balancing has been implemented in C#. Computations are
performed on a standard laptop.

Predictive-Balancing vs. Agile-Balancing

This simulation example considers a randomly generated portfolio of 105 units, where
NBuckets = 5 andNBatteries = NBakeries = 50. All units have E

TsP
≤ 10 and

∑
PortfolioE =

50.
The results of running Predictive-Balancing for K = 10 are given in Figure 7.5.

When there is a drop in PDispatch Predictive-Balancing attempts to use the Buckets as
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buffer to maintain the balance between supply and demand. Towards the end of each
low-period, however, Predictive-Balancing is forced to use significant slack. This occurs
because the prediction horizon is not sufficiently long, and the problem could be mended
by increasing the prediction horizon. However, such a modification comes at the price of
computation time, which we will explore later in this section.

The results of running Agile-Balancing are presented in Figure 7.6. When there is a
drop in the power supply Agile-Balancing is poorly prepared and therefore has too many
Bakeries started. Since the Bakeries cannot be shut down Agile-Balancing must utilize the
buffer in the Buckets to maintain the balance. With the given portfolio Agile-Balancing
is able to balance supply and demand without introducing slack until the very end of the
simulation.

Computation times and the sum of the absolute value of the slack variable are given in
Table 7.2 for K = 10, K = 15 and K = 20. Notice that Predictive-Balancing must have
perfect prediction of at least 20 samples to perform better than Agile-Balancing. As the
prediction horizon increases, so does the computation time of Predictive-Balancing, how-
ever; notice that even with a prediction horizon of only 10 samples, Predictive-Balancing
is almost one hundred times slower than Agile-Balancing. This is because the most
computationally demanding task Agile-Balancing must solve is to sort units according
to agility factor. Predictive-Balancing, on the other hand, solves a series of mixed integer
programs, which is far more computationally demanding.

Figure 7.5: Power dispatched at each sample for each type of unit by Predictive-
Balancing when K = 10.

Large Scale Simulations

This simulation example further investigates the computational efficiency of Agile-Balancing
by considering a randomly generated portfolio of 106 units. All units have E

TsP
≤ 30.
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Figure 7.6: Power dispatched at each sample for each type of unit by Agile-Balancing.

Comp. Time [s]
∑
|S(·)|

Agile-Balancing 0.03 2.48
Predictive-Balancing, K = 10 2.5 7.40
Predictive-Balancing, K = 15 4.0 4.29
Predictive-Balancing, K = 20 5.8 1.92

Table 7.2: Computation time and the sum of numerical imbalances for Predictive-
Balancing and Agile-Balancing.

Dyn. Ag. Buckets Batteries Bakeries Comp. Time
∑
|S(·)|

Yes 33% 33% 33% 3 min. 26 sec. 0
Yes 10% 45% 45% 3 min. 25 sec. 19712
No 33% 33% 33% 1 min. 1 sec. 0
No 10% 45% 45% 1 min. 4 sec. 43264

Table 7.3: Computation time and the sum of numerical imbalances for large scale simu-
lation.

Figure 7.7 depicts the simulation results, when one third of each type of unit is in-
cluded in the portfolio and in Figure 7.8 only 10% Buckets are included in the portfolio.
Computation times and the sum of the absolute value of imbalances are given in Table
7.3. In Smart Grid discussions it is often proposed that if only the number of units under
the jurisdiction of a Virtual Power Plant is large enough, then the-law-of-big-numbers will
ensure that the aggregated behavior of the portfolio will be the same as that of a traditional
power plant (so essentially proposing that a large portfolio will exhibit Bucket-behavior).
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However, the second simulation (Figure 7.8) is an example of a case where a large num-
ber of units is not in itself enough to warrant that the load can be balanced. This illustrates
that care must be taken the ensure that the right combination of units is available in the
portfolio.

To further improve the computation time Agile-Balancing has also been implemented
without using dynamic agility factors. This means modifying Algorithm 4 by moving
line 7 to the very start of the algorithm (before the for-loop), such that only one sorting
is performed. The results of these simulations are given in Figure 7.9, Figure 7.10 and
Table 7.3. As expected, sorting only once per simulation gives a significant speed up
of the computation time, as the modified implementation is more than three times faster
than the original. With a portfolio of one third of each type of units, there is no cost of
this speed up in terms of performance/optimality. With only 10% Buckets in the portfolio,
however, not having dynamic agility factors has a significant cost in terms of performance.

Figure 7.7: Power dispatched at each sample for each type of unit by Agile-Balancing for
a portfolio of 1.000.000 units having one third of each type.
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Figure 7.8: Power dispatched at each sample for each type of unit by Agile-Balancing for
a portfolio of 1.000.000 units with 10% Buckets, 45% Batteries and 45% Bakeries.

Figure 7.9: Power dispatched at each sample for each type of unit by Agile-Balancing for
a portfolio of 1.000.000 units having one third of each type and not using dynamic agility
factors.
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Figure 7.10: Power dispatched at each sample for each type of unit by Agile-Balancing
for a portfolio of 1.000.000 units with 10% Buckets, 45% Batteries and 45% Bakeries and
not using dynamic agility factors.

8 Conclusion

In this paper we have identified a number of common traits shared by most, if not all,
power consuming or -producing units that can be expected to appear in a future Smart
Grid system. Most literature to date has focused on only one type of units or one particular
technology, although some references have treated more than one type. We proposed a
taxonomy that allows the division of units into three distinct categories based on key traits
of the unit’s primary purpose such as minimum runtime, the ability to consume/release
power back to the grid, minimum consumption by a certain time, etc., in a quantifiable
manner.

We have also presented a suboptimal, but extremely computationally efficient dispatch
algorithm, denoted Agile-Balancing. One of the main challenges in developing the Smart
Grid is the sheer size of optimization problems involved. This means that the computation
time associated with determining optimal solutions might be unacceptable in practice. An
optimal solution available two minutes after market gate closure is far less useful than
a suboptimal one available two minutes before market gate closure; thus, even though
Agile-Balancing is not optimal, it might still be the best solution in practice.
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1 Introduction

Abstract

We consider a direct control Virtual Power Plant, which is given the task of max-
imizing the profit of a portfolio of flexible consumers by trading flexibility in Energy
and Power Markets. Spot price optimization has been quite intensively researched in
Smart Grid literature lately. In this work, however, we develop a three stage market
model, which includes Day-Ahead (Spot), Intra-Day and Regulating Power Markets.
This allows us to test the hypothesis that the Virtual Power Plant can generate addi-
tional profit by trading across several markets.

We find that even though profits do increase as more markets are penetrated, the
size of the profit is strongly dependent on the type of flexibility considered. We also
find that penetrating several markets makes profits surprisingly robust to spot price
prediction errors.

1 Introduction

The introduction of renewable energy production into the existing power system is com-
plicated by the inherent variability of production technologies, which harvest energy
mainly from renewable sources like wind and sun. This means that it becomes increas-
ingly challenging to maintain the real-time balance between production and consumption
as the ratio of renewable energy production increases. In a Smart Grid system the inherent
flexibility of consumers, such as electric vehicles, heat pumps and HVAC-systems, may
be mobilized to play an active part in solving the balancing task.

To achieve this goal, however, we believe that the load control schemes must be fully
responsive and non-disruptive, [1]. Consequently we investigate a setup where the actual
coordinated operation of the flexible consumers is facilitated by a third party aggregator.
This commercial aggregator has implemented a Virtual Power Plant, which is assumed to
have direct control of a portfolio of flexible resources.

In a deregulated power market the balance between supply and demand is maintained
though a series of markets operating closer and closer to the time of delivery. To make
competition fair the Virtual Power Plant must enter these markets and compete on equal
terms with other players such as wind farm operators and traditional power plants. The
Virtual Power Plant will then help the overall goal of load balancing simply by increasing
the capacity in the markets. Market mechanisms will then generate a utilization of the
total available capacity, which is cheaper and more efficient.

In this paper we investigate how the Virtual Power Plant operator can potentially make
a profit by trading the flexibility of electric vehicles, heat pumps and HVAC-systems in
Energy and Power Markets. We first examine how the concepts of fixed and marginal
costs (well known for traditional power plants, see e.g. [2] and [3]) applies to Virtual
Power Plant operation. We do this in order to investigate how different comfort demands
(constraint) determine how flexibility should be traded and also how much profit can be
earned.

Other references, such as [4], [5], [6] have also investigated price optimized con-
sumption scheduling for Smart Grid technologies. However, these references investigate
a single-stage model where only spot price optimization is performed. In this paper we
develop a three stage market model, where Day-Ahead Market, Intra-Day Market and
Regulating Power Market are included. The main objective of this paper is consequently
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to test the hypothesis that a Virtual Power Plant under reasonable assumptions can gener-
ate additional profit by participating in several markets.

Figure 8.1: Average Spot price at each hour of the day in DK1 and DK2.

2 Fixed and Marginal Costs

In economics, fixed costs are necessary expenses, which must be covered in order to
enable the production of a given product, but which are not related to the quantity or
quality of product produced. In power systems, fixed costs are therefore also referred to
as ”overnight” cost, because it is the present day cost of constructing a production facility
”overnight” [2]. While a Virtual Power Plant does not require the construction of a facility
as such, there are a number of fixed costs, which must be covered in order for the Virtual
Power Plant to be in operation. Examples of such expenses include marketing, installa-
tion, reading and maintenance of communication and metering equipment, development
of IT-platform plus customer billing and accounting.

In power systems, marginal costs are defined as the costs/savings associated with
producing one more/less kilowatt-hour [2]. For a power production facility, variable costs
can therefore be computed as fuel cost per produced power unit plus costs of maintenance
and wear. For a Virtual Power Plant, however, the calculations are more complicated.
This is because most Smart Grid technologies actually do not consume one more/less
kilowatt-hour, but rather advances/postpones the consumption of that kilowatt-hour.

Fixed costs should obviously be recovered over time in order for the Virtual Power
Plant to prove a profitable concept. Fixed costs, however, do not affect the prices at which
the Virtual Power Plant should bid into the market. For any production facility it is true
that if the market price is higher than the marginal cost of production then the facility
will earn (market price - marginal cost) per unit produced. Production facilities should
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therefore always bid at marginal cost, since making a small profit is better than making
no profit at all.

Taking this to the consumption side it is found that if the market price is lower than
marginal cost of consumption then the Virtual Power Plant will earn (marginal cost -
market price) per unit consumed. Consequently, the Virtual Power Plant should also bid
on the market at marginal costs.

As mentioned earlier, however, a Virtual Power Plant does not simply increase or
decrease its consumption, but rather advances or postpones consumption. Therefore,
marginal costs of a Virtual Power Plant can only be determined if market prices are
known. However, this assumption is hardly ever satisfied at the time of bidding, so the
Virtual Power Plant must use a best estimate of prices to determine its own marginal
costs and thus appropriate bidding price. Marginal costs for the Virtual Power Plant will
be discussed and exemplified much further in Section 4 and 5.

Notice that throughout the paper, up- and down-regulation is defined in accordance
with classical conventions for the consumption side. This means the up-regulation for a
flexible consumer corresponds to a decrease in consumption and down-regulation corre-
sponds to an increase in consumption.

3 Flexibility Modeling

In the present paper, flexibility is defined based on the Buckets, Batteries and Bakeries-
taxonomy presented in [7]. The first model, denoted the Bucket, is a power and energy
constrained integrator with a drain. The Battery is also a power and energy constrained
integrator, but without the drain and with the added restriction that the unit must be fully
charged at a specific deadline. Finally the Bakery extends the Battery with the additional
constraint that the process must run as a batch process at constant power consumption.
We let Pi(k) denote the power consumption of unit i at sample k and let Ei(k) denote
the energy level in unit i at sample k. Note also that unless otherwise stated variables are
real positive scalars.

Formal definitions of a Bucket, a Battery and a Bakery are given in Definition 21, 22
and 23 respectively. In the following Ts denotes the size of the time step, P i and P i

denote limits on consumption rate, Ei and Ei denote limits on energy storage levels and
vi(k) is a boolean-valued variable, which state whether a Bakery is running at sample k.

Definition 21 (Bucket). The dynamics and constraints of a Bucket with drain α are

Bucketi(k):

Ei(k + 1) = αEi(k) + Ts
(
Pi(k) + Pi,P lan(k)

)
(A.1)

P i − Pi,P lan(k) ≤ Pi(k) ≤ P i − Pi,P lan(k) (A.2)

Ei ≤ Ei(k) ≤ Ei (A.3)
Ei(0) = Ei,0, (A.4)

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBuckets, 0 ≤ α ≤ 1, P i ≤ 0 ≤ P i, P i ≤
Pi,P lan ≤ P i and Ei ≤ Ei,0 ≤ Ei.
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Definition 22 (Battery). The dynamics and constraints of a Battery are

Batteryi(k):

Ei(k + 1) = Ei(k) + Ts
(
Pi(k) + Pi,P lan(k)

)
(B.1)

0− Pi,P lan(k) ≤ Pi(k) ≤ P i − Pi,P lan(k) (B.2)

0 ≤ Ei(k) ≤ Ei (B.3)
Ei(0) = Ei,0, (B.4)

Ei(Tend,i) = Ei, (B.5)

where k = 0, 1, . . . ,∞, i = 1, 2, . . . , NBatteries, Tend,i ∈ N, 0 ≤ P i, 0 ≤ Pi,P lan ≤ P i

and 0 ≤ Ei .

Definition 23 (Bakery). The dynamics and constraints of a Bakery are

Bakeryi(k):

Ei(k + 1) = Ei(k) + Ts
(
Pi(k) + Pi,P lan(k)

)
, (C.1)

P ivi = Pi(k) + Pi,P lan (C.2)

0 ≤ Ei(k) ≤ Ei, (C.3)
Ei(0) = Ei,0, (C.4)

Ei(Tend,i) = Ei, (C.5)

0 ≤
k+Trun,i−1∑

l=k

vi(l)− Trun,i
(
vi(k)− vi(k − 1)

)
, (C.6)

where k = 0, 1, . . . ,K, 0 ≤ P i, 0 ≤ Pi ≤ P i, Ei = P iTrun,i − Ei,0, vi(k) ∈ {0, 1},
i = 1, 2, . . . , NBakeries, Tend,i ∈ N and Trun,i ∈ N.

4 Market Theory and Model

This section gives a short introduction to the Nordic Power Markets and next extends this
introduction to a market model.

The Nordic Power Markets

In the Nordic countries the balance between production and consumption at the mar-
ket level is maintained by means of Day-Ahead Markets, Intra-Day Markets, Regulating
Power Markets and Balancing Power Markets (after-day settlement). This section gives a
general description of the setup.

As the name suggests, the Day-Ahead Market (the Spot Market) operates before the
actual time of delivery. Producers and wholesalers make bids for production and con-
sumption in future time slots and prices are settled based on a double auction. Once
prices on the Day-Ahead Market are settled (Market Clearing), the market is closed.

On the Day-Ahead Market producers and wholesalers have made bids based on the
best available knowledge at the time of bidding. As time progresses, however, better
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Delivery

of

Time 

Market

Intra−Day

Power Market

RegulatingDay−Ahead

Market

Balancing

Power Market

Bids based on:
eIntra-Day with Day-Ahead Padding

Prices settled based on:
eIntra-Day with Regulating Power Padding

Bids based on:
eIntra-Day with Day-Ahead Padding

Bids activated based on:
eRegulating Power

Prices settled based on:
eIntra-Day with Regulating Power Padding

Bids based on:

Prices settled based on:
eDay-Ahead

ePredictions of Day-Ahead

Prices settled based on:
eRegulating Power

Table 8.1: Market Model.

forecasts become available. The Day-Ahead Market is therefore followed by the Intra-
Day Market (the Elbas Market), where players have the option of adjusting their initial
production and consumption schedules in future time slots. The Intra-Day Market is a
continuous market where trading takes place up until one hour before the hour of delivery.
The Intra-Day Market consists of two lists, which are continuously updated: One list for
power purchases and one for power sales. Whenever there is a match within these lists
(meaning that a player is willing to purchase power at a price which is higher than another
players sales price), these two bids are activated and removed from the lists. This means
that the Intra-Day market is more bilateral in nature than the other markets.

If players do not follow the schedule generated on the Day-Ahead and Intra-Day mar-
kets, they generate a need for balancing, i.e. up- or down-regulation. Up- and down-
regulation are performed by spare capacity denoted reserves, which are in place because
”the price mechanism cannot work fast enough to balance consumption and production
in real time” [3]. Traditionally, reserves are provided by specific power plants, which
are operating at less than full capacity, so they can ramp up or down as needed. In the
Nordic markets reserve services are traded on the Regulating Power Market. Having a
designated power market insures that a competitive price is paid for Regulating Power.
In the Regulating Power Market, bids can be made up to 15 minutes before the hour of
delivery. If a need for regulation arises during the hour of operation, then bids are acti-
vated in accordance with the highest price of the block of most inexpensive bids until the
requested regulation is accumulated.

After the actual time of delivery, metered data of actual production/consumption is
evaluated. In the after-day settlement (or Balancing Power Market), producers and whole-
salers are invoiced according to their trades across the Day-Ahead, Intra-Day and Reg-
ulating Power markets. In the Balancing Power Market the cost of Regulating Power is
also transferred to any player that deviated from the contracted production/consumption.

Market Model

After the introduction above, we now develop a market model based on historic data. The
model consists of a series of optimization problems, which are solved one by one, each
time using the latest and most updated information. Since the model is based on historic
data there is no feedback in the formation of prices, meaning that prices is not generated
dynamically. Consequently, the model is only valid if we assume that the amount of
flexibility bid into the system is small enough not to affect the formation of the price
cross significantly. On the other hand, since calculations are based only on historic data,
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results are not blurred by assumptions or estimated correlations.
We denote by (·)∗{t1−t2} a list of elements associated with each hour of the interval

from t1 to t2, e.g. e∗{01:00−04:00} = [e(01 : 00 − 02 : 00),e(02 : 00 − 03 : 00),e(03 :

00−04 : 00)]. Also (·)∗{12:00−12:00} denotes values associated with a 24 hour period from
12:00 noon till 12:00 noon of the following day.

The market model has four main stages as depicted in Table 8.1 and the trading algo-
rithm is also summarized in Algorithm 5.

The first stage is the Day-Ahead Market, which the Virtual Power Plant can bid into
based on predictions of market prices. Day-Ahead prices are denotedeDay-Ahead,{12:00-12:00},
so if the Virtual Power Plant wants to maximize its profit it should bid according to the
solution of

min
P (k)

∑
k={12:00−12:00}

ePredictions of Day-Ahead(k)P (k) (8.1)

s.t.

(A.1)− (A.4), (B.1)− (B.5) and (C.1)− (C.6), (8.2)

where PPlan is zero for all units and all time slots.
Based on the trading in the Day-Ahead Market a 24-hour base plan denoted

P ∗Plan,{12:00−12:00} is generated.
In the next stage of the model, the Intra-Day market is opened. If there is activity on

the Intra-Day market, the Virtual Power Plant can do additional trading here to further
increase its profit. Often, however, there is not activity on the Intra-Day market in all
hours of the day (See Figure 8.2). In an hour where there is no activity, some estimate
must be used by the Virtual Power Plant to make decisions and do trading. In an hour
where there is no activity on the Intra-Day market it is assumed that the Virtual Power
Plant uses Day-Ahead prices as best estimation of regulating prices during that hour.
These prices are denoted eIntra-Day with Day-Ahead Padding. The Virtual Power Plant therefore
bids into the Intra-Day Market according to the solution of

min
P (k)

∑
k={12:00−12:00}

eIntra-Day with Day-Ahead Padding(k)P (k) (8.3)

s.t.

(A.1)− (A.4), (B.1)− (B.5) and (C.1)− (C.6), (8.4)

where PPlan is now set according to the Day-Ahead trading.
At this time, however, the Day-Ahead Market is closed so the Virtual Power Plant

cannot actually trade at spot price. Instead it must go into imbalances for which it obvi-
ously has to pay eRegulating Power. Bidding on the Intra-Day market is therefore done based
on eIntra-Day with Day-Ahead Padding, but costs/profits are settled based on
eIntra-Day with Regulating Power Padding.

In the final stage of the market model, the Virtual Power Plant must make up- and
down-regulation bids into the Regulating Power Market. In order to determine the ap-
propriate bidding price for e.g. time slot 12:00 to 13:00 the Virtual Power Plant must
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solve

min
P (k)

∑
k={13:00−12:00}

eIntra-Day with Day-Ahead Padding(k)P (k) (8.5)

s.t.

(A.1)− (A.4), (B.1)− (B.5) and (C.1)− (C.6) (8.6)
PBucket(12 : 00− 13 : 00) = Plimit, Bucket (8.7)
PBattery(12 : 00− 13 : 00) = Plimit, Battery (8.8)
PBakery(12 : 00− 13 : 00) = Plimit, Bakery (8.9)

where PPlan is now the base load plan after both Day-Ahead and Intra-Day trading.
Problem (8.5) to (8.9) must be solved for two values of Plimit in order to find both the
up- and down-regulation bid price. The problem must therefore first be solved for Plimit

equal to the maximum up-regulation adjustment that the unit can make to its consumption
within the restrictions of its constraints, dynamics and base load plan between 12:00 and
13:00. Next the problem is solved for the maximum down-regulation adjustment. For
each unit in the portfolio the Virtual Power Plant will then place an up- and a down-
regulation bid of

∑
k={13:00−12:00}

−eIntra-Day with Day-Ahead Padding(k)
P(8.5)−(8.9)(k)

Plimit
(8.10)

where P(8.5)−(8.9) is the solution of (8.5)-(8.9) for each of the two values of Plimit.
At each remaining hour of the day the Virtual Power Plant should repeat this approach

and adjust its base load plan according to P(8.5)−(8.9) whenever a bid is activated. Notice
that up-regulation bids should be as low as possible to get activated and down-regulation
bids should be as high as possible to get activated.

Finally, since Intra-Day trading and Regulating Power trading are settled at
eIntra-Day with Regulating Power Padding we do not need an independent stage for the balancing
market, since the appropriate imbalances have already been paid/compensated at the price
of Regulating Power.
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Algorithm 5: Market Trading

1: from January 1st to December 31st

2: Generate ePredictions of Day-Ahead and solve (8.1) to (8.2).
3: Purchase P ∗Plan in the Day-Ahead Market according to solution of (8.1) to (8.2).
4: Retrieve eDay-Ahead and eIntra-Day and generate eIntra-Day with Day-Ahead Padding.
5: Solve (8.3) to (8.4) and update P ∗Plan according to purchase/sales in the Intra-Day

market.
6: from 12:00 to 11:00
7: Solve (8.5) to (8.9) and bid into the Regulating Power
8: Market according to (8.10).
9: If bid activated then update P ∗Plan.

10: end from
11: end from

5 Analysis and Results

Market Data

The present analysis focuses on the Danish Power Market, so Day-Ahead prices, average
Intra-Day prices and Regulating Power prices for DK1 (Western Denmark) and DK2
(Eastern Denmark) in 2010, 2011 and 2012 form the basis of the main analysis. The data
set can be downloaded from [8]. Figure 8.1 shows the average Day-Ahead price for each
hour of the day. In later simulations we will consider a day and a night scenario (inspired
by an electric vehicle in frequent use). These scenarios are also depicted in Figure 8.1.

Single-Day Illustration

Based on the taxonomy presented in Section 3 and the market model developed in Section
4 we now illustrate how the Virtual Power Plant should bid each of the flexibility types in
the taxonomy into the markets. The algorithm is based on the assumption that the Virtual
Power Plant is continuously trying to maximize its profit based on the best available
knowledge. Prices from February 3rd, 2012 in DK1 from 08:00 to 17:00 are randomly
chosen as illustrating (see Figure 8.2). We consider a portfolio consisting of one unit
of each type in the taxonomy, with parameters values α = 0.9, P = −1MW,P =
1MW,E = 0MWh,E = 3MWh for all units, which corresponds to Trun = 3 hours
for the Bakery.

The first prices that are settled are the Day-Ahead Prices. If we assume that the
Virtual Power Plant is capable of predicting these prices exactly (the implications of this
assumption will be investigated further in Section 5), then the Day-Ahead base load plan
for each of the units will be as in Figure 8.3. Here it can be seen that the Battery and
Bakery have paid 165 e to satisfy their base load requirements and that the Bucket has
not yet made any profit.

Next the Intra-Day Market is opened. It can be seen from Figure 8.2 that in DK1 there
was only trading in the Intra-Day Market between 14:00 and 17:00 on February 3rd, 2012
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Figure 8.2: Electricity Prices in DK1 on February 3rd, 2012.

(yellow crosses). Since there is some activity on the Intra-Day market, the Virtual Power
Plant can try to make an additional profit on new trading. The results of Intra-Day trading
are shown Figure 8.3. The Battery and Bakery sell power between 14:00 and 15:00 and
between 15:00 and 16:00 respectively. They are then scheduled to over consume between
12:00 and 13:00 instead, because spot prices were low here. This is a gamble, because
the Day-Ahead Market is no longer open and there is no activity on the Intra-Day market
in the time slot between 12:00 and 13:00, so the Virtual Power Plant-Operator cannot buy
the power anywhere. However, since the regulating price between 12:00 and 13:00 ends
up equal to the spot price the gamble earns 1 e per unit.

In the Intra-Day market the Bucket is scheduled to overconsume 1 MWh between
15:00 and 16:00 in order to be able to sell 0.9 MWh between 16:00 and 17:00. This earns
the Bucket a profit of 6e. Unfortunately it is scheduled to do the same between 13:00 and
15:00. If the regulating power price at time 13:00-14:00 had equaled the spot price, then
this would have earned the Bucket a profit of 4 e. As it turns out, however, the regulating
price at 13:00-14:00 is 133 e, so the trade would actually costs the Bucket 72 e, if it had
done no further trading on the considered day. Later in the day, however, the Bucket bids
into the Regulating Power Market during that critical hour and therefore the trading will
not be as costly to the Bucket as it first looked. This is exactly the advantage of trading in
several markets.

Next the Virtual Power Plant must bid into the Regulating Power Market for the time
slot 08:00 to 09:00. Since no power have been purchased for any units to consume during
this time slot, the Virtual Power Plant cannot make any up-regulation bids (recall that
up and down regulation is defined based on the production conventions, so up-regulation
corresponds to a decrease in consumption). It can, however, make three down-regulation
bids:

• The Bucket is bid at 77 e for 1 MW down-regulation. If the Bucket gets activated
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Figure 8.3: Base load plan based on perfect prediction of Day-Ahead prices and Intra-
Hour plan based on trading in open Day-Ahead time slots and the assumption that Regu-
lating Power prices will equal Spot prices in DK1 on February 3rd, 2012 for each type of
flexibility in the taxonomy.

for down regulation (increase in consumption), it will be able to under-consume
0.9 MWh between 09:00 and 10:00. Given the current expected prices, the Virtual
Power Plant assumes that this will save 77 e, so if up-regulation power can be
purchased for less than 77 e between 08:00 to 09:00, a profit will be made.

• The Battery is bid at 68 e for 1 MW down-regulation. If the Battery gets activated
for down-regulation between 08:00 to 09:00, then it will be able to under consume
between 15:00 and 16:00, which is expected to save 68e. So again, if up-regulation
power can be purchased for the Battery at less than 68e, then a profit will be made.

• The Bakery is bid at 29 e for 1 MW down-regulation. If the Bakery should start
early, then it must sell all power between 12:00 and 15:00 and over-consume be-
tween 09:00 and 11:00. This change to the consumption schedule is expected to
cost 29 e, so down-regulation power at time 08:00-09:00 must be cheaper than 29
e in order for the Bakery to be interested in moving its consumption.

The down-regulation power price between 08:00 and 09:00 comes out at 26 e, so all
bids are activated. Now the cost associated with the Bucket drops down to 50 e and the
Battery has paid 122 e for its total power consumption, if it does no more trading today.
The Bakery is very lucky, as it turns out that by starting earlier it will end up paying just
13 e for its total power consumption that day.

Table 8.2 states all the bids that the Virtual Power Plant would make on February 3rd,
2012, if it continuously attempts to maximize its profit based on the best available knowl-
edge. The adjusted consumption plans for the units as the day progresses are depicted in
Figure 8.4. By the end of the day, the Bucket has earned 199 e while both the Battery
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and the Bakery have paid only 15 e for their total power consumption compared to their
initial cost of 165e. Thus offering to be flexible on February 3rd, 2012 could have turned
out to be very good business.

Figure 8.4: Consumption plan for each hour of February 3rd, 2012, DK1 as trading in the
Regulating Power Market progresses.
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Bucket Battery Bakery
Activated Down Up Down Up Down Up

08-09 Down 77 N/A 68 N/A 29 N/A
09-10 Down 67 N/A 67 N/A N/A N/A
10-11 Down 56 N/A 58 N/A N/A N/A
11-12 Down 44 N/A N/A N/A N/A N/A
12-13 52 N/A N/A N/A N/A N/A
13-14 Up N/A 56 N/A N/A N/A N/A
14-15 Up 62 N/A N/A N/A N/A N/A
15-16 Up N/A 74 N/A N/A N/A N/A
16-17 Up 0 N/A N/A N/A N/A N/A

Table 8.2: Bids made into the Regulating Power Market. Entries are underlined if bids
are available/activated.

Notice especially that when the Bucket did trading on the Intra-Day Market, its to-
tal cost went up, because it did not know that the Regulating Power prices would be
unfavourable later. By bidding into the Regulating Power Market, however, the Bucket
saves itself from actually consuming between 13:00 and 14:00 where regulating prices
are high and therefore recovers its loss.

Full Year Simulations

In the next simulation example, we consider one unit of each type in the taxonomy.
Parameter values are again α = 0.9, P = −1MW,P = 1MW,E = 0MWh,E =
3MWh. The Battery and the Bakery are limited to trading between 08:00 to 17:00 (Day)
and 20:00 to 05:00 (Night), whereas the Bucket is allowed to trade round-the-clock.

The results of trading the portfolio according to the algorithm given in Section 4 are
given in Table 8.3 and 8.4. It can be seen that profits/savings do indeed increase as more
markets are penetrated. The benefit is largest for the Bucket and relatively limited for
the Bakery. However, it is on average always beneficial to offer flexibility to the system.
In some scenarios, such as the Battery, 2012, DK1, Day-scenario costs actually increase
from Day-Ahead to Intra-Day market. This is because Day-Ahead is done with perfect
prediction of prices, whereas Intra-Day trading is sometimes settled at Regulating Power
price. After the Battery has participated in the Regulating Power Market there are still
savings to be obtained by trading in several markets, however.

Virtual Power Plant Profit

Since the Battery and Bakery both have base load requirements to satisfy, it is possible for
the Virtual Power Plant to achieve savings, but not an actual profit as is the case for the
Bucket. A sensible agreement between the unit owner and the Virtual Power Plant could
thus be that the unit owner should cover the Day-Ahead base load cost. Any additional
profit gained in the Intra-Day and Regulating Power Markets should then be shared evenly
between the unit owner and the Virtual Power Plant. With this setup, Table 8.5 shows
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Bucket
Year Area Day-Ahead Intra-Day Regulating

2010 DK1 -6.823 -7.544 -20.792
DK2 -21.409 -21.998 -28.937

2011 DK1 -8.655 -9.969 -27.880
DK2 -10.156 -11.386 -30.047

2012 DK1 -11.707 -14.639 -35.981
DK2 -14.541 -17.383 -39.282

Total -73.292 -82.919 -182.919

Table 8.3: Profit/savings in e obtained by trading the Bucket according to the algorithm
given in Section 4.

Battery Bakery
Year Area Scenario Day-Ahead Intra-Day Regulating Day-Ahead Intra-Day Regulating

2010
DK1 Day, 50.984 51.281 48.877 51.307 51.432 50.793

Night 38.154 38.047 35.083 38.233 38.095 35.605

DK2 Day 62.139 62.367 58.965 62.453 62.872 61.609
Night 44.067 43.927 42.775 44.170 43.935 43.329

2011
DK1 Day, 53.178 52.488 47.403 53.404 52.440 50.425

Night 37.376 36.873 34.103 37.463 37.041 35.686

DK2 Day 55.192 55.001 47.221 55.460 55.786 51.084
Night 37.539 37.449 35.430 37.621 37.403 36.638

2012
DK1 Day, 39.843 39.345 31.409 40.059 40.058 37.176

Night 26.638 26.296 24.587 26.682 26.531 25.895

DK2 Day 41.171 40.186 31.188 41.420 40.757 37.393
Night 26.724 26.317 24.716 26.752 26.449 26.048

Total 513.005 509.576 461.757 515.025 512.799 491.681

Table 8.4: Profit/savings in e obtained by trading the Battery and Bakery according to
the algorithm given in Section 4.

which flexibility type is most profitable for the Virtual Power Plant. Is is found that the
Bucket is far more profitable than the Battery, which again generates more than twice as
much profit as the Bakery.

Sensitivity Analysis

Since we have assumed perfect prediction of Day-Ahead prices and since the Battery and
Bakery savings are relatively limited it is relevant to investigate how sensitive the savings
are to prediction errors on Day-Ahead prices. To do this all calculations are repeated, but
now units are not allowed to purchase power during the cheapest hour in the Day Ahead
market. The results are given in Table 8.6 and it is found, that the savings are surprisingly
unaffected by the prediction error: Just 0.5% and 1.1% increases in costs for the Battery
and the Bakery, respectively.

It has also been investigated how the Bucket profit is affected by the size of the
energy drain. Again parameter values are α = 0.9, P = −1MW,P = 1MW,E =
0MWh,E = 3MWh and the results are depicted in Figure 8.5. As expected the profit is
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Year Area Bucket Scenario Battery Bakery

2010
DK1 -10.396 Day -1.053 -257

Night -1.535 -1.314

DK2 -14.469 Day -1.587 -422
Night -646 -420

2011
DK1 -13.940 Day -2.888 -1.489

Night -1.636 -889

DK2 -15.023 Day -3.986 -2.188
Night -1.054 -492

2012
DK1 -17.991 Day -4.217 -1.442

Night -1.025 -393

DK2 -19.641 Day -4.991 -2.014
Night -1.004 -352

Total -91.459 -25.624 -11.672
Percentage 100% 14% 6%

Table 8.5: Virtual Power Plant profit in e, when the Day-Ahead base load costs of the
Battery and Bakery are covered by the unit owner.

Battery Bakery
Perfect Prediction 461.757 491.681

With error 464.064 497.147
Difference 2.308 5.466
Percentage 0.5% 1.1%

Table 8.6: Increase in costs when the Battery and Bakery are not allowed to purchase
power during the cheapest hour on the Day-Ahead Market.

heavily influenced by the size of the energy drain, but even with a drain of 20% per hour
the total profit is still more than 50.000 e.

Figure 8.5: Profit of the Bucket summarized over DK1 and DK2 and 2010, 2011 and 2012
as a function of energy drain.
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6 Conclusion

In this paper we have developed a three stage electric power market model, which include
Day-Ahead (Spot), Intra-Day and Regulating Power Markets. By use of this model we
have confirmed the hypothesis that a Virtual Power Plant operator can increase its profit
by trading in several markets from day to day. We have also found that the profit is
highly sensitive to the type of flexibility considered, but surprisingly robust to errors in
Day-Ahead price predictions.
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1 Introduction

Abstract

We consider a Virtual Power Plant, which is given the task of dispatching a fluc-
tuating power supply to a portfolio of flexible consumers. The flexible consumers
are modelled as discrete batch processes, and the associated optimization problem is
denoted the Discrete Virtual Power Plant Dispatch Problem.

First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is
proved formally. We then proceed to develop tailored versions of the meta-heuristic
algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure
(GRASP). The algorithms are tuned and tested on portfolios of varying sizes.

We find that all the tailored algorithms perform satisfactorily in the sense that
they are able to find sub-optimal, but usable, solutions to very large problems (on the
order of 105 units) at computation times on the scale of just 10 seconds, which is
far beyond the capabilities of the optimal algorithms we have tested. In particular,
GRASP Sorted shows the most promising performance, as it is able to find solutions
that are both agile (sorted) and well balanced, and consistently yields the best numer-
ical performance among the developed algorithms.

1 Introduction

Global efforts to reduce CO2 emissions has driven the introduction or renewable power
generation technologies into the power system. However, since solar panels and wind
turbines harvest energy from sun and wind power availability becomes changeable and
more difficult to predict. The Smart Grid was born out of the need to maintain the bal-
ance between production and consumption in this far more volatile power system. In the
Smart Grid a communication link to the consumption side is established, such that flex-
ible consumers like electric vehicles, heat pumps and HVAC-systems can be organized
and activated to follow power availability and scarcity, see [1] and [2].

A major challenge in developing the Smart Grid is the sheer size of the optimization
problems involved. Solving a dispatch problem for a traditional power system with tens
or hundreds of generators is a challenge, which has been researched for decades, see [3],
[4], [5]. Switching to the Smart Grid, however, will expand that problem with additional
thousands or millions of units. This means that the computation time associated with
determining an optimal solution is very likely to be unacceptable in practice.

A review of computation times for optimization in Smart Grid literature reveals that
computation time is still a very real challenge. Table 9.1 summarizes problem size and
computation times for ten recent scientific publications related to Smart Grid optimiza-
tion. Obviously computation times are highly dependent on the specific structure of the
considered problem and the software and platform used for calculation. Nonetheless, Ta-
ble 9.1 does give the general impression that computation times are still quite a lot longer
than what one can expect to be acceptable for a fully deployed Smart Grid operating in
real time. This is the case even though several of the cited references investigate heuristic
rather than exact optimization methods.

The fastest results found are given in [8] with computation times of just 1.2 seconds.
In [8], however, it is shown that the considered method does not scale to larger problems
due to memory overload.

To substantiate the aforementioned assertion, the present paper introduces the Dis-
crete Virtual Power Plant Dispatch Problem in which batch processes (constant power
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Reference Simulation samples Num. units Comp. time
[8] 144 <20 1.2 sec
[9] 24 600 30 sec
[10] 24 5 50 sec
[11] Unclear 20858 1.1 min
[12] 288 6 3.7 hours
[13] 24 3504 6 hours
[14] 24 50 83 hours
[15] 12 3 Not stated
[16] 144 100 Not stated

Table 9.1: Overview of computation times reported in recent scientific publications on
optimization in Smart Grid applications. Simulation samples is the number of discrete
time steps that the considered simulation horizon has been split into.

consumption with fixed duration) must be scheduled to balance a fluctuating power sup-
ply. Similar optimization problems have been investigated in [6], [7], [8] and [16]. In
these papers batch processes are used as simple models of electric vehicles, dishwash-
ers, microwave ovens and more. These papers formulate objectives to schedule units to
balance a fluctuating, limited or costly power supply.

After formulating the Discrete Virtual Power Plant Dispatch Problem it is proven for-
mally that the optimization problem is NP-complete [17]. Motivated by this knowledge,
we proceed to investigate the performance of two heuristic methods to obtain solutions,
which are sub-optimal, but fast to compute. This way a feasible solution will always be
available before some predefined Power Market Gate Closure; In practice, a suboptimal
solution available two minutes before market gate closure is far more valuable than an
optimal one available two minutes after.

The methods we will investigate are known in the literature as Hill Climber and
GRASP. The main reason for choosing these methods to solve the Discrete Virtual Power
Plant Dispatch Problem is that the considered cost function, can be implemented using
Delta Evaluation; and both Hill Climber and GRASP are able to exploit that.

Delta Evaluation means that if the cost associated with on candidate solution is known,
and a new solution is obtained through a limited number of permutations of the old solu-
tion, then the cost function for the new solution can be computed only from the permu-
tations. Using delta evaluation can only improve calculation time by a constant factor;
however, this factor is usually so large, that the actual improvement is far better than
algorithmic changes.

Other methods that could be considered for solving the Discrete Virtual Power Plant
Dispatch Problem are Ant Swarm optimization [11], Genetic Algorithms [19] and tabu
search [22]. However, these algorithms are all based on manipulating a set of candidate
or tabu solutions. They thus have a tendency to drown in logistics as the majority of the
available computation time is spent running through and updating solution sets.

The main contributions of the paper is firstly the proof that the Discrete Virtual Power
Plant Dispatch Problem problem is NP-complete. Secondly, we also show that even
though finding optimal solutions of the considered problem is indeed very challenging,

152



2 Optimization Problem

highly promising results can be obtained in short time frames and for very large problems
by special adaptations of the considered heuristic algorithms.

The paper is structured as follows: Firstly Section 2 presents the Discrete Virtual
Power Plant Dispatch Problem including flexibility modeling and agility. In Section 3
the computational complexity of the Discrete Virtual Power Plant Dispatch Problem is
explored in several different ways: Firstly, the NP-completeness is proven formally and
then the feasibility of solving the problem by use of the optimization package CPLEX [18]
is explored. In Section 4 four heuristic algorithms are developed, namely Uniform Selec-
tion Hill Climber, Weighted Selection Hill Climber, GRASP Random and GRASP Sorted.
These algorithms are tuned and compared in Section 5. Finally, Section 6 summarizes
general conclusions and suggestions for future work.

2 Optimization Problem

We consider a Virtual Power Plant, which is given the task of satisfying the consumption
needs of a portfolio of flexible systems (distributed energy resources) by dispatching a
fluctuating power supply.

A forecast of the fluctuating power supply is denoted PDispatch(k), k = 1, 2, . . . ,K,
and the flexible consumers are denoted local units (LUs). A portfolio of N local units is
denoted {LUi}i=1,2,...,N . At sample k we let Pi(k) denote the power to be dispatched
to local unit i, and any quantity, which cannot be dispatched to the portfolio, is denoted
S(·). The objective is to minimize the residual power, that is |S(·)|.

The optimization problem can be formulated as

min
Pi(·)

K∑
k=1

wk|S(k)| (9.1)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, ...,K (9.2)
N∑
i=1

Pi(k) + S(k) = PDispatch(k), (9.3)

and also subject to the dynamics and constraints of {LUi}i=1,2,...,N . Here K denotes the
total simulation horizon.

The impatience weights wk ∈ R have been added, because the forecasted power
production will rarely fit exactly with the power needed to satisfy {LUi}i=1,2,...,N . In
practice, when this happens, a traditional power plant will have to adjust its power con-
sumption, such that the discrepancy between supply and demand is compensated. As a
rule of thumb, however, the better time the plant operator has to modify the output of a
traditional power plant, the cheaper it can be done. It is therefore desirable to introduce
slack as late on the simulation horizon as possible, which can be achieved by introducing
wk, k = 1, 2, . . . ,K and requiring that wk1 > wk2 if k1 < k2.

Flexibility Modeling

In this paper the flexible units are modeled as batch-processes, which are characterized
by constant power consumption, P , a run time, KRun, and a deadline, KEnd, by which
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Figure 9.1: Solving the Discrete Virtual Power Plant Dispatch Problem essentially corre-
sponds to packing rectangles under an arbitrary profile.

the process must be finished. Also we let Ts denote the size of the time step. Each local
unit can therefore be modeled by

E(k + 1) = E(k) + TsP (k), (9.4)

P (k) = Pv(k) (9.5)

0 ≤ E(k + 1) ≤ E, (9.6)

E(KEnd) = E, (9.7)

0 ≤
k+KRun−1∑

l=k

v(l)−KRun

(
v(k)− v(k − 1)

)
. (9.8)

where P ∈ R+, k = 1, 2, . . . ,K, v(k) ∈ {0, 1}, E = PKRun, KRun ≤ K and
KEnd ≤ K. Inequality (9.8) is the minimum runtime constraint, which ensures that if
v(k)− v(k − 1) is one, then v(l), l = k + 1, k + 2, . . . ,KRun − 1 must also all be one;
that is, once the local units is activated, it must complete its consumption immediately.

We let {LUi}i=1,2,...,N denote a portfolio of N flexible consumers. Then, for each
{LUi}i=1,2,...,N a solution of problem (9.1)-(9.3) consists of a set of start times,KStart =
(KStart,1,KStart,2, . . . ,KStart,N ), one for each local unit. An illustration of the Dis-
crete Virtual Power Plant Dispatch Problem for batch processes is given in Figure 9.1.

Agility

As mentioned earlier, PDispatch is a forecast of the power production of some renewable
production technology. This means that PDispatch will not correspond exactly to the
power, which will actually be produced over the considered time horizon. To alleviate
this issue, we want to find a solution of problem (9.1)-(9.3), which is as agile as possible.
Finding an agile solution means prioritizing the most urgent tasks, namely the ones which
are closest to their deadline. In this way we will have created more maneuverability,
if updated forecasts of PDispatch give very different power availability than originally
projected. We also call this maximizing the agility of the portfolio (see Figure 9.2 and
9.3).

The concept of agility is illustrated in Figure 9.2 and 9.3 for a portfolio consisting of
three units. The top illustrations in Figure 9.2 and 9.3 both depict optimal solutions of
this instance of the Discrete Virtual Power Plant Dispatch Problem and if the predicted
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Figure 9.2: As time progresses an un-agile solution can become sub-optimal when earlier
projections of PDispatch turn out to be erroneous.

Figure 9.3: As time progresses an agile solution is more likely to remain optimal even
when earlier projections of PDispatch were erroneous.

progress of PDispatch is correct, then it is obviously unimportant to distinguish between
the two. If, however, a significant portion of the available power is delayed as in the lower
illustrations, then the top solution in Figure 9.3 remains optimal, but the top solution in
Figure 9.2 does not. This happens because the top solution in Figure 9.2 has left more
maneuverability for the optimization in later time steps. Thus, in a sense introducing
agility to the problem solving is an attempt to maximize the flexibility of the remaining
solution space.

To find an agile solution of problem (9.1)-(9.3) the cost function is extended with a
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term, which adds a penalty to dispatching each local unit, that is

f(P (·)) = min
Pi(·)

K∑
k=1

(
wk|S(k)|+

N∑
i=1

wi,k|Pi(k)|
)

(9.9)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, ...,K (9.10)
N∑
i=1

Pi(k) + S(k) = PDispatch(k). (9.11)

The agility weights wi,k should then be chosen such that local unit i is dispatched before
local unit j, if KEnd,i −KRun,i < KEnd,j −KRun,j .

To explain how agility weights are chosen, let {LUi}i=1,2,...,N denote a set of local
units sorted according to deadline minus run time. Intuitively, agility weights will penal-
ize increasing the energy term of each local unit and this penalty is proportional to the
unit index. This means replacing the cost function (9.9) with

min
Pi(·)

K∑
k=1

(
wk|S(k)|+

N∑
i=1

i|Ei(k)|
)
. (9.12)

However, since Ei(k) =
∑k

l=1 TsPi(l) Equation (9.12) can be written as

min
Pi(·)

K∑
k=1

(
wk|S(k)|+

N∑
i=1

i(K + 1− k)Ts|Pi(k)|
)

and the agility weights are therefore given by

wi,k = i(K + 1− k)Ts. (9.13)

Portfolio Generation for Simulation

Thoughout this paper we consider optimization problems on randomly generated portfo-
lios. Each portfolio is characterized by the numbersN andK, such thatPortfolio(N,K)
denotes a randomly generated portfolio of N local units with KRun ∈ {2, 3, 4, 5},
P ∈ {1, 2, 3, 4} and KEnd ∈ {1, 2, . . . ,K}. Also we set Ts = 1 in all simulations
and all calculations have been performed on a standard laptop.

Figure 9.4 depicts a solution of problem (9.9) to (9.11) for a Portfolio(105, 100)
computed by use of the algorithm GRASP Random, which is introduced in Section 4.
It can be seen that the majority of slack is introduced towards the end of the simulation
horizon as the total consumption (blue) is no longer able to follow PDispatch (black).
Agility/sortedness is illustrated by green, red, cyan and magenta lines illustrating the ac-
cumulated consumption of the first, second, third and fourth quarter of units, respectively,
when the portfolio is sorted according to deadline minus runtime.

3 Computational Complexity

In this section we will investigate the computational complexity of the Discrete Virtual
Power Plant Dispatch Problem. We first do this by proving that the problem is NP-
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Figure 9.4: Solution of problem instance of the Discrete Virtual Power Plant Dispatch
Problem with 105 local units computed by use of the algorithm GRASP Random intro-
duced later in the paper.

Complete. Next we attempt to solve the optimization problem via CPLEX. All calcu-
lations are performed on a standard laptop.

Proof of NP-Completeness

Polynomial-time reductions provide a formal means of showing that one problem is at
least as hard to solve as another to within a polynomial-time factor. That is, if L1 ≤P L2,
then L1 is not more than a polynomial factor harder than L2, [17].

Definition 24 (Subset-Sum Problem). Let there be given a finite set S ∈ N and a target
t ∈ N. Is there a subset S′ ∈ S whose elements sum to t?

Lemma 6. The Subset-Sum Problem is NP-complete.

Proof. The proof of NP-Completeness of the Subset-Sum problem is done by formulating
the 3 − CNF − SAT (3-conjuncture-normal-form-satisfiability) language. Next it is
proved that satisfiability of boolean formulas in 3−CNF−SAT is NP-complete. Finally
the Subset-Sum problem is formulated as boolean formulas in 3 − CNF − SAT , thus
proving that L3−CNF−SAT ≤P LSubsetsum. For full proof see [17].

In the following, we show that a simplified version of the Discrete Virtual Power Plant
Dispatch Problem is equivalent to the Subset-Sum problem. We shall refer to this reduced
problem as DVPPDP for brevity.

Theorem 7. The DVPPDP is NP-complete.

Proof. In this proof it is shown that a subset of the class of instances of the Discrete Vir-
tual Power Plant Dispatch Problem is equivalent to the Subset-Sum Problem. By poly-
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Figure 9.5: For the considered instance of the DVPPDP a solution of problem (9.14)
- (9.16) such that f(Pi(·)) = 0 can exist if and only if there also exists a subset of
KRun,i, i = 1, 2, . . . , N , which sums toK.

nomial reduction this proves that the Discrete Virtual Power Plant Dispatch Problem is
NP-complete, since the Subset-Sum Problem is NP-complete.

Firstly we simplify the Discrete Virtual Power Plant Dispatch Problem by setting
agility weights to 0. This reduces problem (9.9) - (9.11) to

f(Pi(·)) = min
Pi(·)

K∑
k=1

wi|S(k)| (9.14)

s.t.

PDispatch(k) ∈ R+, k = 1, 2, ...,K (9.15)
N∑
i=1

Pi(k) + S(k) = PDispatch(k). (9.16)

Flexible units are still modeled by (9.4)-(9.8).
Let K ∈ N+ and K ∈ N+ be given and assume without loss of generality that

K < K. Next define portfolio {LUi}i=1,2,...,N , such that P i = 1, i = 1, 2, . . . , N ,
KEnd,i = K, i = 1, 2, . . . , N and

∑N
i=1KRun,i = K+K. Also define PDispatch(k) =

2, k = 1, 2, . . . ,K and PDispatch(k) = 1, k = K+ 1,K+ 2, . . . ,K (see Figure 9.5).
To prove NP-completeness we formulate the following decision problem: Given the

DVPPDP instance constructed above does there exist a solution of problem (9.14) - (9.16)
for which f(Pi(·)) = 0?

First observe that
∑K

k=1 PDispatch(k) = K+K and
∑N

i=1KRun,iP =
∑N

i=1KRun,i

= K+K as well. This means that exactly two local units must be on at any sample until
sample K and that exactly one local unit must be on at any sample after sample K in
order for a solution with zero slack to exist. However, such a solution can exist if and
only if there also exists a subset of KRun,i, i = 1, 2, . . . , N , which sums toK.

This, however, corresponds exactly to the Subset-Sum Problem for the set S =
KRun,i, i = 1, 2, . . . , N and t = K since K and K are arbitrarily chosen positive in-
tegers. Thus, if there exists a polynomial time algorithm for solving the considered in-
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stance of the DVPPDP then this algorithm could also solve the Subset-Sum problem in
polynomial time. It now follows from Lemma 6 that the DVPPDP is NP-complete.

CPLEX Performance

A commonly used option for solving integer problems is to use the software package
CPLEX [18]. If CPLEX is capable of solving the Discrete Virtual Power Plant Dispatch
Problem to optimality within a reasonable time frame, then there will be no reason to
apply meta-heuristic methods to the problem. In this section we will therefore investigate
how CPLEX handles the Discrete Virtual Power Plant Dispatch Problem.

We have tested CPLEX performance on ten Portfolio(25,100) and ten Portfolio(50,
100) problems. In many cases the computations are terminated with an error message
stating that the computer has run out of memory and therefore no optimal solution is
found. We observed that for Portfolio(25,100) five of ten problems were solved with an
average computation time of 8 minutes and for Portfolio(50,100) zero of ten problems
were successfully solved. Since all calculations finish due to lack of memory for 50 units
and 100 samples, there is little hope that this option will scale to larger problem instances.

4 Meta-Heuristic Algorithms

Since we have illustrated that finding optimal solutions of the Discrete Virtual Power Plant
Dispatch Problem is indeed very challenging, we will now investigate the performance
of the meta-heuristic methods Hill Climber, [19], and Greedy Randomized Adaptive
Search Procedure, [20].

Hill Climber

We first define a neighborhood associated with the Discrete Virtual Power Plant Dispatch
Problem, which is based on the idea of an n-move. Next we develop two variations of the
algorithm denoted Uniform Selection Hill Climber and Weighted Selection Hill Climber.

Neighborhood and n-move

Let an instance of the Discrete Virtual Power Plant Dispatch Problem be given, that is,
a set of parameters P i, KEnd,i and KRun,i, i = 1, 2, . . . , N and a dispatch sequence
PDispatch(k) ∈ R, k = 1, 2, . . . ,K. A solution of the Discrete Virtual Power Plant
Dispatch Problem is then given by a set of feasible start times,KStart = (KStart,1, . . . ,
KStart,N ). The solution space is given by

S = {(KStart,1, . . . ,KStart,N ) ∈ NN

|KStart,i < KEnd,i −KRun,i, i = 1, 2, . . . , N}

and we have that

|S| = ΠN
i=1KEnd,i −KRun,i

≤ KN .
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In the Discrete Virtual Power Plant Dispatch Problem a neighborhood map νn : S →
SM , defines for each solutionKStart a neighborhood set Sn(KStart) ∈ SM consisting
of the set of solutions that can be obtained fromKStart by moving the start time of any n
local units to feasible locations. This is called an n-move. In other words, a neighborhood
map is a map of the form

νn(KStart) = {KStart
′ ∈ S

|KStart
′ is obtained fromKStart by an n-move}.

Uniform Selection Hill Climber and Weighted Selection Hill Climber

Pseudo code for the Hill Climber method is given in Algorithm 6. The Hill Climber
method first generates a random initial solution for the considered problem. Next a solu-
tion in the neighborhood of the current solution is found. If the cost of the neighboring
solution is less than the cost of the current solution, then the neighbor solution will take
its place as current solution. This procedure is continued until the time limit is reached.

Algorithm 6: Hill Climber({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)

1: Generate initial solution KStart,0 by randomly choosing feasible start samples for each local
unit.

2: Repeat
3: Select KStart

′ in νn(KStart,i) by use of Uniform Selection or Weighted Selection
4: If f(KStart

′) < f(KStart,i) then
5: KStart,i+1 = KStart

′

6: Until time-limit is reached

Two tailored versions of the Hill Climber method, denoted Uniform Selection Hill
Climber and Weighted Selection Hill Climberwill be investigated.

In Uniform Selection Hill Climber the initial solutionKStart
′ is found by choosing

n local units from the portfolio with uniform probability and then selecting feasible start
samples for each local unit, also with uniform probability. Pseudo-code for Uniform
Selection is given in Algorithm 7. Allowing n to be larger than 1 means that it is possible
to accept a solution where a unit is moved to a less favorable start sample as long as other
units are simultaneously moved to beneficial positions. This could help the algorithm
escape a local optimum, which would not be possible if only one local unit can be moved
at a time.

Algorithm 7: Uniform Selection({LUi}i=1,2,...,N , n)

1: for j = 1 to n do
2: Select LUi from {LUi}i=1,2,...,N−j+1 with probability 1

N−j+1

3: Select start sample k for LUi with probability 1
KStart,i

4: Set {LUi}i=1,2,...,N−j = {LUi}i=1,2,...,N−j+1\LUk

5: end for

In an alternative implementation, denoted Weighted Selection Hill Climber, the n
local units are again chosen uniformly from the portfolio, but the start time of each local
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unit is now chosen with probability proportional to the benefit/cost of moving the start
time of the local unit to each feasible time slot. Pseudo-code for Weighted Selection is
given in Algorithm 8. If improving start times exist, we choose an improving time with
probability proportional to the obtained benefit. On the other hand, if no improving start
times exist, then we choose a deteriorating time with probability inversely proportional to
the cost.

Algorithm 8: Weighted Selection({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)

1: for j = 1 to n do

2: Select LUi from {LUi}i=1,2,...,N−j+1 with probability 1
N−j+1

3: for k = 1 to KEnd,i −KRun,i do
4: vk ← ∆Cost(i, k) given that j − 1 local units have already been assigned new start

samples.
5: end for

6: Construct vnegative containing all negative numbers in v.

7: if Length(vnegative) ≥ 1 then
8: Select start sample k for LUi with probability vnegative(k)∑

vnegative

9: else
10: Select start sample k for LUi with probability

1
v(k)∑ 1

v

11: end if

12: Set {LUi}i=1,2,...,N−j = {LUi}i=1,2,...,N−j+1\LUk

13: end for

Uniform Selection Hill Climber and Weighted Selection Hill Climber are tuned and
compared in Section 5.

Greedy Randomized Adaptive Search Procedure

A definite weakness of the developed Hill Climber methods is that the initial solution
is generated by choosing local units and start time with uniform probability. This means
that the solutions generated for initial use have absolutely no similarity to PDispatch. This
problem is mended in Greedy Randomized Adaptive Search Procedure (GRASP).

The idea in GRASP is to construct an initial solution one element at a time by use of a
greedy algorithm. The choice of next element to be added is determined by constructing
a candidate list of most beneficial choices. The probabilistic element in GRASP is then
introduced by randomly choosing one of the candidates in the candidate list, but not
necessarily the top candidate. After an initial solution has been generated, Hill Climber
is called to achieve a further improvement of the solution.

Again two versions of the algorithm have been investigated, namely GRASP Random
and GRASP Sorted. GRASP Random falls closest to the generic description of the GRASP
algorithm, but as we will see later it has some challenges related to the Discrete Virtual
Power Plant Dispatch Problem. To address this GRASP Sorted is developed as well.

Pseudo-code for GRASP Random is given in Algorithm 9. The idea is that m local
units are chosen randomly from the portfolio and placed in the Unit List. Next the cost
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Algorithm 9: GRASP Random ({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K ,m, l, n)
1: repeat

2: for j = 1 to N do

3: for k = 1 to m do
4: Unit List(k)← Select LUi from {LUi}i=1,2,...,N−j+1 with probability 1

N−j+1
.

5: for h = 1 to KStart,Unit List(k) −KRun,Unit List(k) do
6: vk,h ← ∆Cost(Unit List(k), h) given that j − 1 local units have already been

assigned start samples.
7: end for
8: end for

9: CandidateListk,h ← The l smallest entries in vk,h.

10: Select LUk and start sample h from CandidateList with probability 1
l
.

11: Set start time of LUk to h and set {LUi}i=1,2,...,N−j = {LUi}i=1,2,...,N−j+1\LUk.

12: end for

13: Hill-Climber({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)

14: until time-limit is reached

of starting each local unit in the Unit List at each feasible sample is computed and saved
in v. The Candidate List is then generated by choosing the l smallest elements from v.
Finally an element from the Candidate List is chosen with uniform probability.

When exploring GRASP Random it was discovered that for all problem sizes, GRASP
Random generates initial solutions, which overshoot PDispatch in the beginning of the
horizon and fall lower than PDispatch towards the end of the horizon. This behavior can
be explained as follows:

Since slack is cheaper towards the end of the horizon GRASP Random will first start
units early in the horizon as it builds an initial solution. At some point a decent match with
PDispatch is obtained for, say, the first 10 samples. However if a local unit then remains
in {LUi}i=1,2,...,N−j , which has deadline 10 or less, then it can only be added such that
it makes the accumulated power consumption overshoot PDispatch somewhere in the first
10 samples. When this has happened a number of times (see Figure 9.6) the result is
a consumption profile, which overshoots PDispatch in the beginning of the horizon and
falls lower than PDispatch towards the end of the horizon.

To alleviate this problem, the algorithm GRASP Sorted was developed. The algo-
rithm is identical to GRASP Random except that local units are not initially chosen at
random, but in sorted order, starting with the m local units with the earliest deadlines.
The Candidate List is again generated based on the Unit List and an element from the
Candidate List is chosen with uniform probability. Pseudo-code for GRASP Sorted is
given in Algorithm 10.

5 Results

Before the algorithms can be compared they must be properly tuned. When applying a
meta-heuristic there will always be a trade-off between time and performance, so compu-
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1/4 of portfolio 2/4 of portfolio

3/4 of portfolio 4/4 of portfolio

Figure 9.6: GRASP Random builds an initial solution one unit at a time and above it is
depicted how the initial solution looks, when 1/4, 2/4, 3/4 and 4/4 of the units in the
portfolio have been added.
Since slack is cheaper towards the end of the horizon, GRASP Random will first start
units early in the horizon. When 1/4 of the portfolio has been added a decent fit with
PDispatch has been obtained for sample 0 to 18. However, there are still units remaining
in the portfolio, which have deadline 18 or less, and now GRASP Random can only add
these in such a way that the accumulated power consumption before sample 18 overshoots
PDispatch even further. This means that as units are added more and more positive slack
builds up at the beginning of the simulation horizon, as can be seen from the progression
of the figures.

tation time is fixed, not a parameter. All calculations are performed on a standard laptop.
The algorithms have been implemented in C# [21].

Tuning

To tune the algorithms, a representative training test set of R problem instances is gener-
ated and each algorithm is run T times on each training data set. In order to be able to
compare performance on problem instances with very different absolute values we com-
pute the percentage gap and the percentage deviation. Since it is not feasible to determine
the optimal solution of problems of the considered size, the percentage gap and the per-
centage deviation is computed relative to the minimum value found over all calculations
on each particular problem instance.

In order to be able to compare performance on problem instances with very differ-
ent absolute values, we compute the percentage gap E = 1

S

∑T
j=1

(zj−z∗)·100
z∗ and the
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Algorithm 10: GRASP Sorted({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K ,m, l, n)
1: repeat

2: Sort {LUi}i=1,2,...,N according to KEnd,i −KRun,i.

3: for k = 1 to m do
4: Unit List(k)← LUk.
5: end for

6: for j = 1 to N do

7: for h = 1 to KStart,Unit List(k) −KRun,Unit List(k) do
8: vk,h ← ∆Cost(Unit List(k), h) given that j−1 local units have already been assigned

start samples.
9: end for

10: CandidateListk,h ← The l smallest entries in vk,h.

11: Select LUk and start sample h from CandidateList with probability 1
l
.

12: Set start time of LUk to h and set UnitList = UnitList\LUk ∪ LUj+1.
13: end for

14: Hill-Climber({LUi}i=1,2,...,N , {PDispatch(k)}k=1,2,...,K , n)
15: until Time limit is reached.

Uniform Select. Weighted Select.

Parameter Test
Values A B C A B C

n−move
{1, 5, 10,
50, 100,
500}

1 1 1 10 10 10

Table 9.2: The developed Hill Climber methods have one parameter, namely the value of
n in n −move. To properly judge the performance of the algorithm a suitable value of
this parameter must be found. This table states the best parameter value found for both
Hill Climber methods.

percentage deviation σ =

√
1

T−1
∑T

j=1

(
(zj−z∗)·100

z∗ − E
)2

, where z∗ is the optimal

solution of the problem instance and j indexes the set of T candidate solutions. Since
z∗ is not known we will substitute the minimum value found over all calculations on the
particular problem instance.

The tuning test is performed on randomly generated Portfolio(N, 100), N = 103,
104, 105, see Section 2. The tuning set consists of nine instances of the Discrete Virtual
Power Plant Dispatch Problem (sets of portfolio and PDispatch) with three portfolios of
103, 104 and 105 local units each. Computation time is fixed at 10 seconds for all runs of
the algorithms and T = 10. Results of parameter tuning test are given in Table 9.2 and
9.3 where A = 103 local units, B = 104 local units and C = 105 local units.
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GRASP Random GRASP Sorted

Parameter Test
Values A B C A B C

m
{1, 2, 3,
4} 1 1 1 4 4 4

l {1, 2, 3} 3 3 3 1 1 2
Hill

Climber-
type

Uniform
or
Weighted

W W U W U W

n {1, 2, 3} 2 3 1 3 2 1

Time
parameter

for Hill
Climber

{1, 2, 3, 4,
5, 8, 10,
15, 20}
times the
time for
generating
initial
solution

15 15 15 15 15 4

Table 9.3: The developed GRASP methods have the five parameters listed under ’Pa-
rameter’. This table states the best parameter value combination found for both GRASP
methods.

Results

To finally test the algorithms a new Portfolio(N, 100), N ∈ {103, 104, 105} is gener-
ated with three portfolios of 103, 104 and 105 local units each. Computation time is still
fixed at 10 seconds for all runs of the algorithms and T = 10. The performance of all
four algorithms is given in Table 9.4.

It is found that for all problem sizes the Hill Climber methods and GRASP Random
have very similar performance, with no clear winner. GRASP Sorted, on the other hand,
outperforms all the other methods by at least an order of magnitude both in terms of
percentage gap and percentage deviation and for all problem sizes.

Figure 9.7, 9.8, 9.9 and 9.10 depict solutions found for a Portfolio(100.000, 100)
problem using each algorithm and the parameters given in Table 9.2 and 9.3. A visual in-
spection confirms the general conclusions that Uniform Selection Hill Climber, Weighted
Selection Hill Climber and GRASP Random have very similar performance as the curves
can hardly be distinguished. However, GRASP Sorted is clearly superior. It can be seen
that particularly at the beginning of the simulations GRASP Sorted has less slack than
the other methods and GRASP Sorted has furthermore found a far more sorted solution,
which can be seen by the very steep slopes of the quarter lines in Figure 9.10.

As demonstrated in Section 3 there exists no efficient strategy for determining optimal
solutions of the Virtual Power Plant Dispatch Problem for large problem instances. One
option would be to generate artificial, structured problem instances where the optimal
solution is known. However, inherent structure in a problem could likely favor one of the
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1.000 units 10.000 units 100.000 units
E σ E σ E σ

Uniform
Select. 32.4 7.7 58.6 3.6 47.8 1.5

Weighted
Select. 38.0 8.6 62.5 4.5 59.3 1.7

GRASP
Random

23.7 3.1 65.3 2.5 32.9 1.4

GRASP
Sorted

0.6 0.4 2.5 0.3 0.7 0.5

Table 9.4: Percentage gap and percentage deviation for all developed methods.

Figure 9.7: Performance of Uniform Selection Hill Climber for a Portfolio(105, 100)
problem.

methods, in particular GRASP Sorted, and would thus lead to unfair comparisons.
Our best available optimal solutions are therefore the five Portfolio(25,100) problem

instances, which were successfully found by CPLEX in Section 3. In Table 9.5, GRASP
Sorted has been retuned for Portfolio(25,100) problems and the average performance over
ten solutions is given for these problems. It is found that the deviation from optimality is
6% to 13%, which is fairly good considering the short computation time.

6 Conclusion

In the vision for the future Smart Grid, not just hundreds, but thousands or even millions
of flexible consumers must be coordinated to operate in a sensible, interconnected manner.
A major issue in implementing the Smart Grid, however, is that this must happen in real
time. In this paper we have therefore investigated computational speed of large scale
dispatch problems.

Our investigations have concentrated on the Discrete Virtual Power Plant Dispatch
Problem. Firstly the computational complexity was investigated by proving that the prob-
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Figure 9.8: Performance of Weighted Selection Hill Climber for a Portfolio(105, 100)
problem

Figure 9.9: Performance of GRASP Random for a Portfolio(105, 100) problem.

lem is NP-complete and investigating the options of solving the Discrete Virtual Power
Plant Dispatch Problem by use of CPLEX [18]. Being NP-complete the Discrete Vir-
tual Power Plant Dispatch Problem is therefore at least as complex (hard) to solve as the
well-known Unit Commitment problem [23].

We therefore developed heuristic methods for solving the problem and specifically
looked at Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP).
Four algorithms were developed, denoted Uniform Selection Hill Climber, Weighted Se-
lection Hill Climber, GRASP Random and GRASP Sorted. After tuning and testing, by far
the best results where obtained by GRASP Sorted. This method can determine solutions,
which are both agile (sorted) and well balanced even for problems of 100.000 units, 100
samples and with a computation time of just 10 seconds.
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Figure 9.10: Performance of GRASP Sorted for a Portfolio(105, 100) problem.

Optimal GRASP Sorted Increase
Test 1 8224385 8755518 6%
Test 2 8509987 9208134 8%
Test 3 10881238 11893818 9%
Test 4 11326497 12614928 11%
Test 5 9763022 11055801 13%

Table 9.5: Optimal solutions values found in CPLEX and solution values found by
GRASP Sorted for five Portfolio(25,100) problems instances.
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