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Chapter 1

Introduction

In the field of control theory and applications, the H., method is a recently de-
veloped method for robust controller design. This method has for the past fifteen
years been a popular resarch topic, partly because of the mathematical problems
related with the development of the method, but also because of encouraging ap-
plications and case studies that have been reported. The fact that many of these
applications have been carried out by people from the academic world suggests
that such an application requires some insight in the theoretical aspects of the
method, including awareness of a number of limitations of the method. The pur-
pose of this thesis is partly to provide yet another case study, thus contributing
to the process of making the H., method more accesible for industry, and partly
to contribute to the refinement of a method for solving tracking problems.

Central to the H,, method is the standard H,, problem. In this problem, one
considers a system of the form

z w G G w
= = 1.1
{y} G{“} {GW GQQ}[“]’ (1)
where z is the to-be-controlled output, y is the measured output, u is the control
input and w is the disturbance input. The H., problem is to determine a linear

causal control law u = Ky such that, with this control law applied, the closed
loop system is stable and there holds

L <. (1.2)

Here v is a pre-specified positive constant limiting the effect that the disturbance
has on the output. Algorithms based on the solution of the standard H., problem
can be used to design a controller that will work well despite the presence of small
model uncertainties, and this can be considered as the primary virtue of the H,
method.

Tracking problems, where the task is to make the system output follow some
tracking trajectory even if the physical plant is not modelled perfectly, can be



solved using the standard H,., problem. The property of guaranteed tracking per-
formance in the presence of model uncertainties is denoted robust performance.
It is common to represent the reference signal by an unknown disturbance signal
and then require that the effect this signal has on the tracking error should be
bounded. An important distinction is made between one-degree-of-freedom de-
signs where the control law is immediately given by the construction of a feedback
law, and two-degrees-of-freedom designs where a feedback law is complemented
by a control signal that depends on the reference signal only (feedforward). An
example of a popular one-degree-of-freedom design is the mixed sensitivity prob-
lem, see Kwakernaak[40]. Examples of two-degrees-of-freedom designs can be
found in Limebeer et al.[47] and in Yaesh and Shaked[61]. The three examples
mentioned above are all based on a control structure where it is assumed that the
signal that one wishes to control is measured directly (where we are here disre-
garding measurement noise). The range of methods that may be used for a given
tracking problem depends on whether this is the case. More problematic than
measurement noise is the situation where the signal that is measured depends
only indirectly on the signal that one wishes to control. This more general situa-
tion where the controlled variable is not assumed to be measured was considered
in Shaked and de Souza[57], where formulae for a two-degrees-of-freedom design
were given.

For a given industrial control problem it is often important to discuss whether
to choose the model as being finite dimensional or infinite dimensional. Relevant
questions are whether the parameters of the distributed parameter model can
be estimated effectively, and whether the increased complexity of the distributed
parameter model results in a significantly improved model. Tt is also of interest,
whether it is possible to take advantage of this extra information in the controller
design. In the case study that is treated in this thesis it appears that affirmative
answers can be given to at least two of these three questions. The model described
in chapter 2 is infinite dimensional as it involves transport of heat and mass along
a conveyor. This transport is characterized by a single velocity parameter which
is relatively easy to estimate. It is also beyond doubt that the most accurate
model that we can formulate for the plant is one that involves a continuous time
transport equation, which is thus infinite dimensional. The third issue mentioned
above is however more problematic. We base the controller design on a finite
dimensional approximation where the quality of this approximation is evaluated
by comparing with the tranfer function of the distributed parameter model, and
furthermore the transfer function of the distributed parameter model is used
directly in a theoretical robust performance test of the controller. An alternative
approach would be to choose a finite dimensional discrete time transport model.
Unfortunately, the most natural way to do this would involve a rather large
sampling time, and it is & priori not obvious, which approach would result in the
better controller, but the continuous time formulation has the advantage that we
can formulate the model independently of the sampling procedure.



The problem of designing a finite dimensional controller for an infinite dimen-
sional plant has been approached in many different ways in the literature. Most
of these approaches fall into two groups: One possibility is to formulate an infinite
dimensional control law and then approximate this one directly by an approach
which involves the approximation of the solution to Riccati equations in the strong
operator norm. Approximation results of this type can be found in Kappel and
Salamon[38] and Tto and Morris[35] and specific examples of applications of such
an approach can be found in Banks and Burns[4] and in Banks et al.[5]. The
second possibility is to immediately approximate the infinite dimensional model
by a finite dimensional one and then proceed with techniques developed for finite
dimensional systems. The brute force approach is here to use an approximation
scheme that is known to converge in an appropriate sense and base the controller
design on an approximation of high order, but this approach may be problematic
numerically for a number of reasons, specifically problem size. A more satisfac-
tory approach is to design a control law that is robust against a perturbation
containing the approximation error, which allows an & priori statement about ro-
bust stability, see Glover[26] and Curtain and Glover[15]. An application of this
method can be found in Bontsema and Curtain[10], where & priori guaranteed ro-
bustness against the approximation error was obtained using an approximation of
a moderately high order. This idea is used also in the present thesis. For a more
thorough discussion of different approaches the reader is referred to Curtain[14].

When constructing a finite dimensional controller, different types of partial
differential equations (PDE) must be treated by different types of approxima-
tions. Useful characteristics are here whether or not the solution to the PDE
is guaranteed to be smooth and whether or not the model has an eigenfunction
decomposition. A characteristic situation appears if the model is a heat equation,
in which case the solution has a significant degree of smoothness, see Curtain and
Zwart[18] for some examples. A case where eigenfunction decomposition seems
to be standard practice is in the modelling and control of a flexible robot arm, see
Zakawa et al.[56]. Contrary to these examples, we are in chapter 2 of this thesis
dealing with a model where the solution to the PDE is not necessarily smooth.
Moreover, an eigenfunction decomposition is not possible. The approximation
used in this thesis is chosen according to these observations.

The subject of Chapter 2is a case study dealing with the control of a tunnel
pasteurizer. The controller design is based on a distributed parameter model,
which is approximated by a finite dimensional system. A controller that yields
robust tracking performance in the presence of structured perturbations is con-
structed using a one-degree-of-freedom design based on a sequence of scaled H,
standard problems, followed by controller order reduction.

Chapter 3 contains a number of details that were omitted in chapter 2 for
the sake of simple exposition. These details include matters as well-posedness
and approximations as well as the description of an ad-hoc method which was
introduced in order to deal with the high number of structured perturbations of



the system.

Chapter 4 takes as starting point the formulae for a two-degrees-of-freedom
H. control law obtained in Shaked and de Souza[57]. The main difference is that
in [57] the tracking problem was solved with a finite time horizon and for finite
dimensional systems. As a new development we give an infinite time horizon
formulation where the signal spaces are based on the class of almost periodic
functions. We consider infinite dimensional systems with bounded input and
output operators, and give formulae for a so-called loop-shifting procedure, thus
extending the formulae to a more general class of systems.

In chapter 5the method described in chapter 4 is further developed to meet the
presence of structured uncertainties, and formulae for controller order reduction
are given.



Chapter 2

Controller Design for a
Pasteurization Plant

2.1 Introduction

A tunnel pasteurizer works by slowly moving bottled or canned food products on
a conveyor belt through a tunnel, where the products are sprinkled with water
from tanks placed above the tunnel. After passing the food products, the water
is collected in tanks placed under the conveyor belt, re-heated by heat exchangers
if necessary, and then poured into one of the tanks above the tunnel. The tunnel
is divided into a number of zones, each of which is furnished with an upper and
a lower tank.

We shall in this chapter be concerned with the control of a pasteurization
process, and the example to be dealt with is bottled beer. While passing the zones
of the tunnel, the beer is first heated above a certain pasteurization threshold
temperature, and at the end of the tunnel the beer is cooled down. The objective
is to obtain an adequate temperature profile (in time) in each bottle of beer
during the pasteurization process. The degree of pasteurization of the beer should
naturally be sufficiently high so that it is effective, but on the other hand an
excessive degree of pasteurization will deteriorate the taste of the beer. However,
it is not immediately a tractable problem to control the history of temperature
of each bottle, so instead we content ourselves with controlling the temperature
profile of beer along the conveyor belt.

The problem that we shall be concerned with in this chapter is to find a
feed-back controller that ensures robust performance in the situation where pas-
teurization is steadily in progress. The control law is to be based on (filtered)
measurements of the temperature of water that is collected after being sprinkled
on the bottles in the tunnel. One particular feature of this problem is thus that
the variable that we wish to control, namely the temperature profile of beer inside
the bottles, is not the same as the measured variable, namely the temperatures



in the tanks beneath the tunnel. The role of actuators is played by a number of
heat exchangers.

Tunnel pasteurizers of the type considered in the present work are currently
being used in breweries. The control strategy is commonly based on PI con-
trollers. The objective of our work is to suggest an alternative to such decentral-
ized controller designs. As a motivation for this we will demonstrate that, accord-
ing to our model, the system dynamics of the different zones are highly coupled.
As the result of modeling work carried out by several people, e.g. Rudolph and
Weiss[54], Heilbuth and Mortensen[32], Jannerup[37], we are able to base the de-
sign on a model that has been developed with a controller design in mind. This is
important since it is a prerequisite for our approach to the controller design that
a reasonably precise, and yet relatively simple, model is available. The model
that we use was essentially formulated in Jannerup[37].

We have chosen to base our controller design on modern techniques known as
the H., method, see Green and Limebeer[30] and Zhou et al.[63] for background
material. Qur motivation for this is that uncertainties like small modeling errors
and unknown disturbance signals can be taken explicitely into account in the
design process. The H., method is basically a worst case design. This is good if
the worst case scenario considered in the design is relevant for the physical plant
and the objective of the controller, but less appealing if the worst case has only
little to do with reality. Therefore, one must make sure to incorporate into the
design as much information as possible about the uncertainties. The nature of
each uncertainty can be described by the use of frequency weights. Also important
is the uncertainty structure that determines, what part of the plant is affected
by a given uncertainty. The way we seek to take into account the uncertainty
structure is to perform scaling of the input and output variables. Scaling of
the inputs and outputs is usually recommended when working with multiple-
input multiple-output systems. In H., design with structured uncertainties it
is a systematic method to improve the design, and the scaling parameters are
determined using an optimization algorithm.

We will consider the control problem from an infinite dimensional systems
point of view although the actual controller synthesis algorithm to be used is
purely finite dimensional. The basic assumption is thus that the most accurate
model that we have is an infinite dimensional one. One of the elements of the H,
method is a test for robust performance, which we carry out using the transfer
function of the infinite dimensional system.

2.2 The Model

We will in this section give a short description of the model. For a more de-
tailed derivation of the model the interested reader can consult Jannerup[37] and

Heilbuth and Mortensen[32].



Figure 2.1: A tunnel pasteurizer with upper tanks, lower tanks, heat exchangers
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Figure 2.2: Steady state profile of beer along the tunnel. Intervals over which
the beer temperature is controlled are marked (H)
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Figure 2.3: Steady state profile of beer along the tunnel when only the 4th heat
exchanger is active (open loop control).

In the tunnel a conveyor belt carries each bottle through eight zones. The
first three zones are meant for heating the bottles to a temperature that is still
below a certain pasteurization threshold. The zones 4-5 are called pasteurization
zones. Here heating is continued so that the pasteurization threshold is crossed
and the pasteurization takes place mainly in these two zones. The zones 6-8
are cooling zones where the bottles are sprinkled with water of relatively low
temperature. The water collected in the tank beneath zone 4 is reheated and
then led into the upper tank of zone 4. The same happens in zone 5. The other
zones are coupled such that, for example, the water collected beneath zone 3 is
led directly to the upper tank of zone 6 as cooling water, while the water from
the lower tank of zone 6 is reheated and then led to the tank above zone 3. This
structure of water supply is shown in figure 2.1. With this structure, a typical
temperature profile of the beer inside the bottles will be as shown in figure 2.2,
obtained by simulations of the system, controlled by a feedback controller based
on measurements of temperatures in the lower tanks.

The effect that the coupling of zones has on the overall behavior of the plant
is demonstrated in figure 2.3, where it is shown that the supply of heat through
a single heat exchanger affects the steady state profile throughout the tunnel.

The problem of modeling the entire plant is thus essentially given through the
modeling of a single zone. The dynamics related to a typical zone are decomposed
into four blocks. These are the inside of the tunnel, the collection of water below



the tunnel with a time delay and the heat exchanger. The collection of water in
the upper tank constitutes the final, fourth block. Here a time delay is caused
by the transport of water from the heat exchanger to the upper tank. After
describing each component for the ¢th zone, we will conclude with an overview
of the whole system.

When considering the ith zone, we denote by a superscript ¢ the variables
and parameters specifically related to that zone. Temperatures will, as a rule, be
denoted by 7. Time as an independent variable is denoted by ¢, while T" is used
when time appears as a model parameter.

2.2.1 The Tunnel of the Pasteurizer.

The effects included in the model of the tunnel are the transport of bottles and
the heat transfer between beer, bottles, and the water sprinkled onto the bottles.
We assume that the temperatures of glass and beer in the tunnel can each be
described by a temperature profile given lengthwise along the conveyor belt. We
refer to these temperatures as 7,(¢, ) and 7(¢, x), respectively, where x is the
spatial variable along the conveyor belt. It is assumed that the density of bottles
on the conveyor belt and the flux of sprinkled water are both constant throughout
the tunnel. Also the speed of the belt, v, is assumed constant. The temperature
of sprinkled water is assumed to be constant over each zone, but varying in time.

If we could neglect the transport of the conveyor belt, we could model the heat
transfer between beer, bottles and sprinkled water as being proportional to the
difference in temperature. For example, if we considered one medium with the
well defined temperature profile 71(¢,-), being in contact with another medium
with temperature 73(t, ), then we would take a model of the type

0ty

W(t,x) =c(T(t,z) — 1 (t, ).

Now, taking into account the water of temperature 7¢ being sprinkled onto the
bottles, and the transport of the conveyor belt, energy flow considerations, etc.,
(see Jannerup[37]) lead to the transport equation

aT aT i

8—5 = _Ua—xg —(e1 + )1y + eamy + 175 (2.1)

0 0

8_7: = —Ua_;b + a7, — €37 , 1€1]0,00), € (zio1,25) (2.2)
where (z;_1, z;) is the interval of the ith zone. The constants ¢, ¢z, ¢5 depend on

many different factors, for example the material (glass, water, beer), the flux of
sprinkled water, and the speed of the conveyor belt.

For the first zone we impose zero boundary condition at the left side. This
is based on the essential assumption that the temperature at the entrance of



the tunnel is known and constant, so that the zero boundary condition can be
obtained by a standard substitution. For the zones 2-8 we simply impose that
the temperature at the left end of the ¢th zone is equal to the temperature at the
right end of the (2 — 1)st zone.

Since we are interested in measuring and controlling temperatures, the main
concern is whether the energy flow inside the tunnel is modelled correcly. There-
fore, the modeling errors that we consider will be the error in energy flow from
the tanks above the tunnel to, firstly, the beer in the bottles, and, secondly, to
the tanks placed beneath the tunnel.

2.2.2 The Lower Tanks

While passing the tunnel, the sprinkled water exchanges heat with the bottles.
Afterwards it is collected in tanks under the conveyor belt. Denoting the tem-
perature in the sth lower tank by ¢, the temperature in the ith upper tank by
72, and the temperature profile of glass along the belt by 7,(-), the dynamics of
this tank is described by the model

dr . L/ . . e .
0 = —ai0) + (i — sl = 1D 4l [ =T,

(2.3)

where af, a) and af are constants. The delay T% models the time that it takes

for the water to fall from the bottles into the lower tanks. We are assuming that
there is no loss of energy to the surroundings, so from energy flow considerations
we have the relation

(af1 + aé)(ac2 —xiz1) = 1. (2.4)

2.2.3 The Heat Exchangers

On the physical plant, the control signal is the electric current in a valve on the
heat exchanger. Here we are assuming that there is a static relation between this
current and the power being released inside the heat exchanger. In our design we
can therefore simplify matters. We thus consider the power u' that is released
inside the heat exchanger as the control signal.

Let 17 denote the steam temperature in the heat exchangers, and let ¢ denote
the temperature of the water immediately after passing the ith heat exchanger,
and let 75 be the temperature of the water entering the ith heat exchanger, i.e.
the temperature of the jth lower tank. As already indicated in the notation
above we let the jth lower tank be connected to the ith heat exchanger. From
Jannerup[37] we then have the following dynamic relation

B d(r _7'2)
n-m dt

= —(T — 7'2) + kut (2.5)
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where 3 and k are positive real numbers. This nonlinear model is based on
empirical observations and is obtained by parameter fitting of a first order model,
with a constant stationary gain k£, and with a time constant of the form

- (2.6)

s
n—1

For the controller synthesis we need a linear, nominal model. We therefore
assume that the value of 7 that appears in the denominator of (2.6) has the
constant nominal value 7. Furthermore, we eliminate the variable 7{ by the

substitution

Th=1T 7] (2.7)
and arrive at the linear differential equation

i
dr

dt

= —CLiTé + biui, (2.8)

where a} and b° are positive constants. Notice that we have here considered one of
those zones that are actually equipped with a heat exchanger, i.e. ¢ € {1,...,5}.
In the other cases, equation (2.7) would still be relevant but with 75 = 0.

We consider the linearization to be the main source of modeling error for the
heat exchanger. In view of this we must make sure that the controller works well
even if the temperature in the jth lower tank deviates from the nominal value 73.

2.2.4 The Pipes and the Upper Tanks

After passing the heat exchangers the water is led through pipes which gives
rise to a time delay, and into the upper tanks which is modelled by a first order
system. These two effects are here modelled in one single equation describing
how the temperature 72 of water in the upper tank is affected by the temperature
rise 74 in the heat exchanger and the temperature 77 in the lower tank.

dri

dt

(t) = —ay3(1) + ay(ms(t — Tp) +75(1 — Tp)). (2.9)

T4 is the delay of the ith pipe. The parameter a; is a constant specific to the ith
upper tank, that depends on the constant flux of water through the pipe.

Examples of modeling errors are unprecise knowledge of the delay, and that
energy loss to the surroundings is neglected.

2.2.5 Overview of the Model

We will now describe the overall model considering all of the zones and every
component at the same time. In order to do this we need a slightly more compact

11



notation. Define the diagonal matrices a; = diag{aj, ..., a}}, ay = diag{as, ..., a5},
etc., and b = diag{b',...,0°}. To handle the permutation that is introduced by
the coupling of the 8th, 7th and 6th lower tanks to the Ist, 2nd and 3rd heat
exchangers, respectively, we introduce the permutation matrix ag. Also, to handle
the situation that there are only 5 heat exchangers we introduce a7, defined as

follows,
_ 0 0 1] 1 1
010 1
1 00 1
10 1
ag = 01 , a7 = 1 (2.10)
0 01 00000
010 00000
|1 00 ] 100 0 0 0
We also introduce the functions x*, defined by
iy |1 foraxe (xi_q,x;) .
X(z) = { 0 elsewhere AR U (2.11)
and the variables
_ | ()
Tl(t7 l‘) - |: Tb(t,:ﬂ) :| ) (212)
Ty = [15,..., 73], etc. The equations of the overall linearized model now read

on B on —C1 —C3 Cg : XZ(JL) i
5 (1be) = —vg(ta) + { o e, | ML)t Z; 0 |0
z € (wg,ws) (2.13)
n(t,z0) = 0 (2.14)
d7'2i i i i i i i
d1 (1) = —aymy +aza(z; — zi0)75(t — 1)
+ aéaé/ [ 10 ] it — Tg,;v)d:c, 1 =1..8 (2.15)
) _
% = —ai173+ bu (216>
d
%(t) = —ayrs(t) + as(arms(t — Tp) + agmy(t — Tp)), (2.17)

where, with an abuse of notation, 75(¢{ — Tp) means 7i(t — T})) for every i.

12



2.3 System Formulation and Model Reduction

In order to use the H,, method, we must write the model as a linear system of
the form

dy

o = At Bt By (2.18)
z = 01?7/) + Duw + Dlgu (219)
y = O+ Dyyw + Dyyu. (2.20)

Here, ¢ (t) is the state, u(t) is the control input, w(?) is an unknown disturbance
input, z(t) is the to-be-controlled output, and y(¢) is the measured output. The
meaning of u and y is evident, while the meaning of w and z is problem dependent.
We let one component of w represent (indirectly) the reference signal in a tracking
problem, and the tracking error is represented by a number of components of z.
The remaining components of w and z are introduced to account for the modeling
errors. All signals are vector valued, in finite or infinite dimensional spaces. A,
By, etc., will be matrices, or, in the latter case, linear operators. The linear model
made up by the equations (2.13)-(2.17) can be written in this formulation, and
the system will be infinite dimensional. We will use this system to test whether
a controller candidate satisfies our specifications for performance and robustness.

For the actual synthesis we need a finite dimensional system. This system is
obtained by approximation of the infinite dimensional system. The aim of this
approximation is not to approximate the operators, A, By, etc., but rather to
approximate the system as an input-to-output map. Having obtained an appro-
priate finite dimensional system, a number of modern algorithms are available for
the controller synthesis. The algorithms that we have chosen have one feature in
common, namely that each step in the synthesis is reformulated as the problem
of making the H., norm of a particular system small. In line with this, the H,
norm also plays a role in the model reduction.

Let us now turn to the actual system formulation. FEach of the equations
(2.13)-(2.17) gives rise to a subsystem. The overall system of the form (2.18)-
(2.20) is to be formed as an interconnection of these subsystems, which, as part of
the design process, is enhanced with frequency weight systems. In the remainder
of this section we will focus mainly on the subsystem representing the dynamics
of the tunnel.

The model of the dynamics inside the tunnel, given by the transport equation
(2.13), can be rewritten as a system where the system operator is

—vE — ¢ — ey Co

Ay = e (2.21)

d 9
C3 v £ C3

defined on its domain

0
D(Ay) = {¢¢€ (LQ(xo,xm))Q such that a—f € (L2(£€0,l‘m)>27

13



¢ is absolutely continuous , and ¢(z¢) = 0}.

This operator has the following properties (see chapter 3). A; generates a strongly
continuous semigroup, and thereby satisfies a fundamental well posedness as-
sumption of our approach. Furthermore, this semigroup is exponentially stable
and the spectrum of A, is empty. The latter information is useful in the sense that
it warns us against searching for an eigenfunction decomposition of the system.

The inputs of the tunnel is the vector of temperatures, 75, of water in the
upper tanks. The outputs of the tunnel fall in two groups. Firstly, we take for
each zone the average temperature of water falling into the lower tanks. This
temperature is given by

ai(mi — :1:2-_1)7'55 + aé/ [ 1 0 ] mi(z)de, 1=1...8, (2.22)

cf. equation (2.15). Secondly, we take a number of average values of the beer
temperature profile. We have chosen nine intervals, distributed as shown in figure
2.2. Writing the jth of these intervals as [Z;, Z;4¢;], the corresponding component
27 of the to-be-controlled output can be written

. 1 5”J+§J
2125/ [0 1]n(z)de, j=1...9 (2.23)

The transfer functions related to the tunnel can be calculated explicitely, see
chapter 2. Let us first consider the transfer matrix ©(s) from the temperatures
75(s) in the upper tanks to the average temperatures of water falling into the
lower tanks. Introduce the notation

Cq4 = \/(Cl + C2 + 63)2 — 40163 (224)
gs(x) — e—(cl+c2+03—C4+23)r/2v (225)
ns(x) — e—(c1+c2+C3+C4+2s)x/2'u- (226)

We consider two special cases: The case where the lower tank is placed after the
upper tank, and the case where the upper and lower tanks in question belong to
the same zone. The third possibility, where the lower tank is placed before the
upper tank is trivial, and the corresponding entry is zero. For ¢ < j:

Q(J,évcl(—cl —cy + 3+ 64)
(c1+ 24 ¢35 —cat28)%eq
(C(jmr — i) + Gl — wict) = Clrjor — 2ima) — Gl — i)

Zaévcl(cl + ¢y —c3+ c4)
(e1 + a4 c3 4 ca + 25)%cq
S (xjor — i) + (25 — wica) = (@m0 — winn) — 0’35 — 3).

©;i(s)
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(,'1(—(,'1—(,'2+(,'3+C4) (x_;c . 20(1—§S(L1_~L2—1)>>
1 teates—cat+2s)ea 0 T e et —ea+2s
. clente—c3t ) ( 20(1 —ns(xi—xi_ﬁ))
+ as Ti— Ti—1 —
(c14 24 s+ ca+25)cq a1t et et et 2s
+ ai(.ri — Ti1). (2.28)

Next we consider the transfer matrix II(s) from the temperatures in the upper
tanks to the chosen averages of the beer temperature profile. For simplicity, these
averages are taken over intervals that are contained entirely in one of the zones.
We consider again two special cases: first the case where the interval [z;_1, z;]
of the ith upper tank does not intersect with the interval [Z;, #; + §;[ of the jth
component of the controlled variable.

4escyv
calcr + 2+ 3 — ca + 2s)?
(O — ) + (8 + & — mima) = O = wica) = C(E5 + & — @)
4escyv
a ca(er + ¢ + ez + ¢a + 25)?
S — @) A0t (E G = wiea) = 0" (8 — i) = (3 + 6 — @)

In the second case where [#;, 2; 4+ &[C [z,-1, z,[, we find

Mi(s) = (2.29)

2C3C1
Mji(s) = 2.30
iis) caler + o+ 3 — ca + 25) ( )
e - 20(C°(F; —2ima) = Cla; + & — 2501))
v ¢+ ey + ez —cq+ 25
20361
04(01 +eo+est+eq+ 25)
. (5. 2000 (B — win) = 0" (E & — xH))) |
v c1+cy+c3+cq+2s

Notice that, while O(s) is lower triangular, TI(s) is lower block triangular in such
a way that when the interval [#;,2; 4+ &;[ is placed before the interval of the
zone [x;_1, ;[ then the corresponding entry in Il(s) is zero. Notice also that, the
singularities at s = —¢; — ¢a — ¢3 £ ¢4 are not poles, and that © and II can be
extended to be analytic on C by taking the limit in these points.

We will now turn to the reduction of the tunnel dynamics to a finite di-
mensional system. The transfer matrices ©(s) and II(s) are approximated by
stable real-rational transfer matrices @™ (s) and II"V(s), such that the maximum
approximation error across frequencies

e |- L 1, o
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is small. Furthermore, the error must be particularly small at low frequencies,
since this frequency area is critical for good tracking performance.

The construction of OV and IV is carried out in two steps. In the first step
we construct a preliminary, finite dimensional system. Each interval [x;_y, z;] is
divided into a number subintervals of equal length, A, and over each subinterval
the temperature profile 7 (¢, -) is approximated by its average value. Consider now
the nth subinterval, [(n — 1)h, nh], and assume that this interval is contained in
[2;_1, z;] where, for simplicity, we let zy = 0. We introduce the notation

Y = {_61_62 “ } (2.32)
C3 —C3
M = et 45 (7€) (2.33)
1 nh
Tin(s) = E/( l)hﬁ(s,x)dx. (2.34)

After taking the Laplace transform and integrating, the transport equation (2.13)
leads to

Frn(s) = (sT = %)~ (—%ﬁ(s,nh) + 5715, (n = Dh) + { I ] ﬁé(s)) - (2:35)

We use the approximation

#1(s,nh) & Fia(s) + M (%1(5, (n—1h) + 57" { 601 } ﬁ-f(s)) : (2.36)

For the dynamics of the average value 7; ,,(s), when this average is taken over an
interval contained in the ith zone, we thus obtain in the frequency domain

(51 —Y4 %1) Frn(s) %(1 — M)#i(s, (n — 1)h) + (I — %MZ‘I) { N ] #(s).
(2.37)

The approximating, finite dimensional system can now be constructed by subse-
quently applying the approximation (2.36). This approximation can be regarded
as a modification of the well-known average approximation, which would be ob-
tained by putting M = 0 in (2.36). The reason for using (2.36) rather than the
usual average approximation is that the resulting rational transfer matrix fits the
transfer matrix [O(s)" TI(s)']" exactly in steady state (s = 0). With a discretiza-
tion grid of 8 subdivisions per zone, we found that the approximation in H,,
norm was satisfactory. This was evaluated by performing a u-test on the linear,
infinite dimensional plant with the controller applied, see section 2.4.5.

In the second step the finite dimensional system is further reduced using
optimal Hankel norm approximation, see appendix A.2 for definition, and see
Glover[25] or Green and Limebeer[30] for background material. The idea with
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Figure 2.4: Structure of robust performance problem. With nominal subsystems,
perturbations, weighting systems, reference signal r and tracking error z;.

this step is to obtain a system of lower order but with roughly the same be-
haviour when considered as an input-output map. Hankel norm approximation
is considered as one of the most efficient methods for model reduction of finite
dimensional linear systems.

The remaining subsystems given by the equations (2.15), (2.16), (2.17), are
more straightforward to handle. The delays in (2.15) and (2.17) are replaced by
the first order Padé approximation

[S]

—sT
+ sT

e

(2.38)

[}

in order to obtain good approximation for low frequencies.
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2.4 Controller Synthesis

The control problem to be solved is a tracking problem. We want the beer tem-
perature profile along the belt to follow a pre-specified profile, with a temperature
tolerance of 1 °C, even though we do not have a perfect model of the plant. The
H.., method is appropriate for such a controller design because here the track-
ing problem and the robustness requirement can be formulated in the standard
framework. In the design process one must specify how large uncertainties one
will allow while demanding that the system still shows satisfactory performance.
The synthesis algorithm will then give one of two answers: It will either result
in a controller that is prepared for the worst possible uncertainty of the speci-
fied size and structure, or, as the second possibility, the algorithm will produce
the warning that the resulting controller is not guaranteed to meet the given
requirements.

In figure 2.4 it is shown how we describe the physical plant as a nominal
system subject to model uncertainties, represented by perturbations {A;} and
frequency weights {W;}. The signals flowing from one subsystem to the other
are each a vector of temperatures, except for the control input u, which is the
power released in the heat exchangers. The disturbance signal w; determines the
tracking trajectory in such a way that the trajectory to be tracked is given by
W,r.

The controller synthesis may be split into four parts:

1. Specify the uncertainty structure.

2. Specify magnitude and spectral content of modeling errors.
3. Specify required performance.

4. Find the best possible H., controller for the enhanced system resulting from
items 1-3.

Once the uncertainty structure is chosen, we use this structure throughout the
design. Items 2 and 3 may result in conflicting desing objectives, as there is a
trade-off between allowing large modeling errors and requiring high performance.
If the H,, controller of item 4 is not satisfactory, we must adjust the choices made
in items 2 and 3.

2.4.1 The Uncertainty Structure

The first decision to be made in an H, design is to specify the uncertainty struc-
ture. We have chosen to use a relatively high number of uncertainty components,
as shown in figure 2.4. The perturbation A, has five components, while Ag,
A4, As have each eight components, which makes 29 independent perturbations.
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The high number of perturbations turned out to be critical for the synthesis algo-
rithms. In order to justify our choice of uncertainty structure we list the following
key observations.

1. The measured output y and the temperature profile that is supposed to
follow a given trajectory do not coincide. In a steady state situation there is
however some correlation between the two signals, and the major source for
this correlation is that they both depend fairly directly on the temperatures
75 in the upper tanks. This information is incorporated into the design by
placing the uncertainties WyA, and W5A5 as shown in figure 2.4.

2. The plant has an internal feedback since the water is led from the lower
tanks and back into the upper tanks. This feedback has an enormous influ-
ence on the behaviour of the plant. The effect of model uncertainties is also
influenced by this feedback, and it is desirable to specify the uncertainties
in such a way that the frequency weights can be chosen without taking
the influence from the feedback into account. The feedback induced by the
cross coupling of zones causes the plant to have a significant integrating
effect, and therefore the influence of this will be largest for low frequencies.

The clearest interpretation of the control problem as a worst case design is ob-
tained when all of the uncertainties are model uncertainties rather than exoge-
neous disturbance signals. Partly for this reason, two natural uncertainties are
omitted. Firstly, measurement noise is not included explicitely in our uncertainty
formulation. However, we have made sure that the frequency weight W, does al-
low high frequency disturbance to affect the measured output y. This does not
give an entirely satisfactory representation of measurement noise, so we therefore
rely on the inherent conservatism in the H, design to obtain robustness towards
measurement noise. Another uncertainty not considered explicitely is that the
temperature of entering bottles may vary in time. However, temperature differ-
ences will be largely reduced while the bottles are passing the first three zones.
We have therefore chosen, not to complicate the design further by modeling this
variation in temperature of entering bottles as an exogeneous disturbance signal
but, instead, to assume that a reasonably large tracking bandwith will enable the
controller to handle this uncertainty satisfactory.

2.4.2 Uncertainty Frequency Weights in the Synthesis

Each of the uncertainties in figure 2.4 has the form W;A;, where A; is a diagonal
matrix of perturbation systems. The assumptions made on the perturbations are
that each perturbation A; is linear, stable and normalized so that the inequality

[Aiz]l2 < Iz (2.39)
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holds for every L? signal z of appropriate dimensions. Given that A; is normal-
ized, the frequency weight W; must be chosen to shape the spectral content of
the modeling errors such that W;A; gives an adequate representation of the set
of uncertainties that the controller should be able to handle.

Concerning the frequency weights Wy, ..., W5 we make the following general
considerations. At low frequencies, the model is assumed to give a relatively
good description of the plant, and therefore the frequency weights should have
here a small magnitude. At high frequencies the model is poor, and most part
of the signals can be considered as being due to unmodelled dynamics or noise.
However, the modeling of heat transfer leads to a system where the dynamics are
well damped, and this is true also for the unmodelled dynamics. From a modeling
point of view it is therefore reasonable to let most of the weighting systems have
low magnitude also at high frequencies. This means that most of the weighting
systems naturally have their largest magnitude in between, in a middle frequency
range.

It turned out that our procedure for taking the structure of the perturbations
into account, see section 2.4.4, showed very little flexibility across frequencies.
This ment that in the case of W, we ended up using roughly the same magnitude
over the whole frequency range, see figures 2.5 and 2.6.

The perturbations A4 and Aj each have 8 independent components, one for
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each zone. The weighting matrix Wy(s) is lower triangular and Ws(s) is lower
block triangular, conforming to the structure of the transfer matrices ©(s) and
() respectively. In this way we let 16 independent perturbations account for all
uncertainty related to the tunnel. In particular, we assume a certain correlation
between uncertainties that are related to the same upper tank while affecting
different components of the tracking error z;.

The uncertainties WA, and W5Aj5 are very different in the way they affect
the system. W;5Aj5 affects the tracking error, which implies a direct constraint
on the obtainable performance. On the other hand, W5Aj5 does not affect the
dynamics of the nominal system and controller. WAy is not related directly to
performance, but the fact that it makes part of the internal loop of the plant poses
another severe problem for the controller synthesis algorithm. With respect to the
attainable y-value of the full order H,, controller there was a trade-off between
the magnitudes of W, and W5. When it came to the reduced order controller, it
was interesting to notice that this trade-off was changed significantly. With the
reduced order controller it was much harder to deal with a large contribution from
WiA4. As a consequence, it was necessary to take controller order reduction into
account when adjusting the frequency weights, thus complicating the iterative
design procedure.

As shown in figure 2.5 and figure 2.6, we have chosen the frequency weight
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W, such that the uncertainty WA, almost contains the approximation error that
arises when approximating the transport equation and the delay that models the
time that it takes for the water to fall into the lower tanks. Ideally, the uncer-
tainty W4A4 should cover the whole approximation error. This idea was used in
Bontsema and Curtain[10] in the control of flexible structures. However, in the
present problem we consider the problem of robustness against approximation er-
rors to be less critical than when controlling flexible structures, and we therefore
take the point of view that almost covering the approximation error is sufficient.
That this is indeed a sensible compromise is evaluated in the robust performance
test in section 2.4.5. Based on the same attitude, the uncertainty W3Ajs did also
not completely cover the approximation error.

The weight W5 was chosen such that W5sAs did clearly not include the ap-
proximation error. See section 3.2 for further remarks about the role of W5As.
The weight W, was given a very small magnitude at low frequencies, where the
assumption is that the steady state gain of the heat exchangers is well known
(and well defined). A large magnitude was specified for higher frequencies in
order to account for the error commited when linearizing the model of the heat
exchangers. See appendix A.6 for the precise details of the frequency weights.

As a simple way of describing the allowed inaccuracy of the model we per-
turbed some of the parameters and compared the bode plot of the variation of the
transfer functions. In figure 2.8 and figure 2.9 is shown the modeling error that
would follow from uncertainty in certain parameters, compared to a frequency
weight that is of larger magnitude than the one used in the synthesis. It is clear
from those figures that the magnitude of perturbations considered in the synthe-
sis accounts for only small variations in the plant parameters. However, due to
the inherent conservatism in the design, it is & priori likely that the controller can
handle larger variations in parameters. Another point worth bearing in mind is
that part of the modeling error is due to unmodelled dynamics. For example, the
density of bottles on the conveyor belt can vary in time, and this is not described
by simply varying some of the parameters of the transfer functions.

2.4.3 Performance Specification

The desired temperature profile of the beer along the tunnel is represented by
W,r. We have chosen 9 intervals over each of which we wish to control the
average temperature of beer. Therefore, W, is a matrix of dimension 9 x 1.
The desired performance level is specified through the static weight matrix W,.
When choosing W), it is necessary to bear in mind that, the tracking error z;(¢) is
measured in the Fuclidian norm and the desired H., controller is one that makes
the maximum amplification from any L? signal w; to the tracking error z; less
than 1.

The reason for letting the tracking trajectory depend on an unknown distur-
bance the way we do is to make the problem fit into the H., standard problem.
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This procedure is widely used, and is suggested for example in Francis[22]. We
are, however, using a different formulation of the tracking problem. This way
of implementing the tracking trajectory enables us to focus on robust tracking
in steady state, and on the frequency bandwidth of the tracking ability of the
system. Once the controller is designed, the idea is to let y2 be constant and
equal to 1 under normal operation.

The weight W is static. The idea is that the reference signal r = Wyw, should
be known on-line by the controller, and it would therefore seem appropriate to
simply let r be a component of the measured output y. Instead we put y, =
Wl[r w;]" = (1 —¢€)r+ew;, where the regularization parameter ¢ > 0 is introduced
for technical reasons. This is necessary in order not to violate assumption A2
of the ARE solution of the H,, problem, see appendix A.1. It turned out that
this regularization was even more critical when doing controller order reduction,
which step was ruined when choosing € smaller than approximately 0.05.

As cut-off frequency for the reference signal we chose 3-107* rad/sec. Notice
that we are demanding the whole vector of beer temperatures to follow a trajec-
tory of this bandwidth. For this to be possible, the bandwidth of the controller
must be much larger than 3-107*, which means that the cut-off frequency of the
reference signal gives no precise a priori information on how fast the controller
reacts, for example on step changes of the reference signal.

2.4.4 The H, Synthesis Algorithm

We will in this section briefly describe the algorithm used for finding an H., con-
troller. The system shown in figure 2.4 can be written on the form (2.18)-(2.20).
The perturbations A,, ..., A5 are removed, and each independent perturbation
is replaced by a component of the disturbance input w and the to-be-controlled
output z, as indicated in figure 2.7 We then define w = [w], w), w}, w}, wi]" and
z = |21, 25, 2%, 24, 2t). With 29 independent perturbations and 9 components in
the tracking error, we introduce the diagonal scaling matrices

A 0

_ ' | Iy 0 |10
0 A9

where all the diagonal entries of A are positive. A is to be determined as part
of the design, but until then we let it be the identity matrix. We partition the
scaled system as

z o D[GllDT_l D[Glg w
HRE T A

We also introduce the notation

F(G, [/() = G11 + GIZ([ — [X’Ggg)_ll’&,Ggl. (242)
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For our purpose, an H,, controller K for the scaled system is defined by the
property that the closed loop system F(G, K) is exponentially stable and

|\ DiIF(G, K)D;  w|;
sup

weL2(0,00;W),w#0 Hw“2

(2.43)

for the pre-specified positive number v where D; and D, are of the form (2.40).
Given that the perturbations A; are normalized according to (2.39), and that
W, and W, are chosen so that an acceptable tracking error is expressed by the
inequality
2]z < [Jwn]l2 (2.44)
for every L? signal Wy, then a satisfactory H, controller is one that yields (2.43)
with v < 1, for some diagonal matrix A of scaling parameters. This characteriza-
tion of a satisfactory H., controller is closely related to the robust performance
test that is the subject of section 2.4.5. Once the uncertainty structure and fre-
quency weights have been specified, the search for an H,, controller is an iterative
process, using the following steps which will be described in further detail below:
1. Construct an H,, control law using algebraic Riccati equation (ARE) for-
mulae.

2. Improve the set of scaling parameters by solving a linear matrix inequality

(LMI).
3. Reduce the controller order using Hankel norm approximation.

We have typically carried out these steps in the order 1-2-1-2-1-3. The aim
of these steps is thus to obtain an H., controller with v < 1. If the smallest
possible v is larger than 1, we can choose to relax the robustness requirements
by decreasing the magnitude of Wy, W5, Wy, W5 in some cricical frequency band.
Alternatively, we can relax the performance requirements by specidying a lower
cut-off frequency of Wi or by reducing some entries of W,.

In the following we give a detailed description of each of the steps 1-3.

1. An H, control law is found using the ARE formulae in Glover and
Doyle[28]. Under some technical assumptions (see appendix A.1) which are sat-
isfied with our system formulation these formulae result in an H., controller for
a given v > 0 and a given pair of scaling matrices D; and D, if such a controller
exists. The dynamic order of the controller is equal to the dynamic order of the
system, including frequency weights.

2. The purpose of scaling the inputs w and outputs z is to make the H,,
problem solvable for a smaller value of 4. The use of a diagonal scaling matrix
does not affect the inequality (2.39), and therefore the robustness issue of the
control problem does not change. Let now

d$ -
= = A+ Bu (2.45)

2z = Co+ Dw (2.46)
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be a state space realization of the closed loop system F(G, K). The following
condition can be derived as a scaled version of the so-called bounded real lemma,
see Boyd et al.[11]. Given v > 0, if there exists a symmetric positive definite
matrix S and a diagonal positive definite matrix 7' satisfying the LMI

A'S 4+ SA SB ST I o
_ 9 = =
B'S _7[(1);] +71{D,H0 T][D Cl<0 (247

then K is an H,., controller for the scaled system, where the scaling matrices are
obtained by taking A = T"/2. This condition was used for improving the set of
scaling parameters.

It turned out that the algorithm for solving the LMI (2.47) required more
computer memory than there was available. We therefore tried to reduce the
dimension of the closed loop system by Hankel norm approximation prior to
solving the LMI. However, this approximation turned out to be too rough, and
progress was unsatisfactory. As an alternative approach we reduced the num-
ber of perturbations using an ad-hoc approach before applying the Hankel norm
approximation. This allowed us to use a higher order of the Hankel norm approx-
imation of the closed loop system, and further progress in selecting appropriate
scaling parameters was made. This ad-hoc procedure is described in section 3.5.

The iteration of items 1 and 2, between finding an H., controller K and a
pair of scaling matrices D; and D, is known as D-K iteration, although it is more
common to let D; and D, be frequency dependent in order to obtain flexibility
across frequencies and use an algorithm based on p analysis to find these, see
Packard and Doyle[48], and Balas et al.[33]. Unfortunately, the use of frequency
dependent scaling matrices leads to a significant increase in the order of the scaled
plant, and this would be potentially problematic in our case.

3. Since the dynamic order of the controller given by the ARE formulae is too
high for practical implementation, we consider here the problem of finding an H,
controller of lower order. The algorithm for seeking the reduced order controller
is less direct than in the case of the full-order controller. Even if there exists an
H,, controller with a given ~-value and of a given order, there is no guarantee
that we will find such one. The idea of the algorithm is that the reduced order
controller K should perform roughly like the full order controller K in the H,,
norm. We therefore consider first

| DI F (G, K)YDIY — DiF(G, K)YD ||
= ||IDiGho(T — KGyy) ' K Gy D' — DiGhy(I — KGay) ' K Gy DYoo

Unfortunately, the reduced order controller K appears in this expression in a non
linear fashion. By calculating

d .
| DiF(G,K +a(K - K))D}"
(8%

a=0
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Figure 2.7: a) Diagram for the robust performance test with the enhanced, infi-
nite dimensional plant P, perturbations A,, ..., As, scaling matrix A, reference
signal wy, tracking error zy, and reduced order controller K. b) Corresponding
scaled plant considered in the H,, synthesis.

= D[G]Q([ — [(G22>_1([/A( — [{)([ — GQQ[X/)_IGQ‘[ Dr_l, (248)
we find the approximation

|DIF(G, K)D7t — DJF (G, KDY o
|| DiGha(T — KGyy)™ (K — K)(I — G K) "Gy D7 |eos  (2.49)

which is of first order in K — K. The idea of using a first order approximation
is well established, and was suggested for example in Andersson and Liu[l]. The
search for a K of a pre-specified order making (2.49) small is carried out using
frequency weighted Hankel norm approximation, using the algorithm given in

Zhou et al.[63, th. 19.9, lem. 19.11], and Lancaster and Tismenetsky[42, sec.
12.3].

2.4.5 Robust Performance Test

Prior to applying the controller to the physical plant, extensive simulations is
the best test available. However, the H., method comprises a more theoretical
test, the robust performance test. The robust performance test that we use
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was developed for finite dimensional systems see e.g. Packard and Doyle[48] or
Zhou et al.[63]. The test is expressed by the following lemma, which gives a
sufficient condition for robust performance of the system shown in figure 2.4, in
the case where all subsystems, including the perturbations A;, are linear, time
invariant and finite dimensional. The test involves scaling matrices similar to
the ones used in the synthesis, except that we can here let them be complex and
frequency dependent. Put

Aw) = ’ Df<‘”>:[]9 A(wﬂ’ D’“(“):{l A<w>}'
(2.50)

Lemma 1 Consider the system shown in figure 2.4 where the H., control law
u = Klyi,yz] has been applied. Assume that the closed loop system F(G, K)
satisfies the condition

sup inf & (m(w)f(a, A’)(M)ﬁ,(w)-l) <5 (2.51)

weR A(w) -
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Figure 2.10: Robust performance test for the linear distributed parameter sys-
tem controlled by the 16th order controller, using frequency dependent scaling

matrices: upper and lower bounds for p.

where A, Dy, D, are as defined in (2.50) and & denotes the largest singular value.
Assume furthermore that the perturbations satisfy ||Aile < % Then the per-

turbed system is exponentially stable, and there holds
Iz1]l2 < llwil2 (2.52)
for every L? input signal wy.

The value of 7(-) in (2.51) is in the literature called an upper bound for u. For
the precise definition and interpretation of p, the reader is referred to Packard
and Doyle[48]. The lower bound for p, likewise show in figure 2.10, has the
interpretation that, the closer the two bounds are together, the more precise is
the information that the test gives about how well the controller handles linear,
time invariant perturbations.

We use this test for the case where the system as well as the perturbations are
exponentially stable Pritchard-Salamon systems (see appendix A.5) and where
all input and output signals have values in finite dimensional spaces. This can be
justified by combining arguments from Zhou et al.[63, sec 11.3] with robustness
results for infinite dimensional systems, see e.g. Curtain and Zwart[18, corr.
7.2.2]. The substantial leap of faith that we make in this test is thus to assume
that the modeling errors are adequately represented by the linear, time invariant
systems W;A;.
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The full-order controller of section 2.4.4 is designed so that the robust per-
formance test is satisfied for the finite dimensional nominal plant. However, we
have used controller order reduction, and furthermore, we consider the infinite
dimensional system as a more accurate model. It therefore makes sense to carry
out this test separately. The test is carried out in frequency domain, so we use
the transfer function of the infinite dimensional system, enhanced with frequency
weights, and controlled by the reduced order controller K of section 2.4.4. Fortu-
nately, the test is computationally simpler than the synthesis algorithms, and this
is what allows us to let the scaling matrices depend on frequency. With this in-
creased flexibility across frequencies, we can specify a relatively larger magnitude
of modeling errors at high frequencies than we did in the synthesis.

The decision of using constant scaling matrices in the synthesis and frequency
dependent ones in the robust performance test was based on the computational
feasibility of the two alternatives. The use of frequency dependent scaling ma-
trices guarantees robustness against linear time invariant perturbation systems
which 1s qualitatively a very restricted class of perturbations. However, in the
finite dimensional case, Poolla and Tikku[50] gave a result concerning slowly
varying perturbation systems.

2.5 Numerical Results

The controller synthesis was implemented in Matlab[34]. Tasks like Hankel norm
approximation and solving the H, problem were carried out using the commercial
toolbox [33], while the linear matrix inequality (2.47) was solved using the non
commercial toolbox [24]. The computer platform was a workstation with 96 MB
of memory. Additional memory would have been an advantage in the solution
of the linear matrix inequality, but on the other hand the algorithm is of high
complexity with respect to memory requirements, which means that the amount
of additional memory required for obtaining significant progress may be very
large. Simulations were implemented in the C language.

Two of the components of the tracking error were modified in order to make
the controller behave better. The third and fifth components (see figure 2.2) of
the output vector which is intended to represent the beer temperature profile
in the tunnel were chosen as a weighted average of the glass temperature and
beer temperature rather than simply the beer temperature, for the following
reason: When simulating step responses it was observed that the control signals
of the fifth heat exchanger had a short peak time and a very high peak value
in the beginning, but eventually took negative values, which is an unrealistic
situation. Also the glass temperature showed an overshoot. On the other hand
the steady state error was not negligible. It turned out that there was a trade-off
between obtaining small steady state tracking error and a short peak time of
the control signal, and it turned out to be possible to adjust this trade-off. In
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order to make the control signal behave more nicely, the idea was to force the
glass temperatures to exhibit less overshoot. The means to obtain this was to let
the third and fifth components of the tracking error contain a contribution from
the glass temperature as well. Notice that these components of the tracking error
represent temperatures at the end of the fourth zone and somewhat in the middle
of the fifth zone of the tunnel, respectively, see figure 2.2. The background for
choosing this procedure is the well known property of H., controllers that they
often show only little overshoot in the to-be-controlled variables during a step
response. Now, it can be argued that, the temperatures of sprinkled water are
already part of the to-be-controlled output of the H,, problem, because of the
perturbations Ay and As, but it turns out that this does not prevent the overshoot
behavior, because of the scaling parameters ;.

The order of the controller was chosen sufficiently small so that the controller
became numerically tractable. An adequate criterium turned out to be that poles
of a magnitude significantly larger than that of the others should be removed.
On the other hand, the order of the controller was chosen high enough so that
the sacrifice of the robust performance property of the full order controller was
not too large. We here accepted an increase of the v value of 5 pct. relative to
the v value of the full order controller.

Ideally, the upper bound for g shown in figure 2.10 should have the maximum
value 1, but a slightly larger value is not terrible. In fact, insisting on a maximum
value of 1 makes the iterative design procedure much more tedious when controller
order reduction comes into play with its not easily predictive performance. Also
the shift between designing for the finite dimensional plant and testing for the
infinite dimensional plant makes it more difficult to make sure that this maximum
value is close to 1.

An important tool in every one of the steps described in section 2.4.4 was
Hankel norm approximation. Problem size was problematic in every step, but
satisfactory results were obtained by reducing the order of the relevant systems
using Hankel norm approximation, which in the case of solving the LMI (2.47)
was combined with the method described in section 3.5.

A remark about problem size: The tunnel dynamics were first reduced to
the order 128 using the modified average approximation, and then to the order
50 using Hankel norm approximation. Combined with the remaining dynamics
this led to an overall system, including frequency weights, of the order 139. This
system was reduced to the order 75 before applying the Riccati equation formulae,
leading to a controller of the order 75. This controller was ultimately reduced to
the order 16. When solving the LMI (2.47), the closed loop system of the order
75+75=150 with 30 inputs and 38 outputs was first reduced to a system with 18
inputs and 26 outputs using the procedure of section 3.5. This system was then
reduced to a system of the order 27 using Hankel norm approximation. Thus the
LMI was solved for a system of the order 27, with 18 inputs and 26 outputs and
17 scaling parameters.
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Figure 2.11: Poles of the 16th order controller.

Usually, when using Padé approximation of time delays for the purpose of
controller design one should bear in mind that they produce zeros in the right
half plane. Fortunately, in our case it seemed that these zeros were so far away
from the origin, and the system so well damped, that these zeros did not have a
significant damaging influence on the design.

2.5.1 Simulations

Simulations were carried out using a numerical implementation that is more ac-
curate than the one used in the controller synthesis. For the discretization in
time we used a fourth order Runge-Kutta method, see Lambert[41]. The delay in
(2.15) and (2.17) was implemented using the second order Padé approximation

T 12 — 6sT + (3T)2
12 4+ 68T + (371)2.

-5

(2.53)

The heat exchanger dynamics (2.16) was replaced by its nonlinear counterpart,
see (2.5). The initial value of the temperature profile of equation (2.13) was
approximated by average values, and the numerical integration was carried out
by combining the method of characteristics and the Runge-Kutta method, see
appendix A.3 for details.

The simulations are all step responses, since this is a standard way of demon-
strating the properties of a controller, although a step response with zero initial
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Figure 2.12: Step responses for the control input signal, with 16th order con-
troller. (—) Step response for 4th heat exchanger. (—-) Step response for 5th
heat exchanger.

condition is clearly unrealistic in the present application. What would be realistic
is the problem of reaching the desired temperature profile, starting from another
profile that is close to the desired one. However, we find that a step response
starting from zero initial condition does demonstrate some intrinsic characteris-
tics of the controller, like robustness and the peak time of the control signal in the
case of a step change in the reference signal. Figure 2.12 shows that the control
signal has a large overshoot in the beginning, where the peak is found at ¢ = 20
seconds for the 5th heat exchanger and at ¢ = 125 seconds for the 4th heat ex-
changer. Figure 2.14 shows that also the temperatures in the upper tanks exhibit
an overshoot. Figure 2.13 shows the absence of overshoot in the most important
temperature, namely the beer temperature in the last subinterval of zone 5 (cf.
figure 2.2). The fact that the step responses behave like it could be expected
from a stable, linear system shows good robustness against the nonlinearity in
the heat exchanger dynamics (cf. equation (2.5)). The steady state error in this
simulation was 0.1 °C, see section 3.2 for a futher remark about this matter.
When regarding the step response of the beer temperature in figure 2.13, it
is useful to bear in mind that the time that it takes for each bottle of beer to
pass a single zone is approximately four minutes. The step response of figure
2.13 has a characteristic bulge at approximately four minutes. In figure 2.14 the
temperature in the fifth upper tank has a peak after approximately one minute,
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Figure 2.13: Step responses for the 6th component of beer temperature profile
(see figure 2.2). (—) Step response with 16th order controller. (—-) Step response
with open loop control. (--) reference temperature.

and it seems that the influence from the fourth zone is effective about four minutes
later when another peak is shown.

Figure 2.15 demonstrates the robustness of the controller. When altering two
of the parameters by 10 pct., the performance requirement of maximum 1 °C
deviation from the desired temperature in steady state was still satisfied. This
observation is striking in view of the Bode plots of figures 2.8 and 2.9 where it is
shown that this deviation of parameter values leads to a modeling error which is
much larger than what was accounted for in the robust performance test.

2.6 Discussion

The continuous time linear control law derived in this section is not necessar-
ily ready for implementation. For implementation using a digital computer, a
discrete time control law is needed, and we have not adressed this issue. The dy-
namics of the system are very slow, so this should not give rise to any problems.
Another issue that we have not adressed is that a control engineer might prefer
to operate the heat exchangers in on-off mode, and whether or not our control
law can be converted to a succesful control law of that type would have to be
tested in simulations.
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Figure 2.14: Step responses for temperatures in the upper tanks, with 16th order
controller. (—) Step response for 4th upper tank. (—-) Step response for 5th
upper tank.

In the step response, the control signal of the 5th heat exchanger had a very
large peak value. First of all, this probably means that reproducing the stepre-
sponse on the physical plant is unrealistic. On the other hand, the large peak
value of the control signal suggests that the control law might be suitable for
tracking moderate changes in the reference signal.

A possible alternative to our aproach is to model the whole plant in discrete
time from the beginning, given that the input signals are piecewise constant,
according to a pre-specified sample time. The transport of the conveyor belt
could be modeled in discrete time by a pure shift, and the remaining dynamics
of our continuous time model could be translated to discrete time using stan-
dard methods, see e.g. Friedland[23]. In this way the model of the transport of
bottles would be more precise than the one produced by the continuous time,
finite dimensional approximation of the transport equation, at least at sampling
instants. A problem related to this approach is that in our example, with eight
subdivisions per zone like in the continuous-time approximation, this implies a
sample time of approximately thirty seconds. Using model reduction techniques
it should be possible to reduce this sample time somewhat, but it does neverthe-
less seem inevitable that this type of purely discrete time modeling would lead
to a controller that reacts considerately slower than the one obtained from the
continuous time modeling. However, the system dynamics are well damped, so
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we are not in the position to give a qualified judgement about which modeling
approach will result in the better controller.

The question that is probably the most interesting to ask is, how does the
controller developed in this chapter compare with a Pl-based control strategy.
Unfortunately, we are not in the position to make this comparison.

A number of techniques from the H. method were used in the controller
synthesis. One purpose of this thesis is to demonstrate the usefulness of these
methods, and therefore it was disappointing to realize that the high complexity
of the numerical algorithms turned out to be a severe problem. In our case, the
remedy was ad-hoc modifications of the standard algorithms.

It is characteristic for the methods that computer algorithms play a large role
in the synthesis. The trial-and-error part of the synthesis was mainly concentrated
on selecting frequency weights for the design. This trial-and-error part was on the
other hand rather time consuming, which raises the question, whether this type of
design is recommendable if the fast development of a control system is an issue.
The description of the design process does identify a strategy for a controller
design, but the choices that must be made when adjusting the weighting systems
by trial-and-error are not always logical, in particular as the algorithm does not
handle every combination of frequency weights equally well, because of the lack
of flexibility across frequency of the scaling procedure.

Another interesting question is, whether it is really necessary to choose a
controller of an order as high as 16. The answer to this question is clearly no.
A lower order controller could be obtained by the same procedure, but with
different weighting systems, and the price would be to settle for a less robust
controller with a poorer tracking performance. By means of simulations it was
demonstrated that the 16th order controller is potentially much more robust than
what could be expected from the specified frequency weights. Therefore it might
be a good idea in a further development to require less robustness in order to
obtain a lower order controller.
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Chapter 3

More Details on the Controller
Design

In the previous chapter the procedure used for the design of a controller was
presented. In the present chapter we give some further details concerning the
analysis of the model, and we also describe an ad-hoc method that was used for
reducing the problem size at one point of the synthesis.

3.1 The Distributed Parameter System

We base the control synthesis on the formulation of a semigroup control system
which has the form

® (1) = et + Bulr). €0)=6 (3.1)
where A is the infinitesimal generator of a strongly continuous semigroup on a
separable Hilbert space H and B is a linear operator defined on the input space
U, which is a separable Hilbert space. In the controller synthesis problem also
an output signal y with values in a separable Hilbert space Y is specified, and we
can write

y(1) = CE(1) + Du(1) (3.2)

where ' is the output operator and D is the feed-through operator.

We have here intentionally omitted the precise assumptions on B, C', D, except
that they are linear. The simplest case is when these operators are bounded with
respect to H, i.e. B € L(U,H), C € L(H,Y), D € L(U,Y). Background
material on this class of systems can be found in Curtain and Zwart[18]. In the
more general situation where B and (' are not both bounded with respect to H,
the system is said to have unbounded input and/or output operators. We shall
here refer to results for such systems without going into details.
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In this section we will show that the linear model of the pasteurization plant
can actually be written in this formulation, and then take advantage of this
formulation to calculate transfer functions.

Let us first look at the state operator of the transport equation (2.13)-(2.14).
We use the notation

2:[_“1_“2 2 ] (3.3)

C3 —C3
Define the operator A by
Jw
(Aw)(t,z) = v + Yw | (¢, 2) (3.4)
x
Jw
D(A) = {w € (I*([ro, 2,]))" such that == € (L*([zo,]))?, (3.5)
x
w(t,z9) = 0 and w is absolutely continuous }.
In lemma 2 we shall state some useful properties of the operator A.

Lemma 2 Let A be the operator defined in (3.4)-(3.5). Then

1. A is the infinitesimal generator of a strongly continuous semigroup S(t) on

(L*([x0,xm]))* and there holds

IS(0)] < elermesli, (3.6)

2. The semigroup S(1) is nilpotent.

3. The spectrum of A is empty.

Proof It is enough to show that the perturbed system operator A—1I|cy—cs3|/4
generates a strongly continuous contractive semigroup, and for this we use the
Lumer-Philips theorem, see Pazy[49, th.4.3]. We will first show that A — (|ez —
cs|/4)1 is dissipative, which follows if,

1
Vw € D(A): Re(w, (A — Z|cg — 3| D)w) (12w om]))? < 0. (3.7)
We find
(w, (A= (le2 — c3|/4)[)w>(L2([xo,mm]))2

= el + <w, (%(z 43— %|c2 - c3|[> w> . (3.8)

(L2 ([z0,2m]))?

The first term on the right hand side of (3.8) is clearly negative semi definite, and
for this to be true also for the real part of the second term, it is sufficient that

39



the eigenvalues of (¥ + ¥')/2 + I|e; — ¢3]/4 are non positive. The corresponding
characteristic polynomial is

—CI—CQ]—i|C2—C3|—)\ %(162—‘_63)
5(C2+C3> _CS_Z|C2_CS|_)\
R R Tl A | R S B’ A
= -|-§ €+ Ctc3 5 1 €l T €2 T C3 5
1 1
+E|CQ - 03|2 + 1(01 + ¢+ e — ez — esl)|ea — es| + s, (3.9)

so the eigenvalues are negative. It remains to show that
R(I = (A= (le2 = es|/4) 1)) = (L*([wo, zm]))*, (3.10)

Le. Vf € (L*([xo,2m]))* Jw € D(A) such that (1 + |z — e3]/4)w — Aw = f.
Indeed, for every f € (L*([xo, zm]))?, w given by

1 x €r—8
w(z) = ~ / (S Heames /D) () (3.11)

v
isin D(A) and ((1+4|cz—e3|/4)] —A)w = f. According to the Lumer-Philips the-
orem it now follows that A is the infinitesimal generator of a strongly continuous
semigroup satisfying (3.6).

2. The Cauchy problem

Jw Jw

il + Yw, (1,2) €]0,00[x]|xg, Tm| (3.12)
w(t,0) = 0, t €10, 00] (3.13)
w(0,z) = wo(z), T €|xo, Tm| (3.14)

has the explicit solution
w(t, z) = e*wo(z — vi)H(z — 2o — tv), (3.15)

where H denotes the Heaviside step function. For every initial condition wq this
solution is zero for ¢t > (x,, — x¢)/v, and since (3.15) can be written as

w(t,z) = (S(t)wo)(z), (3.16)

we conclude that the semigroup S(¢) is nilpotent.

3. (follows [19].) For the spectra o(A) and o(S(¢)) we have (see [19, p.264])

7t a(S(t)). (3.17)
For the spectral radius r, of S(t), t > 0 we have
ro(S(1) = lim |(S(1)"]['/". (3.18)
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Since S(t) is nilpotent, the spectral radius of S(t) is zero, and we conclude that
the spectrum of A is empty. a

The inequality (3.6) implies that the Laplace transform is well defined at
least for Re(s) > |c; — ¢3|/4. After Laplace transform the transport equation
(2.13)-(2.14) leads to

fu%(s,:ﬂ) = a 0362 s —c§2— s ’?1(8,33) + E?:l |: X (()x) :| %(S)
T1(s,zg) = 0,
(3.19)
where x* denotes the characteristic function of the interval (wim1,x;).
The following observations allow us to calculate the relevant transfer functions
explicitely. The eigenvalues of ¥ are real and given by (—¢i — ¢z — ¢3 £ ¢1)/2,

where

Cq4 = \/(Cl + Co + C3)2 — 4C1C3. (320)

It can be shown that ¢, is a real number, and furthermore there holds the following
inequalities:

4> ler+cg—e3| and ey > |ea+e3— ¢ and ¢4 < ¢ + 3 + ea. (3.21)

A diagonalization of X is given by

(3.22)

F_IEF: |: _%<CI+CQ+CB_C4> 0 :|

0 —2(er+ ezt es+ )

where

r = {%( @ e ] (3.23)

—c1 — 3+ 3 — ¢4) 15(—01 — ¢yt cs+ ca)
L|: 1%(014-62—03—04) —02:|.
2

(—c1 —ca+e3—ca)

r-' = (3.24)

C2Cy

Each entry of the transfer matrices describing the input-output relations of
the tunnel is related to only a single component of 75. We therefore calculate, for
each1=1...8,

Alsa) = (=47 | O | @)

1 [* e—(c1teates—ca)(z—y)/2v 0 ,
- ; /1.\0 r |: 0 e_(01+02+03+c4)(x—y)/2u I

T [ X () } H(s)dy.  (3.25)
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For z < ;_4, (3.25) leads to 71(s,z) = 0. For z;_y < z < x; we find

[ 10 } 71(s, )
_ [ ci(—e1 —ca+ 3+ ca) (1
(c1+e2 43— ca+28)eq

Cl(Cl +cy —c3+ 64) (1 _ e—(cl+02+03+C4+23)(:L‘—:L‘i_1)/2’u) 7A_i(5>
(1 +eatesteat2s)cq ;

14 eates _c4+2s)(.7:—1‘i—1)/2U) (3.26)

and

[ 01 }ﬂ(s,x)

_ |: 2¢yc3 (1 _ e—(c1+c2+cs—C4+23)(x—x,‘_1)/2v> (327)
caler + e2 4 ¢35 — ca + 29) ’
_ 2cic3 (1 _ 6—((:1 +c2+(:3+(:4+2s)(x—xi_1)/2u):| ,ZA_SZ(S)
ca(cr + e + 3+ ¢4 + 25)

According to (2.22) we can now calculate
Oii(s)75(s) |
= ay(z; — 2;20)7(s) +ag/ [ 1 0]#(s,2)ds

Ti—1

4i ci(—e1 —ea+ 3+ ¢y) <$'_$' _21)(1—(5(362-—362-_1)))%2-(5)
latete—cat2s)a T ateate—atls

: - 20(1 —n®(w; — i ai
+ai 01(61 + ey —c3+ 04) <$Z —riq— U( n (33 € 1))) Tg(s)
(c1+ 24 ¢+ ca+2s)eq c1+catestea+2s
+ dy(w; — xina)Fi(s), (3.28)

which gives us (2.28). Likewise, we calculate
. 1 [
Ii(s)7s(s) = E/ [ 0 1 }ﬁ(s,x)ds (3.29)

in order to obtain II;;(s) in the case that the jth component of the tracking error
is calculated over an interval in the ith zone, leading to (2.30). For z; < z, (3.25)
leads to

[ 10 ] T1(s, x)
_ ci(—c1 — ey + ¢34+ ca) (3.30)
(c14 o+ e3—ca+2s)ey .
(e—(c1+c2+03—C4+23)(1‘—x,‘)/2v

_ (’_(cl +eotezs—cat2s)(z—zi1 )/21})

ciler + e —es+ )
(ec1+ 2+ e+ ca+2s)eq
(e—(cl+02+03+C4+23)(z‘—xi)/2v -

e—(cl +eategtea+2s)(z—miq )/21/)] ,f_z(s)

5
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and

[ 0 1 ] 71(s, x)
= ik (3.31)
ca(er + e + 3 — ¢4 + 25) '
(e—(cl +egteg—ca+2s)(z—z;)/2v

- e—(q +eateg—ca+25)(z—miq )/QU)

261 C3

a ca(er + ¢ + 3+ cq + 2s)
(e—(cl+CQ+C3+C4+28)(£L‘—£L‘Z‘)/2’U

- e—(cl+02+03+04-|-25)(ac—aci_1)/21/)] Ai(s)’

s
leading to ©j;(s) and I1;;(s) given by (2.27) and (2.29), respectively.

For the linear system made up by the interconnection structure shown in figure
2.4 the technical problems with respect to well posedness are relatively easy to
handle. We have chosen to use here the class of Pritchard-Salamon systems
(see appendix A.5) in order to make sure that the overall system is well posed,
and furthermore it allows us to appeal to certain robustness results. This class
has the nice property that two Pritchard-Salamon systems in cascade is again a
Pritchard-Salamon system, and the same is true for the sum of two such systems.
It contains linear systems on the state space form (3.1)-(3.2) with bounded input
and output operators, as well as systems with some degree of unboundedness
in the input and output operators. For background material, see Pritchard and
Salamon[52], Curtain et al.[16], Curtain[13] and Van Keulen[59].

The linear model (2.13)-(2.17) is divided into four subsystems, and we here
refer to these by their transfer functions. The systems

(sT + ay) " ay e=*Tp (3.32)
(sI + ag)_lag e~sTe (3.33)

have state space realizations as Pritchard-Salamon systems, see Van Keulen[59,
ex.2.8] for an example that contains as a special case a realization of (3.32) where
the delay is placed after the first order system. A realization in the Pritchard-
Salamon class where the delay is placed first can then be constructed using a
duality argument, see Van Keulen[59, theorem 2.17]. The finite dimensional
system

(sT4+a;)™"b (3.34)

is also of Pritchard-Salamon type. Finally, the system with the transfer matrix
{ O(s) ] (3.35)

is also in the Pritchard-Salamon class, since the input and output operators are

bounded, see (2.13), (2.22), (2.23).
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The system has an internal feedback, where the loop transfer function is given
by
O(s) := (sl + ag)_lage_STDae(s] + ag>_1(13€_STE®<S>. (3.36)

For the system to be well posed with this feedback, we must make sure that
I — ®(oc0) is invertible. This is indeed the case, since ®(oc0) = 0.

The last property that we will show about the system is exponential stability,
i.e. the existence of positive constants M, a such that

IS < Me™™, (3.37)

where S(t) is the semigroup generated by the system operator. First, notice that
the systems (3.32), (3.34),(3.33) are clearly exponentially stable. This is also the
case for the system (3.35), since the semigroup of this system is nilpotent.

It remains to show that also the interconnection of these subsystems makes up
an exponentially stable system. Using the small gain theorem, see Curtain and
Zwart[18, cor.7.2.2], it here suffices to show that the loop (3.36) has the property

[9(s)]loo < 1. (3.38)

It is not hard to see that there holds

|(sT + a2)_1a26_STDa6(s[ + CL3>_16L3€_STEHOO =1. (3.39)

Thus, using the submultiplicaty property of the || - ||~ norm, it remains to show
that

[0l < 1. (3.40)

We show this property under the assumption that all the zones are exactly alike.
Under this assumption the special structure of our system means that it suffices
to show that the Euclidian norm of the first column of ©(s) is smaller than one for
all s € Ct. We know that ©(s) is the transfer function of an exponentially stable
system, and therefore the maximum of |©(s)| in C* is attained on the imaginary
axis. That |©4;(s)| attains its maximum in s = 0 is seen by considering (3.101),
where it is clear that all three terms of ©1(0) are positive, and that |@11(zw)| is
not increased by taking w # 0. To see that also |@9(s)| attains its maximum in
s = 0 we first carry out the following calculation with o > 0,

zi+h T;
/ e~ )@=/ gy dy (3.41)
zi—1+h Jri1

T; r;+h
_ / / e~ @)=Y gy
ri—1 Jri_1+h

T; =Y
(~(ats)h/e / / =@tV dy
Ti—1 Y Ti—1—Y
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0 Ti Ti—Ti—1 Ti—T
_ ek ( / / e~ oy dr / / e‘(a*'s)T/”dydr)
—(zij—zwi_g) Jzi—T1 0 i1

e—(a‘l's)h/v/ S (x; — xi—s — 7) cosh((a + s)7/v)dT. (3.42)
0

Notice that we can write

O (s) = ager(—cr —ea + 3+ ) / / e_(cl+cQ+cs_c4+2s)(x_y)/gvdydx

2v Cyq

&

+aécl (Cl +e—c3+ C4> /-T'z /m e_(cl+02+cs+c4+2s)(x—y)/2vdydx (343)

2'UC4
We can put h = 2y — z¢ and use (3.42) to obtain
@21(;(.0)

aéa(—q —Ccg+ 3+ 04) e—(cl+02+c3—04+22w)(1‘1—x0)/’u (3 44)
2v¢y ’

/ ) (2; — 21 —T)cosh(—(c1 + 2+ 3 —ca + 2€w)7/2v)d7'
0

7 N
a5Cy (C] +Cy — 3+ C4) e—(c1+c2+cs+C4+2iw)(r1—z‘0)/v
2v¢y

/ o (x; —xi1 — 1) cosh(—(c1 + 2+ ¢35+ ca + QEM)T/QU)dT
0

It is now easy to see that also |© (iw)| attains its maximum at w = 0. The same
is of course true for |03 (1w)|, etc. For s = 0 we find, using (2.28), (2.4), (2.25),
(2.26)

(cr+e24 35— cq)eq
1 T
asei(er + ¢a — ¢35+ cq) / 0
_ (2 — u)di
(14 e+ es+ea)ea Sy 7 = y)dy
and, using (2.27), we find for j > 1
©,1(0)]

1

malaz ot ot [ (O -y - ) dy (346

(c1 4+ c2+ ¢35 —cq)eq

(J,lc(c +cy—c —I—c) 1
* Ecll +102 +263 -1-304>C;1 / (no(xj_] —y) ="z = y)) dy.
1

Now, with the assumption that the zones are exactly alike, we have al = - -+ = af,

10 )
On(0)] = 1- aici(—cr — x4 ¢3+ cq) / Co(l‘l —y)dy (3.45)

and we obtain

8 1 x

—c— Gt et !
Slon0) = 1- Bz etatal Mg
j=1 Zo

(er+e24 ¢35 —ca)eq
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_0%01(01 + e — s+ )

(ecr+e2+ e+ ca)eq

/xl (s — y)dy (3.47)

which, by (3.21), is clearly smaller than 1. We are now in the position to establish
the estimate

1©(8)]lo0 = 10.1(0)]2 < Z ©,1(0)] <1 (3.43)

from which the exponential stability follows.

3.2 More Details on Frequency Weights

In this section we give a more detailed description of the process of choosing
frequency weights in the design, to complement the description in section 2.4.2

The first choice of weighting systems should be based on the anticipated model
uncertainties and pre-specified performance requirements. These selected weights
may not lead to a suitable controller, but a nice feature of the H,, method is that
it provides some constructive indications concerning this feasibility matter even
before carrying out simulations.

The adjustment of the frequency weights was done by trial-and-error, and as
the main indicators of the required adjustments we used a singular value plot
and the worst case perturbation in steady state. The singular value plot shows
whether robust performance is obtained with the present controller and for the
present set of frequency weights. The peak of this plot determines the critical
frequency, at which the largest singular value of the close loop transfer matrix
should be smaller than 1.

The worst case perturbation calculated in frequency zero is useful in order
to determine whether the worst case perturbation in the design is relevant for
the physical plant. Ideally the worst case perturbation should be (block-) diag-
onal, but in practice the main concern is to make sure that it is not excessively
dominated by entries outside this diagonal, otherwise the worst case schenario is
irrelevant for the plant. The scaling matrix A was introduced in order to avoid
such a situation, but it can happen that the effect of scaling is inadequate. In
that case the remedy can be to adjust (diminish) the magnitude of some of the
weighting systems so that the algorithms are able to find a scaling matrix A such
that the off-diagonal domination is diminished.

It seems to be debatable, whether or not it is necessary to take the pertur-
bation Aj into account in the H,, synthesis algorithm. Once the controller is
applied, As will be affecting only the tracking error. Thus, neither the dynamics
of the nominal system, nor the measured output y is affected by As. It there-
fore seems plausible to presume that including A5 and choosing the performance
weight W, to match a tracking error of 1°C will lead to roughly the same H.,
controller as the alternative, omitting A5 and choosing W, according to a smaller
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tracking error. This simplification would allow us to remove ws and z5 in section
2.4.4, and thereby reduce the dimension of A. Since the number of perturbations
is critical when selecting the scaling parameters A, it was of course interesting to
compare the two alternatives. As it happens, we obtained the better results by
including As, in the following respect: A priori, the H,., synthesis algorithm may
or may not result in a controller that yields zero tracking error in steady state for
the nominal system. Indeed, obtaining this desirable property is in our formula-
tion not a design objective, and there is no reason to assume that it is obtained
automatically. For our problem it turned out that, zero tracking error in steady
state was nearly obtained when Aj was considered also in the synthesis, while it
was clearly not obtained when Az was omitted in the H,, synthesis algorithms.

3.3 Discretizing the Transport Equation

In this section we derive the approximation leading to a real rational transfer
matrix to represent the tunnel dynamics in the H, synthesis algorithms.

The first step in the approximation of the transport equation (2.13)-(2.14) is
to partition each zone into subintervals of lenght h and approximate (¢, z) by
average values over each of these intervals. These average values are used as state
variables for a finite dimensional system, and we shall in the following derive the
dynamics for these such that the resulting real-rational transfer matrix fits the
non rational transfer matrices O(s) and II(s) up to a first order approximation
at low frequencies. For the sake of simple notation we let o = 0 and we consider
the nth subinterval [(n — 1)h,nh|, assuming that it is contained in the ith zone
[xi—1, ;). We use the notation

1 nh
';‘1,n(5) = Z\/ %1(8, x)d.r (349)
* J(n—1)h
R (3.50)
B C3 —c3 | '

After taking the Laplace transform, the transport equation (2.13) leads to the
relations

T1(s,nh) = e(E_SI)h/”ﬂ(s, (n—1)h)

b an @ [ 6] F 551
Fa(s) = %(2 — ST)T (e DY Y 2 (s, (n — 1)h)

(2 = sD)! (%(2 — sI)™" (eSaDh/v) 1) { h ] #(s13.52)

Tin(s) = (s]—E)_l

1
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(—%ﬁ(s,nh) + %ﬁ(s, (n— 1)h) + [ o } +;(s)> . (3.53)
The combination of (3.51) and (3.52) leads to

F(s k) = Fuals)+ (50 LS —sh)T (T - s1)™)

: <+1(5, (n—1)h)+ (S —sI)™" { 601 ] %;(s)> . (3.54)

Using the notation

M = Shv _ %Z_leZh/U + %2—1 (3.55)
we replace (3.54) by the approximation
T(s,nh) & 71 .(s) + M (ﬁ(s, (n—1)h) + y-t [ 001 ] 7°§(3)> ) (3.56)

By subsequently inserting (3.56) into (3.53) we obtain a finite dimensional sys-
tem given by matrices (AN, BN, CN, DY) for approximation the transfer matrix
[©'(s) TI'(s)]". We let p denote the number of subdivisions per zone. The zones
have equal length so that there are 8p intervals of length A along the tunnel. The
matrices of the approximation

[ gx(s) } = DN + ON(sI — AN)7' BN (3.57)
(s)
are the following.
R 0 0]
v — M) DY 0
AN = YI-MM 2(I-M) £—%I 0 : (3.58)
(7= MM |
BY = B(Is @ x)&1 (3.59)
where @ denotes the Kronecker product, and y € R2*! is given by
x=[1010 - --10] (3.60)
and
r [—2Mx~! 0 cee 0]
(I - M)ME! — FMY! 0
B=| Y(I-MM?%2' YI-M)MS™' I-:M%™' 0 | (3.61)
10— s |
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N = { oo ] (3.62)

where

N = ash(ls @ ') (3.63)
1
CNT e b (3.64)
1

and where CMT € R21% has in each row a single nonzero entry, with the value
1, according to the distribution of intervals over which the beer temperature is
controlled. With p = 8 subdivisions per zone, we have chosen to let the entry
1 occur in the columns {32,54, 64,70, 76,80,84, 96,128} respectively. The feed-
through matrix is

pr - [ dinefaite: =5} | (3.65)

3.4 Some Properties of the Approximation

As mentioned in section 2.3, The main property of the rational transfer matrix
obtained using the approximation (2.36) is that the non rational transfer matrix
[©' TT') is matched exactly in steady state. This property is proven in the present
section, and we also give an asymptotic estimate of the approximation error,
pointwise in the frequency s. We will in the following consider the entries of the
type (2.28). The remaining three types of entries, (2.27),(2.29), (2.30), can be
described in a similar manner.

The entry ©;;(s) concerns the temperatures right above and below the ith
zone. Letting the discretization intervals covering the ith zone be indexed by
U= {ps,...,pu}, we can rewrite (2.28) as

O,(s) = ai(mi—mi_l) (3.66)

+zl;ha; { i }Ir w(s)+§E(S>T<s)"‘p‘lﬂ<S) T { col}

where

(s+oz)h—(1—e_(a+s)h/">v
W(s) = (¥
0

0
(s+ﬁ)h—(1—6_(f6+s)h/” )’U
(s+8)%h

(3.67)
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(1 —e_(s"'“)h/”)v

= R Py — 0
2(s) = (+0)h (1=e=(4A8/2), (3.68)
(s+B)h
e—(a-}-s)h/’u 0
T(s) = 0 o= (B+s)h/v (3.69)
1—e—(sta)h/ 0
Q(s) = [ SBQ 1_6—(s+5)h/v] (3.70)
s+06

and where

C1+Cy+C3— ¢4

a = 5 (3.71)
B

c1+ e+ 3+
On the other hand, the finite dimensional approximation results in a rational

5 (3.72)

transfer function for approximating this entry, given by

@2-7(5) = ai(:v,;—;vi_l) (3.73)

AR EACES St IR

q€el® PpEU
p<gq
where
i ah+((1+;—h>6_“h’/”—;—h>v 0
v+(s+a)h)a
WV (s) = (ot (sF27F) (14 ) 3o (3.74)
i 0 (AR
R TS M
=N _ v+ (s+a)h
= (S) — (1_e—ﬁh,/v)(1+#>v (375)
L 0 v(s+B8)h
i (ah+u—ue"h/”)%-l—ah-l—ve_ah/v 0
TV(s) = vt (s+a)k (Bhtv=ve®/*) s 4phbv _gp (3.76)
L 0 v+(s+3)h €
B ah+(:—h—(1+:—h>6_“h/”>(s+a)h 0
N _ (v+(s+a)h)o
Q (9) = 0 ﬁh-l-(ih—(]+;—h)ﬁ_5h/v)(s+ﬁ)h (377)
L (v+(s+B)h)B

It is not difficult to see that ©;(0) — @g(@) = 0. We will not show that the
approximation converges in L., norm but merely consider the error pointwise in
s for s € Cy. As the grid is refined and 2 — 0 we have the following asymptotic
properties:

U(s) — WM (s) s

h2 - RE:
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I ™

YT(s)=TN —

()=TH) _ —s(s+a)
h? 2v?
ID M CIORE O
qeUt peut
p<gq
Q(s) — QN(S) . —s(s+ )
h3 303

\I/(é) 1
)

E(s) — 1

o _ 2 1 — e—(s+a)(xi—a:i_1)/'u>
2 Y (e))0P1 v(z; — o) v (
Y Yy s e .
q€eU* peut
p<gq

Q(s) 1

T

\TIN(S) 1
r

EN(S) — 1

’U2(1 . e—(s+a)(z‘i—xi_1)/v)

W Z Z <TN(5>)q_p_l - U(:E;:_CZ_I) - (s + a)?

h v

The approximation error can be written as

O,i(s) — @g(S) = hal |: (1) :| r (Z (lIl(s) — \I;N(s))

+ 373 (Es) = 2(s)) T(s)P70s)

q€eU! peui
p<q

+ 303 =) ((s) = TV(s) T s) (3.78)

q€eU" peut
p<gq

+30 3 TN (0 — () | T [ o } |

This allows us to conclude that the approximation error behaves like constant - h
as the grid is refined.
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3.5 Scaling Parameters for a Reduced Number
of Uncertainties

We now describe the procedure of reducing the number of perturbation compo-
nents. The idea is to reduce the number of inputs and outputs of the plant in
such a way that there is some hope that this will induce a situation where the
set of scaling parameters A that are suitable for the reduced plant will also be
suitable for the original plant, when some of the parameters are used for several
inputs and outputs of the original plant.

We consider the perturbation Ay (cf. figure 2.4). We will reduce Az =
diag(As1,...,Azg) to the perturbation Agy = diag(Ag,l, . ,Ag,g), so that three
components Asq,Asq, Azg are replaced by one single component /33’1. This
means that in the H,, problem the disturbance input w and the to-be-controlled
input z are each reduced by two components.

Assume that an H,, controller K has been found for the plant G, and denote
the closed loop system by M = F(G, K). Choose a critical frequency wy, and
let A(iwg) be a destabilizing perturbation' of minimal norm at this frequency,
defined as a complex matrix of minimal induced Euclidian norm that makes

det(T — A(iwy) M (iwy)) = 0. (3.79)
Assume that A(wp) is written on the form
A(iwo) = ¢’ (3.80)
where
b = [b1,-.., o bsry Bz bsss By - o (3.81)

W= (1,250, Vs, 033,034, ., s g (3.82)

where ¢ and 1 have 30 and 38 components respectively, indexed according to the
indices of w and z in section 2.4.4. This assumption is without loss of generality,
see Zhou et al.[63, cp.11].

We construct A from A(iwo) by replacing three columns by one single column
and three rows by one row, in the following manner,

A=) (3.83)

where

3.84
3.85

G1y- s P25, \/|¢3,1|2 + |bs2l® + [B3]% a4y bs8]
ley e 7&2,57 9’53,17 Q%S,Qy ceey $578]/

(CIRPNNCIER \/|1/)3,1|2 + [al? + [aal* sy s8]
’(;1,17 e 7’(;2,57 1/;3717 1;3727 e 7155,8]1-

!The term ’destabilizing’ is not to be taken literally, see Packard and Doyle[48]

3.86

(
(
(
(3.87

[ )
[ )
)= | )
[ )
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Thus we obtain the property HSH = || A(two)]|-

Define
1 0 0
$31 I 0 0
Mo= |0 sl o | 0|, Ty=|0 g=[tar tas thaa] 0
¢3,3 0 0 I
0 0 I
(3.88)

where [ denotes the identity matrix in appropriate dimension so that there holds

¢ =y, i = b, o' = Ty, YT = . We also define
M =TI, MTl,. (3.89)

We now show that A is a smallest destabilizing perturbation for M. A is desta-
bilizing, since there holds

0 =det(] — ¢’ M(iwg)) =1 — "M (iwg)p
=1 — Ty M (iwo) g = 1 — ' M = det(I — o' M).  (3.90)

It is also of minimal norm. Suppose not, then there exists A which is destabilizing
for M and with ||Al| < ||A]|. Consequently, (3.90) would imply that TT,AIT,, is
destabilizing for M (iwy). But then there would hold

T AL | < T AT < IA] = [[AGiwo)], (3.91)

which contradicts the assumption that A(iwp) is of minimal norm.

In order to exploit the above observations, we would like to let M represent
the reduced closed loop system at frequency wy. However, the algorithm for
improving the scaling parameters is based on the LMI (2.47), where it is assumed
that the system matrices are real. Define therefore @ and Z by the relations

w31 + |31
w32 = +|psa| | =3, (3.92)
wa g +]gas| | P30

~ 1+ ¢ Z3,1

231 = = [ i|¢3,1| i|¢3,2| Z|Z|1/)3,3| ] z32 |, (3.93)

where the sign is chosen so that the complex vectors [¢31, @39, P33, [¥31, V32, Vs3]
are matched as well as possible. As an attempt to imitate the destabilization sce-
nario made up by M and A, we modify the closed looop system so that w31 and
Zy 1 are replacing [ws 1, W3, w3 3] and 231, 23,9, 23 3", respectively. The parameter

¢ is to be chosen in a heuristic manner.
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We chose the critical frequency wq close to the origin, and in the formula
(3.93) we chose € to be, for example, 0.025 or 0.05. The adjustment of ¢ was
carried out based on knowledge of the destabilizing perturbation at the critical
frequency. A destabilizing perturbation of of minimal norm of the type (3.80) is
provided by the toolbox [33]. With an adequate set of scaling parameters, and
assuming that the critical frequency wyq is essential for the control problem, the
magnitudes of the entries of this perturbation should have a reasonably homoge-
nous distribution. A given pattern of the entries of A(wp) may indicate, say, that
the scaling parameters have been chosen for a plant where the signal Z5; has too
little weight, compared to the situation of the plant for which the H,, controller
is designed, and in this case € should be increased.

The procedure described above is based on the naive idea that a small modifi-
cation of the closed loop system based on the destabilization scenario at a single
critical frequency will give an adequate representation of the closed loop sys-
tem with respect to the selection of scaling parameters using an LMI. Another
weak point of the procedure is that, in the formulae (3.92) and (3.93) important
information about the phase is lost. A natural consequence of these shortcom-
ings is that the class of control problems for which this procedure is succesful, is
rather restricted. It is clear that this procedure accentuates the lack of flexibility
across frequencies that appears when the H., problem is scaled using constant
scaling parameters. However, the results obtained for the current case study are
encouraging, at least for this type of problems.

3.6 Zeros in the Right Half Plane

It is well known that the presence of zeros in the right half plane imposes limi-
tations on what can be achieved with a feedback design, see e.g. Doyle et al.[20]
and references therein. On the other hand, for multiple-input-multiple-output
systems the presense of such zeros is often less severe than it is for single-input-
single-output systems. Nevertheless we show in this section that ©(s) has no
zeros in the right half plane.

Our design strategy is to base the actual synthesis algorithm on a finite di-
mensional system and afterwards carry out the robust performance test for the
infinite dimensional system. With this strategy there is a catch to be taken into
account. If the infinite dimensional plant has a zero that is not shared by the
finite dimensional counterpart, then it may happen that the design limitaions
imposed by this zero are not recognized by the synthesis algorithm.

Our system is exponentially stable, and so are all of the subsystems that we
use for building the system. For a given transfer matrix we can therefore define
the zeros in the right half plane to be those s € CT where the transfer matrix
loses rank, see e.g. Curtain and Zwart[18, def.7.2.18].

Some of the subsystems have diagonal transfer matrix and the diagonal entries
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are first order systems which clearly do not contribute with any zeros, and neither
does the time delay in the pipes that take the water to the upper tanks. Therefore
the zeros must stem from the transfer matrices ©(s) and II(s) if there are any. An
interpretation of the possible damage caused by such zeros are that, for example, a
zero of O(s) may prevent disturbance signals at certain frequencies from travelling
to the measure output y. On the other hand, a zero of II(s) may cause a limitation
of the tracking ability of the system.

One way of seeking a quantification of such limitations is to consider the closed
loop system

G]] + G]Q[(([ — G221(>_1G2] . (394)

If (i31(s) has a zero sg in the right half plane, then there exists a vector wy such
that

(Glg(SO)I((So)([ - GQQ(So)[Xr(So))_lGgl(SO))U)O = 0 (395)
This would imply that
|Gi1 + Gria K (I — Goa K) 7 Gt ]| oo (3.96)
= sup [|Gn(s) + Gra(s) K(s)(T = Gaa(s)K(5)) T G (s)]| (3.97)
seCt
> NGn(so)woll (3.98)
[[wol|

regardless of the controller K. Disregarding the uncertainty frequency weights,
(21(s) has a zero in sq if and only if O(s) does.

We will now show that ©(s) has no right half plane zeros. It is a quadratic,
lower triangular matrix, so the zeros can be determined by simply examining each
of the diagonal entries. The task is thus to show that the function

(,'1(—(;1—(,'2+C3+C4> <T'_T' _ 21](1_4'8(%—362_1)))
(c1f+cates—ca+2s)ea \ 0 7 e Feates—ca+2s

. aler+c—cstca) ( 20(1 — n®(w; —J;Z-_l))>
+as e
(c1+ea+es+cat 2s)ey 1+ eyt ezt ey + 28

+(x; — »’Cz'-1)aff
has no zeros in the right half plane. To begin with we carry out the following
useful calculation, with o > 0,

_ /z/ O“"ST/”d’rdy
_ / i~ T / a+s)T/UdydT

- / (xz — T — T)e_(“"'s)T/”dT,
0

@ZZ(G) = (J,é
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where we have used the substitution 7 = z—y. It is not hard to see that changing
the order of integration is justified. Notice that we can write

G)ii(s) = Gécl(_a —ct+e+ 04) /xz /r e_(cl.|_02-|-C3—C4+28)(:L‘—y)/2'udyd$

2vey
+a§301(01 +co—c3+ C4) /gcz /g3 e—(cl+cQ+C3+C4+23)(x—y)/2udyd:c
2UC4 Tij—1 v Ti—1
+al(x; — xi1). (3.100)
We now write s = o + zw, where 7 denotes the imaginary unit and o > 0.

Combining (3.99) and (3.100) we obtain

ager(—ci — ¢ + s + ¢4)

2v¢y

Ti—zi R
/ (xz X — T)e—(cl+02+03—C4+20')T/2ve—z'w1'/'ud7_
0

G)“'(O' + Zw) =

ake (¢14c2—cs+ca)

2vey
/xt—mt—l (xi e 7_)e_(cl_|_C2+c3+c4+2a)r/2ve—2w7/vd7_
0
+ai(:v2- — ). (3.101)

Let us consider the imaginary part of the expression (3.101), assuming that o >
0,w > 0. Notice that it can be shown that ¢4 > |¢; 4+ ¢y —e3] and ¢4 < ¢ + ¢y + 3.
The expression (z; — z,_1 — T)e_(cl+c2+03_c4+2”)7/2“ is a decreasing function of 7,
0 < 7 < x; — xj—1, whence it is clear that the first term has strictly negative
imaginary part. A similar argument applies to the second term, and since the
third term is real, it is clear that (3.101) has strictly negative imaginary part
when ¢ > 0,w > 0. For 0 > 0,w < 0 the above argument can be repeated but
with the change that the imaginary parts in (3.101) are strictly positive. For
w = 0 all of the three terms of (3.101) are real and strictly positive. This allows
us to conclude that ©(s) has no zeros in the closed right half plane.
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Chapter 4

Hy-Control of Linear Systems
with Almost Periodic Inputs

4.1 Introduction

Recently, Shaked and de Souza[57] obtained formulas for a two-degrees-of-freedom
design of an H,, controller where a priori knowledge of future values of the track-
ing trajectory and the forcing terms could be taken into account. This feature
was new compared to earlier approaches based on casting the tracking problem
into a standard H,, format. The standard problem approach involves represent-
ing the reference signal by an unknown disturbance signal, and it is likely that
this leads to a conservative design in cases where the reference signal is actually
known in advance.

The result of Shaked and de Souza was formulated for finite-horizon tracking
problems and for finite-dimensional, time-varying systems. The result presented
in the present chapter is an infinite-horizon analogue of their result for infinite-
dimensional time-invariant systems, and at the same time it allows for a richer
class of inputs. One motivation for considering infinite-horizon problems is that
the formulas for the controller involve algebraic Riccati equations instead of Ric-
cati differential equations. This means that the controller is easier to implement,
and, in particular, controller order reduction algorithms are available. A mo-
tivation for considering an infinite-dimensional setting for H.-tracking is that
certain applications are most naturally modelled in this setting (see e.g. Banks
et al.[5]).

Our approach is different from the usual infinite-horizon approach in that we
do not specify the initial condition, but we assume that the signals are defined on
the whole real axis. A special feature is the rich class of input signals we allow,
namely a class of generalized almost periodic functions. Roughly speaking, we
consider signals with a square summable spectrum, where the frequencies can be
arbitrary real numbers. This class contains the periodic functions as a subset.
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Notice that these input signals are excluded from the L* class of inputs that are
usually considered in H,, problems, and also from the class of sinusoids considered
in the most common frequency domain interpretation.

Control problems with periodic inputs are interesting mainly for three reasons.
Firstly, one can choose to formulate a finite-horizon tracking problem as a periodic
problem in order to obtain algebraic Riccati equations and consequently, a simpler
control law. Secondly, some control problems are naturally formulated as periodic
control problems, see Guardabassi et al.[31] for some examples and see Banks et
al.[5] for a case study of a problem with a periodic forcing term. Thirdly, a
periodic setup allows you to track signals that do not tend asymptotically to
zero.

Unfortunately, a theory formulated for periodic signals also has its limitations;
it does not cover situations in which there occur, for example, two periodic forcing
terms of different periods. The reason is that the space of periodic functions lacks
an important structural property: it is not a vector space. For instance, the sum
of two periodic functions is not a periodic function, unless the ratio of their
periods is rational. This illustrates the need for a function space that generalizes
the concept of periodic functions in such a way that it has the vector space
property. Almost periodic functions (see Bohr[8], Corduneanu[12], Levitan and
Zhikov[45]), do form such a space.

When formulating a tracking problem on infinite time interval where the track-
ing trajectory does not asymptote to zero, one often faces the difficulty that the
usual cost function is not finite. This is the case in the L problem and in
the regular H.-problem. In the L) case several authors (e.g. Anderson and
Moore[2], Banks et al.[6], Da Prato and Ichikawa [51]) have suggested to remedy
this by considering an average cost function, and for the H,, case we will in this
chapter use the same idea. In the case of almost periodic inputs, the average
cost function is particularly interesting, since it can be written in terms of an
inner product on the space of almost periodic functions. The completion of this
inner product space produces the appropriate Hilbert space of generalized almost
periodic functions. The use of signals from this Hilbert space as input signals for
semigroup control systems has been studied in some detail in Jacob et al.[36].

4.2 Preliminaries

We shall be concerned with almost periodic functions with values in a Hilbert
space. Background material for this can be found in Corduneanu[12], Levitan
and Zhikov[45]. In the literature one finds three different definitions of almost
periodic functions. Probably the most intuitive definition is the original one by
H. Bohr, where the concept of a period is replaced by an almost period. When
adapted to Hilbert space valued functions, this definition reads as follows.

58



Definition 3 Let H be a separable Hilbert space, and let f(-) be a conlinuous
function of t € R with values in H. [ is said to be almost periodic and belong
to AP(H) tf, for any number ¢ > 0, one can find a number l(¢) > 0 such thal
any interval on the real line of length l(g) contains at least one point T with the
property that

f(t+71)—= f(t)|]lw <e VteR.

In this case 7 is called an e-almost period of f(t).

Notice that in the case that f(-) is a continuous, periodic function, one can take
¢ arbitrarily small, [(¢) should be larger than the period of the function, and 7
can be chosen to be equal to the period.

Some basic properties of f € AP(H) are that || f(¢)||# is uniformly bounded
on the real axis and that f(¢) is continuous uniformly in ¢. Furthermore, AP(H)
is a Banach space when equipped with the norm

sup || /()]
teER

If f € AP(H), then f(t) € H is defined pointwise in {. Next we define an abstract
space where this is not the case. For quadratic control problems concerning
almost periodic functions it is convenient to work with

(f. Gy = lim / (1), g(1)) e, (4.1)

Tooo T

which is an inner product on AP(H). It is well known that the appropriate way
of handling H,, control problems in the time domain is to consider each signal
as an element in a Hilbert space. For our purpose, we consider the Hilbert space

APy (H), defined as follows.

Definition 4 The completion of AP(H) with respect to the inner product (-,-),,
is denoted by AP(H).

This idea was used for L) control problems in Da Prato and Ichikawa [51]. This
Hilbert space has the advantage that it generalizes the concept of almost periodic
functions to functions that are not necessarily continuous. A disadvantage of
the space AP,(H) is that it contains some elements that cannot be represented
by functions in a natural way, see Jacob et al.[36], and Riesz and Sz-Nagy[53].
To cope with this situation we do the following: Every element of AP,(H) is
characterized by a Cauchy sequence of almost periodic functions. For some of
the elements this Cauchy sequence converges to an almost periodic function, and
in this case we let this function represent the element. In the other cases we let the
element be represented by a Cauchy sequence of almost periodic functions, and for
such elements we obtain the properties that we need by continuous extension and
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limit arguments. Even the norm of such elements is defined by a limit argument.
Background material for this type of arguments can be found in Kreyszig[39].

The space AP;(H) is closely related to a space of generalized almost periodic
functions introduced by A.S. Besicovitch, and is usually in the literature called
the space of Besicovitch-almost periodic functions. The interested reader may
consult Besicovitch[7] and Bohr and Fglner[9] for details. For an alternative
characterization of the space AP,(H), see e.g. Shubin[58].

In the analysis of almost periodic functions an important role is played by a
generalized Fourier transform. For f € AP(H), consider the Bohr transform (cf.
Levitan and Zhikov[45])

ar(N) :TEEOT/ f(t)ye™Mdt , X €R. (4.2)

For every A € R, af(A) € H is well defined, and the set {A € R | af(A) # 0} is

countable. Furthermore, we have the Parseval relation

12 = > las VIl (4.3)

AER

where || - ||, is the norm induced by the inner product (4.1).
For our mathematical analysis it turns out to be convenient to work with
trigonometric polynomials of the type

N
Py(t) =Y are™', ar € H, My €R, N €N (4.4)

k=1

We denote the space of such trigonometric polynomials by T'P(H). Trigonometric
polynomials are natural for approximating almost periodic functions. Approxi-
mation in the norm || - |4, is obtained directly from the Bohr transform a;(}) so
that in this sense we may write

P10~ 3 ane (4.5)

AER

Approximation uniformly on the real line can be obtained by using the Bohr
transform in connection with a special summation method (cf. Levitan and
Zhikov[45]). Given an arbitrary series of the form

o0

Zakeikkt , ap € H, A\ €R,

k=1

it can be very hard to determine whether it converges to a function. However, if
it is known how the series was constructed, then the question of convergence does
sometimes have a simple answer. For example, as mentioned above, a trigono-
metric series obtained from an almost periodic function using the Bohr transform
converges in the quadratic mean.
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Example 5 To illustrate that the space AP,(H) contains elements that should
not be considered as functions, consider the sequence {f,} in AP(R) given by

fn(t> = Z %cos% = Z % (eit/k + e—it/k) _
k=1 k=1

By calculating

n

2 :
1= allp= 2 25+ withn>m,

k=m+1

we find that {f,} is a Cauchy sequence in AP,(R), and therefore it converges in
this space. Notice now that f,(¢) does not converge in any point ¢, and neither
does f, converge in the topology of L], (0,00;R). O

It can be shown (see e.g. Jacob et al.[36]), that the space AP,(H) may
formally be represented by trigonometric series such that Y 7, |lax|lf; < oc.
Using trigonometric polynomials that may be viewed as truncated trigonometric
series, we carry out the mathematical analysis in such a way that we do not have
to resolve the question of whether such a series converges to a function.

4.3 Main Results

We consider infinite-dimensional systems of the form

t = Ar+ Biw+ Byu+ Bsr, teR (4.6)
z = Clx + D12U + D13T (47)
y = CQ.’E + D21'U] (48)

where z(t) € H is the state, u(t) € U is the control, w(t) € W is the unknown
disturbance, z(t) € Z is the to-be-controlled output, y(¢) € Y is the measured
output, and r(t) € R is a known external signal. H, U, W, Z, Y and R are all
real separable Hilbert spaces. We assume that A generates a strongly continuous
semigroup S(¢) on H, and By, By, Bs, C1, Cy, D12, D13, D2y are bounded operators,
ie. Br € LW, H), Cy € L(H,Z), D2 € L(U,Z), etc. In the tracking problem
that can be considered in this setting, the trajectory to be tracked is —Dyar,
and Bsr is an external forcing term. Thus Bsr is a known external forcing term,
while Byw i1s an unknown external forcing term. For background material on
infinite-dimensional linear systems, see Curtain and Zwart[18].

The input signals are considered in the following spaces: w € AP,(W), u €
AP,(U) and r € APy(R). In the abstract setup it is thus not assumed that the
input signals are defined pointwise in ¢, nor almost everywhere, so the results
should be understood in terms of approximating, almost periodic functions. The
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solutions to (4.6) that we consider are, with w € AP(W), u € AP(U) and
r € AP(R), of the form

z(t) = t S(t — 7)[Biw(7) + Bau(r) + Bsr(7)]dr. (4.9)

—00

If the semigroup S(1) is exponentially stable, then this convolution integral de-
fines an almost periodic function z(-). In the case that the system is merely
exponentially stabilizable, the convolution integral still makes sense for some
control signals u(-).

The result resembles the standard H., result, in that the criterion for the exis-
tence of an admissible controller is given in terms of Riccati equations. However,
the usual disturbance attenuation bound is replaced by the inequality

12llep < 3 llwlle, + 7, (4.10)

where J° € R depends on the signal r and on the stabilizing solution to the
(control) Riccati equation. As it will appear from the proof, J° is determined as
the value of a game, where the controller plays against nature.

4.3.1 The State Feedback Result
Here we consider the special case where 'y, = I and Dy, = 0. The standard
regularity assumption is (cf. van Keulen et al.[60])

1. There exists an ¢ > 0 such that for all (w,z,u) € R x D(A) x U
H1 satisfying wr = Az + Byu, there holds ||Ciz + Digul|3, > e||z|| %
2. Di,Dyy 1s coercive.

To simplify the notation we define
Vi = (Dj,Di2)™" (4.11)
Fo. = Vi(B;P + Di,Ch). (4.12)

Proposition 6 Consider the system (4.6)-(4.7). Suppose that H1 holds, and that
r € APy)(R) is an a priori known signal. With 0 < v and 0 < P = P* € L(H),
and

A:=A—ByF..+~v*B,B;P, (4.13)
the following statements are equivalent:

1. P salisfies

0 = (A= BWD,C)z, Py)y + (P, (A= BViDL,Chly)n - (4.14)
+(P(y"* BB} — ByViBy)Pa,y)g + (C(I — D12ViDy,)Ch, y)m

for all x,y € D(A), and A generates an exponentially stable semigroup
Sj(t).
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2. There exists an exponentially stabilizing state-feedback control law such that

there holds
12112, < lwllz, + 7 Yw e APy(W), (4.15)

where

IO = [ Dusr |2, + B0, — V(B30 + DiyDiar)|12, + 2(6, Bor)ay,
(4.16)
where § € APy,(H) is given by

0(t) = —/ S5(r =) [FL D7y D13 — PBs — O Dys)r(7)dr, (4.17)
t

and such that in the special case that r =0, there exists ¢ > 0 such that
Izllzp < (0 —e)lwlls,  Vw € AP(W). (4.18)
Such a control law is given by

u=—Fox —Vi(D7,Dysr + B). (4.19)

We refer to the solution P > 0 such that S;(¢) is exponentially stable as the
stabilizing solution to the Riccati equation.

Remark 7 For an arbitrary r € AP,(H), the convolution integral (4.17) is not
necessarily well defined in the usual sense. In this case the convolution integral
must be understood in the extended sense defined by lemma 14. a

4.3.2 The Measurement Feedback Result

Here we consider the case where the control law is to be based on disturbance-
corrupted measurements. We introduce an additional standard regularity as-
sumption on the system, see van Keulen[59, p.131].

1. There exists an ¢ > 0 such that for all (w,z,y) € R x D(A) x Y
H 2 satisfying wx = A*z + Cly, there holds | Biz + Diyylli > ellz||3
2. Dy D3, ts coercive.

To simplify the notation we introduce
Vo= (Dlegl)_l- (4.20)

Proposition 8 Consider the system (4.6)-(4.8). Suppose that HI1 and H2 hold,
and that r € APy(R) is an a priori known signal. With 0 < v, 0 < P = P* €
L(H) and 0 < Q = Q* € L(H), the following stalements are equivalent:
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1. Q) salisfies

0 = (A" =C3VaDyu B )z, Quyr + (Quz, (A* — C3VaDau B )yyn  (4.21)
+HQ(yICrCy = C3VaCa)Qu,y)m + (Bi(I — D3, VaDayy) Biz, y)m

for all z,y € D(A), and
A* — O3Va(CoQ + Dy BY) +47°C1C1Q (4.22)

generates an exponentially stable semigroup. Furthermore, item 1 of propo-
sition 6 holds, and P and @) satisfy the coupling condition

re(PQ) <77, (4.23)
where r, denotes the spectral radius.

2. There exists an exponentially stabilizing measurement-feedback control law
such that there holds

Illay < A¥llwllay + 7 Vw € AP(W) (4.24)

where JU is given by (4.16), and in the special case that r = 0, there exists
¢ > 0 such that

Illzp < (7 = e)llwlla,. (4.25)
Such a control law is given by
u=—Fot —Vi(DjyDysr + B30) (4.26)

where 0 is defined by (4.17) and & is given by

#0 = [ Sioseg = DMLu()+ 6B~ LDw)B; — BVBEIG)

+<B3 — BZ‘/I DT2D13)T‘(T)](17' (427)

where

CF = OQ—I—’)/_QDQ]BTP (428)
L = (I-77QP)(QC; + BDy)Va. (4.20)

Remark 9 For an arbitrary r € AP,(H), the convolution integral (4.27) is not
necessarily well defined in the usual sense. In this case the convolution integral
must be understood in the extended sense defined by lemma 14. a
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4.3.3 Loop-shifting

For completeness of the measurement feedback result we will in this section con-
sider systems of the more general type

x = Ax+ Byw+ Byu+ Byr, t€R (4.30)
z = Cl$ + DH’UJ + Dlgu + D13T (431)
y = CQ.I' + D21’U) + D22u + D237", (432)

where, as before, all input and output operators are bounded. The idea is to
use the well-known loop-shifting formulas from Safonov et al.[55], Green and
Limebeer[30, section 4.6]. The presence of Bs, Dy3, D3 is handled by a simple
modification of these transformations.

Assuming that the conditions (4.44)-(4.45) are satisfied, there exists a static
feedback R., such that

D11 4 D1a R (I — Da2 Rec) ™' Dan|| w2y < - (4.33)

Assuming that such an R., has been constructed, it is applied to the plant as
shown in figure 4.1, and this leads to the transformations

A = A+ By(I = RowDy2) ' Rou (s

By = Bi+ By(I — RwDy3) ' Roo Doy
By = By(I — RooDy3)™"

B; = Bs+ By(I — RooDzz)_lRooDzs
Ci = Cy+ Dip(I - RooDQQ)_choCQ
Cy = (I = DyRy)™'Cy (4.34)
Dii = Dy + Diz(I — RowDay) ™' Roo Doy
Diy = Di(I — RooD‘z'z)_l

Dis = Diz+ Dio(I — RuuDyy) ™" R Do3
Dy = (I —DypRy) 'Dy

Dy = Dao(I — RooD22)_1

Dys = (I — DyyRo) ' Dys.

Next we introduce the transformation © as shown in figure 4.1, where

0 - ©11 O _ -1 ’Y_ID_H ) ([_V_QD_HDE)%
©21 Oy —([—’y_QDﬂDn)% ’Y_]DT] 7

leading to the transformations

A = /_1 + Bl(’)/Q[ — DEDH)_IDECH
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Figure 4.1: Loop-shifting transformations.
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A — — . = 1

Bl = B+ DiyDi)

By = By+ Bu(+* — D%, Du)~' D%, Dy,

By = Bs+t Bi(+*1 — D5y Du)= D7y Dis

Cy = (I —=DnDi))” 20,

Cy = Cy+ Da(y 1 — D}, Dn)"' Dy Ch (4.35)
Dy, = (1 - DuDTl)_%Dm

Dy = (’72[ - DuDIl)_%Dm

D21 = —D21(’72[ - DEDH)_%

Dyy = Dy + D21(72] - DEDM)_IDEDM

Dys = Das+ D21(72[ — DEDH)_IDEDB-

Finally, the feed-through operators DQQ anAd ﬁgg are eliminated as shown in figure
4.1. This leads to the transformed plant P, which has the form

i = Ai+ Bio+ B+ Bsr, teR (4.36)
z = C\Yl.'f + ﬁ12ﬂ + D13T’ (437)
j = CyZ + Dyw. (4.38)

In the following proposition we give a criterion for the existence of a controller

that solves an H,, problem of the same type as in section 4.3.2. In order to shorten
the notation we define, assuming that (4.44) and (4.45) hold,

V, = DTIDU _72] DT1D12 :|_1 S e |: DIIDTI _72[ Dllel -

Dy, D Dy, Dha Dy D7, Doy D3,
We also introduce the Riccati equation

0 = (A= BViDy,Co), Py)u + (P, (A= BoViD7,Ch)y)n (4.39)
+<P( ZBIBT - BZ‘/IB;>P$7y>H + <Ci’<<[ - DIZ‘/iDI2>Cl:Uay>H7

where

Vi = (D}yDi2)7" (4.40)

Proposition 10 Consider the system (4.30)-(4.32). Suppose that H1 and H?2
hold, and that r € AP,(R) is an a priori known signal. Given v > 0, there exists
an exponentially stabilizing output-feedback control law such that there holds

12112, < Y2 llwll2, + 420, Yw € APy(W), (4.41)
where
JO = || Dusr|2, + 221 By0)2, — Vi3 (B30 + 1ar)||2, +2(0, Bar)ay,  (4.42)
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and where § € APy(H) is given by

/ - By Vi (B2 P+D1,C1)++2 B BY p(T— 1)

[(PBy + CrDyy)ViDi,Dys — PBs — CrDys)r(r)dr,
if and only if the following four conditions are satisfied.
1. There exists a § > 0 such that
v2 — D%y (I — Dio( Dy Dy15) ™" Diy)Dyy > 61
V2T — Dy (I = D3y (Dyy D3) ™ D) D3y > 61
2. There exists 0 < X = X* € L(H) satisfying

D, C
0=(Xz,(A—[ B, By |V 111}
(X, ( [ 1 2] 1{D1201 )Y) 1

DGy
+((A — [ B, B, ]Vl [ D2,C }).I‘,Xyﬁ[

—(X[ B By | W [g:}mw

*
Dll

=1 D D ]9 | D0 |1, Culy

for all z,y € D(A), such that

A—[ B &]M{D””+mx}

D1,Ch + B3 X
generates an exponentially stable semigroup.
3. There exists 0 < Y = Y* € L(H) salisfying

o= - ci v | i [

= op o va] pUit e

%yNﬁCH%{%}MwM

* * D x* x*
+<([_ [ DI, Dy }V2 [ Di :|)BI$7 1y>U

Jor all x,y € D(A*), such that

“Ler v et s

Dy By 4+ CLY

generates an exponentially stable semigroup.
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4. X and Y given above salisfy
re(XY) < ~?
where r, denotes the spectral radius.

Remark 11 Concerning 0 defined by (4.43), see remark 7. O

The controller K can be obtained using proposition 8 in the following way:
The formulas (4.26), (4.27) are modified in such a way that throughout proposi-
tion 8 one is to replace v by v, A by A, By by Bh etc, leading to the controller
K. This controller is modified by introducing feed-through operators and linear
fractional transformations according to figure 4.1, so that K is transformed into
the controller K. If we make the partitioning K = [KH K12], we can write the
control law as

r

U = K |: Y :| = ([ + Kll ]522>_] (Kll(y — ]5237') + K127‘) + Rooy (448)

4.4 Proofs

Before proceeding to the actual proofs we need to state some lemmas.

Lemma 12 Assume that S(t) is an exponentially stable semigroup. With f €
AP(H), y given by

t
y(t) = S(t—r7)f(r)dr (4.49)

is in AP(H).

Proof See Jacob et al.[36], Da Prato and Ichikawa[51]. O

The following perturbation result is a small extension of a well known result.

Lemma 13 Assume that S(t) is a strongly continuous semigroup on H with
generator A. Consider the system

*=Arx+ Bu+ f,

where B € L(U,H), fe€ AP(H). With F € L(H,U), assume that A+ BF gen-
erates an exponentially stable semigroup Saypr(t). Then there holds uniformly
in i

/_t S(t —r)[BFz(r)+ f(r)|dr = /_t Saypr(t — 1) f(T)dT. (4.50)
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Proof From a well known perturbation result (see e.g. [59, lemma 2.14]) it
follows that

At S(t —7)[BFz(r)+ f(7)|dr = /Tt Saypr(t —71)f(7)dr

for every T,t, where T < t. Using the exponential stability of S4ipr(t) we let
T — —o0, and the lemma follows immediately. a

The next lemma defines an extension of the concept of mild solution to the space

AP, (H).

Lemma 14 Assume that S(t) is an exponentially stable semigroup. Consider the
linear mapping ® : f € AP(H) — y € AP(H) given by the convolution integral

y(t) = /_t S(t—r1)f(r)dr. (4.51)

o0

This mapping has a unique conlinuous extension in L(AP,(H)).

Proof See Jacob et al.[36]. O

Remark 15 We will occasionally write a convolution integral involving an input
signal in a space of the type AP,. In cases for which this convolution integral
does not make sense in the usual way, it is to be understood in the extended
sense defined by lemma 14. O

In the sufficiency proof of the state feedback result it is useful to differentiate
functions, and therefore we need a space of smooth, almost periodic functions;

this role will be played by T'P(H).

Lemma 16 The space TP(H) of trigonometric polynomials, with values in H,
is dense in APy(H).

Proof Using the Bohr transform, an arbitrary almost periodic function can

be approximated by trigonometric polynomials in the norm || - ||,,, and by the
definition of AP,(H) we know that AP(H) is dense in this space. Therefore
TP(H) is dense in AP,(H). O

Lemma 17 Assume that f € TP(H), and that S(t) is an exponentially stable
semigroup. Then y given by the expression (4.49) is in TP(H). Furthermore,

= Ay +f.

Proof See Jacob et al.[36]. 0

The next lemma serves to establish the connection between our problem and the
H,, standard problem.
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Lemma 18 Consider the exponentially stable Cy semigroup S(t) on H and B €
LW, H), C € L(H,Z), DeLW,Z). The following statements are equivalent.

1. For arbitrary wy € L*(0,00; W) and z; given by
t
zo(t) = Dw,(t) + C/ S(t — 7)Bwy(r)dr, (4.52)
0

7y € L*(0,00; Z) and there holds

2

un0 [[wz]|2

<. (4.53)

2. For arbitrary w € AP,(W) and z given by
t
z(t) = Dw(t) + C/ S(t — 7)Bw(7)dr, (4.54)

z € AP,(H) and there holds

sup [l <7. (4.55)
w0 [[0]|ap

Remark 19 Notice that the convolution integral in (4.54) is to be understood
in the extended sense defined by lemma 14. a

Proof Notice first that since S(t) is exponentially stable and B, C', D are bounded,
the transfer function G € Ho,(L(W, Z)) given by

G(s):=D+C(sl — A)_IB

is well defined and holomorphic in the closed right half plane CF.
1.=-2. Since S(t) is exponentially stable it is known (see e.g.[59],theorem 3.4)
that (4.53) is equivalent to

sup HGG)‘)”E(WZ) < . (4.56)
AER

Now consider an arbitrary signal w € T P(W), which can be written as

N
w(t) =Y ae™ | ay €W, R, NN (4.57)

k=1
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With z defined as in (4.54), we obtain (see [36])

N
1202, = D IGEA)axliy
k=1

IN

N
o [GON w3 s (4.58)

k=1

= sup [[GEN 2w,z vz,
AER

The inequality (4.58) holds uniformly for every w € T P(W). The linear input-
output map (4.54), which is well defined for w € T P(W), therefore has an ex-
tension in L(AP,(W), AP,(Z)), see Kreyszig[39, theorem 2.7-11], and the norm
of this operator is bounded by ||||o. Thus (4.56) implies that for w € AP,(W),
there holds

< iu£’|G(iA)|‘%(W,Z) < 72

2
z
o
w#0 Hw”ap
2.=1. Let £ > 0 be given. Because of the exponential stability of G there
exists a A € R such that

A AT 5
sup [|[GM) | cow,z) — |GOA)|[cowz | < 5
AER 2
and an a € W such that
o 160l G0 | _ €
azo  |lallw l@llw 2
whence by the triangle inequality,
\ G(iMNa
up |G ey — Do)z ¢ (4.59)
AeR HGHW

Now choose w € AP,(W) given by
w(t) = ae™

and let z be defined via (4.54). From (4.55) it follows that there exists § > 0
such that

GGy _ Nl (4.60)

allw lollap —

We can now use (4.59) and (4.60) together with the triangle inequality to obtain

sup [|G(A) | cw.z) <7 — 6+ €,
AER

72



and finally, since the above arguments can be repeated with ¢ arbitrarily small,
and since ¢ can be chosen independently of &, we deduce that

sup [|G ()| cw,z) < 7.
AER

This implies that ||G||sc < v, which is known to be equivalent to (4.53), since
S(t) is exponentially stable. O

4.4.1 Proof of the State Feedback Result

Sufficiency. 1.= 2. Assume that there exists P = P* > 0 satisfying the
algebraic Riccati equation (4.14) such that A given by (4.13) generates an expo-
nentially stable semigroup S;(¢). We will work with the average cost function

.17
J(r,u,w) 5:Th_r>gof/ {217 = w3yt = ||2]12, — ¥ |wllZ,, (4.61)
0

assuming that (4.6)-(4.7) hold. The first step is to determine a saddle point
of J(r,u,w) with respect to the variables v and w, in the case where r, u, w
are trigonometric polynomials. The control law of this saddle point leads to the
inequality (4.68). The second step is to extend (4.68) to hold also for the larger
class of input signals, namely w € AP,(W), r € AP,(R). The third step is to
specialize to the case r = 0 and obtain the inequality (4.18).

In the first step we assume that w € TP(W) and r € T P(R). Because of the
exponential stability of S;(t), it follows from lemma 17 that (-) given by (4.17)
is in TP(H), and that

0 =—A"0 + [F-D:,Di3 — PBs — C} Dys]r. (4.62)
As the space of admissible controls we take
Uyg = {u € TP(U) such that x € TP(H)}. (4.63)
Let us first show that U, is non empty. Define
= —Vi(B; P+ Di,Cy)x — Vi(D],Disr + B;0).

We could for example choose u = u; this would introduce a feedback such that
the system operator would be

A= BVi(BP + D}y Ch).

From van Keulen et al.[60, theorem 2.2] it follows that the semigroup S_p, Vi(B:P+D1,C1)
is exponentially stable. Therefore, with u = @, 2 € TP(H) and we conclude that
U,q 1s non empty.
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Using lemma 17 we carry out the following differentiation:

d
o (2. Pa)y +2(0,2) ).

Now, using (4.6,4.7,4.12,4.14,4.62) and integrating from 0 to 7', it can he shown
by calculations that are nearly identical to those done by Shaked and de Souza
[57] that

T
To(ryu,w) = / (212 = 2wl } dr
0

-/ = B (P 0) (4.64)
| Dio(u + Foowr + Vi(D7y Disr + B30))|7
| Dusr iy + 22 B5OG = 17 (B30 + DiyDaar) [ + 200, Byr)u | dr
—2(0(T). (T} + 20(0),2(0))r — ((T), P(T))s + ((0), P(0))r.

For u € U,q, it follows that z € TP(Z), and

.1
711_1)210 TJT(r,u,w)

exists. Now we can divide Jr(r,u,w) by T and let T — oo in order to obtain an

expression for J(r,u,w) which is valid for r € TP(R), u € U,q and w € TP(W).

1
J(r,u,w) = Th_l;rolo ?.]T(r,u,w)

= —7lw—~7"Bi(Pz + 0)|[3, (4.65)
+HD12(U + Foo-f + %(DT2D13T + B;(g))Hip + JO'

Define @ = y=?Bj(Pz 4 6). There holds the following inequalities

J(roi,w) = = lw—=47"Bi(Pz +0)|5, + J°

< J(ryo,w) Yo € Uyg Yw € TP(W), (4.66)
Jrud) = |Duslut For 4 V(D3 Digr + B0, + °

> J(ryu,v) Yu €Uy, Yv e TP(W). (4.67)

This shows that for fixed r € T P(R), J has a saddle point at (r, u, w) with respect
to u € Uyg and w € T P(W). Notice that this saddle point is obtained using the
strategy given by the Riccati equation. By considering the cost function (4.61)
and the inequality (4.66), we find, when the control law « = @ is applied,

Izllzp < ¥ llwlla, + 77 Vw e TPW). (4.68)

ap —
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As the second step we extend (4.68) to hold also for w € AP,(W), r € APy(R),
assuming that the control law uw = @ is applied. Using lemma 14 together with
the boundedness of the input and output operators, we find that the input-output
map from (w,r) € TP(W) x TP(R) to z € TP(Z) is linear and continuous with
respect to the norms of AP,(W), AP,(R) and AP,(Z). Therefore, using lemma
16, this mapping has an extension in L(AP (W) x AP,(R), AP,(Z)). Using the

sub-additivity property of the norm || - |[,,, we can define the continuous function
O(w,r) = Hszp — 72HwH§p ., w e APR(W), r € APy(R). (4.69)

Consider now the pair of signals (w,r) € APy(W) x APy(R), where w is arbitrary,

and let J° be defined by (4.16)-(4.17), here denoted J°(r) to stress the dependence
on r. By continuity of © we have that

I'={(v,p) € AP,(W) x AP,(R) such that O(v, p) < J°(r)} (4.70)
is a closed set. Since TP(W) and TP(R) are dense in AP;(W) and AP,(R)

respectively, we can to (w,r) relate a sequence of signals {(w,,r,)}, with w, €
TP(W) and r, € TP(R), converging to (w,r) in the topology of APy(W) x
AP;(R). Furthermore, defining J(r,,) analogously to J%(r), it can be shown that
we can choose the sequence {r,} such that J%(r,) < J°(r) for every n. Using
(4.68) we deduce that O(w,,r,) < J°(r,) < J°(r) holds for every n. Since the set
I'is closed in AP,(W) x APy(R), it also holds that ©(w,r) < J°(r) = J° Since
the above argument can be repeated with arbitrary w € AP,(W), we obtain,
given r € AP,(R), the inequality

HZHZp — ’yQHszp <JY Ywe AP, (W), (4.71)

which was what we wanted.

As the third step we consider the special case ¥ = 0. We apply the control
law v = 4. It is known, see Van Keulen et al.[60], that this control law solves the
standard H, problem. By using lemma 18 we immediately obtain the inequality

(4.18).

Necessity. 2.= 1. It suffices to show that with r = 0, and under the
hypothesis H1, item 1 is implied by the assumption that the control law (4.19)
is exponentially stabilizing and yields the disturbance attenuation bound (4.18).
Using lemma 18, this follows immediately from the analogous result for the H,
standard problem, see [60]. 0

4.4.2 Proof of the Measurement Feedback Result

The measurement feedback result relies heavily on results from van Keulen[59].
The formulas for the controller are reminiscent of the finite-dimensional case,
where the appropriate references would be Doyle et al.[21] and Limebeer et al.[46].
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Sufficiency. 1.= 2. We assume again that w € TP(W), r € TP(R) and
u € Uyg as defined by (4.63). We have

J(r,u,w) = —’YQHW—’Y_?BT(PLC‘FG)H?@
+ || Diz(u + Fooz + Vi(D{y Diar + B30))|la, +J°, (4.72)
where .
z(t) = / S(t — 7)[Biw(7) + Bau(r) 4+ Bsr(7)]dr. (4.73)

To shorten the notation we define
r = ’y_ZBleé? + BgT — BQ‘/I(DT2D13T' + B;@) (474)

We now aim for a shift of variables such that r and 6 are substituted out. To
this end we introduce

q = w—7""B(Px+0) (4.75)
= u+ Vi(D}yDisr + B30) + Fox (4.76)
which gives us
t
z(t) = / S;i(t —7)[Big(7) + Byo(r) + 7(7)]dr (4.77)
u = —For+v—Vi(D},Disr + B0). (4.78)

We write the control as v = @ + u,, such that @ is given as a linear function of

(¢,v) by
t

(t) = / S;i(t —7)[Big(7) + Byo(r)]dr (4.79)
u = —Fo&+w, (4.80)

and w, 1s given as a linear function of r by

t

p(t) = / Si(t —7)F(r)dr (4.81)
u, = —Fop—=Vi(D],Disr + BJ0). (4.82)

Notice that since S;(t) is exponentially stable, both of @ and u, are in TP(U).
Furthermore, we introduce

§ = y—7"DuBid —Cpp (4.83)
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and

= (D,Diy)%v. (4.85)

We Ccan now rewrite J as
I (r,u,w) = =7*|lqllz, + |0]]2, + J° (4.86)

where
1

(t) = / Sasy2 BB p(t — 7)[Big(T) + Bya(r)|dr (4.87)
7 (D7, D13)? Fonit 4 (D5, Dy5)7 0 (4.88)
y = Cpi+ Dug. (4.89)

Notice that the convolution integral (4.87) is well defined, although S4y,-25,5,*p
is not necessarily exponentially stable. This follows from the substitution (4.80)
and lemma 13, leading to a convolution integral where the exponentially stable
semigroup Sa—p,r, appears. We will now apply known results concerning the
H., standard problem. Introduce therefore the signals g, € L*(0,00; W), iy €
L*(0,00;U) and consider

20) = [ et DB + Bt (190)
5y = (D3,D1)? Faiy + (D7, D1o) iy (4.91)
Yo = Criy+ Daqa. (4.92)

It is known (see van Keu]en[§9, pp-160-162]) how to construct an exponentially
stabilizing causal controller K for the system (4.90)-(4.92) such that with i, =
K, and ¢y € L?*(0,00; W),

02l
p

270 ||q2]l2
Now, by lemma 17 and lemma 18, the system obtained from (4.87)-(4.89) by
putting @ = K§ maps ¢ € TP(W) to © € TP(Z) such that

<7

o lils
970 “qHap

This shows that when the controller K is applied, we have J(r,u,w) < J° and
therefore, with r € TP(R),
Hz“ <~ HwH2 + JY Yw e TP(W). (4.93)

The formulas for the so-called central controller, which can be deduced from van

Keulen[59, theorem 5.4], read, for the system (4.87)-(4.89),

zi(t) = /_t SA_LCF(t—T)Lg(r)dT (4.94)
u = —Foxg. (4.95)

77



Now, substituting back through (4.74), (4.81), (4.83) while using lemma 13 and
introducing & = x; + p we obtain the control law (4.26)-(4.27). In the case r = 0,
we can use the measurement-feedback result of [59, theorem 5.4] together with
lemma 18 to obtain, for some € > 0,

lzlle, < (9° = Ollwllz, Vi € AP,(W), (4.96)

when the control law of (4.26)-(4.27) is applied. Finally, the inequality (4.93)
needs to be extended to hold also for r € AP, (R), w € AP,(W). This can
be done analogously to the procedure used in the state feedback case, and we
therefore leave this out.

Necessity. 2.= 1. It suffices to show that with r = 0, and under the
hypothesis H1, H2, the relations (4.26), (4.27), (4.25) imply item 1. As in the
state feedback case we can use lemma 18, and in this case the H,, standard
problem result that we use can be found in van Keulen[59].

4.4.3 Proof of the Loop-shifting Result

We only give a sketch of the proof. Firstly, let us make sure that the feed-back
loops of the transformed system are still well posed. For the standard problem,
this question was dealt with in van Keulen[59], and since the introduction of
Bs, D3, Dy3 does not alter the feedback structure, we can use these results
immediately.

For the special case r = 0, it was stated in Curtain et al[l7, theorem 3]
that items 1-4 are equivalent to the solvability of the y-suboptimal H,, problem.
Using lemma 18, we find that this shows proposition 10 in the special case r = 0,
and at the same time this shows the necessity part. It remains to show that
items 1-4 imply the existence of an exponentially stabilizing controller, such that
(4.41) holds, also in the case r # 0. The presence of r clearly has no influence
on the existence of an exponentially stabilizing controller. As stated in [17], the
usual loop-shifting transformations, which amount to introducing O, R, Doy
in a fictitious manner as shown in figure 4.1, are possible, assuming that item 1
holds. By carrying out these transformations, together with the introduction of
Dzs as shown in figure 4.1, and applying proposition 8 to the transformed plant
P, we can construct an exponentlally stabilizing controller K such that there

holds
2112, < 72112, + J°. (4.97)

Since loop-shifting is possible, it follows from proposition 8 that the Riccati cri-
terion is not affected by the signal . Therefore, the Riccati equation (4.39) has
a stabilizing solution, provided that the Riccati equation (4.46) does and R, is
chosen such that (4.33) is satisfied. The explicit expression for JY follows from
the loop-shifting transformations and proposition 8. The inequality (4.41) finally
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follows from the identity

12llap = Y llwllzp = Y*l12 N, = N, (4.98)

4.5 Discussion

In this chapter we have presented an H.,-type result in the case that the in-
put signals are in a class of generalized almost periodic functions. The formulae
obtained are natural extensions of a known result for finite-horizon tracking prob-
lems; however, the justification of the result was non trivial. In order to obtain a
rigorous mathematical derivation of the result, we used a space of input signals
where some of the signals were only defined in terms of limit arguments.

The class of input signals that was considered was specified in a rather abstract
way. However, as mentioned in this chapter, if a given signal has a well defined
Bohr transform (spectrum) which is a square summable sequence, then this signal
may be considered as an element of our space, via the Bohr transform.

It is characteristic for the proofs of this chapter that the relation to the stan-
dard H,., problem was used extensively. This suggests that a number of methods
used in connection with the standard H,, problem may be adapted without too
much difficulty. We have in this chapter adapted the loop-shifting transforma-
tions, and it would be useful to adapt also controller reduction algorithms, as well
as methods for problems with structured uncertainties. One possible approach
to these matters can be found in chapter 5.
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Chapter 5

A Two-Degrees-Of-Freedom
Design

5.1 Introduction

The control law formulated in chapter 4 is not immediately applicable to a con-
troller design when the uncertainty structure is as complex as the one encountered
in chapter 2. On the other hand, the methods used in chapter 2, namely scaling
and controller order reduction are relatively easy to adapt to the control law of
chapter 4. This is the purpose of the present chapter.

5.2 Controller Order Reduction

We will in this section consider the problem of reducing the order of the dynamic
part of the control law. We suggest to adapt well known controller reduction
techniques in such a way that the inequality

212, < Ao, + J° (1)
still holds for some v > 0. The control signal « depends dynamically on both the
measured output y and the reference signal r. However, since r is known & priori,
it will in many applications be acceptable to calculate the part of the control law
that depends only on 7, based on a high order controller. We therefore suggest
to apply controller reduction with respect to the dependence on y, but to retain
the order of the dynamic dependence of r.

When considering the measurement feedback control law (4.26)-(4.27), it is
not immediately evident how controller order reduction should be carried out.
Therefore, we choose in this section an alternative formulation of the control law
which is well suited for controller reduction, namely the one shown in figure 5.1.
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K — Yr

Figure 5.1: Controller structure used for controller order reduction.

The key to the controller reduction problem is to consider the system (4.87)-
(4.89), which reads

t

#1) = Satypigp(t = T)[Big(r) + Byii(r)]dr (5.2)
5= (D;‘QDU) 2 Foit 4 (D5, Dyy) 7 (5.3)
y = Cri+ Dng, (5.4)

where we have used the notation of chapter 4. By applying the controller 4 = K7,
given by

= —F, /_t Si_re,(t —7)Ly(r)dr, (5.5)

we obtain, as in section 4.4.2,

sup 52 < 7. (5.6)
2#0 [|9llap

The idea is to seek a controller of lower order than K which also yields (5.6),
and then carry out appropriate substitutions leading to a control law of the type
shown in figure 5.1, where u, and y, depend only on r, and where K is replaced
by a lower order controller. Algorithms based on weighted Hankel norm approx-
imation for seeking such a reduced order controller are available, see Zhou[62],
Zhou et al.[63] and references therein. See also section 2.4.4.

With this in mind we now rewrite the control law (4.26)-(4.27) as follows,

u(t) = a(t)+ u(t
- P / Sicsep(t = VL) = (7)) + ()
= (R(y=))0) +ur(t) 51
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¢

’UJE yf + ﬁgg’f‘

Figure 5.2: Controller structure with loop-shifting and controller order reduction.

where
Yy = Y Dy B0+ Crp (5.8)
u, = —Fuop—Vi(D;,Disr+ B;0) (5.9)
o = [ si-n)
[(Bs — BoViDiyDys)r(7) + (v7* By Bf — ByVi B3)0(7)]dr (5.10)
o(t) = — /OO S5 (r = O)[F,DiyDy3 — PB3y — C7 Dys|r(7)dr, (5.11)
t

and where A, Vi, F.., P, Cp are defined in section 4.3.3. Notice that the control
law (5.7) has the form shown in figure 5.1, and if the reference signal r is time-
dependent, then so are the signals y, and w,.

Let now K be a dynamic controller that, when applied to the system (5.2)-
(5.4), yields (5.6). In practice, K, is to be obtained from K using standard
controller order reduction techniques. By a careful examination of the substitu-
tions that relate the controller K with the control law (5.7), it can be shown that
if K is replaced by a controller K that likewise yields (5.6), then the inequality
(5.1) still holds. Now, if we have found such a controller K that is of lower order
than K, then the controller order reduction was succesful.

Remark 20 The loop-shifting transformations described in section 4.3.3 can be
applied also in connection with controller order reduction, using the following
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procedure. The controller K* and the signals u! and y* are constructed analo-
gously to the controller K and the signals u, and yr, respectively, but with the
difference that + is replaced by v~', A by A By by Bl, etc., just like 1t 1s done
in the loop-shifting procedure descrlbed in section 4.3.3. The controller K* is
thus constructed from the Riccati equation formula of section 4.3.3, followed by
controller order reduction. The controller to be implemented is then constructed
according to equation (4.48), which reads

= ([ + [grllﬁzz)_l([%ll(y — D23T') + [%127") + Rooy (512)

With a configuration analogous to the one of figure 5.1, we can write

]%127' = uf — R’éyf (5.13)
Ky = K (5.14)

leading to the control law
=(I+ [i"bm)‘l(li’f(y — y,, Dggr) +u ) + Ry, (5.15)

which is depicted in figure 5.2.

Remark 21 The controller structure that we have used in this section may, at
first sight, seem to have a nicer structure than the the one used in the formulation
of the measurement feedback result in section 4.3.2. However, it does involve an
additional integration, which means that it is less appealing from a computa-
tional point of view, in the case that one does not wish to apply controller order
reduction where, in addition, the reference signal is time dependent.

5.3 A Tracking Trajectory with Minimal Cost

We consider in this section the special case where the reference signal r is scalar
and constant in time. The measurement feedback control law can in this case be
simplified, as the dependence of the control signal on r is now static; this follows
from the observation that it can be determined as the steady state solution to
a particular differential equation. We consider in this section finite dimensional
systems of the type

2 = Az 4+ Byw 4+ Byu + Bsr (5.16)
z = Cl.I + Dlgu + D13T (517)
y = Cyr+ Dyw, (5.18)

We have in this section chosen to formulate the control law as in section 5.2, since
in practice the control engineer will opt for a low order controller if possible.
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The control law of proposition 8, section 4.3.3 can be written as
u=—Fy(zg+p) = Vi(D}yD1sr + B30) (5.19)

where

() = [ Sie (t=Liryir
= /_t Si_rop (t—7)L(y =y * D1 By0 — Crp)(7)dr (5.20)

9(t> = —/ SA”*(T — t)[F:ODTQDIS — PB3 — CrD13]T(T)dT (521)
t

p = /_ St —7)r(r)dr. (5.22)

o

Since r is constant in time, we have the simplifications

0 = (A)YF:D;,Diz — PBy — C;Dysr (5.23)
p = —AT' (v BB + Bsr — ByVi(D},Disr + B30)). (5.24)

This leads to a simplified control law given by (5.19), (5.20), (5.23), (5.24).

In some applications it 1s not immediately clear how to choose the tracking
trajectory —Dqsr. An important consideration is to make sure that it is pos-
sible to obtain a small tracking error. In the framework that we use here, this
translates to making J° small. In the application that we consider in chapter
2, where we have chosen to control the average temperature over nine intervals
along the tunnel, it could for example be appropriate to pre-specify two or three
temperatures of the desired profile, while the rest of the profile could be chosen
from the criterium that the profile should be easy to track.

We consider the problem of determining Dy3 such that J° given by (4.16) is
minimized under p constraints, written as

(1, Disr)z = 1 (5.25)

<¢p7D13T>Z = 1, (526)

where ¢; € Z, the space of the to-be-controlled output. With the simplification
that r is constant in time we denote ¢ = Dy3r. We introduce the matrix ¢ =

(i, ..., Ppl, so that we can write the constraint as
1
é=|: |. (5.27)
1
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We can write

I = | DvarllZy + 37 BIOI, = (B30 + D3, Duar) 2, + 20, Bar)ay
= (Disr, MDy31) 7z + (Dy3r, NBsr)z + (Bsr,UBsr) g (5.28)
where
M = 1= DuViDi, = 2DuVi B (A) (DY, - CF) (5.20)

H(DizFoo — CL)A™H (v 2By By — BaViB3)(A*) ™ (FL, Dy, — )
N = 2Dy, ViB(A)'P 4+ 2(Dyy Fyy — C1)A7Y

—2(D1yF — C1)A™ (v72B, By — B,ViBy)(A")~'P (5.30)
U = PA'(y7*B,B} — B, B})(A*)™'P —2PA"! (5.31)

Notice that the symmetric part of M is positive semi definite because J° must
be non-negative. Now, the task is to find ¢ satisfying

£ = arg mgin{(f, ME) 4+ (€, NBsr) + (Bsr,UBsr)} (5.32)

under the constraint (5.27). This has the form of minimization of a positive semi
definite quadratic functional over linear equality constraints, which is a standard
problem in mathematical programming. First we calculate the derivative

d

i ((&, ME&) + (¢, NBsr) + (Bsr,UBsr)) = (M + M*)¢ + N Byr. (5.33)

This gives us the following condition: £ minimizes J° under the constraint (5.27),
if and only if there holds

(M 4+ M* )¢+ NBsr,p—€) =0 Vpe{pl{di,p) =1, i=1...p}.  (534)

The condition (5.34) can also be written as

(M + M*)E + NBsr, b)) =0 Voo € {op|(i, o) =0, i =1...p}.  (5.35)

This means that there exists a vector & = [k1,...,k,|" of Lagrange multipliers
such that )
(M + M*)é + NByr = k11 + -+ + Kpp. (5.36)
A solution ¢ to optimality conditions of the minimization problem is now given
by solving
—NBgT'
M+ M* —d 13 1
- T e
1
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with respect to Dy3r and k.
The more general plant. Let us now consider the more general plant

t = Ar+ Biw+ Byu+ Bsr, teR (5.38)
z = Cll' + Duw + Dlzu + D137" (539)
y = CQ$ + D21’UJ + Dggu + D237‘7 (540)

The task of finding a suitable tracking trajectory is now only slightly more com-
plicated than before. We must here consider J°, given in (4.42). For shortening
the notation, introduce

F = Vi(B;P+ D;,Cy) (5.41)
A = A—ByF++*B B;P (5.42)

Let us introduce
M = I- f)nVID;Q_21512\711?*(,4*)-10*15;2—@*)

(Do F — COAT (2B B — BV B (A (F Dy, — CF) (5.43)
N = 2D,V BI (AP +2(Dyy F — C)A™!

— 2Dy F — CI)A (QBIB* By Vi By (A (5.44)
U = PAY(*B\B; — B,ViB;)(A*)™'P —2P A" (5.45)

where By, By, etc. are defined as in section 4.3.3. Still considering the case where
r 1s real and constant, we can now write

jO = <D137‘, MD13T> + <D13T, NB3T> + <BgT‘, OngT>. (546)

In order to express JYin terms of Dy3 rather that b13, we must again apply the
transformations of section 4.3.3. Introduce now

M = (2T — Dy D3 2 M(y*T = Dy DY,)™7

+(y*I = Dy D)) 2 N By D7, (421 — Dy, D7)~

+(y*I — Dy D3y)"' D1 BiUB, D}y (v* — Dy D%y~ (5.47)
N = [29*T = Dy Djy) N5 = Dy Dy )~

(42 = D1y D7) 2 N By(7°T — D3, Dyy)~' D,

4+ D11 (A2T — D2 D) ' BEN* (42T — Dy D))z

+2D1 (3T = D5 D)~ B0 By (v*1 = D5y D)™ D3|

Di2(I — RooDa3) ™" Reo Do

+[(021 = Dy D) EN 42D (22 = Dy Dn) T B By (5.48)

U = DLR.(I—Di,R)" Di,MDiy(I — ReyDyy)™" Roo Do
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+D3 R (1 = D3, R) ™ DY,
[@21 — Dy D) TN 42D, (42T - D;ID@-IB;@} B,
+B;U By (5.49)
We can now write
JO = (Dysr, MDygr) + (Diar, Nvy + (r,Ur), (5.50)

and apply the minimization procedure described above. This amounts to solving

—Nr

M4+ M - ¢l 1
-] o

1

with respect to € and k and choosing D3 so that Disr = £.

5.4 The Scaled H. Problem

The presence of structured uncertainties was in chapter 2 handled by scaling the
inputs and outputs using a diagonal scaling matrix A. In the present section we
adapt this procedure to the two-degrees-of-freedom design, for a tracking problem
with a known reference signal.

We assume a perturbation structure where the perturbation system A is di-
agonal, linear, time-invariant and stable, and of the form

Ay

We are thus assuming that each of A; is a scalar system, in order to keep the
notation reasonably transparent.
A situation where such a perturbation is present, and where the controller to
be constructed is applied, is shown in figure 5.3 where r is a reference signal and z,
is the tracking error. The signals w; are introduced to obtain a plant of the type
(4.30)-(4.32), and we partition them as w, = [w},...,w?] and z, = [2},...,27],
according to the perturbation A. We assume that each of the A;’s is normalized
with respect to v so that there holds
lwalls, < 277l

(5.53)

112
sHap
[ | P [ 5 o (5.54)
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Figure 5.3:

for some v > 0. We now give a bound on the tracking error, based on the control
law given in proposition 10. Introducing the scaling matrix A according to the
perturbation structure described above, we arrive at an H., problem where the
disturbance input is Aw,, and the to-be-controlled output is given by [z, (Az,)"]".
With the controller given in proposition 10, we obtain by substituting HZHZP =
Hszzp + HZSHZp into the inequality (4.41), provided that the condition for this
control law is satisfied, the inequality

Izollap + llzallap < ¥ llwsllz, + 77" (5.55)

which can also be written

l2ll2, < YA (Y llwill2, = 122012,) - (5.56)
=1

Now, using (5.53)-(5.54), we obtain
25112, < +°J°. (5.57)

We are not in the position to give a constructive method for seeking the ideal
set of scaling parameters A. Instead we recommend to first formulate the tracking
problem so that the reference signal is modelled by an unknown disturbance
signal, and look for a set of scaling parameters that is suitable for this problem,
using D-K iteration as it was done in section 2.4.4.

5.5 An Algorithm for the Two-degrees-of-freedom
design

The type of control problems that we have in mind in this section is tracking
problems where structured uncertainties are present. The techniques previously
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described in this chapter are intended as an attempt to improve a controller
design of the type used in chapter 2. An application of these techniques would
be based on the following algorithm.

1. Design an H,, controller using the same procedure as in section 2.4.

2. Modify the scaled plant of the type shown in figure 2.7b in such a way that
the signals, which are denoted w; and y; in figure 2.4, are removed.

3. Perform loop-shifting if necessary.
4. If needed, determine the reference profile using the technique of section 5.3.

5. Perform controller order reduction as shown in section 5.2, followed by the
inverse loop-shifting procedure if necessary.

5.6 Discussion

The formulae developed in this chapter are based on those from chapter 4, which
are again based on formulae obtained by Shaked and de Souza[57]. This is a
natural development, since the very appealing method introduced in [57] did not
at that stage take into account structured uncertainties, etc.

The way we have introduced the controller order reduction seems to be the
most natural one possible. This may however not be the case for the scaling
procedure, and we see no reason to claim that adopting the scaling parameters
from the more standard design of chapter 2 is optimal in some sense. It would be
interesting to apply the procedure developed in the present chapter to the case
study of chapter 2.
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Appendix A

A.1 Conditions for Solving the H., Problem

The solution to the suboptimal H,., problem for finite dimensional systems can
be found in Glover and Doyle[28]. This solution has been implemented in the
toolbox [33], which we have used in section 2.5. For convenience of the reader
we state here the part of the result of Glover and Doyle[28] that concerns the
existence of a controller that solves the suboptimal H., problem. We use here
the same notation as in that paper.

Let a finite dimensional linear system be described by the state equation

#(t) = Az(t)+ Biw(t) + Bau(t), (A1)
z(t) = Ciz(t) + Dyw(t) + Diu(t), (A.2)
y(t) = ng(t) + Dglw(t) + Dggu(t), (A3)

where w(t) € R™ is the disturbance input, u(f) € R™ is the control input,
z(t) € R?" is the to-be-controlled output, y(t) € R?? is the measured output, and
z(t) € R™ denotes the state. The transfer matrix of this system P is denoted by

o=l | = Lo o]+ G et B
(A.4)

The controller to be designed is likewise a linear system, with the transfer matrix
K (s). The closed loop system is denoted by

F(P,K) = P+ P K(I — Py K)™' Py (A.5)
The following assumptions are made:
Al. (A, By, () is stabilizable and detectable.
A2. rank Di3 = mqy, rank Dy = py.

A3.

DIZZ[H,DZF[O I] (A.6)
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and we have the partitioning

D D P — M
Dy = |: 1111 1112:| ipl my

Diig1 Diigg i my (A 7)
H H 4 .

my —p2 P2

Ad. Dy =0
A5, _

vank | El“"[ 5122 Vw e R (A.8)
A6. _

rank | 4 _Cj‘”[ 5211 Vw e R (A.9)

Notice that A1 is assumed to ensure the existence of a stabilizing controller. A2
is a technical assumption which is essential for the applicability of this result, but
not necessarily for the solvability of the H,, problem. A3 and A4 are assumed in
order to simplify the formulae. A5 and A6 have roughly the same status as A2.
Notice also that avoiding to violate assumption A2 is in many cases a matter of
formulating the control problem carefully.

Define )
* [ml O
R= DDy — [7 A ] (A.10)
where
Dl- - |: D11 D12 :| (All)
and a
. . .0
R=D.D% — { 7 oo ] (A.12)
where
_ | Dn
D, = [ Dy, ] . (A.13)
We introduce the Riccati equations
0 = (A—=BR'D;.C1)* X + Xoo(A— BRT'D}.CY)
~Xowo(BR'B*) X, + Cr(I — D.R™'D})Cy (A.14)
0 = (A= C*R™'DyB}) VYo 4 Yoo (A* = C*R™'D., B)
Y. (C*R7YC)Yo + Bi(I — Dy R™'D.4) B}, (A.15)

We are now in the position to quote part of the main theorem of Glover and

Doyle[28].
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Theorem 22 For the system described by (A.1)-(A.3) and satisfying the assump-
tions A1-A6: There exists an internally stabilizing controller K such that

|F(P, K)o < 7 (A-16)
if and only if
(1) v > max(a[Dir, Dinal, 6[Dy1yq, Diynl)

(ii) there exists Xo, salisfying (A.14) and Y., satisfying (A.15) respectively and
such that p(XooYao) < 7% (p(+) denotes the largest eigenvalue.)

The part of the theorem that we have omitted are the explicit formulae for a dy-
namic controller K of the same order as the plant P, together with a parametriza-
tion of all rational stabilizing controllers satisfying (A.16).

A.2 Hankel Norm Approximation

Hankel norm approximation was used several times in the controller synthesis in
chapter 2, and we therefore give in this appendix some remarks related to that
method.

Consider the finite dimensional stable system

fl—f = Ax+ Bu (A.lT)
y = Cx+ Du (A.18)

where u(t) € R™, z(t) € R", y(t) € RP. The Hankel operator of this system
relates past inputs to future outputs. We consider input signals in the space
L*(—00,0; R™), and we are interested in y(¢) only for ¢ > 0. The Hankel operator
that maps u € L*(—o00,0;R™) to y € L*(0,00; R?) is defined by

y(t) = /_0 el Bu( )dr, t>0. (A.19)

(o]

The Hankel norm of the system is equal to

Jo~ Ny (@)t
sup

u€L?(—co,0;R™) /f_oo Hth

The problem of model reduction by Hankel norm approximation is to find a sys-
tem of lower order that approximates the original system in the Hankel norm. A
comprehensive treatment of this technique can be found in Glover[25], and im-
plementations are available, for example in the Matlab toolbox [33]. The method

(A.20)
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is particularly efficient for approximation of systems when the maximum error
across frequencies is an issue.

A theory for Hankel norm approximation of a class of infinite dimensional
systems is available, see Glover et al.[27], but explicit formulae for such an ap-
proximation are not known in general. An exception can be found in Glover et

al.[29].

A.3 Simulating the Pasteurization Plant

The numerical simulations were carried out using a combination of a Runge-Kutta
method, and the method of characteristics.
The Runge-Kutta method (see Lambert[41]) is designed for simulating initial

value problems of ordinary differential equations of the form

dy m_, pm

E: (t7y>7 y(O):yo,f:]Rx]R — R™. (A21)
For simplicity we describe here the method without error estimate. With an
explicit 4 stage Runge-Kutta method is associated the Buther array

C1
C2 | a2
C3z | d31 d32 (LAQQ)
Cqa | 041 Q42 0443
Denoting the time-discretization step by h, the method calculates y1,ys2,... as

the approximate solutions to the system (A.21) at the times ¢; = h, 1, = 2h, .. ..
The method is defined by

4
Uit = Yo +h Y bif(Ln + cih, Vi), (A.23)
1=1
where -
Yi=yathy ai;flte+ch,Y)). (A.24)
7=1

This means that the right hand side f(-,-) is in the (n 4 1)st step evaluated at
the times t,,,1, + ¢1h,t, + c3h, 1, + c3h and at the state values Y, Y,, Y5, Y, We
have chosen to use the Runge-Kutta method with the Butcher array

0
111
T
HEoa (A.25)
110 =1 2

s 0 5§
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which is known as England’s method, except that we have omitted the error
estimate provided by that method.

The idea behind using the method of characteristics for our simulation is to
isolate the transport effect in such a way that the problem of simulating a partial
differential equation is replaced by the problem of simulating a set of time-varying
ordinary differential equation. In order to describe the principle of this method
we consider the transport equation

%(t,x) = —v%(t,x) +ad(t,z)+u(t,z), t>0, z>0 (A.26)
¢(t70) =0 (A.27)
$(0,z) = ¢o(z). (A.28)

This equation has the explicit solution

d(t,z) = edo(x — vt)H(z — vt) + /0 e“(t_s)u(s, r—o(t—s))H(z—v(t—s))ds

(A.29)
where H(z) =1 for > 0and H(z) = 0 for z < 0. We introduce the substitution
Kk = x — vl and define

Ve(t) = d(t,2) = e do(k) + /Ot e“(t_s)u(s, k+vs)H(k + vs)ds. (A.30)

There holds 1,(0) = ¢o(k), and hence

Yu(t) = e“tle(O) + /0 e“(t_s)u(s, k+vs)H(k + vs)ds. (A.31)

For fixed k, ¥, 1s now considered as a function of ¢ that satisfies the ordinary
differential equation

di,.
o (1) u(t) + u(t, & + vt). (A.32)

¥e(0) = ¢o(k) (A.33)

Clearly, simulating (A.32) and finding ¢ by the relation ¢(f,k + vt) = (1) is
easier than simulating (A.26) directly.
The discretization in the spatial variable is carried out by approximating the

initial value function ¢o by average values. This means that in (A.32), the initial
value 1,(0) is replaced by an average of the type

ot /+ u(0)dr. (A.34)

KRiy1 — Rj

In order to use the Runge-Kutta method we need to be able to evaluate the
right-hand side of (A.32), where keeping track of u(, k + vt) does involve a little
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book-keeping. The discretization grid is chosen according to the time-step h.
This means that, with the Butcher array (A.25), we need to evaluate the right-
hand side of (A.32) at the times ¢ = 0, %,h, %,Qh, ... and a natural choice of
discretization grid is to let ;41 — k; = vh/2. The transformation between ¢(t, z)
and 1, (1) can be carried out in each step, but a more efficient implementation is
obtained by doing this only occasionally.

The procedure described above can be applied to the transport equation
(2.13). The implementation of the remaining part of the model is straightfor-
ward.

The stability constraints for England’s method are roughly determined by
the eigenvalues of the linearized system, see Lambert [41, sec. 5.12]. For this
reason the time needed for simulating the closed loop system depends on the
poles of the controller, where, for example, an eigenvalue of excessively large
magnitude requires the simulation time to be proportional to the magnitude of
that eigenvalue.

A.4 Minimizing a Constant Linear Fractional
Transformation

In the loop-shifting procedure of section 4.3.3, the conditions for the existence of
a static feedback F', minimizing

”Dll + D12F(I - DQQF)_1D21H (A35)

were given. Below, we consider a standard procedure for the construction of such
an F'in the finite dimensional case where Dy, D3, Day, Dy are matrices.

Find Cholesky factors G and H such that
G/G = D/12D12 and H/H = D21D/21. (A36)
Define

Tia = Dia(DiyyDyo)™' G
Ty = H(D21D121)_1D21

T, = (T))*
Ty = (TQJi)I

where A denotes an ortonormal basis for the nullspace of A, i.e. (AY)A+ =1

and AALT = 0. Then there holds

T A 7 )
|:T:/z:|[T12 T]Q}:[, [Tz:] [TQ'] TQ'I}:[’ (A_37)
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and we can write

| D11 + D12 F(I — DQQF)_1D21H
o al 0 0 TZI
et s 1%

Tl’? / ! 0 0
(AR AR | A

Finding a matrix @ that minimizes (A.38) is a so-called four-block problem. An
algorithm for solving this is explicitely described in Green and Limebeer[30, sec.
11.2]. Having found such a @), the matrix F' minimizing (A.35) can be found by
the formula

F=(+G'Q(H) " Dy) ' G Q(H")™. (A.39)

A.5 The Pritchard-Salamon Class of Systems

For convenience of the reader, we here give the definition of the Pritchard-
Salamon class of systems, where we quote Curtain et al.[17]. For background
material on Hilbert spaces of the type considered below we refer to Aubin|[3].
Let W and V be real separable Hilbert spaces, satisfying W < V, where by
— we mean that W C V and the canoncal injection W is continuous and W is
dense in V. We consider strongly continuous semigroups S(-) on ¥V which restrict

to strongly continuous semigroups on W. The infinitesimal generators of S(-) on
VY and W will be denoted by AY and AW respectively.

Definition 23 Let W,V and S(-) be as above and let U and Y be real separable
Hilbert spaces.

(i) An operator B € L(U,V) is called an admissible input operator for S(-) if
there exist ty > 0 and 3 > 0 such that f;l S(t1 — s)Bu(s)ds € W and

/t1 S(ty — s)Bu(S)ds

< BlluC)l0m0) (A.40)

Jor all u(-) € L*(0,t1;U).

(ii) An operator C € LIW,Y) is called an admissible output operator for S(-)
if there exist ty > 0 and v > 0 such thal

NCS()x||20,05v) < Yllzlly for all x € W. (A.41)

(iii) Let B € L(U,V) and C € LW, Y) be admissible input and output operators
respectively, and D € L. The system Yq = X(S(-), B,C, D) given by
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()= S(t)ze + fg S(t — s)Bu(s)ds
EG'{ y(1) = Ca(t) + Du(t), (A-42)

where z9 € V, t > 0 and u(-) € LY°(0,00) is called a Pritchard-Salamon
system. If, in addition, we have

D(AY) = W, (A.43)

we call Y. a smooth Pritchard-Salamon system.

Remark 24 Let ¥g = X(S5(+), B,C, D) be a smooth Pritchard-Salamon system.
In [16] it is shown that if ' € L(W,U) is an admissible output operator for S(-),
then AY + BF (With D(AV + BF) = D(AV)) generates a strongly continuous
semigroup on V which restricts to a strongly continuous semigroup on W, and
Y(Sr(-), B,C, D) is again a smooth Pritchard-Salamon system (this means that
the Pritchard-Salamon class is invariant under output-feedback).

A.6 Weighting Systems Used in the Synthesis

In the controller synthesis algorithm we used a number of weighting systems, as

shown in figure 2.4. The weighting systems Wy, Wy, W5, Wy, W5 are frequency

dependent, while Wy, W,, W, are merely matrices. The details are as follows.
a1

W) = (A.44)

where o, = 3 - 1074

W2(5>:[K2_52 (’72—&2)0[](3[ _|:—U£L 05><5:|) 1|: 03 :|+5
2 10 ob  —of Is — o} ?
(A.45)
where ag = 0.01 - I5, 03 = 5 I, 72, Ka, 02 are diagonal matrices of dimension
5 x 5 with 44 = 0.015- k/a’, k5 = 0.35 - k/a}, 65 = 0.2 - k/a} and I5 is the 5 x 5
identity matrix.

Ws(s) = (v3 — k3) (sls + 03)_1 o3 + 03 (A.46)

where 73, d3 are diagonal matrices of dimension 8 x 8 with 4% = 0.001, &% = 0.14.

‘ —O'il 08)(8 ! O-A}IL
Wils) = [ k4 =05 (ya—ra)oy | (sl — oy —04 Iy = o} o
(A.47)
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where o = 0.005 - Iy, o = 0.1 - I,
- i
04 -1
02 04 -1
0.1 022 04 -1
7 =001 0.1 022 04 —1 ’
0.1 022 04 -1
0.1 022 04 -1
i 0.1 022 04 -1 |
K4 = 7a, 0y = %74-
h -1 h
Wis(s) = [ ks — 05 (V5 — 115)0'§ ] <5[16 - [ 025 (E‘;Z ]) [ [80_50_§ ] + 45
(A.48)
where of = 0.005 - Is, o = 0.1 - Iy,
[ 1 1 0 0 0 0 0]
025 0.5 1 1 0 0 00
0.25 0.5 1 1 0 0 00
0.125 0.25 0.5 1 1 0 00
v = 0.0048 - | 0.125 0.25 0.5 1 1 0 0 0|,
0.125 0.25 0.5 1 1 0 00
0 0125 0.25 0.5 1 I 00
0 0.125 0.25 0.5 1 1 00
|0 0 0 0125 025 05 1 1 |
K5 = % “ 5,
(1 1.0 0 00 0 0]
00110000
00110000
000O0T1UO0TO0O0
d05=0004-10 0 0 0 1 0 0 O
00001000
0000O0OT1TU0O0
0000O0OT1TU0O0
| 0000001 1]
Wi=1[095 0.05 | (A.49)

W, =[32.04 51.77 58.14 60.24 62.63 63.18 61.27 54.85 27.17 |’
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Notice that W, was calculated as the steady state response in open loop, with
some suitable vector of control signals applied.

0.05
0.07
0.07
0.07
W, = 0.41 . (A5
0.41
0.07
0.07

0.05

A.7 Model Parameters of the Pasteurization Plant

parameter value comment
[ =a2; — 21 1.3 length of each zone (m)
v 0.005 velocity of conveyor belt (m/s)
cl 0.0539 heat transfer coefficient water/glass (sec™!)
2 0.0391 heat transfer coefficient beer/glass (sec™')
c3 0.0093 heat transfer coefficient glass/beer (sec™')
n 123 steam temperature( °C)
I} 103 parameter related to heat exchangers (sec °C)
aj 0.989 nominal cut-off frequency
for 1st heat exchanger(rad/sec)
a? 0.853 nominal cut-off frequency for 2nd heat exch.(rad/sec)
al 0.717 nominal cut-off frequency for 3rd heat exch.(rad/sec)
ay 0.620 nominal cut-off frequency for 4th heat exch.(rad/sec)
a; 0.562 nominal cut-off frequency for 5th heat exch.(rad/sec)
al 0.196 cut-off frequency: upper tanks (rad/sec)
al 0.028 cut-off frequency: lower tanks (rad/sec)
a 0.558 coefficient related to heat flow in tunnel (m™")
ak 0.212 coefficient related to heat flow in tunnel (m™")
k 6.1342-107° | stationary gain of heat exchangers (sec °C/J)
T4 3.2 delay related to water supply (sec)
TL 2 delay related to water collection (sec)
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Appendix B

B.1 Notation

F(G,K)
TP(H)
AP(H
APy(H

- Nlap

~ —

the imaginary unit

the 7th component of the vector 7

the ith diagonal entry of the diagonal matrix a

{s € C such that Re{s} > 0}

the spectral radius

the largest singular value

the identity

the ith diagonal matrix of scalar perturbation systems
the 1th weighting matrix or weighting system

L? norm of z

norm of the scalar x

induced L? norm of the bounded linear operator A
the norm on the Hardy space H,

the L? space of functions defined on (0, 00) with values in H
bounded linear operators from U to H

domain of the linear operator A

adjoint of the linear operator A

transpose of B

linear fractional transformation, defined in (2.42)
trigonometric polynomials with values in H

almost periodic functions with values in H
Besicovitch-almost periodic functions based on AP(H)
norm on the Hilbert space of Besicovitch-almost periodic functions
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