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Summary

This thesis truly exploits and builds on the advancement in digital technology in
its treatment of two key issues in digital control. The robust control framework is
applied and extended to tackle these issues.

The first issue concerns LQG controllers with robustness to norm bounded
model uncertainty in the sampled-data setting so that the intersample behaviour
is taken into account.

The second issue is fault detection and isolation/estimation which is a corner-
stone in most (computerised) reliable and supervisory control systems.

Both issues are essentially digital implementation aspects for which optimisa-
tion based design and analysis methods, generally computational demanding, are
developed.

The robustH; (LQG) problem (worst-case over a set of systems) is approached
in two ways by applying the lifting technique which converts the hybrid system
with both a continuous-time plant and discrete-time controller into a system in one
time set.

Firstly by elaboration on the well-known loop transfer recovery procedure to
handle sample-data systems. The work includes design methods bagédod
Hs optimisation. Secondly by extending recent results on rofiggierformance
to the sample-data setting. Resulting in convex conditions consisting of a linear
matrix inequality and an averaging integral.

The first approach is a synthesis method, however, the recovery may not be
exact, whereas the second approach is basically an analysis method. Consequently
it makes sense to employ these in turn.

For completeness related multiobjective sampled-data designs are sketched and
discussed in some detail.

The FDI (Fault Detection and Isolation) problem is formulated for both nom-
inal and uncertain systems. An analysis of threshold selection leads to the case
without false alarms. This mounts into a study of the smallest fault guaranteed to
be detected where the main result is a (possible conservative) norm based index
for those. However, it opens for optimisation based design methods and is given in
various forms.

Further, the integrated FDI and controller design problem is investigated to
exploit their interaction as well as sharing an observer like part. Thus a full FDI
design is facilitated by optimisation methods.

Though the two issues are treated quite separately in this work it will take only
a small extra effort to do a combined design since the same framework handles
both.



Sammenfatning (Danish)

Denne afhandling bygge@pog udnytter i seerdeleshed, udviklingen indenfor digi-
tal teknologi i studiet af to centrale emner i digital kontrol (regulering og styring).

Foarste emne behandler LQG regulatorer med robusthed mod normbegraenset
model-usikkerhed i sampled-data opseetningaiedes, at opfarselen mellem sam-
plingstiderne medregnes.

Andet emne er fejldetektering og isolering/estimering. Dette udger en
hjgrnesten indenforglidelige og “supervisory” digitale kontrol systemer.

Begge emner er grundlzeggende digitale implementeringsspaldenhvilke
optimeringsbaseret dimensionerings- og analysemetoder udvikles. Disse er som
oftest beregningstunge.

Det robuste#, (LQG) problem (det veerst taenkelige tilfaelde i en maengde af
systemer) behandlesigo nader, hvor denakaldte "lifting” teknik omdanner et
system med &de et kontinuert reguleringsobjekt og en diskret regulator til et ekvi-
valent system.

Der startes med videreudvikling af det velkendte “loop transfer recovery” prin-
cip til at omhandle samplede systemer. Denne inkluderer dimensioneringsalgorit-
mer baseret®75 0g H,, optimering.

Derefter behandles den fornylig fremkomne metode til robtstydeevne i
sampled-data opsaetningen med de ngdvendige udvidelser. Dette resulterer i kon-
vekse betingelser bésnde af lineaere matrix-uligheder og et integral til gennem-
snitsudligning.

Den fgrste angrebsvinkel er basalt set en syntesemetode, hvor gendannelsen
ikke ngdvendigvis er eksakt. Den anden angrebsvinkel er en analysemetode, derfor
er det fornuftigt, at anvende disse i neevnte reekkefglge. For at afrunde emnet er
fler-kriterie sampled-data metoder skitseret og belyst.

Fejl Detekterings- og Isoleringsproblemet (FDI) formulereadédet nominelle
og ubestemte tilfeelde. En analyse af valget af graenseveerdi, farer til tilfeeldet uden
falske alarmer. Dette udmunder i et studie af den mindste fejl, som det er muligt at
detektere. Her er hovedresultatet et indeks, muligvis konservativt, der kvantificerer
disse. Imidlertidabner dette for anvendelsen af forskellige optimeringsbaserede
dimensioneringsmetoder.

Desuden er det integrerede FDI og kontrol-dimensioneringsproblem undersggt,
med henblik @ at udnytte vekselvirkningen. En fuldsteendig FDI-dimensionering
er saledes understattet og simplificeret af optimeringsmetoder.

Selvom de to emner er behandlet naesten seerskilt kreever det kun en begreenset
merindsats, at udfgre en kombineret dimensionering, da den samme metoderamme
er anvendt til begge emner.
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Chapter 1

Introduction

Automatic control is roughly speaking a 20th century interdisciplinary of engineer-
ing and mathematics initiated by the study of feedback amplifiers for telecommu-
nications, however, one can easily say that it goes all the way back to the Greeks
building water clocks in around 300 B.C. or the 18th century for the Watt steam
engine speed governor. Using Wiener’s neologism Cybernetics (or control and
communication in the animal and the machine) and thinking of control as forcing
a system to have certain properties, it has certainly been around for quite a while,
just think of the functions of your body. An easily accessed reference for a richer
view of the control history is [Ben96].

We make a clean cut here and divide control theory into the following periods
and give a few references and keywords; many of these techniques are still central
in the current research.

1935-1960 The Classical period. Linear Time-Invariant (LTI) SISO (Single Input and
Single Output) system design based on the frequency response techniques
using Nyquist [Jen84], Bode [Bod45] plots etc. or in the time domain using
the Laplace transform technique to obtain the wanted performance quantities
based on rules of thumb.

1955-1980 Modern Control [KS72§W84]. State-space LTI MIMO (Multiple Input
and Multible Output) methods, LQG (Linear Quadratic Gaussian), digital
computers, dynamical programming, adaptive control.

1975- Post Modern e.g. [ZDG95] Robust contrdl,-control, Linear Matrix In-
equalities (LMIs), thea method (complex) structured sigular value.

In short one may summarise the realm of obstacles for (classical) control tech-
niques to be that real systems are uncertain, time-varying, nonlinear and infinite-
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2 CHAPTER 1. INTRODUCTION

dimensional, moreover, measurements contain noise and errors. Besides, the appli-
cation of digital hardware for implementation of controllers adds more obstacles.
Systems with the latter two phenomenas being predominant are by themselves top-
ics in control theory. Uncertain and time-varying systems are aimed at by both
adaptive and robust control (described below).

The idea in adaptive control is to gather data on-line about the uncertain (or
unknown) process or the feedback loop and based upon these to change/tune/adapt
the controller. This is basically an algorithmic approach. It is difficult to show
stability of the resulting closed-loop beforehand and convergence of the algorithm,
therefore, the method is somewhat adhoc.

From an engineers point of view adaptive control can handle systems with slow
and possible large uncertainty. Robust control can handle systems with small and
possible fast uncertainty. Therefore it is no surprise that combining the underlaying
ideas of these two theories/methods is an attractive research area, albeit a difficult
one. Lately there has been progress in the area of gain scheduling.

Virtually, all tools from mathematics and computer science are thrown at con-
trol problems. For these reasons control theory has many branches which are in
indeed interconnected, overlapping and often mixed.

Here we work in the broad framework of robust and optimal control as it has
a good mathematical foundation and may be seen as a mixture of the best of the
classical and modern periods.

1.1 Framework

ROC (Robust and Optimal Control) started around the mid-seventies and inspired
by the small gain theorem [Zam66, Zam81], a little ahead of time, the problems
were formulated using maps on function spaces. Most of the mathematical theory
to solve the problems were not around, however, it have since been quite well
established and now provides a solid foundation. The paradigm of thinking in
maps and computing in state-space has been advantageous in the development.
ROC works on a class of plants, given by a nominal plant and an uncertainty
set, the robustness phrase simply means that a property holds for a given class. This
classifies it as a branch of model based control like most control theory. The two
generic properties one is looking for are (internal) stability and performance which
in short may be taken respectively as given an unforced system the states decay
to zero by time and achieving certain specifications i.e. tracking or attenuation of
noise. Feedback is the mean to obtain the properties; by analysis we check that they
are met and by synthesis we design a controller with these. Essentially, feedback
is a tradeoff since it has the ability to handle signal/model uncertainty and change
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dynamics at the price of higher noise sensitivity.

The celebrated result of parameterisations of all stabilising controllers [YJB76],
makes it possible to start a brute force search based on trial and error. The main
problem for this naive approach is the stopping criteria, which naturally will be
time or rough bounds on the limitations of performance. Based on signal types
methods for finding the optimal robust controller systematicly (by some algorithm)
constitutes the cornerstones in ROC i.e. the so-caliednd/; theory.

1.2 Organisation and Motivation

In many ways the invention of the the 20th century is the transistor. The subjects
in this thesis are closely related to the cheap and very powerful digital equipment
available now in the turn of the century; most notably in form of the (personal)
computer. The computer facilitates the main tasks of control engineering:

e Design Such as solving algorithms and optimisation problems even for large
complex systems. These calculations would not be attainably by pen and
paper.

e Implementation For instance by computing the control-law or filter inter-
faced via A/D and D/A converters. This is generally cheaper, simpler and
more flexible than an analog implementation.

This thesis deals with two key aspects of control engineering namely digital
controllers and filtering and the scope is analysis and design.

The control-law may be seen as the lowest level in the control hierarchy where
higher levels count topics as FDI (Fault Detection and Isolation) filters and super-
visory control (not studied here). However, in our prespective control and FDI are
on an equal footing, see fig. 1.1.

More precisely we study, refering to fig. 1.1, 1) robastfor SD (Sampled-
Data) Systems and fault detection and isolation in the robust control framework; 2)
design regarding threshold and 3) integrated FDI and controller design.

Though both the SD and the FDI implementation issues often are essential
parts of an actual design, they clearly have a right on their own and can be treated
quite seperately which will be the case both in the next brief introductions and in
the latter parts of the thesis.

The thesis is organised as follows with a general part on signals and systems
modelling, the robust control framework followed by the SD systems part, the FDI
part and conclusion with further directions.
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Supervisor
Control

\2) """"""""

Controller FDI
,,,,,,,,,,,,,, 1) __Implementaton
Design
3)

Figure 1.1: Organisation

1.2.1 Sampled-Data Systems

Due to the widespread use of digital hardware in control systems the overall sys-
tem has commonly a continuous process and a discrete controller based on time-
samples and this hybrid is called a sampled-data system. Besides, measurements in
chemical and biological processes often only results in data at certain time instants.
A sampled-data system we think of generically as an analog/continuous plant and
a digital controller connected via A/D converter with analog prefilter and D/A con-
verter. By standard idealisations we view the loop as an analog plant (appropriate
prefilter absorbed therein), a sampler, a digital controller and a hold.

We want to shape the behaviour of the plant, hence to have continuous time
specifications. Therefore studying the “at sample” behaviour is not enough; we
need the intersample behaviour as well. Recent years research has established a
theory for taking the intersample behaviour into account, a main tool is the lift-
ing/raising framework which transforms a linear periodic problem into a LTI prob-
lem. Generally the intersample behaviour is of interest when the sampling rate is
limited which to some extent is always the case. Even if the rate is free and there-
fore can be chosen corresponding to a frequency much higher than the bandwidth
of the closed-loop, say a hundred times, there may be complications.

The common denominator in the SD part is to tackle the problem of getting a
robust#4 (read LQG) controller in the SD sense.
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The story starts with the quest for methods to perform MIMO designs. The
state-feedback#, controller, or LQR (Linear Quadratic Regulator), has good
closed-loop robust stability properties and is found efficiently by a Riccati equa-
tion, however, it is often not possible in a practical system to measure the full state.
An observer is hence used to estimate the state; the Kalman filter which is found
by a Ricatti equation again. In fact the time-reversed equation of the LQR problem
- the two problems are indeed “dual”, see [KS72].

Looked upon in turn these have each an infinite gain (and a 1/2 reduction)
margin and no less tha0® phase margin. Their combination, the LQG problem,
results in a two ways striking abstract to the paper “Guaranteed Margins for LQG
Regulators” quote “There are none” [Doy78].

Besides adding momentum to the aforementiosigédand ¢; theory; the pa-
per initiated a still active line of work in robust: first by LTR (Loop Transfer
Recovery) and lateth/ H, and robustt, performance.

Here we pursue in the SD setting the LTR idea (chapter 5) since it is still com-
monly applied by practitioners and the robasétperformance problem (chapter 6)
as it solves the problem more satisfactorily.

1.2.2 Fault Detection and Isolation

FDI by observers also known as analytical redundancy contrary physical redun-
dancy has been an active research area for two decades whereas the area of fault
detection originated in close connection with adaptive control a decade earlier. The
observer approach is easy to implement in software and clearly less expensive than
physical redundancy, furthermore, it is a cornerstone in most reliable and supervi-
sory control.

An observer based fault detector consists of a residual generator (the observer)
and a residual evaluator (the threshold and a comparator e.g. with some time-
window averaging). For accommodation of the fault it is necessary to isolate the
sensor or actuator which failed which is often possible by the observer. Moreover,
the faults degree of severeness can be estimated; known as FDE (Fault Detection
and Estimation). This is truly what we aim at, but we still use FDI (or fault detec-
tion) as the topic term.

In this work we exploit the robust control framework to obtain a systematic way
to select threshold via a performance index; a horm based design (chapter 8) and
enhance design methods for simultaneous design of controller and fault detector
(chapter 9). Thus the full FDI design is facilitated by widely available and efficient
optimisation methods.
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Contributions

Contributions in this work include related published material by the author and
coauthors in:

Loop Transfer Recovery for Sampled-Data Systems [NSRS96]. A journal
version is under preparation.

Simultaneous Design of Controller and Fault Detector [KRNS96].

Robust#4 Performance for Sampled-Data Systems [RP97]. The technical
report contains more details.

Norm Based Threshold Selection for Fault Detectors [RN98]. A journal
version is submitted.

Multiobjective Sampled-Data Design. A conference version is under prepa-
ration.

Highlights are summarised below.

SDS:

A setup for the SD LTR problem and design methods #6/LTR and
H.,ILTR on page 52.

Application of fast discretisation for SD LTR on page 53.

In order to apply the lifting technique to the recovery error operator a com-
posite description is needed in th&, case see page 49.

Obtain a controller of the same order as the plant using the recovery matrix
on page 50.

No duality between the input loop breaking point and the output loop break-
ing point for SD#,/LTR design on page 55.

Sufficient conditions for robust, performance for sampled-data systems
have been derived under three different cases of uncertainty:

— periodic time-varying on page 59.

— linear time-varying on page 61 with necessity when using set-based
white noise modelling.

— linear time-invariant on page 64.

Multiobjective sampled-data designs are sketched and discussed on page 103
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FDI:

e Given an induced norm the accompanying smallest gain is related to a match-
ing problem on page 19.

The formulation of the fault detection and isolation problem in terms of in-
duced norms of transfer functions on page 75.

A new performance index for the optimisation of FDI filters for both nominal
systems on page 77 as well as for uncertain systems on page 81.

The case with a fixed number of faults may occur simultaneously on page
79; particularly the case with one fault at a time.

An iterative threshold design method on page 81.

A setup and design for simultaneous design of controller and fault detector
on page 90 with a more general filter structure than observer based ones.

Low order filters/controllers on page 92.

Though, the SDS nature and FDI are treated quite separately in this work it will
take only a small extra effort to do a combined design, basicly, since the framework
of robust and optimal control is exploited and extended to handle both.
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Chapter 2

Signals and Systems Modelling

This chapter and the following serve to introduce notation, main concepts and to
give references to the comprehensive literature used.

Control theory deals with analysis and synthesis of dynamical systems. One
way to view a system is as a device which takes some input signals and gives some
output signals [DV75]. Another view is the behavioural approach [Wil91]. The
signals may be digital/discrete or analogue/continuous.

As with all mathematical modelling of the real world one pays a price for get-
ting the tools and abstraction of mathematics at hand by the simplifications or lim-
itations of the chosen model/space. Some choices are explicit others implicit. In
this thesis we study linear (finite dimensional) systems mainly because of the math-
ematical convenience.

The mathematical abstraction we use is as follows: Systems are maps or op-
erators and signals are sequences or functions (of time). The time-set discrete
(continuous) is given by the support assumed non-negative of the sequences (func-
tions). Which is basic functional analysis [Kre89, Con90] and topics in complex
functions theory [Con78, Con95] are also needed. We will use the terminology of
the mathematical description and physical description interchangeably.

A key mathematical tool is optimisation [Lue68] and to perform this it is im-
portant to have measures for signals and systems.

2.1 Complete Normed Linear Spaces
The common underlaying structure of both signals and systems is the notion of
a vector/linear space with the usual addition and scalar (fi@ldnultiplication

operations. We start with the requirements for a norm on a vector/linear space.

9



10 CHAPTER 2. SIGNALS AND SYSTEMS MODELLING

Definition 2.1 A norm,|| - ||, on a vector/linear spac¥ mapsX — R and satisfies
for all x,y € X and scalarsx € F

N1 ||x|| > Oforall xe X,|[x|| =0<x=0
N2 {|ox|| = |a ][]
N3 [x+y| < x|+ vl (triangle inequality)

Though, the zero vector/matrix/function/sequence/functional/operator differs
depending on space we simply wrii@and the definition stays the same. A normed
vector/linear spac¥ is simply a vector space with a norm defined on it. A norm
on X induces a metric by(x,y) = ||x—y]||.

Definition 2.2 A normed vector/linear space where the induced metric space is
complete is called a Banach spad, By rewriting definitions:

e A sequencéx,) € X is convergent with limikg € X if

Ve>03dnpeN:n>np= ||xn—Xo| <€

e A sequencéx,) € X is a Cauchy sequency if
Ve>03dnge N:nm>np = ||Xn—Xm| <€
e A Banach is a normed vector spakenvhere every Cauchy sequency is con-
vergent

Note that every finite dimensional normed vector space is a Banach space.
Besides the (distance) measure often an analogue of the dot product is desir-
able. Such a space is called an inner product space

Definition 2.3 An inner producty-,-), on a vector spacX mapsX x X — F and
for all x,y,ze€ X and scalarsa € [ satisfies

1 (x,x) >0, (X,x)=0&x=0
12 (ax,x) = a(x,y)

13 <X—|—y,Z> = <X7Z> + (y,Z>

14 (X,y) = (¥, X)
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An inner product orX defines a norm oX by ||x|| = \/(x,X) and hence a metric. A
complete inner product space is called a Hilbert spafeand thus also a Banach
space.

Finally, it is worth to mention that the main reason for working with com-
plete spaces is that the optimisation problem is often solved by construction of a
sequence of improving solutions and the optimal one is then the limit which is
assured to be in the space.

2.2 Systems as Linear Operators

We will study systems with the properties of linearity, causality, time-invariance
and BIBO (Bounded Input Bounded Output) stability also called external stability.
Let X (input) andY (output) be normed spaces and X — Y be an operator.

ThenT is bounded ic € R, (VX) || TX| < c||x|| and the induced norm is given by

. T
IT||=inf{ceR: (¥x) |TX| <c|x||} =su M (2.1)
20 [IX|

Note that the same symbol denotes different norms, however, the context/fac-
tors indicates the proper (normed) space, the same goes for inner products. Fur-
thermore, lefl be linear i.e.

T(oxg+Bx) =aT(X1) +BT(x2), Vxi,x X, a,BeR (2.2)

and one can show that (linear) is continuous if and only if is bounded. The
space of all bounded linear operators frdmto Y, £(X,Y) (if X =Y just £(X)),
is a vector space itself with the induced norm (2.1) which due to the linearity also
equalssupy—q | TX|-

In the system context this is precisely BIBO stability and the induced operator
norm is the worst-case gain i.e. maximum gain for all possible inputs If¢(X)
we call it X-stable e.ng-stabIé. Further the multiplicative inequality holds i.e.
for concatenation of systeng&andT holds||TS| < ||T|/[|S]-

Let a signal (continuous) have supportinthen the delay operator af> 0
is defined byD; : f(t) — f(t—1) fort > tandOfor 0 <t < 1. Likewise letD
be the unit shift operator (discrete time delay). A linear operator is LTI (Linear
Time-Invariant) ifD; T = TD,; V1 > 0 for continuous systems andifT = TD
for discrete systems. TF commutes witlDy, we call ith-periodic or PTV (Periodic
Time-Varying).

1if T is a NL (Non-Linear) operator we still call it stable if it is bounded with gain (2.1)
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Further we define the truncation operatorfpy f(t) — f(t) for 0<t <t and
Ofort > 1. Alinear system is causal TR, =RT Vi>0andteRorteZ
for respectively continuous and discrete systems.

2.3 Hilbert Space - some Concepts

The added structure in a Hilbert space yields a richer theory of which we will
use orthonormal sequences, primarily Fourier sequences, and the Hilbert-adjoint
operator.

Let X be a Hilbert space andl an orthonormal subset i.e. ety € M then
(x,y) = 1if x=yelse zero. 1M is a countable set we can rearrange the elements
into an orthonormal sequenge,). We call(x,) an orthonormal basis §par(M) =
X and it is complete if the only element orthogonal toxgllis the zero element.
Only Hilbert spaces#, with a complete orthonormal basis (separable) are used
later.

The advantage is that given a complete orthonormal basis (from now on
basis) (x«) every elementx € H can be represented as a linear combination
X = YkooOkXk = Y koo (X, Xi) Xk

Next we define the Hilbert-adjoint operator denofed Let T € £(H;, #5)
then there exists an unique operator,

T € £(Ho, ) s.t. forallxe Hy,ye Ho  (Txy) = (XT"y)

One can show thafT || = ||T*|| = \/HT*TH — \/HTT*H-
The Hilbert-Schmidt norm [HS78] for a Hilbert space operatar # is

o)

ITIas = S ITall3, =S (Ta,Ta) (2.3)
2,Imelle= 2

and the trace class norm

tr(T) £ ZD<TQ,€:>5{, ITllfs = tr(T*T) (2.4)

Where(g); , is any basis forH.

2.4 Signal Spaces

In the following the actual spaces we will use are defined, the notation is along the
lines of [Dul95, CF95].
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2.4.1 Time-Domain Signal Spaces

Let Lg‘ denote the set of one-sided functions mapphg-o[— R™,

Z,
LE{E 2 If)lhdt <) (2.5)
LIE L2l e 2 essSUpf (t)]w < o} (2.6)
te[0;+4-oo]

used for continuous signals and for discrete sighdismiappingZ, — R™,

E?é{fillfllfgéZ}If(k)|8<°°} 2.7)
k=

Mma s ||f|méksgp!f(k)\oo<°°} (2.8)
€Lt

The remainder on spaces relates mostly to the sampled-data part, see section
4.3.

Let K™ be the compressed spacedf the square integrable functions map-
ping [0;h[— R™
Zp
K& ][5 = . |f (1) [3dt < oo} (2.9)

Let £« denote the set of one-sided sequences maghing> K™
tx = {7 2 Z)Hﬂk)H%(dkoo} (2.10)
K=

We will mostly omit the dimensions. Superscript e is used to denote extended
bounded space, e.g5
Zy
[f(t)3dt <o, Vh>0 (2.11)
0

2.4.2 Lifting

Given a signalu € L5 define u(t) 2 u(hk+1t), 0 <t < h, a sequence with
each element defined on a sampling interia [...u,zu,luoul..}.T. Then let
L: £§[0,00) — £ be defined byi = Lu.
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2.4.3 Frequency-Domain Signal Spaces

On L, and/« we can define the Laplace and theransform.
Z, _
flw) =L (w2  ft)edt (2.12)
0

f)\:/\F)\éoofk)\k 2.13
()()()k;)[] (2.13)

the inverse transforms are defined on the respective imagesLi®.and Al
which can be identified witl¥5 (# for Hardy space see [Fra87]) atig(D, X)),
which is defined by
Ho(D, K) £ {f is analytic inD :
z
A

f)|2 2 sup —
11150, %) 0§r<plzT[ o

an (2.14)
|1

(re’®)[|3.d6 < oo}

The relations (isomorphisms) between the time-domain and frequency-domain
and their lifted versions are shown is the commuting diagram 2.15.
feD x) L ferg
/\LL’lT TL (2.15)
fer — fer,

Throughout this thesis we reser#é for system norms. To point out domains
for signal f and systenT we use accents table 2.1 and the corresponding variables
though often omitted. However, for usual discrete-time wefusé) and f (k) as
in the continuous case.

| Domain || Frequency | Time |
Discrete f) T [ fk) T

A~

Continuous|| f(w) T fit) T

Table 2.1: Sampled-data Notation

2.5 System Spaces

Let #, be a subspace of., (essentially) bounded on the imaginary axis, with
functions being analytic and bounded in the open RHP (Right-Half Plane), with



2.5. SYSTEM SPACES 15

norm

[Tl 2 sup o[T(s)] (2.16)
Rgs)>0

wheregd is the largest singular valu& 7%, is the real rational subspace #f, and
is simply all proper and real rational stable transfer matrices, in that case we have
by the maximum modulus theorem,

T [leo = supa[T (jw)] (2.17)

weR

this also holds for functions i, given an identification of a boundary function
in L, (see e.g. [Con95]).

Further introducingdr as a subspace 61, which is continuous in the closure
of the RHP and real in the senselufs)* = T(s")" in the closed RHP (in the matrix
case* denotes transpose and complex conjugate). T2k, is a subspace oflg,
which also is the closure & #,.

Likewise may be done for (usual) discrete-time (we use the same notation) and
for “lifted” discrete-time the normed algebrt, (D, £(X)) with functions being
analytic and bounded in the unit open disc, with norm

Tl £ ‘;UFIHT()‘)H?CHK (2.18)
<

The space of causal LTI operators 6g is isomorphic to#., (D, £(X)). Again a
subspace which is continuous in the closure of the disc is introduced and is denoted
A(D, £(X)) or justA4 with norm

Tl & sup |[T(€°)]x—x (2.19)
0<[0;2r]

The system spaces are related as shown in the commuting diagram 2.20,

AC Ho(D, (X)) <=1 2a(ly) C L(lx)
T Tmf (2.20)
j%QC:}& —_— EQRC:E(LQ)
T—T

If the operator is known in one system space it can be mapped to another using
the relations appearent from the commuting diagram 2.21, e.g. the lifted system
T=LTLY,
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Ho(D, K) —— Ho(D, X))

AL A
L1 L (2.21)

L - Ly

L L1
:
H, ———  H
and one can show,
Tl oo = I T lex—to = T 3500.5) 360,50 = [T lleo (2.22)

Let £4(¢x) be the operators ofy with transfer functions it and isomorphic
to £4(Lp) given by

La2{Tef(Lp):ITecaT=L"A10:AL) (2.23)

These elements ateperiodic i.e.DyT = TDy, VT € £4. Note that not all causal
h-periodic operators ofi, are inL4(Lp).

2.6 Lumped Linear Systems

Linear Time Invariant dynamical systems lumped into Finite Dimensions (FDLTI)
can be modelled by linear constant coefficient differential/difference equations. For
in depth studies of linear systems we refer to [Kai80, Vid85].

2.6.1 FDLTI Representations

For continuous time FDLTI (Finite Dimensional Linear Time Invariant) systems
we use the following representations given below in summary, first state-space

X(t) = Ax(t) +Bu(t), x(tp) =0 (2.24)
y(t) = Cx(t)+Du(t) (2.25)

wherex(t) € R" is the system statey(t) € R™ is the input andy(t) € RP is the
system output. Im= p = 1 the system is SISO otherwise it is MIMO.
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Let U(s),y(s) be the Laplace transforms aft),y(t) then the corresponding
TFEM (Transfer Function Matrix)(s), is defined byy(s) = G(s)l(s) which can

be computed easily as
A|lB
C|D

G(s) =C(sl—A)"B+D =:
the latter notation makes TFM calculations handy and the state-space form is still

(2.26)

explicit.
The impulse response is given by
(2.27)

G(t) = L7Y(G(s)) = CEB1(t) + D3(t)

where 1(t) is the unit step (Heavisides function) ad) is the unit impulse

O
(Dirac’s delta function). The convolution equation is given by

z t
(2.28)

yit) = (Gxu)(t) £  G(t—1)u(t)dt

For discrete time FDLTI systems we use the following similar representations
X(k+1) = Ax(k) +Bu(k), x(ko) =0 (2.29)
y(k) = Cx(k)+Du(k) (2.30)

(
(k),y(k) just like the common z-trans-

Herel(A),¥(A) is theA-transforms olu(k),y
form with A = z 1, however, with the advantage that FIR (Finite Impulse Response)

signals (polynomials) are iR #£.
L A L YA Al _. | AlB
TFM:  G(\) = 6 —CA(I —AA) B4+ D =: %W (2.31)
dresponse:  G(k) = CA“1B1(k) + D3(k) = (D,CB,CABCA?B,...) (2.32)
Convolution equation:  y(k) = (Gxu)( ZG k—hu(l) (2.33)
y(0) 9(0) O u(0)

System matrix;:  [Y(1)| = {9(1) 9(0) u(1) (2.34)

which is a Toeplitz matrix.
We will assume representations®@fare minimal so that stability is depending
only on the eigenvalues @& being in open left half plan or inside the unit disk. If

S0 we writeG € R Ho,.
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2.7 The Notion of Smallest Gain

In accordance with the induced norm, the (largest) gain, the smallest gain of a
transfer matrixvl is defined byinf | —1 [[MX]||, however, this is not a norm.

The £, — L, induced norm i.e H,, the largest matrix gain over frequency is
accompanied by smallest gain over frequencyinBr g(l\?l(joo)). o(-) anda(-)
denotes the maximal and minimal singular value. Note that the minimal singular
value,a(-), of a square matrix is the distance to a singular one. See [GvL89] for
more relations.

We will need the notion of smallest gain over a frequency rapggven by

Q= ([(‘J|17(")$]7 EER) [(*)Invwﬂ])
which is defined analogous by

IMlla = inf o(M(jw)) (2.35)

This motivates a signal norm which is the restriction of #esignal norm to
Q: Z

116 = 5 It B (236
we have the following relation:
, 17 o
IMFIG =5 N0 oo
z 2
o MG B B> M 15

2.7.1 Preliminary Results

In this section we give some preliminary results used in chapter 8. We assume that
the system norm is an induced norm and relate the accompanying smallest gain to
a matching problem.

First we take a look at théf, system norm and lgt- || for a moment denote
the Euclidean norm.

Lemma 2.1 Given a transfer functioM € R 7, s.t.
I =M)[lo <o <1
then

inf g(M(jw)) >1—a

weR™
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Proof. First note that
0(Q) =o(l — (1-Q) = min Ix— (1 - Q)|

> min (1x] [(1=Q)x]) = 1~ max (1 Q| = 1-8((1 ~Q)

Hence o(M(jw)) > 1—o((I —M)(jw)) for all w then by the assumption
Q(M(joo)) > 1—a for all wthen taking infimum ovew € R on both sides gives
the case. |

This is the case for any induced norm of which above lemma is special case.
As usual the overload df- || will be clear from the context.

Lemma 2.2 Given a transfer functioM in an induced norm space s.t.

[(F=M)|:= HSHUIOlH(I -Mx|<a<1
X||l=

then

inf [Mx|| >1—a
[IX][=1

Proof.

inf [Mx] = inf_[lIx— (1 =M)x| > inf (ix] — |1 —M)x]) >
[Ix|=1 xI=1 [x||=1

1- sup|(I-M)x|>1—-a
IIx|I=1

Lemma 2.3 Given transfer functiong/,M in an induced norm space s.t.

nf W] =3, (W M)| <a <
X||=

then
inf |[Mx|| >d—a
[IX]|=1

Further, we need the following lemma, which is a modification of Lemma 2.3.
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Lemma 2.4 Define the frequency randge by

n

Q= ([(*)Il)wl]j]""v[(*ﬁnku])

Given transfer functiong/ andM s.t.

|0 =)l =
then A
o(M(jw)) >d—a VweQ
Proof.

a(M(je) > a(W(je)) —T((W - M)(jw))

>o(W(jw)) —a YweQ

2.8 Notes and References

For computation of norms in state-space we refer to [DDB95, ZDG95].



Chapter 3

The Robust Control Framework

This chapter like the previous serves to introduce notation, main concepts and to
give references of which the main ones are [ZDG95, DDB95, SP96] and [Doy82,
Saf82] for the origination of exploiting the structured uncertainty.

The idea of the framework is to cope with the “engineering” tradeoff between:

¢ a “simple” model which opens the door for powerful analysis/design meth-
ods and

e a “complex” model making the mismatch between the real system and the
model small.

It is obtained by using a nominal plant and an uncertainty set to form a class of
systems. The nominal system is a “simple” FDLTI model and the uncertainty set is
a “complex” model based on perturbations (LTI, LTV or NL) and FDLTI weigths.

In other words the intention is that the real system belongs to the class of systems
formed and due to the partitioning of the model analysis/design is tractable.

The nominal system may be found via first principles together with suitable
approximations or by “blackbox” system identification as well as combinations
thereof.

The origin of uncertainty may be seen as either parametric like tolerances
on measured, quoted standard and estimated parameters or unmodelled/neglected
dynamics. The uncertainty may amongst others be modelled by the multiplica-
tive model, the additive model, the coprime factor model or direct injection of
disturbance signals in this framework. These models or their combinations are
found essentially the same way as the nominal model though with some extra
work/knowledge needed.

Though the parametric uncertainty calls for real-valued perturbations they are
often modelled by complex ones for mathematical convenience.

21
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Most considerations/results in linear robust and optimal control can be given in
this framework (for reference these are often implicitly included in the term). This
is also the case for the control and filtering problems dealt with in this thesis. Since
the notation for both continuous and discrete-time is analogous we will quote for
one time set and assume the other is similar.

3.1 Perturbations

The structured uncertainty models we consider are with respect to perturbations in
£(L}) assumed to have spatial structure [PD93] of block diagonal form

As 2 {A=diagdilr,, ..., Oslrg, Asi1, -, AsiF) & € C, 0 € £(L3%)}  (3.1)

which must be compatible hentﬁ’ri + ZE myx = n. If we have only a full block
we call it unstructured.

This set we also denotls 1y as it is the set of causal structured LTV (Linear
Time-Varying) perturbations. Non-Linear (NL) perturbations often gives results
which resembles the LTV case. The uncertainty may also be restricted to be LTI

At 2 {A €Aty DTA=ADT, VT € Ro} 3.2)

Further we introduce SLTV (Slowly Linear Time-Varying) perturbations with

ratev >0
|IDTA— ADt|| <y
T

Ay £ {A €Ay i sup < } (33)

T>0
If we simply mean any class we udg. The unit balls of uncertainty w.r.t. a
norm for each class are denotef; v, BA, 1| etc.

3.2 The Standard Problem Setup

In fig. 3.1 we have the standard setup which can handle a variety of uncertainty
models and their combinations for both analysis and synthesis problems in an uni-
fied manner. In the setup the uncertainty is arranged satl@aBA,, K is the
(FDLTI) controller andG is the (FDLTI) generalise8 x 3 plant i.e. the known re-
mainder of e.g. process(es), sensors/actuators and weights. The generalised plant
may be found by using linear N-port theory on a block diagram.

Furtheru(t) € R™ is the control inputy(t) € RP is the measurement output,
w(t) € RXis the external input angt) € R' is the controlled output. (The system
state is as usual denotg(t) € R™.)
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— A

K

Figure 3.1: Standard Problem

V4 G

w

K

Figure 3.2: Controller Problem

Instead of the difficult synthesis problem the setup is often broken into the
controller problem and the analysis problem. Partitior@nigto a2 x 2 system by
absorbingg, p into w, z the system can be given in state-space by
X = AXx 4+ Bw 4+ B
z = Cx 4+ Dyuw + Djou (3.4)
y = Cx + Daw + Dou

or in compact notation (as TFM)

A|B B
G(s)=| C1| D11 D12 (3.5)
Co | D21 D2

By appropriate partitioning then the closed-loop controller problem in fig. 3.2
can be written as a lower LFT (Linear Fractional Transformation) derdted

M = G#K £ Gy1+ GoK(l — GooK) 1Gyy (3.6)
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When the controller is given we have the analysis problem in fig. 3.3 wtere
defined as above th&x 2 system is assumed stable. The closed-loop denbiged
can be written as an upper LFT

Tow=DxM £ Moz + Ma1A(l — M11A) "My (3.7)

Note that the interpretation efdepends on the position of tl2ex 2 block andx is
given lower precedence than multiplication. Bhis for the Redheffer Star-product
and is more generally used for interconnection of LFTs which again gives another
LFT.

Assuming proper partitioning @ (two cases) the synthesis map may be given
as

Tawv=0x(GxK) = (AxG) xK (3.8)
A
q P
Z4 ML w

Figure 3.3: Analysis (RP) Problem

Performance specifications are given via choice of controlled output/external
input and selection of norm in which the map frewto zis minimised in#, #5
or /1(not continuous-time), without uncertainty these optimal control problems are
fully solved [ZDG95, DDB95)].

3.3 Robust Stability and Performance

Control problems, given a nominal modgin the uncertainty model set and some
performance specifications resulting in a system with contrillegire in closed-
loop classified as having:

¢ NS (Nominal Stability) ifK stabilises the nominal model.

¢ NP (Nominal Performance) if the closed-loop satisfies the performance spec-
ifications and NS.

¢ RS (Robust Stability) iK stabilizes all plants in the uncertainty set.
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¢ RP (Robust Performance) if RS and the performance specifications are sat-
isfied for all plants in the uncertainty set.

The first two properties may be checked using “classical/modern control theory”,
however, gain margin and phase margin may not be sufficient for robustness.

Hence in a sence the latter two properties are what robust (optimal) control is
all about. Next we give more detailed definitions of those

Definition 3.1 RS. Assume th&il € £(Lp). Then the uncertain system in fig. 3.3
has robust stability w.r.t. perturbations BA, if | — AM11 has a bounded inverse
VA € BA; € £(Lp)

Definition 3.2 RP. The uncertain system in fig. 3.3 has robust{ L) perfor-
mance if it has robust stability and

sup [[AxM|lz, ., <1 (3.9)

AeBA,

Whenp = 2 we call it robust?, performance (although this is only correct for
the LTI case) and likewise whem= o it is robust/; performance.

3.4 Robustness Analysis

Robustness analysis is mainly based on and initiated by the small gain theorem
[Zam66]. AssumeM, A stable in fig. 3.4 (possible NL) and the feedback intercon-
nection is wellposed (i.e. for any injected signddsd, there exist unique solutions
p,q). Then the feedback interconnection is stablaMf| ||A|| < 1.

th

A

M

Figure 3.4: Feedback

For full block perturbations various conditions for RS may be found via the
small gain theorem, however, these may be arbitrary conservative in the case of
structured perturbations. Note that for RS it is only kg block of M (3.6) which
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matters so the index is omitted, however, it is clear from the interconnection which
part is meant.

Next follows a recaption of some conditions for robust stability which aims
at exploiting the structure to give non conservative results. First we define the
structured singular valug [PD93] at each frequency (a complex matrix) for a
stable systenv

1
inf{G(A(jw)) : A€ Ay, ,detl — M(jw)A(jw)) = 0}

MM (jw)) & (3.10)
where the restriction df, 1) is to the stable ones. A main result is tivats robustly
stable forA € BA 1), if and only ifsup,.g (M (jw)) < 1. This is really the core
in the construction of.

Secondly this condition (without restriction) may be generalised as [DDB95,
Dul95]

Definition 3.3 Given stable systeM < £(‘B).

1
A
—inf{J|A[]i : A € Ay, (1 — MA)~Lis not B-stable}

Ha, (M) (3.11)
Hencep depends on the systelh, the perturbation s&; and the notion of stabil-
ity. Again the RS theorem’s condition jg, (M) < 1 againstA € BA,. Thusiitis
also called the structured small gain theorem.

As one might imagine thg condition is in general (non polynomial complex-
ity) hard to compute and is instead approximated by upper and lower bounds. This
is well known from the matrix case; the upper bound is only exa28i F < 3;
although there may be a gap it turns out fairly moderate for most systems. Here we
look only briefly at a upper bound which for some cases of perturbations is both
sufficient and necessary.

Introducing commuting and invertible scales defined by

Da2 {Dc £(B):D,D lstableandA=AD VAcA,} (3.12)

gives an upper bound in form offpcp, ||[DMD™1||. For the matrix case the scales
are
DiTi £ {D eC:D= dianlhl,. ..,d|:|rF),O < di (S R} (313)

and with the condition

1> inf ||DMD Y. = sup_inf G(DM(jw)D ™) > supu(M(jw))

DeDyr wecRDPEDLTI weR

we have a bound with frequency dependent scales giver¥@smoblem.
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3.4.1 Robust Stability with SISO Blocks

Here we specialise to the cases/pfand/., stability to give an overview [DK93,

27

Sha94, PT95] and for simplicity we assume the perturbations EO®kSO blocks.
With M partitioned accordingly we may then define

M1k,

which is instrumental in thé., stability case. One may show the following in-
equalities for a stablM with M positive

WM(e®) < inf [DMD™Y|, <

M =

[M1a[;

[MEaly

DeDyTi

DeDyri

IMer]l4

< inf o(DMD™ ) =p(M)

inf |[DMD™Y|,,
DeDyr)

(3.14)

(3.15)

The conditions for RS with SISO blocks are quoted in table 3.4.1. The exten-

tions for MIMO blocks are also well known, see references.

Condition K 1) for RS with perturbations in

WV (&%), v0 | inf [[BMID Y, | _inf [[DMID |, p(V)

BA | by =l | b — 0 | bes — Lo | g — U2 | by — Lo | U2 — U | oo — Lo | U2 — 42
NL n n n n n n&s n&s s
LTV n n n n n n&s n&s s
SLTV n n n n&s S S S S
LTI n&s n&s S S s S S S

Table 3.1: RS SISO Blocks, = necessary ansl= sufficient

3.4.2 Robust Performance Stated as Robust Stability

RP problems can be stated as RS problems with an extra fictitious perturbation, see

fig. 3.5.

The fictitious perturbation must be chosen as shown is table 3.2 to have equiv-
alence, the sufficient part is by the the small gain theorem which we requote under
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Ap
— A A
q P
y4 M L W M
(a) RP (b) RS withAp

Figure 3.5: RP Stated as RS problem

the assumption thd#l € R #, then the closed-loop in fig. 3.4 is stable and well-
posed in the cases of

0) D€ RH, |4, < Liff [M], <1;
la) D Loy — Lo, |Al] o p, < LifF M|y < 1.

Fictitious Perturbatiod\p

PlantA | fe — fo-perf. | €2 — fo-perf.
NL NL NL

LTV LTV LTV
SLTV LTV SLTV
LTI LTV LTI

Table 3.2: Fictitious Perturbation

The robust#, performance is au problem (this explains the restriction to
ALT||%0)- However, in cases with mixed perturbations the problems are difficult
and still open.

3.5 Robust#, Performance

The main contribution in [Pag96c] is the solution of the roh#stperformance
problem, where the performance is specifiedfnwhich is often the more appro-
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priate and the uncertainty i, (bounded but unknown).

In other words it solves: guaranteeing margins for LQG regulators or white
noise rejection (a.k.a#>) problem contrary nominal LQG [Doy78].

This paper initiated a still active line of work in robugb: first by LTR, see
section 3.7, and latets/H,, [BH89, ZGBD94, DZGB94, KR91] and robusts
performance [Pag96c, Pag96a, Fer97, Sto93] . This interest was also triggered by
the result of finding the#, solution [DGKF89] efficiently by Riccati equations in
state-space.

Definition 3.4 The uncertain system in fig. 3.3 has rob#stperformance if it has
robust stability and

sup||[AxM[,, < 1. (3.16)
AeBA

Note that for the non-LTI cases a generalisationtsfis needed see the for-
mulation in [Pag96c¢], see 4.4.1. The solution is based on below condition 1 which
is related tqy, (3.17) is they (scaled small gain) upper bound, the other part is a
tradeoff/average over frequency i#x-norm.

Denote byX the set of positive definite, continuous scaling functi¥ie)

D1 with the above given structure (3.13).

Condition 1 There existsX(w) € X, and a matrix functiorY (w) = Y*(—w) €
C™M, such that

M(jw)’ [X(O‘*’) ﬂ M(jo) — {X%‘*’) Y(Ow)} <0 (3.17)
holds for allw € R and!
Z (o)
trace{Y(u)))(;;: <1 (3.18)

Moreover the dependency on perturbation class is parallel to the scaled upper
bound, see table 3.3 which is also the case for the computational complexity
[Pag9ed].

Finally, note that robustness synthesis is feasible for the LTV and SLTV cases.
But for the LTI case only the so-called D-K iteration is available which is ad hoc
and has no guarantee to give a global optimal solution.

1if we ask for performance less thgrchange 1 in (3.18) tg?.
2Remarks in section 3.6
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Robust performance
Ho Heo
A Cond. 1| _inf [|[DMD7Y|,
DeDyT)
LTV, constant scales n&s n&s
SLTV né&s n&s
LTI S S

Table 3.3: Robust performanae= necessary ansi= sufficient

3.6 Robust#, Performance Revisited

We suggest defering this section until after reading section 4.4.1

It is claimed in [ST98} by a (counter)example that condition 1 is only suf-
ficient, but for the SISO case. However, the example is for the LTI case where
condition 1 is not necessary, see table 3.3 [Pag96a]. Thoughupper bound is
exact for2S+ F < 3the example demonstrates that this is not the case for condition
14,

A lesson from the example is that one can construct (LTI) perturbations so that
1A% Mllw g 7 [|A% M| 3.

In this work we only use the set-based approach for the LTV case in section
6.1.3. We proposed in [RP97] an averaging kind of generalisation (4.16) which is
less conservative than the set-based one in (4.17); in other words the two norms
are different and the example shows that this all the more also goes for the LTI
case. To make the point fully clear (4.16) simplifies back correspondingly in the
uncertain LTI case to the usuab-norm, whereas (4.17) does not.

Nevertheless, the set-based approach is a sound way of modelling whitg noise
moreover, it provides necessary and sufficient conditions, table 3.3. This is at the
price of being more conservative than some otHggeneralisations.

As argued in [ST98] this leaves the worst case robgperformance problem
open in a sense. However, in [SAT given a nice proof for sufficiency and
necessity for a slightly different condition for the MISO case. Besides, it is shown
that the gap of condition 1 in the LTI case can be square rokttbé number of
external inputs.

30Obtained 1 of August, hence only this revisited section

4The authors of [ST98] say that condition 1 was claimed exact whenevgrupgeer bound is so
- (but this must be a misunderstanding; anyhow we leave the minor dispute here)

5That the causality of LTI perturbations may give a gap was pointet out in [Pag96c]

6This personal draft was kindly provided by M. Sznaier at the ACC'98
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However, the idea in lemma 6.3 may be applied to show a proposition like 6.3
on page 62 based on [SAT]. Proposition 6.3 is still fully valid, albeit somewhat
conservative.

Finally, we suggest that a further study includes a comparison between the
various #, generalisations and likewise robuk} performance conditions, a first
step may be found [PF97].

3.7 Loop Transfer Recovery

The procedure LTR (Loop Transfer Recovery) was originally introduced in [DS79,
DS81]. Since then many papers with this topic have been published. The majority
of these papers have been cited in the reference list of [SCS93].

The two stepped LTR procedure seeks to recover the closed-loop formed with
a state-feedback controller by a dynamical (observer based) controller. This is in
order to inherit the closed-loop robustness and performance properties from the
state-feedback which may be designed by any method meeting the specifications;
this is the first step. Likewise the second (LTR) step may be handled by any (opti-
misation) design method.

3.7.1 An Overview of LTR Design

Consider the system, in fig. 3.2, with state-space description

A| B B
G(S) = Cl Dll D12 (319)
C Dy O

It is assumed thatA, B) is stabilisable and thaC,, A) is detectable. Suppose
the LTR design methodology is applied at the input loop breaking point. We first
design a target feedback loop with the static state feedback=gdior the system
described by:

A| B B
Gsr(s)= | C; | D11 D12 (3.20)
I 0 0

such that the design specifications are satisfied. Itis assumed that the state feedback
loop is asymptotically stable, i.e. all the eigenvalueswot= A+ B,F lie in the left
half plane. The target loop transfer function is then given by:

-fsz (S) =(C+ DlZF)<S| —AF)lel—l- D11 (3.22)
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which satisfies the closed-loop design specifications for the transfer function from
w to z. Now, let the plant be controlled by a full-order observer based controller
given by:

K(s) = —F(sl—A—ByF —LC) 1L (3.22)

whereL is the observer gain. Then, the resulting closed-loop transfer function, in
general, is not the same as the target loop transfer fun‘ézt\iﬁr(s). Inthe LTR step
the observer based controller is designed so as to recover either exactly (perfectly)
or asymptotically (approximately) the target loop transfer function.
For a more careful analysis, we define the closed-loop transfer recovery error
as
Eq (s) = fzw(s) - -lA-zW,T (s) (3.23)

whereT,,is the closed-loop transfer function framto zwhen a full order observer
is applied. The closed-loop recovery error is related to the so-called recovery ma-
trix M (s) given in [NSAS91] by the equation

Eai(s) = Taut (M (9) (3.24)

Where'IA'mT (s) is the closed-loop transfer function fromto z under the target
design given by:

T,ut(S) = (CL+ D1oF ) (sl —A—ByF ) 1By 4+ D12 (3.25)
and the recovery matri, is given by
M () = F(sl —A—LC,) (B +LDyy) (3.26)

We say that exact loop transfer recovery at the input point (ELTRI) is achieved if
the closed-loop system comprisedofs) and G(s) is asymptotically stable and
Eci(S) = 0or M (s) = 0whenT,, is left invertible, they are only equivalent in this
case. For obtaining asymptotic LTR at the input point (ALTRI), [DS81], [SA87],
we parameterise a family of controllers with a positive scgland say that ALTRI

is achieved if the closed-loop system is asymptotically stableégr(d, q —0
pointwise insasq — oo.

3.8 The Filtering Problem

The problem was first thoroughly treated under WWII by Weiner [Wei49], his
approach on filtering noisy signals was based on minimising the RMS (Root Mean
Square) value of the estimate error. The extension thereof is the Kalman filter or
LQE (Linear Quadratic Estimator) [KS72]. Here we pose the filtering problem so
that it fits in the framework of an optimal control problem in fig. 3.2.
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3.8.1 Filtering Problem Stated as Controller Problem
Consider the FDLTI syster@® given by

X = AX + Biw
z = Cix + Dyw (3.27)
y = Cx + Dow

Let the filter beF € R #,, as we want it to be stable and causal.

Problem 3.1 The filtering problem, see fig. 3.6, is to estimatesing the filtered
measurementsso that the erroZ £ z— Zis small in some sense.

y4

w
5 5 G
Z @F

- y

Figure 3.6: Filtering Problem

This can be redrawn as a controller problem, fig. 3.7 wikdeeseen to be

P(s) = (3.28)
z P W
y Z
F
Figure 3.7: Filtering Problem stated as Controller Problem
If we want to minimise the induced,-norm
sup 12] <y (3.29)

0Awe Lp HWHLZ
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problem 3.1 is calledH.-filtering and may be solved as a standafg-problem,
however, internal stability is not required [ZDG95]. Likewise formulations may be
given for #5 and/; filtering.

3.9 Notes and References

Some people talks about seeing the “big picture”, this was a glipse of it.

One should pay attention to the worst-case strategy. This may seem somewhat
conservative, however, a design based on stochastic distributions may again be too
specialised and hard to handle hence not seizing good overall robustness.

At the same time we point out a few further interesting subjects and points of
view by a few references and the ones therein. The following subjects are quite
related: Limitations on performance (convex optimisation) [BB91]. Control based
on covariance methods and Linear Matrix Inequalities (LMIs) [SIG97, BGFB94].
They also point out that reducing a problem to LMIs can be regarded a solution
in sense of tractable computation (polynomial complexity) methods. Much in the
spirit of these fixed-order control design is studied in [Ber97].

Mixed and/or multiobjective control such &&/#, [SGC97] problem refered
above and'1/#., [SB98] and#>/¢; with more in [ED97].

Fundamental limitations in control are treated in [SBG97]. Not all of these
ideas have been used directly in this work, however, these have influenced the
work. See also references in section 4.6.



Chapter 4

Sampled-Data Systems

Two comprehensive books (mostly complementing) with different viewpoints on
SDS (Sampled-Data Systems), minding the intersample behaviour, are now avail-
able, suiteable for an indepth introduction to the matter. [FG96] has digital signal
processing as its viewpoint and uses the Fourier transform to relate the different
domains and the methods are primarily based on (“modern”) discrete-time theory
(as in AW84]). Whereas [CF95] has (robust) optimal control as its viewpoint and
aims at handling thé#, and#4, problems with regard to the intersample behaviour.
The latter viewpoint is somewhat closer to the approach taken in this treatise, which
also treats uncertain systems as in the monograph [Dul95].

Hence the next sections only contain a brief tour through SD (Sampled-Data)
Systems to establish notation and highlight main ideas.

4.1 Setup

We view a sampled-data system in fig. 4.1 as an analog plant (the prefilter is ab-
sorbed herein) and a digital controller interconnected by A/D and D/A converters.
Thus a sampled-data system is a hybrid system with both a continuous-time and a
discrete-time part. In our mathematical model we have

e Ga LTl continuous-time generalised plant

Al B B
G(s)= | C;| D11 D12 (4.1)
C| O 0

35
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Figure 4.1: Standard digital control system

e Ky a LTl discrete-time controller with measurement infuaind control out-
putu

Ka(A) = (4.2)

Ax | Bk
Ck | Dk

e Sasampler. A/D converter (prefilter absorbed iGteo thatD,; = D22 = 0).

e H a (zero order) hold device. D/A converter.

Assumming an ideal sample and hold with a syncronised (sampling) period of
h, i.e. no delays, no quantization, modelled as

w(k) = y(kh) (4.3)
ut)=u(k) for kh<t< (k+1h (4.4)

Note that the interconnected syst&w HKSis h-periodic sinc&k = HKySis
so, hence the usual TFM approach cannot be applied as such.

We will assume non-pathological sampling (no pairs of eigenvalues with equal
real part and imaginary parts differing only by an integer multiplexp#& %") in
which case controllability and observability are preserved.

4.2 Design Approach

Say we want to solve the controller problem in fig. 4.1 i.e. fikl-a HKgSwhich
assures nominal stability and performance then we have two traditional ways which
have been applied succesfully for many systems over the years. These are both
indirect and summarised below:
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e Find a continuous-time optimal controller, discreti¢é.e. find an approx-
imation of the formHKyS. The simple choice i&y = SKH, but often it is
better to use bilinear transformation.

+ Specifications in continuous-time are appropriate and are recovered as
sampling becomes faster.

- Sampling rate is (generally) limited.
e DiscretiseG, find discrete-time controllgfy.

+ Simple, except reformulating specifications.
- Ignores the intersample behaviour.

Both methods exclude a proper robust and optimal control design but with an
extra analysis this can be adjusted/checked for, see section A.1. However, the
analysis offers only little or no advise in case the specifications are not met.

Opposed to the standard ways a direct approach without approximations may
be taken see section 4.3.

Sampling rate is limited due to:

e Only data at certain time instants. Often in chemical and biological pro-
cesses.

e Slow hardware, e.g. microprocessor or network due to cost or technology.
¢ Quantization and truncation problems with fast sampling.

e Prespecified.

4.3 Direct Design via Lifting

Recent years research has established a theory for taking the intersample behaviour
into account, a main tool is the lifting/raising framework [BPFT91, BJ92] which
we briefly introduce next.

We recall the liting map, see fig. 4.2. Given a signat £ defineuy(t) £
u(hk+t), 0 <t < h as a sequence with each element being a sampling interval
denotedi2 [...u_u_jugus. ] . Thenletl : £5]0, %) — ¢4 be defined byi2 Lu.

L is alinear bijective norm preserving mapﬂgebraic operations are also preserved
under lifting i.e. (Gy + Gp) = Gy + G, and (G-1) = G hence feedback stability
is preserved.

The idea of lifting outlined below may be seen from the controller problem in

fig. 4.3.
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******************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.3: Lifted Controller Problem

The lifting map and its inverse are appliedzev and the obtained map from

tois LTI,
- L O] .[LY 0] [LGulL! LGuH
6= [o s] G[ 0 H} = [SGglLl SGroH (4.5)

and satisfies the following:
1. HK¢SstabilisesG if Ky stabilisess
2. |GxHKgS| = |G+ Kql|

With (Ag,B2q) being the usual discretisation (step invariant) i.e. the matrix repre-
sentation ofSG;H taking the other three blocks in turn we will below in section
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4.3.1 show that

) Ad ‘ Bi B
G=| C.|Du1 D1
G| 0 0
where
Zy
Bi: X —E, Biw= " UABw(t)dt (4.6)
0
Ci:E— K, Cx)(t) = ClgAx 4.7)
- t
Di1: KX — X, D110)(t) +C e(t_T)ABl(A)(T)dT (4.8)
0
z t
Dip: E— K, Diov+C;  €AdtByv (4.9)
0

with E for some Euclidian space with proper dimension.

Despite that these input/output spaces are infinite dimensional it is possible to
obtain a finite dimensional discrete state space representation which is equivalent
in norm, however, this depends on the choice of norm. This enables a proper SD
design i.e. taking the intersample behaviour into account based on known and
widely available algorithms for discrete-time.

The major observations in seeing why the representations becomes finite is
that the the state-space remains the same and henBe, @ D1, operators are of
finite rank (dimension of image). Then decomposition of either the domain (or the
co-domain) in kernel and its complement (or range and its complement) the infinite
part can be left out without changing the closed-loop.

In a constructive way we see that by formal inspection of the Riccati equations
for H, and #;, and observing that operators enter 1&g mappingZ to . This
matrix may be found simply by matrix exponentials as

Zq
BiBi= "B, B e dt = Pj,Py,

P P ~A BB
SR U]

since forA11 andAy; both square and

2 el 1)

R
thenFia(t) = ,elt-DAuA e e2dt, see [GVL89)].

with



40 CHAPTER 4. SAMPLED-DATA SYSTEMS

One may use the Riccati equations directly or find an equivalent finite dimen-
sional discrete-time system by above method combined with Cholesky factorisa-
tion, see [GvL89]. We will give some references to such representations in section
4.5,

4.3.1 Lifting Open-Loop Systems

A Al B ~
Given we havey = Gu with G = [afl . Letd = Lu andy = Ly theny = G,
whereG = LGL 1 is the lifted system. Becausgis time-invariant ther is too.
~ Al B
G may be modeled by a discrete system in a state-space ﬁeg%] . To see

this take as inputi(t) = up(t), 0 <t < helse0 then the output is

0, . t<0
y(t) = ¢ Dug(t) + ¢Cet"VABLy(T)dt, 0<t<h
STCetDABy(T)dT, t>h

order as a sequenge-= [...00yoy; . .].T then

z t
yo(t) = y(t+0) =Dup(t)+ Ce""VBuy(1)dt =: Dug
0
Zn
yi(t) = y(t+h) =Cé”* &M VABYy(T)dT =:CBuwy
0
Z

h
yo(t) = y(t +2h)=Cer"™ e VAB(T)dT  =: CABW
0

where one identify

A:R™ — R™ Ax=e"x
Zy
B: £,[0,h] — R B= &M UABy(T)dr
0
C:R™ — £,[0,h], (Cx)(t) = Cé*x

z

~ ~ t
D: £,[0,h] — £,[0,h], D=Du(t)+ e VABu(t)dt
0
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Lifting SG
G has no direct term. Only the input needs to be lifted. Lifted sy$&n- SGL L.

~ B
Analogue we find a state model f8G [%‘T] .

Lifting GH

Only the output needs to be lifted hence we have lifted sy§ém= LGH. Again
Ad | Bd

find state model foGH,

] . WhereBy = Byq and the restriction o6

res
is
z t
Dres: R™ — £,[0,h], Dv+ . CeAdtBv

4.4 Performance Measures for SD Systems

The system map® to z in continuous-time, see fig. 4.1. Hence, we stress that a
proper performance measure must be continuous-time. Mainly generalisations of
usual LTI norms are applied. Instead of working on matrix valued functions these
norms are basicly redefined to take operator valued functions which simplifies back
correspondingly in the LTI case.

When we write SD design we implicitly assume a continuous-time measure
hence taking the intersample behaviour into account.

Given one may viewHK4S as a restriction of all continuous-time controllers,
a clear rule is that restricteHKyS controller cannot be better than the pure
continuous-time controller (optimal w.r.t. a chosen continuous-time measure, by
which the performance is measured of both controllers).

4.41 GeneralisedH,

Recall that in the LTI case th& norm is

Z

A 1% Lo n

HTH§{2 £ o traceT (jo) T (jw))dw = HTES(—},H%2 (4.10)
e i;

o(t) is the impulse function an® ) is the Euclidean basis iR".
The exercise is now to find an expression in the lifted frequency space by walk-
ing trough the levels in commuting diagram 2.21.
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We start with the PTV (Periodic Time-Varying) case and consider a continuous-
time mapT € £(L)", L) described by the integral equation
Z [ee]
(Tu(t)=  T(t,Hu(t)dt
0

whereT (t,s), an x mmatrix function (the impulse response), is the kernel of the
time-varying operatoil. Say it has suppoig; b] to [c;d] then it is said to be a
Hilbert-Schmidt operator if

ZwZy

TR = trace(T’(t,T)T(t, 1)) dtdt < (4.11)
a C

is satisfied, which follows from the abstract definition (2.3). This class of operators
forms a Hilbert space.
In the multi-variable case the generalisgg[BP92] is given by

Z
T2, = S 82,0t @.12)
T h 0 iZ\ @ L '

with &; = d(t — 1) or expressed by the kernel
e s 1Zn Z
I ”9{2— h o trace( .

(o]

T’(t,T)T(t,T)dt> dt (4.13)

For periodic systems, when we look at the lifted system £(¢«) which is a
discrete LTI system, this equals

12 .
TS, == IITillEs (4.14)
.~ h2,

where(T;) a sequence of Hilbert-Schmidt operators is the impulse resporge of
In the following we uséS to denote the class with support {fhh] to [0;h].

By taking theA-transform of(T;) we haveT an element in the Hardy space
(D, £(X)) of the Hilbert-Schmidt operator valued functions i.e. the transfer
functionT = T(A) maps into a Hilbert-Schmidt operator with the kernel denoted
T)(t,1), where the norm is defined by

P i0y12
Tl =5, IT(€7)lRsA8 (4.15)

Again we denote this théh) norm since it can be shown to equal the other expres-
sions. This class of operators again forms a Hilbert space. Note that we only need



4.4. PERFORMANCE MEASURES FOR SD SYSTEMS 43

to evaluatél on the unit circle. This is parallel to discrete-time with the trace norm
replaced with thédS norm.

For LTV systems (4.12) may be generalised as follows given by the kernel
representation.
|12, 2 lim 1? Mtrace ’
Hy M—oo M 0 0

00

T’(t,T)T(t,T)dt> dt (4.16)

Another generalisation is given in [Pag96b, Pag96a], see this for motivation.
We will recall the SISO case continuous time and refer to the reference for the
extention to the case of multivariable noise. Wigg norm is defined by

T [ = fS\lAJhp [ (4.17)
€Wh B

where the signals iV, g have a cumulative spectrum approximating white noise
up to bandwidth, B. The cumulative spectrum is

2B . dw
ORI D= (4.18)

which is a continuous and real function &1 with a limit at infinity and should
lie in the set of those constrained as

af . (B B B
SLB—{g.mm< njn—n>§9(8)§n+n} (4.19)

-
with accuracyn, and bandwidth, B where the cumulative spectrum rolls of. So
that white signals in this sense are

Whs= {fe Lo Fi(-) €S} (4.20)

Itis shown'in [Pag96djthat for anyT € R 7, then| T ||, < ||T|jw,s- Further,
if |T(jw)?€ F then
im Tl = T (4.21)

where

F 2 {Y eBV(R): 3G c £(R,),G monotone decreasing

(4.22)
0<Y(0) = Y(~w) < G(w))}

andBV(R) denotes bounded variation, see e.g. [Kre89].

1t is pointed out in [ST98] that this does not extend from the fixed to the uncertain case, see also
sec. 3.6
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4.4.2 GeneralisedH,
For the PTV case we refer to (2.19) and (2.22).

4.5 Controller Problem Representations

Here we give references to controller problem representations; in section 6.1.1
similar analysis problem representations are given.

For finite dimensional state space representations in the casks arfd 74,
we refer to [CF95] (denoteGeqq) (or [BP92, BJ92]) for computational procedure
and derivation based on operator theory. _

The equivalent/associated discrete system is here defsed it will have
following form and depends on the (underlying) norm,

Al B B
G(\)=| G |Du Dip (4.23)
C| 0 o

For 75 optimisation it is required thdd,; = 0 for the closed-loop to be strictly
causal and the following relation may be derived,

~ 1 ~ —
|GKalZ, = = (11Baalifs + G Kall3,) (4.24)

which is an exact equivalence.
For #,, the relation between the lifted systehand the equivalent finite di-
mensional discrete syste®) depends o, is given by the equivalence between,

1. |GxKqyll, <.

2. ||G*Kgll, < V.

45.1 Fast Discretisation

The SD system in fig. 4.1 is changed by adding fast sat@pénd holdH,,, with
periodh/n, at the generalised outpmaind inputw. A little reordering gives a two-

rate discrete system, hence time-varying, this is handled by the (discrete) lifting
technique. The fast discretisation idea is due to [KA92], formulas for discrete
systemG, are nicely given in [CF95] This is a way to improve the standard
discretisationi = 1) especially in#4, case as this procedure is much simpler than

2Based thereon a quote “readily” Matlab implementation is given in appendix A.2



4.6. NOTES AND REFERENCES 45

the #H,.-discretisation. Note that the number of inputs and output$Gfpgrows
linearly withn.

Fast discretisation gives an approximative solution thésproblem [BDP93],
actually it is argued therein that one probably cannot find an “exact” discretisation
as the#,-discretisation.

The/1-norm is given by

G|, = S i (K 4.25
1Gll1 maszlk;)mj(” (4.25)

1<i<p

i.e. the elements in the system matrix (2.34).
Assumen is as least twice the number of statgs Then there exist&p, K; so

that

Ko

~ K
[GneKall < [6kalh < 2+ (1450 ) jarekal, (029

4.6 Notes and References

A brief discussion of the setup for which the main advantage is that the lifting tech-
nique leads to tractable problems, see also section A.1, where the solution is based
on the known discrete-time methods. The disadvantages are numerous, however,
these also go for discrete-time methods. DelayS andH, non syncronous and
real-time control [Nil98]. Finite wordlength considerations give the lesson of not
sampling too fast [Bam96]. Finite wordlength (discrete-time) problems are covered
indepth in [GL93].

The lifting framework is extended to handle generalised sampled-data hold
([Kab87]) in [MP95, MP97]. In some applications the aim is the “at sample” per-
formance and the framework shows the tradeoff [MP98].

Multirate SD systems are studied in [CQ94] using lifting. Inherent design lim-
itations are given in [FMB95, SBG97].

Other related approaches count solving the Ricatti eqautions directly [SNK93],
by frequency response [YK93, AlI93] and by game theory (multirate SD systems)
[Lal95] much in the line of [BB95]. Earlier attacks used conic sectors [Zam66] as
in [Nie88].

For more points of view on generalis¢® see [Sto93, ZGBD94] and [SAT,
Wil89].
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Chapter 5

LTR for Sampled-Data Systems

The majority of papers on LTR, see comprehensive list in [SCS93], deal either
with continuous-time systems or with discrete-time systems. The LTR design
of sampled-data systems has not been tackled in the literature except the paper
[SFdS94]. The approach taken by [SFdS94] is based on the result by [SNK93],
which is distinctly different from the lifting approach proposed in [BPFT91, BJ92].

In the former case, the controller turns out to be linear time-varying and it generates
continuously varying input signals rather than a piecewise constant input signal.

The solution to the LTR problem for sampled-data systems given here is based
on the lifting approach, see section 4.3. The disadvantage of this approach is that it
is slightly more difficult to formulate than the purely continuous-time or discrete-
time cases. However, as it will be shown, the LTR design of sampled-data systems
can directly be tied to the conventional discrete-time LTR design methods.

When the LTR step is not exact or almost so the achieved robustness should
be analysed for with the methods in chapter 6 in #secase. In other words one
may view the LTR procedure as a synthesis method for rabtigterformance to
be compared with the so-called D-K iteration.

5.1 LTR Design for Sampled-Data Systems

Using the formulations in section 4.5 and section 3.7, the LTR design problem
for sampled-data systems can be solved by using the equivalent discrete-time sys-
tem. In the following, we describe the SD LTR problem and sug@g4tTR and
HoILTR design methods. Further, we discuss application of fast discretisation.

The discrete time controller with measurement inpuwtnd control outpub is
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Ac | Bk
e o

To apply the LTR design methodology on sampled-data systems, we consider the
system

described by

Ko =

Al B B
Gsp=| C1 | D11 D12 (5.2)
C| O 0

with statex, for state feedback design (3.20).
Let the target design be a state feedback controller given by

U=FY=FSx (5.3)
with the resulting target closed-loop operator given by:
TZWT = GSF* HFS (54)

It is assumed that the target closed-loop is stable and it satisfies the design specifi-
cations.

As in the continuous-time case, the target controller cannot be implemented,
S0 we need to recover the target operator by using a dynamic cont%@(l?e}. The
closed-loop operator with the controllgg()) is then given by

Tyw= GspxHKgS (5.5)

Based on these two closed-loop operators, we can define the recovery error
operator

From the recovery error operator in (5.6), we can now define the LTR design
problem for sampled-data systems.

Problem 5.1 Let the target loop operator, the full loop operator and the recovery
operator be given b¥,wt, T,wandE respectively. The LTR design problem is then
to design a dynamic controllefy (A) that stabilises the sampled-data system and
makes a suitable norm of the recovery operator small in some sense.

It is not possible by standard methods to minimise a suitable norm of the re-
covery operator as it is time-varying. Instead, by using lifting of the sampled-data
system, the design problem can be transformed into an equivalent discrete-time
design problem as described in the previous section. In order to apply the lifting
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technique to the recovery error operator given by (5.6), we need to construct a
composite state space description before the system is lifted. If the system is lifted
directly, we will not get the right equivalent discrete-time system to work with in

the 7, case, due to the loop-shifting procedure. A state space description of the

recovery error is given by

A 0B B 0

Ae |Be1 Beo 0 AlBL 0 B
Gesp=| Ce1| 0 Dei2 |=]| —C C| 0 -Di Dy (5.7)

Ce2| O 0 I 0|0 0 0

i 0 G| O 0 0 |
with the controller given by
5 . 5 SX

ve = Re(A)be — diag(F.Ka(M) [ (5.9

The recovery error described by (5.7) is now given in the standard description,
which makes it possible to find an equivalent finite dimensional discrete time sys-
tem by using the lifting technique. Performing this task, the following equivalent

discrete time system for the recovery error is obtained:

A 0|B B 0
3 EE ‘ Be: Beo 0 5 Bi O By
Ge=|Cga| O Detz |=| -Ci Ci| 0 —Di» D (5.9
Ce2| O 0 | 0|0 0 0
| 0 G0 0 0 |

It is important to note that the equivalent discrete-time state space description for
the recovery error has exactly the same structure as the sampled-data description.
This structure allows to rewrite the recovery error as a target loop transfer function
multiplied by a recovery matrix as described in section 3.7. Using the controller
KE()\) given by (5.8), we can express the recovery error

(5.10)
in the standard form as

(5.11)
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(5.12)

The lifting results, see section 4.5, guarantees that the norm (in consideration) of
the recovery error is preserve@r(A) is the data we continue with, however, it is
only different fromG(A) in the H,, case, besides tHg;; term.

Again consider a full-order prediction observer based controller given by:

Ka(A) = —F (Ml —A—BoF —LGCy) L (5.13)

Based on the above description of the recovery dr@nd the result from section
3.7, we get _ _
EN) = Tar(WOMI(A) (5.14)

where T, (\) is the closed-loop transfer function fromto z under the target
design given by:

Tour(A) = (Cp 4 D12F ) (Al —A—ByF) 1By + Dy (5.15)
andM, is the recovery matrix given by
Mi(A) =F (Al —A—LCy) !By (5.16)

To calculate the SD LTR observer gain, we consider the recovery matrix with the
following state space realisation:

(5.17)

It is important to note that the design of the target dairs free. It may be
derived by e.g. a (SD) optimisation (design) method.

5.1.1 Recovery Conditions

Based on the recovery error (5.14), it is possible to give conditions for obtain-
ing exact recovery. As in the continuous-time case, exact recovery is obtained if
E(A) = 0. Thus, the following result can be deduced from [NSAS91, SCS93]:

Lemma 5.1 LetT,wr (A) be an admissible closed-loop target transfer function and
let Tyt (A) be leftinvertible. Exact LTR, i.&(A) = 0, can be obtained if and only
if M{(A) =0.
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Proof. Lemma 5.1 follows immediately from (5.14). |

Lemma 5.1 gives a necessary and sufficient condition for exact recovery. How-
ever, it is not in general possible to obtain exact recovery with a free target design
when a full-order prediction observer is applied, see e.g. [ZF93, SCS93]. More-
over, it is not possible at all (independent of observer type) to obtain exact re-
covery with a free target design for discrete-time systems resulting from sampled-
data systems. The reason is that non minimum phase zeros appear in the equiva-
lent discrete-time system, see e.g. [FG96]. Since exact recovery is generally not
achievable, we can look at asymptotic recovery as for continuous-time systems.
Unfortunately, asymptotic recovery does not exist in discrete-time systems. It has
been pointed out in [SCS93], that every asymptotically recoverable target loop can
also be exactly recoverable. So, for discrete-time systems, there exists only two
possibilities in connection with LTR design: Exact recovery is achievable or it is
impossible, a finite recovery error will appear.

In the rest of this chapter we will concentrate on tHgLTR and #4./LTR
design methods. It is possible to minimise thg or the #, norm of the re-
covery error directly or indirectly by minimisation of the recovery mavixA),
[NSAS91, SN93]. This is equivalent to the standard LQG/LTR design as described
in [NSAS91]. Here, we consider the minimisation of tHg or the #,, norm of the
recovery matrix, which is based on the following norm inequality:

IEI = [TzurMi[| < [Tt M1 (5.18)

As a direct consequence of the above norm inequality, the norm of the recovery
matrix should satisfy: 3 3
M < IE /1 Tzur (5.19)

when the norm of the recovery error is prespecified.

5.1.2 #5/LTR Design

Let the equivalent discrete-time state space description of the recovery matrix be
given by (5.16). Then, thé4/LTR design problem is formulated as follows.

Problem 5.2 Let the recovery matrixyl, (A), for the observer design be given by
(5.16). Find an observer gaih such thatA+ LC; is stable and the# norm of
M (A) is minimised.

The design of observer gain= Loy can be obtained by using the discrete-time
Ho, design method of [TS93]:
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Lemma 5.2 Consider the system given by (5.17). It is assumed (BatA) is
detectable. Then there exist an obsemwer Lo which stabilises the system (5.17)
and minimises thé&, norm of the closed loop transfer functidd if and only if
there exists a symmetric matrix positive semidefinite mgisuch that

Q2 = AQAT +BB] — AQC] (C2Q:CF ) *CoQ,AT (5.20)
Moreover, the observer gaiw is given by:
Lo = —AQC (C2Q:CF) (5.21)

It is important to note that, in general, the requiremerof = 0O for the original
system is necessary due to the condition of strict causality. However, this is not
a condition in connection with th@4/LTR design method, because tbe; term

does not appear in the recovery error equation.

5.1.3 #H.,/LTR Design

Now, apply an#L, optimisation method instead. In this case, it is assumed that the
equivalent discrete-time system (5.17) preservestHh@orm. Then, we have the
following #./LTR design problem.

Problem 5.3 Lety > 0 be given. Design, if possible, an observet L. which
stabilises the system (5.17) and makes #Hagnorm of the closed-loop transfer
functionM, smaller thany.

This design can be performed by using the approach in [St092]:

Lemma 5.3 Consider the system given by (5.17). Assume (AaB;,C;,0) is

left invertible and has no invariant zeros on the unit circle. Then, there exists an
observeru = L, which stabilises the system (5.17) and makes#fenorm of

the closed-loop transfer function fromto z less thary, if and only if there exists

a symmetric matrix) > 0 such that:

R = VYI-FQFT >0
Q = AQAT +B;B]

LB - (5.22)
00 oo G9A]
where ~ .
G(Q)z[%gg—f F(g';?ﬁyzl] (5.23)
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and the eigenvalues @_fd, where
Ad=A-[AQC] AQFT]G'(Q" [f;} (5.24)

are inside the unit circle.
Moreover, an observer gain, is given by:

Lo = —(AQC] +AQFTRIFQC))H 1 (5.25)

whereH = C,QCJ + C,QFTR1FQC].

5.1.4 Fast Discretisation LTR Design

From a practitioner’s point of view it may seem like overdoing things to perform a
SD #H.-discretisation for doing the LTR step. Fast discretisation, see section 4.5.1,
offers a simpler (approximative) way. In parallel to the $SLILTR case lifting
preserves structure, moreovei(A) equalsG(A) but for theD;; matrix. Hence
the data for (5.12) and the recovery matrix (5.17) can be found directly by fast
discretisation of5gp without construction of the composite system (5.7) etc.

Since the SD¥,-discretisation is also simple to perform and exact it is better

always apply that for SDL/LTR.

5.1.5 /;/LTR Design

Ditto - for the setup, see above 5.1.4. However, finding an observer gain is in
general not possible ify, it will be dynamic. Likewise finding a state-feedback is
neither in general possible. But for the trivial case with a minimum phase plant so
that a pole-zero cancellation can be performed [DDB95].

We do again point out th& may steam from any method. In which case we
may close the loop with a givel in (5.7) and then findy by ¢; optimisation.
Finding the controller for an ordedn system; typically results in an even higher
order controller.

5.2 Example

An LTR design example for sampled-data systems is given in this section. The
HoILTR design method is applied for both a traditional discrete-time LTR design
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and for a sampled-data LTR design. The sampled-data system is given by:

[ —1000 0 378 0 |0 1]

0O —.62832 -39478 0 |1 O

. 0 1 0 0 |0 O
0 0 39478 -100|1 1

1000 0 0 0|00

0 0 0 0 |0 O]

The sample period 8.1 sec. The target design is given by
F=[000 —35495 322333 0]

The target loof,wt has aH, norm of3.61.
When we apply the/,/LTR design method on the discretised system of the
continuous-time system, we get the following controller:

0 0 —.041112| —.00041112]
Ao BD] 75596  —3.5795 —-4.4684 | —-.044684
= .09067 .81293 —-1.0459 | —.010459
Co| 0 —.0028312 .01149 —.39358 | —.0039362
| 35495 32233 0 0 |

Using this controller to recover the target loop, tHge norm of the sampled-data
recovery error i$.48 and the final closed loop transfer function frewto z has a
sampled-datat, norm of5.49. If we instead apply thé4,/LTR design method on

the equivalent discrete-time system based on lifting, we get the following sampled-
data LTR controller:

0 0  —.098694| —.00098694]
Ao | Bes 75596 35795 40535 | .040535
T ]: 09067 81293 2496 | —.02496
~.0028312 .01149 —.99748 | —.0099753
| 35495 32233 0 o |

When we apply this sampled-data LTR controller, fiienorm of the sampled-
data recovery error is reduced2d 8 and the sampled-dat&, norm of the closed
loop transfer function fromwv to z is reduced tat.51 as compared to the discrete-
time design of LTR controller, see bode plots in fig. 5.1. In this example it is
possible to reduce théf, norm of the closed loop operator BB8% using the
lifting technique.
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Figure 5.1: SD LTR (upper plot) and Discrete LTR controller

5.3 Notes and References

There is not a straightforward duality between the input loop breaking point and
the output loop breaking point for SBL/LTR design. This is seen by writing
down the state space description for the recovery error for the output loop breaking
point alike (5.7). When lifting is performed the special structureB¢in andDg 12
vanish. Hence it is not possible to perform a standard recovery design for the
output loop breaking point using a standard full order observer based controller as
it is possible for the input loop breaking point. Minimising the recovery error for
the output loop breaking point instead gives rise to controllers of @mler

For SD #,/LTR design lifting does not obstruct the structure, hence it is pos-
sible to obtain recovery at the output loop breaking point by using a controller of
ordern.
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Chapter 6

Robust #, Performance for SD
Systems

Based on results in [Pag96a] summarised section in 3.5 and the framework for
uncertain sampled-data systems given in [Dul95] we derive conditions for robust
#H, performance in the SD settihgThe motivation is to perform the analysis test in

the more realistic SD setting. The uncertain SD feedback system, see fig. 6.1 (c.f.

— A

Figure 6.1: Uncertain Sampled-data System

4.1) is altogether h-periodic, which we refer to as Periodic Time-Varying (PTV)
so that the resulting nominal system will be PTV, instead of LTI as usual in robust
control.

In the treatment of uncertain systems it is common to study LTI perturbations

1This is joint work with F. Paganini. Initiated during my visit at LIDS, MIT.
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as the system model is lumped into a LTI system, however, the larger class of LTV
uncertainty as studied in e.g. [Sha94] and the case of slowly varying uncertainty
in [PT95] are also of general interest. Here we focus firstly on PTV perturbations,
into which the uncertainty may be lumped notably when system identification is
performed on a SD system, and secondly on LTV and LTI perturbations. The
purpose of the test is to check for robust stability (energy to energy) towards the
uncertainty set and at the same time to have a certain levd performance.

In the lifted frequency space we state the conditions for rogterformance
for SD in the case of PTV and LTV perturbations. Further in the case of LTI
perturbations we use a space, where the LTI structure of the perturbations is clear,
the so-called frequency response for SD, to obtain the wanted conditions.

Before getting into the nitty-gritty details we like to point out that simple the
fast discretisation, section 4.5.1, gives an approximative solution to the SD prob-
lems treated below when combined with the results in [Pag96c]. Here we use
“exact” discretisation.

6.1 Robust#, Performance SD for TV Uncertainty

In the following the properties of condition 1 on page 29 will be extended to the
SD setting.

6.1.1 Analysis Problem Representations

Denote the nominal systeM £ GxHK4S, which is h-periodic sinc& = HK4S

is so, however, the lifted operatdﬁl £ L(G*HKdS)L‘l is an LTI operator on
(%. Therefore, it has @-transform denoted see the diagrams 2.20 and 2.21
on page 16. Note that the state space representatioksasfd M are found in
appendix A and section 6.2 [Dul95]. From which we quote the following two
results for reference.

Lemma 6.1 [Dul95] Let © be a subspace SE~(L2). Then the system is robustly
stabilized toB®, iff, for all A € BD, the (I — MA) 1 exists ing (/).

Lemma 6.2 [Dul95] SupposeA € £5. Then the magl — MA)~ exists and is
bounded, iff, for alh € D, the operatol — (MA)(A) is nonsingular.
6.1.2 PTV Perturbation Case

Consider a PTV uncertain system, see fig. 6.2, Mth £ 4(L,) and perturbations
in Apty Which may arise when system identification is performed on a SD system.
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Figure 6.2: Uncertain System

The set of structured PTV operatordlisry = £4NAs. These have the follow-
ing structure in4

AN) £ (6.1)

Let X commute withApTv()) given by
X £ {X € £(K): X =diagxilm,,...,XcIm],0 < % € R} (6.2)
which is isomorphic to a set in Euclidean space.

Condition 2 There existsX(0) € X, and an operator-valued functio(6) =
Y(8)* € £(K™), such that

v g | X(8) 0] o, X® 0
j0 8y _
M(el) { 0 I]M(e ) [ 0 Y(0) <0 (6.3)
for all 6 € [0; 21 and
Z on g0 Lo | do Lol do

Proposition 6.1 If condition 2 holds foiX(6),Y(8) € £(X) andA € BApty, then
the uncertain system is robustly stable and

sup [[AxM|ly, <1 (6.5)
AeBApTy

i.e. the system has robugt performance; with the/5-norm given by (4.12).
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Proof. The first block of (6.3) gives for ab € [0; 21y

X (8)2Ma1(€%)X (8) 2| < 1 (6.6
and analogue to [PT95] 2.3 we get

IX(€°)2M1a(e)X (&) 2l < 1 (6.7)

hencel — MyiA is nonsingular and from lemma 6.1 and 6.2 the system is robustly
stable.
Let

M:[X% O]M[X% 0] (6.8)

then
[ 0

— _ _
M*M [0 Y(e)] <0,V0 € [0; 21 (6.9)
SinceA(el®) andX 2 (6) commute we can swayd with M i.e. AxM = AxM. From
this system we now observe

Z

12?15 + lla(e’®) 15 < [1p(e’®) 1% + OhW(eje)*Y(e)W(eje)dt (6.10)

and sincé\ is contractive
. Zn .
1z(€®)]% < w(el®)"Y(8)w(el®)dt (6.11)
0

LetT = AxM andz= Twwe now have witt® suppressed
ITwi% < (Yww) (6.12)

Since this holds for all,
(o] . . (o] Z h

IThl%=ITIds < S (Yh,b)x = traceY(t,t)dt (6.13)
i; = i;) | 0

Where{b; }; , is a basis ork. Where we use the following (scalar case) relation

[ed] z h z h 00
Za , Qoa@dg(®) = Q(t,T)%cn(T)m*(t)dT
= Z . = (6.14)

= Q(t,T)d(t —t)dt = Q(t,t)

o-
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asyye  hlelh 2tk _ g 5t _kh). Finally we integrate across frequency

N Z 2TIZ h de %
[AxM|[ 4, < ( 0 o tracng(t,t)dtZH> <1 (6.15)

Remark 1 This is a convex sufficient condition. The “frequency” and “time” de-
pendency ol enters viaraceY(t,t) € C™™M. A finite dimensional approximation
can be obtained by gridding. Clearly, this condition also holds for LTI perturba-
tions, however, in section 6.2 the LTI behaviour is also exploited. The kervel of
is not easily obtained in general.

6.1.3 LTV Perturbation Case
Consider an uncertain system wthe £4(L).

Proposition 6.2 If condition 2 holds for a constant matriX € X, an operator
Y (8) € £(K) andA € BAL Ty, then the uncertain system is robustly stable and

sup [|AxM|ls, <1 (6.16)
AeBALTY

i.e. the system has robugt performance; with thetb-norm given by (4.16).

Remark 2 Proof of sufficiency follows by using the small gain theorem and the
previous proof. This is a convex condition.

We will next show that the condition is also necessary and hence non-
conservative when we use the set-based definitiofitofn (4.17). The idea is
to reuse the proof for continuous time robast[Pag96a]. A main step is to relate
the LTI multipliersY andY in the two domains.
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In the LTI case the following formulations @ norm are equivalent
z

00

%, = _trace(T (j) T (jw))do

o

A 2
=3 T3P,
Z

hn 5
. ZIIT&GHLng
2,z

trace(
0

(T T)

(6.17)

00

T’(t,T)T(t,T)dt> dt

P Ol DIk DIk

l—"c_‘;Mgo

ZZT[

=h3m . tr(T*(e!®)T (el®))de

Using the map betweeAr — 4, see commuting diagram 2.21 on page 16,
given by
M:Y—ALL Y LLIATE (6.18)

we denote the image dl on 7, (4.22), by4s. AsY(w) = Y*(—w) we have
likewise thatY* (e/®) = Y (el®). Moreover, from (6.17) we have,

Lemma 6.3 Given a pairY,Y by (6.18) then

1 Z 1 A 2n
= Y (i - — Y (el®
o _mtrace(Y(Jw))dw T o tr(Y(el¥))de (6.19)

Proposition 6.3 2 AssumeVl1o, M2> € R #H>. The condition 2 holds for a constant
matrix X € X, an operatorY (0) € £(X) andA € BA_.ty andB > 0,n > 0, iff the
uncertain system is robustly stable and

sup [|AxMlw,s <1 (6.20)
AeBALTY

i.e. the system has robugf performance; with thet;-norm given by (4.17).

Proof. From lemma 6.3 and a little inspection it is clear that (6.3) and (6.4) in
condition 2 are lifted frequency versions of (3.17) and (3.18) in condition 1. Now
both sufficiency and necessity follows from the proof in [Pag96a]. For the necessity

2Remarks in section 3.6
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part it is important to note that the S-produre step does not demand time-invariance
for M and hence carriages through with it being PTV. [ |

One may gain more insight to the problem if an appropriate characterization of
Ay is found in terms of .

6.2 Robust#, Performance SD for LTI uncertainty

To exploit the LTI behaviour of the perturbation the domain is changed to the SD
frequency domain. First by changing.®and then by a maximum modulus like
result for the spectral radius function ghand making a (discrete) Fourier expan-
sion, the representation is obtained (see [Dul95] ). First some notation and results
for robust performance for SD systems are given.

With a structure in accordance wiffy define

X 2 {diagly, ...,A) : O € C™™MY
the set of LTI perturbations is now refined to be

X 2 {Ae A 1 A(so) € X, V5o € C} (6.21)

6.2.1 Frequency Response Functions for SD

It is advantageous to change the domain again so that the structure of the LTI
perturbations becomes visible. The representation of the elemefitsrirthe unit
disc is called the frequency response.

Given the complete orthonormal basipy}y_, on X, with

Wi (t) 2 hzelh 280t for t e [0;h (6.22)

and6p €] — 1517 andv the sequencg0,1,—1,2,—2,...}. Introducelp, : K — /(2
to be the coefficients of the expansion

Z)akq-'k (ag,ag,az,...) (6.23)

and define on the unit disk{e/®) £ Jg.
The frequency response functions are now defined as
M(e’®) £ J(e°)M(e)a ()" (6.24)
AE°) £ 3(e°)AE°)I() (6.25)
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where the latter is block diagonal at each frequency, it takes value in the set:
Ot 2 {diag(Ao,A1,D,...) 1 A€ X}

See [Dul95] for state space expressiondof
Given the frequency respond&(e/®) andA(e/®) mappingdD into £(¢2). A
main result in [Dul95] states:

Proposition 6.4 [Dul95] The systenM has robust stability té € BA_ 1 iff

sup “’BDLTI(Mll(eje>) <1
8c]—mm

6.2.2 LTI Perturbation Case

Let
Xx 2 {X =diagXlm,, .-, X¢Im],0 < X« € R} (6.26)

which commutes withX and the commutator dfl, 1| be
X £ {diag(Xo, X1, X2, ...) : X« € X} (6.27)

Condition 3 There existsX(8) € X, and an operator-valued functio¥{(8) =
Y*(08) € £(¢2), such that

M (el®)* [xge) ?]M(eje)—[x(e) 0 }<o (6.28)

for all 8 € [0;2r] and

z z,

doe T doe
2 YV it
HS = 0 trYe < 1 (629)

21 1
Y2 (6)]]
0
Proposition 6.5 If condition 3 holds foiX(0),Y(8) andA € BA, 1, then the system
is robustly stable and

sup [|AxMly, <1 (6.30)
AeBALT

Remark 3 Recall that||T||2s =trT*T = 3 < T, Tq >, then the proof follows
the PTV case. This is a convex sufficient condition, however, infinite dimensional
in X,Y and frequency.
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A finite dimensional approximation can be found by using the computational
framework in [Dul95] analogue to the one deduced for proposition 6.4. The idea
is based on extending the uncertainty set to be full block after soara using
loop-shifting in connection with the main-loop theorem. The main obstacle when
using the same procedure on proposition 6.5 is that the original perturbation and
the fictive performance perturbation are mixed up, however, this is overcomed by
reordering and careful bookkeeping.

6.3 Notes and References

Future research may include finding computable state-space conditions as in
[Pag96d] for the LTV case. It is expected that necessity results will follow if one
replaces PTV uncertainty by a “quasi-PTV” notion (see [Dul95]) and adopts the
notion of set-baseds, performance.

A synthesis method for robust, performance similar to the so-called D-K
iteration can be applied, however, this approach will only converge to a local mini-
mum. Hence good starting points are of interest;#h&H,, methods may exploited
to obtain such ones, this is studied in appendix B with an brief overview of other
multiobjective methods in the SD setting.
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Chapter 7

Fault Detection and Isolation

The problem of FDI (Fault Detection and Isolation) has been an active research area
in the last two decades. Today there exists various design methods some are based
on eigenstructure assignment methods as in [PFC89, PC91, JPC95]. Other methods
are based on statistics as in [PFC89]. Also different optimisations techniqés as
and £, optimisation have been applied [MAVV95, EBK94, QG93, NS96, AK93].
These are by far the only fault detection methods; detailed surveys can be found in
[Fra96, KT93, Pat94].

In general for FDI the hurdle is to distinguish failures from other disturbances
in the presence of model uncertainties in the system. The idea in this work is to
formulate the FDI problem in the framework of robust and optimal control; in order
to take advantage of the optimisation methods in the aim at obtaining systematic
design methods.

In the part on FDI we work with continuous time but it will take only minor
changes to apply the results for discrete time or sampled-data systems. To simplify
the notation we will omit accents to point out the domain since it will be clear from
the context, however, the overload may be indicated by the argument.

7.1 Design Outlook

In the surwey paper [Wil76] covering the initial results in the topic; the three levels
constituting the hierarchy of FDI (note the general abuse of FDI as the overall
topic) are named

e FD (Fault Detection). A fault is seen in the residual.

e FDI (Fault Detection and Isolation). A fault is seen in the residual in an
unigue manner.

67
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e FDE (Fault Detection and Estimation). A fault is seen in the residual in an
unique manner and its degree of severeness can be estimated.

In the case of zero or almost zero threshold this gives rise to a serie of funda-
mental problems respectively denoted exact and almost exact; this requires that the
filter can be designed so that no or almost no disturbance enters in the residual.

The former classes of problems are studied in [MVW89] where necessary and
sufficient conditions are given. The punchline is that given a number of possible
faults the range of the map from each fault wanted to be dectected and isolated to
the residual must not overlap the unobservable subspaces of the likewise maps of
the other faults; all taken in turn.

The latter are studied in [NSSS99] also with some extentions to the results in
[MVW89]. We note that these geometric results resemble the ones of decoupling;
details are given in the references, see also [Won85]. Furthermore, one can at most
detect and isolate as many faults as the number of measurements.

However, the residuals are often contaminated by noise and disturbances which
cannot be removed by a filter, therefore, a nonzero threshold is needed. The sub-
tlety of finding a threshold is studied in chapter 8. The approach is based on for-
mulating the FDE problem as a filtering problem, see section 3.8, to be solved by
optimisation methods. The degree of solvability is merely reflected by the sizes
of performance indices. This also holds for the study of simultaneous design of
controller and fault detector in chapter 9.

We have the standing assumption that the faults allowing for a zero or almost
zero threshold are handled as such. Thus these are excluded from the original
problem before the methods given in this work are applied. So that only a minimal
number of thresholds has to be found. Therefore the full solution is the combina-
tion. We do note that the methods also work without the exclusion.

The FDE problem is studied since it generates the more infomation and shows
the full potential of this observer alike optimisation approach. The method given
here can also be applied to the simpler FD and FDI problems by introducing ap-
propriate logic functions of the estimates.

7.2 The Nominal FDI Setup

The FDI setup will be given in the following. Consider the following systém
given by:
X = AX + Bgd + Bsf

(7.2)
y = CyX + Dydd + Dyff
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or as transfer functions:
y = (Gy(sl-A)Bu+Dya)d + (Cylsl—A) By +Dy)f
= Gyd(S)d + Gyf (S) f

- (6 Gl

Whered is a disturbance signal vector ads a fault signal vector. It is without
loss of generality to consider a system without a control input in connection with
FDI design. We will assume "compatible” dimensions of vectors and matrices.

It will be assumed that the fault signfiland the disturbance sigréibre scaled
such that the norm of these two vectors are 1, i.e.

Il <1 fdi<1

and the scaling function§;, &, are included in the two transfer functio@gs and
Gyq. This scaling is only done for simplification of the following analysis and will
not affect the quality of fault detection.

The general system formulation given in (7.1) will be used throughout this and
the following chapter. By the selection Bf andDy+, actuator, sensor and internal
fault can be handled in this setup. E.g. actuator and sensor faults can be described
in the general form in (7.1) by using

- [
Bf = [Bu O
Dyt = [0 1]

where f; is the actuator fault signalfs is the sensor fault signal arig|, is the
injection matrix for the feedback control signal, see [NS97].

A filter is now applied to give a residual vectiofrom the measurement signal
vectory. Let the filter be given by (s), then the residual vector is given by=
F(s)yor

r =F(s) (Gyd(s)d + Gyt(s)f) (7.2)
A block diagram of (7.2) is shown in fig. 7.2.

If an optimisation design method is to be applied for the desidn(ef, it will

in general be more convenient to use the residual error given by:

énom=W(8)f — F(S) (Gya(S)d + Gyf(5) ) (7.3)

whereW(s) is the desired transfer function frofnto r. ScalingS; must also be
included inW. A block diagram of (7.3) is shown in fig. 7.2. Note that the usual
fault estimation problem is a special case of the above With) = |S;.
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W
T‘<
T
@
Y

d Gya(s)

Figure 7.1: Block diagram for the fault residual signal

7.3 The Uncertain FDI Setup

The nominal FDI setup described in section 7.2 will be extended in this section to
uncertain systems. Customarily system uncertainty is transformed into an external
disturbance input and considered as disturbance [PC96]. Where it is shown that the
disturbance and the uncertainties effect the residual vector in the same way and itis
therefore difficult to seperate these two effects. In a number of cases, this descrip-
tion is valid for the fault detector design. However, if we truly want to optimise the
fault detector with respect to the uncertainties, the description of uncertainties as
external disturbance is inadequate. One reason is that the external disturbance is
assumed to be uncorrelated with the system. This is not the case when uncertainty
is described as external disturbance. Including an explicit discription of the uncer-
tainties in connection with fault detection has been done in [MAVV95, SGN97].
It is shown in [SGN97], that the design of fault detectors and feedback controllers
are coupled in the uncertain case whereas they are uncoupled in the nominal case,
see table 9.2 on page 92. Itis therefore well motivated to look at the fault detection
problem for uncertain systems.

Consider the following uncertain systeBnc given by:

w
[Z] _ [sz Gz sz] £ (7.4)
y Gyw Gyf Gyd d .

wherez andy are the external output signal and the measurement output signal,
respectively. The input signals are the external input signtie fault signaf and
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f Gyt (s)

r +  €hom

d Gya(s)

Figure 7.2: Block diagram for the residual ereggm

the disturbance input signdl
The external input signaV and the external output signahre closed through
the uncertain perturbation blogks), i.e.

w=A(s)z (7.5)

It is assumed that the perturbation blakfs) is scaled such thafd|| < 1,Vw and
the scaling function is included iB,,c. There is no assumption on the structure of
A.

Based on the results in Section 8.1, we consider the transfer function for the
residual erroeync. In the uncertain case, the residual error is given by:

eunc:v\/(s)f - F(S)(Gwa+Gyf(S)f +Gyd(s)d) (7'6)

in the open loop case, i.e. the uncertain feedback loop defined by (7.5) is not closed.
When this loop is closed, the residual error given by (7.6) takes the following form:

€unc = (W(S) — F(S)GywASKG;t — F(S)Gyt) f 7.7)
— (F(9GywASRGza+ F(5)Gya(s)) d '
or by using (7.3):
€unc = Enom— F (S)GywASh (G f + Gzqd) (7.8)

whereSy = (1 — GzA) 72,
The fault estimation error given by (7.7) is shown in fig. 7.3.
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Gunc(s) y F(s) ' O

€unc

Figure 7.3: Block diagram for the fault residual eregfc in the uncertain case



Chapter 8

Norm Based Design of Fault
Detectors

It is apparent from the citations in chapter 7 that the FDI problem is well studied.
However, the design of a fault detector is only half of a complete FDI design. The
other part is the selection/calculation of a threshold for the fault detector. This part
may be the most important part as, generally, it is more difficult to find a threshold
value than designing the corresponding fault detector. One of the reasons is that
there does not exist any systematic way to obtain a threshold value. However,
the threshold selection problem has been considered in a number of papers see
[ENARS8S, Pat94, DG96, DF91, Hor88, Wei93, DGF93, QG93, FK96].

The selection of the threshold is quite closely related to the ability to reject dis-
turbances and model uncertainties and at the same time to be able to get a reason-
ably detection of fault signals. Based on this fact, different performance indices for
the fault detection problem can be found in the literature which reflects the above
properties. Examples of these indices can be found in [DG96, QG93]. The index
derived in [DG96] results in an optimisation problem which can not be solved in a
systematic way. The reason is that the index include a maximisation of the smallest
gain of a transfer function. The index applied in [QG93] includes only a optimi-
sation of the maximal gains of some transfer functions, which can be done in an
optimal way. In this case af, method has been applied. The problem with this
index is that it only focuses on the largest gain of the transfer function from fault
signal to estimated fault signal. However, this is not so important, the smallest gain
is more important. Comparing this gain with the maximal gain from disturbance
to estimated fault signal gives an indication of how small a fault signal that can be
detected. This is precisely what the index derived in [DG96] takes care of.

The main topic for this chapter is to investigate the selection of thresholds
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and performance indices in connection with FDI and estimation i.e. FDE. The
investigation of threshold selection will be carried out using norms on the related
transfer functions. The results presented can be applied in connection with all types
of fault detectors.

Based on an analysis of the fault detection problem, an index is derived. The
index reflects the design constraint on the transfer functions from disturbance and
fault signals to the estimation signals. Further, it is only based on the maximal
gains of the involved transfer functions. This makes it easier to derive an optimal
design method for the FDI problem.

8.1 An Analysis of the Nominal Case

First an analysis based on the estimate of the residual signal given by (7.2) is con-
sidered followed by an analysis based on the residual error given by (7.3).

8.1.1 Applying the Residual Signal

Consider the fault detection signal given by (7.2). Now let the norms of the two
transfer function$ Gyt andF Gyq be as follows:

IFGyell <a, [[FGyall <B (8.1)

wherea > [3 otherwise it is generally not possible to distinguish fault from distur-
bance.

It is clear that the ratio betwedhanda is very important in connection with
the quality of the fault detector. A Iar#will in general make fault detection very
difficult because the disturbance effect on the residual vector is quite large. For
obtaining a good fault detection, we need to have the r%tixmall such that the
effect from the disturbance on the residual vector is minimised. An obvious design
condition is therefore to minimise this ratio. However, a minimisation of the ratio
g will not necessarily result in a good fault detection. The reason is that we are
only looking at the largest gain from fault signal to residual signal. Further, the
direction for this gain might not even be a realistic situation, i.e. the related fault
vector might not appear at any time.

To overcome this problem, the smallest gain off@&  can be applied instead,
i.e. |[FGyt||—- = a, see e.g. [DG96] and [SPCI7]. Wherein an evaluation function
|| - lle; which may not be a norm, is used to defifd|| - = infj, .1 [[MX|le, this
is neither a norm. The problem with using the smallest gaif Gj is that|| -
|- is not a norm. This will make the following optimisation more difficult than
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necessary. Further, standard optimisation methods known from optimal and robust
control cannot be applied in a straightforward manner.

Instead of using the residual sigmadirectly we will use the residual error
(7.3).

8.1.2 Applying the Residual Error

Let the norms of the two transfer functions— F Gyt andF Gyq be as follows:
IW—FGyt| <a, |[FGyl <B (8.2)

In the matching problen, s may be strictly proper and/or have zeros which
restrictsW. Moreover, we may only have a certain frequency region of interest.
The combined frequency region where matching is wanted is de@bgedl given
by

Q= ([(*)Ilvwﬁ]v"'a[qn7wm)

Let the smallest desired gaiid be

0:= inf c(W(jw))
weQ
With a proper choice diV one can find= with maximal estimation erroo < d.
We will use the lemmas in section 2.7.1 to relate the smallest gain from fault
to residual with the residual error. Assuming the induced norm in (8.2) to be the
Hew-norm and using lemma 2.4 on page 20 we have

d—a <o(FGyi(jw) VweQ (8.3)

Likewise in the case without frequency restrictions where any induced norm
applies. Le® = inf,_1 [[WX]. In which case lemma 2.2 gives

d—a < inf [[FGysX|| (8.4)
IxI=1

From the triangle-inequality we always have an upper bound F@y¢|| <
IW| +a.

By studying the residual error instead of the residual signal directly, it has been
possible to give both an upper bound and, more important, a lower bound for the
largest and smallest gain BiGy¢s. Based on the norm bound we can setup under
which condition it is possible to detect a fault signal. We will use (8.4) since the
application of (8.3) is parallel.

It will in the following be assumed that the mathiX(s) is given as a diagonal
matrix. When the matriXV/(s) is selected as a diagonal matrix, the analysis is
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derived with respect to how sensitive thib residual signat; is to theith fault
signal f; and how insensitive it is to the other fault signals.

First we consider the residual vector, when only disturbance appear in the sys-
tem. Then the maximal norm ofis the given as:

max f—o||r[| = maxs||F Gyad|| = |[FGyal =: B

sinced is scaled such thafd|| < 1. Let the threshold value be denotedHence,
it is clear that we will not get false alarms fbr> (3.

We have the following four cases for fault detection depending on the selection
of the threshold value:

1. fault signalg| f||q larger than% are detected independent of the noise.

2. fault signals% < |Iflla < g%g may be detected. The disturbance signal
may obstruct a detection.

3. fault signals detected in the rangé- < ||f|lo < s°= may not be fault
signals forl™ < 3.

4. fault signals||f||q < 550( cannot be detected in general unless the distur-

bance signal “helps”.

This also holds in the case without frequency restriction; for ease of notation
we simply write|| - ||q in any case. The above analysis based on norms of the
two transfer function& Gyt andF Gyq is quite superficial. It is e.g. not taken into
account that only a limited number of faults are assumed to appear at the same
time. In the analysis given above, all faults can appear at the same time.

An important thing to note with respect to the above analysis is that the norm
of the disturbance transfer functiérGyq, {3, is very important in connection with
the selection of the threshold value. If we want to avoid false alarms, the threshold
value must be selected o

A new performance index will be derived in the next section based on the
analysis results given in this section.

8.2 Performance Index

As pointed out in section 8.1, it is quite obvious to select the threshold value equal
to or larger thar. A way to design the FDI filter is to reduce the norm of the
transfer function frond to r as much as possible; to reduce the threshold without
getting any false alarms. However, this will in general not result in a minimisation
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of the smallest fault signal that can be detected. There is a trade off between good
fault detection and good disturbance rejection. This limitation in filtering has been
considered in [SBG97].

Instead, we need to consider a performance index which directly takes care of a
minimisation of the disturbance effect on the estimated fault signal and at the same
time maximises the estimated fault signal. Such a performance index has been
formulated in e.g. [DG96] and [ENAR88]. The performance index in [DG96] is
given by:

- ||FGydll
J=2inf 1FG |- (8.5)

The performance index in (8.5) gives the smallest fault signal that is guaranteed
to be detected. This can be seen by using the results from section 8.1. Therefore,
a design method which will minimise the index J in (8.5) needs to be applied.
However, the optimisation of the performance index is difficult as pointed out in
[DG96], because the denominator is not a norm.

Instead of applying the above index, we can formulate an index based on the
residual error. Motivated by section 8.1 we introduce the following index:

[IF Gyl

8.6
5 W FGy| (86)

>n=2i
Ifllo > n = 2inf

Faults|| f||o > n are guaranteed to be detected, howayer,J since the bound
may be conservative. It is important to note that the index in (8.6) only includes
norms of transfer functions. This will make an optimisation of the index much
more simple than an optimisation of the index given by (8.5). It should be pointed
out that the index in (8.6) is based on no false alarms.

In the SISO case, wherl@V| ~ 1 for w € Q, we get that it is required that
|Gyt| > 2|Gyq| to guarantee for any fault detection, i.g.< 1. Another case is
when the disturbance is measurement noise,&g. = k = constant To obtain
fault detection, it is required thaGy¢| > 2k in the frequency range where fault
detection is wanted.

By using the index in (8.6), we do not only have the possibility to optimise the
size of the fault signal that is guaranteed to be detected, it is also possible to give a
structure of the residual vector This is important to improve the performance of
the FDI filter. By structure of the residual vector, we mean how the residual signals
depend of the fault signals. W is selected as a diagonal matrix as aboysill
be sensitive td; and insensitive to the other fault signals. This will in general not
be the optimal selection due to performance limitations. A more useful selection of
W would be to use e.g. a triangle matrix in the index. There is no systematic way
to select a gootlV. One possibility is to optimis@/ in an iterative design. Such a
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design can be done in the following way. Select a suitable métrifollowed be a
design of a fault detector for this matrix. Then optimieor fixed fault detector
etc. It should be noted that we need to require that the smallest gafnfarger
than a specified level for fap € Q. If this is not required, the design method will
give F(s) = 0 andW(s) = 0 as the result.

8.2.1 Performance Index with Two System Norms

The performance index (8.6) makes sense whenever maximal estimation error is
bounded by an induced norm, therefore, it makes sense to consider

IF Gyalla
06— [[W—FGyi

where|| - ||a is any system norm. Hence, the disturbance attenuation may be with
respect to white noise, i.e/5, whereas the estimation error minimisation may be
over energy or amplitude induced norm, i%,, /1.

An optimisation method for (8.6) is given in section 8.4, however the setup
may also be applied for the multiobjective design, see [SGC97, ED97].

n= ZiEf (8.7)

8.2.2 Performance Index for a Fixed Number of Faults

The performance indices given above are all based on the assumption that all fault
signals can appear at the same time. However, in practice there will generally be an
assumption on the number of faults that can appear at the same time. This means
that the performance index given in (8.6) can be conservative. We might optimise
the performance index for some fault vectér&shich cannot appear.

Consider a FDI problem whema faults can appear. It is assumed that only
p, (p < m) faults can appear at the same time. To take care of this in the perfor-
mance index, we can rewrite the index. For doing this, let the transfer function
W —FGy+ be partitioned as:

W—-FGyt = [Owi, - Gwm) (8.8)

The worst gain oV — FGy s when onlyp fault signals can appear at the same time
is then given by:

iz=m ip:m

W=FGyrl|=maX 5 - 5 G- Gupll}s 127+ Al (89
1= ip=p

The performance index in (8.6) is now given by:

- FGyg
| fllqo >n = 2inf ip:Un v

P a—max(ziisr - 5P llGwiy - Qi |}, 11 7 - #

(8.10)
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One way to transform the new performance index given in (8.10) into a setup
which can be solved is to stack the problem, see [SN97]. Then the same method,
as will be described in section 8.4, can be applied.

An important case is when only one fault signal appears; this will in general be
the case. The performance index in (8.10) is then given by:

. FG
flo>n=2inf IOl

(8.11)
F &— maX{Zil:]_ HgWuH}

8.2.3 Performance Index for Individual Residual Signals

Until now, the fault detection design problem has only been considered as one
single design problem. However, it is also possible to split the design problem into
m separate designs. This is done by considering the design of fault detectors for
each residual signal separately. Wéts), F (s) andGy be partitioned as follows:

wi(S)
W(s) = :
| Win(S)
B F]_(S) (812)
F(s) = :
| fm(9)
Gyf(S) = [ Gyl‘71 Gyf:m]

Based on (8.12), the design problem for the design of a fault detector for the
ith residual error signal is then given by:

& = (Wi(s) —Fi(s)Gyt) f — Fi(s)Gyad (8.13)

The performance index given in (8.6) can not be applied directly for this design
problem, becaus& will in general be equal to zero in this case. First, we need to
rewrite the equation for thi¢h residual signal. Assume that we want to haveithe
residual signal sensitive to the firgfault signal and insensitive to the othar |
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fault signals. Then (8.13) can be written as:

f1
g = ([Wa1 -~ wij]-FR(©)[Gyr1 - Gyrj])| :
fj
i (8.14)
—Fl([Gyf,Hl Gyf,m] +Gyd(s)d)
_ _ _ frﬂ
= (Wi(s) —Fi(s)Gy(s)) f — Fi(s)Gyad
where
wi(s) = [ wi Wim |
= [W W ]
Gyi(s) = [ Gyra Gytj |
Gya(s) = [ Gyrju Gytm Gyd |
4
f = :
i
fj1
d = 5
fm
i d

By this rewriting ofg the performance index given by (8.6) can now be applied
for the residual error given by (8.14).

8.3 An Analysis of the Uncertain FDI Case

Based on the results derived in section 8.1 and 8.2 for the nominal case, equivalent
results will be given in this section for the uncertain case. One of the key results
from section 8.1 was that if the fault residual error is applied, the performance
index given by (8.6) is only based on norms. Consequently we only consider the
fault residual error in this section.

Let the norm of the two transfer functions from (7.7) be given by:

W —=F(GmARG,1 — Gyr)l| < @, [[F(GuARCz+CGya)| <P (8.15)
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The above norms are not easy to calculate in general, especially not if the uncer-
tainty block has a structure. One method is to applythealysis for the calcula-
tion of the norms, see [ZDG95].

Based on the norms of these two transfer functions, we can give an equation
for the threshold value which needs to be optimised. In the case when we do not
want any false alarms, the threshold value needs to be selected as:

r>p
and the smallest fault signal guaranteed to be detected is given by the performance

index:
[F (GywlGzd + Gya) |
o— ”F(GyWASAsz + Gyf) H

The optimisation problem in the uncertain case is therefore exactly the same as
in the nominal case given by (8.6).

In connection with this optimisation problem, it should be mentioned that the
problem of selection of thresholds for the uncertain FDI problem has also been
considered in [DG96]. But the results derived in [DG96] are based on the fault es-
timation signal. Further, only systems with open loop uncertainties are considered.
Instead of using the description by feeding back the uncertain block as described
by (7.5), itis instead assumed that the input to the uncertain block is bounded. This
will in general give an inadequate description of the uncertain part of the system.
On the other side, the calculation of the norms is less complex than calculation of
the norms in (8.15).

Ifllo > n = 2inf (8.16)

8.4 Design of Threshold

This section is denoted the study of (8.6) which includes an optimisation of the
norms of two transfer functions. The design method for the design of filters for
fault detection which will be presented in the following will not directly give an
optimal value of the performance index in (8.6). To optimise the index in (8.6) an
iteration process needs to be applied.

In this section we will apply a standart., design method for the design of
the filter. Consider the nominal case shown in fig. 8.1. For obtaining a reasonable
design, weight functions at both the input and at the output must be included. This
is shown in fig. 8.1.

The weight matrices at the input signals should reflect the frequency contents
of the two signalsl and f.

Assume that the two weight matricdg andW; at the input shown in fig. 8.1
are included in the state space description for the system given by (7.1). Further,
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r v * €hom

d —— Wi(9) Gyd(s)

Figure 8.1: The nominal fault detection setup with weight matrices

let the weight matrixV have the state space descripti@q, By,Cy). It is without

loss of generality to assume that the weight matrix is strictly proper. It will in
general be at low frequencies that we want to detect the fault signals. A complete
state space description is given by:

X _|A O [ x| Bg Bs
il = o RJl) Bl )
]
z = [0 Gy M — lu (8.17)
]
_W_
or in a compact form:
X = AX + KBgd + Bif
z = CX — lu

y = CX + KkDygd + Dysf

where the standard setup has been applied. A block diagram of the standard setup
is shown in fig. 8.2.

Note that a scalar parametec Rt has been included in (8.17) to weight the
two transfer functions fronf andd to z against each othek gives the trade-off
between good fault detection and good disturbance rejeatinaeds to be selected
such that the performance index is minimised.
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a

Figure 8.2: The fault detection problem in the standard formulation

The solution of (8.17) gives
|[KFGyg W — FGyt|| < Y(K) (8.18)

which clearly implies

IFGl  _  2v(K)

= 2inf
N S IW=FGy] = K(B—y(K))

(8.19)

with & = inf 1 [|[WX]|, which is an upper bound on the smallest fault sightat

is guaranteed to be detected for smallUsing the upper bound given by (8.18)
together with the fact that the fault signal is scaled such {lidt< 1 gives the
following condition ony(k) for fixed k to guarantee to be less thad:

KO
2+K

If Wi andWy are not included in (7.1), then (8.18) and (8.19) are given by:

y< (8.20)

[KFGygWy (W — FGys)We|| < y(K)

and
||F GydWa||

0~ [[(W —FGy )W

Note thatd needs to be calculated fromi\W instead ofW for Ws £ 1.

Based on the above setup, it is possible to desigrarfilter for the fault
detection problem. Changing the scalar parametéris possible to optimise the
design index given by (8.6), i.e. an iterative optimisation of the index.

It is also possible in an equivalent way to set up the fault detection problem
in the uncertain case and apply 26 optimisation method. If the design method

r]:2|rF1f
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is applied directly, the result can be conservative. The reason is that the uncer-
tain block together with the performance specifications has a structure, which in
general results in conservative controllers/filter, see [ZDG95]. Insteaf,cqm
timisation needs to be applied for removing the conservatism from the filter, see
[NS97, NS96].

8.5 Example

The fault detection problem which will be considered in this example is based on
a model of a jet engine. Here we do not comply with the standing assumption that
the faults allowing for a zero or almost zero threshold are handled as such; since
we only want to emphasis the new part.

The state space description of the jet engine is given by, [VTL87]:

X = Ax +Bu
y = Cx +Du

where the four matrices are given by:

A _ [—3.370 1636]
~0.325 —1.896

5 _ [0.586 ~1.419 1252}
0410 1118 Q139

1 0

C = 0 1
| 0.731 Q786
[0 0 0

D = 0 0 0
| 0.267 —0.025 —0.146

Both actuator fault as well as sensor fault can appear. This means that there
are6 possible fault signals3 actuator faults an8 sensor faults. It is not possible
to detect and isolate afl fault signals at the same time, because we have only 3
measurement signals. We will therefore consider two FDI problems in the follow-
ing, one setup where the actuator faults are considered and one setup where the
sensor faults are considered. The setup for the two cases are given by (7.1). With
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disturbance signal given by:

0.100
Ba = [0.100]

0.200
Dya = {o.zoo]

0.200

and the two matriceBs andDy¢ are given by:

e Actuator fault problem

Bf = B
Dyg =

e Sensor fault problem
Bi = 0
Dyg = |

Applying the setup given in section 8.4; withly as a weight function on the
disturbance signal and/ as the desired transfer function from fault sigriaio

residual signat, shown in fig. 8.3. The frequency range where we want fault
detection and isolation is given l§y = [0, 2Jrad/sec

Figure 8.3:W; solid line andW dashed line.
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The standard+, design method will be applied for the design of fault detectors.
The direct matrixD»1 has not full rank in the actuator fault cad®y; is perturbed
to get full rank so the standartl,, design method can be applied. This is without
loss of generality in this example, because we will here focus on the performance
of the FDI filters. If we instead want to implement the FDI filters, design methods
as LMI basedH,, or the singular#, approach need to be applied. These methods
do not require full rank of the two direct matricBg, andD>1.

The FDI filters for the two problems will be designed by minimising #ie
norm constraint given by (8.18) for a given

The value ofk will be selected such that a given performance index is min-
imised. The FDI filters will be designed with respect to that all three fault signal
can appear at the same time. Evaluation of the FDI filters will be done by using
the performance index given by (8.6) and the index given by (8.10) or (8.11). We
will consider the three different performance indices, the case whe3éallt sig-
nal can appear simultaneously as well as the cases gterdl fault signals can
happen at a time.

First, consider the actuator fault detection problem. An FDI filter is calculated
for different values of the scalar constanaind the resulting filters are evaluated
with respect t® different performance indices with respect to the number of faults
that is assumed to appear at the same time. The values®préormance indices
as functions ok are shown in fig. 8.4.

A performance index equal tb in the figure indicates that the performance
index is either larger thah or that the performance index gives a negative value.
Filters which give these results can not be applied in practice. It will either not
be possible to detect any fault signal with guarantee or the estimation error will be
more thanl00%

If we consider the FDI sensor problem, we will see the same again. The sensor
FDI design problem is shown in fig. 8.5.

From fig. 8.4 and 8.5, we can see that the decision about how many faults that
are assumed to appear simultaneously is very important. A good choicevfogn
we assume that onl§ or 2 faults can appear simultaneously may not be a good
choice for the case where 3 faults appear simultaneously. To use the information
given in fig. 8.4 and fig. 8.5 in a constructive way in connection with the selection
of the scalar parameteris to setup a new index given by:

J=01J1+02)+03)3
where J,,i = 1,2,3 are the three performance indices applied and = 1,2,3

are scalar parameters that must reflect the relative relationship between the cases
wherel, 2 and 3 fault appears. This means that we will have> o, > a3. In



8.5. EXAMPLE 87

Figure 8.4: The actuator FDI probled (3 faults) dash dotted lind, dashed line
andJ; solid line.

Figure 8.5: The sensor FDI problerds (3 faults) dash dotted linel, dashed line
andJ; solid line.
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this example, it is quite clear thatmust be selected arourdidO0 in the actuator
case and aroun200— 500in the sensor case. In general, it is not so easy to select
K. It is not enough to look at the performance indices, we also need to look at the
derived fault detector. Conditions about gains etc. in the fault detector must also
be taken into consideration for the selectiorkof

8.6 Notes and References

In the example, it has been shown that the choice of performance index is very
crucial for the selection of the final FDI filter.

We have only discussed the selection of the threshold equal to or larger than
the norm of the transfer function from disturbance to residual error. This selection
will avoid false alarms. If the threshold is reduced then false alarms may occur. An
analysis needs to be made in every single case to give the level of the threshold if
a number of false alarms can be accepted. Such a reduction of the threshold level
will not change the performance index.



Chapter 9

Design of Controller and Fault
Detector

The integrated FDI problem was studied in [NJM88] using the four-parameter con-
troller and the control/diagnostic objectives were captured by transfer matrices. In
a direct line therefrom follows [AK93] which gives a discrete time-domain closed-
loop approach.

The integrated approach has the advantage compared to model-based meth-
ods with independent FDI modules that the interactions between the control sys-
tem and the diagnostic module are taken into account as well as the overall con-
trol/diagnostic system has an order which is at most the order of the plant plus the
order of weigthings in thé#, and the# cases.

Here we state the problem in a standard 2 setup form, see section 3.2, and
give a state-space description essentially having the same objectives as in [NJM88],
i.e. closed-loop stability and minimisation of certain transfer matrices, and also
have the option to include uncertainties.

9.1 State-Space Setup for FDI and Control

We consider the following FDLTI system in the compact notation

A| B B
G(s)=| C1| D11 D12
C Dy O

It is assumed thatA, By) is stabilisable andC,, A) is detectable.
The setup is depicted in figure 9.1 as a standard rejection problem, @here
is the plant ank is the controller. Sensor and actuator faults have been added as

89
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!’””’P ””” al
7 | | w
| G |
1 | fa
i mux i fS
) : f :
K Ui
y -
f = Uz

Figure 9.1: Control system with Diagnostics

inputs and the diagnostic output (estimafe} u, is obtained by introducing an
extra to-be-controlled output with

Z—1 “‘jﬂo .

The following stacked signals are used,

w
fﬁ[ﬂ,uﬁ[zl],zﬁ[il},vﬁ fa] | ,u=Ky
S 2 2 fs

A state-space describtion for the augmented system reordered into standard
form is given by

X = AX 4+ Bw + [By 0 [;a] + [B2 OJu
S
77 = Cix + Dpw + [Dlz O]U
f (9.1)
- |[fj © o

y = Cox + Dow + [O |] [fa:|
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However, the faults are only expected in a certain frequency relgibence we
filter the signalz, through

and obtain
54 %0 [ )
P=| [C. O Di1 O D12 O : (9.2)
o el [0 o |7 o
€2 0] | [Pz [0 1]] [0 0

9.2 Discussion of Design Methods
Now consider the transfer matrix fromto z of the augmented system,

Tow Tt
where we note for some suitable norm that

e || T,w|| small implies disturbance rejection.

e || T ¢|| small means that undetected failures are not disastrous.

o || Tow|| small secures no false alarms.

e |T,t|l =0 = u; — fi.e agood estimate.

This means we want to solve the straightforward and simple problem of min-
imising,

[Tzl (9.3)

In the case where undetected failures are not disastrous the following multiob-
jective problem may be considered

[ Tzwl] < y1and || Tt || < Y2 (9.4)

1in fact, the same holds for disturbances and model uncertainty. For simplicity we did not include
these weightings, but the extension is straightforward, (or regard them already absorli&d into
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which will lead to a less conservative design than (9.3). One method is to use
[KRS93] where the system needs to comply with additional constraints, the system
should be left invertible and a less restrictive rank condition orBtneatrix.

However, in both cases the problem is inheritly singular which somewhat lim-
its the number of optimisation methods of choice or at least a (somewhat tricky)
regularisation is needed.

Next we discuss methods for the problem in 9.3, depending on the signals
(energy bounded, amplitude bounded, white noise) one perfatast, 75) a
design for which various known approaches can be used (e.g. [ZDG95, DDB95]).

Using LMIs [SIG97] for solving the#, disturbance rejection problefi,y|«,
give at most a design with order— 1 and the singular structure is handled
smoothly. LMIs offer in addition a possibility to compute low order controllers.

In the 7., and#> case$ the simultaneous design of fault detection and control
has the advantage that the resulting control/estimator has ontbereas a con-
troller design followed by adding a fault estimator using an output estimator and a
filter gives order3n, and does not take into account that control and FDI might be
contrary objectives.

Actuelly, the latter has been clearfied in the line of work [SGN97, SG96, NS97]
see table 9.2, however, some order reduction should be applied when performed
separate. In other words the same observer may serve both the controller and the
filter in a coupled design. Reak, for any unstructured andfor structured opti-
misation.

| Filter | Nominal Perf. | Robust Perf. |
| Controller | Design [ Optim. | Design | Optim. |
N. Performance| Separate %, Coupled| Heo, M
R. Stability Separate “H, | Coupled H
R. Performance| Separate |, #. | Coupled U

Table 9.1: FDI seperation

9.3 Example

We give an example illustrating the simultaneous desigrtgfcontrol and esti-
mation of faults in the actuators and the sensors. It should be noted that the design

2|n the ¢4 case this order inflation tendency will in general be even worse since there is no bound
on the controller order
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could be done seperately see table 9.2 but for the order. The system considered is
stable, 4th order, and has 1 disturbance, 1 actuator, 1 output, and 2 sensors. The

state-space data is given by the compact system matrix

T —4873 Q758 9541 8763 | 0.483 Q003854 ]
4673 -5385 1094 —4352| 1.498 9072-10°*
~0.3003 —0.6001 —5.334 —2023| 9.889 —2.865.10°°
G(s)= | 003852 07446 05703 —8328|0.1282 —1396
0.1 0 0 0 0 0
0.1 0 0 0 0 0
0 0.1 0 0 0 0 |

The purpose is to design a combined controller and estimator such that good
disturbance attenuation from to z together with good estimate df, and fs are
obtained. The output is filtered bW(s) = s%l)olzxz-

The derived##, minimisation problem is solved by the LMI-method and re-
sulted in a controller of order 1 withiT,||» = 0.57.

The #, norm of the elements if,, was calculated tg|T,w|l~ = 0.29,
| T2, ]|0 = 0.001, || Tow|l = 0.33, @and|| Tz, ¢ || = 0.49. The norm ofT,w and T, ¢
indicates that good disturbance attenuation and fault estimation could be expected.
However, sincdy,  is a2 x 2 transfer matrix more could be said about the fault esti-
mation when calculating th&., norm of each element iy, . ||(Tzf)11/| = 0.49,
(T2, 1 )22/l = 0.02, and the off-diagonal elements are close to zero. This means
that the estimates df, and fs are nearly isolated, i.e. does not influence each other,
and that a very fine estimate &fcould be expected. Th#&,, norm of (T, )11 was
reached near DC and goes to zero beside DC, so the steady-state estifgase of
expected to be approximately 50% of the actual value.

Fig. 9.2 shows a simulation of the system with a actuator failure and fig. 9.3
shows a simulation with a sensor failure. In both cases the disturbaneeas
coloured noise with an amplitude abdul5V. The figures are in good accordance
with the expectation.
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Figure 9.2: Actuator and sensor estimate for actuator failure

Figure 9.3: Actuator and sensor estimate for sensor failure



Chapter 10

Conclusion

The robust control framework has been applied and extended in this thesis to ob-
tain new results on sampled-data systems and fault detection and isolation. We
will briefly discuss these and suggest some further research directions; a list of
contributions is given on page 6.

In the lifting technique framework for SDS taking the intersample behaviour
into account the robust; problem has been given a thorough study. Encompass-
ing extentions to the well-known LTR procedure and the recent results on robust
H, performance to the SD setting. Thereby adding to the merits of the lifting tech-
nique.

For completeness related multiobjective sampled-data designs are sketched and
discussed. These are mainly casted in the fast discretisation setting.

From a practitioner’s point of view fast discretisation offers a simple (approx-
imative) way to handle the SD problems in general. However, this is not without
cavaets, most notably by higher computional burden.

In other words the direct SD (exact) discretisations is prefered in the theoretical
sense as well as for computional schemes.

Using the notion of a smallest gain a new (possible conservative) norm based
index quantifying the smallest fault guaranteed to be detected is deducted. It opens
for optimisation based design methods and is given in various forms. The inte-
grated FDI and controller design problem is setup to exploit their interaction.

Thus a full FDI design is facilitated by optimisation methods.

Further Directions:
These are mostly given were appropriate within the text, but we stress a few below.

95
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e An overview study with comparison between the varigfiggeneralisations
and likewise robusff, performance conditions.

SDS:

e Find state-space conditions as in [Pag96d] for the rofagterformance SD
LTV case.

e For mixed SD#./¢; and %,/ Hs, derive a bound, see remark 12 on page 103.

FDI:

e Optimisation design foW to exploit the freedom see page 76.

e A design method as in section 8.4 where LMIs for both smallest and largest
gain are combined.

Finally, we like to point out, remark 4 on page 97, that there is no a priori check
condition available for when a direct SD design is needed or not.
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A Redbook

A.1 Sampled-Data Design

This brief redbook is meant as a summary on how and when to do a sampled-data
design. It is based on results given in the comprehensive litetatuwst notably
[CF95]. A similar discussion is partly given in [DD95]. The notation follows
chapter 4 and the redbook should be read thereafter.

Generally the intersample behaviour is of interest when the sampling rate is
limited which to some extent is always the case. Even if the rate is free and there-
fore can be chosen corresponding to a frequency much higher than the bandwidth
of the closed-loop, say a hundred times, there may be complications.

We will assume that an appropriate lowpass prefilter is absorbed in the plant.
Given specifications herein a choise of norm and a plant.

Problem A.1 Solve the SD controller problem in fig. 4.1 i.e. finkKka= HK4S
which assures nominal stability and performance.

The SD problem can be approached indirectly or directly. Stability is always
implicit with a direct design, but requires a check in the indirect case.

Remark 4 As there is no a priori check condition available for when a direct SD
design is needed or not; simply apply it every time

When we write SD design we implicitly assume a continuous-time measure
hence taking the intersample behaviour into account. For the indirect designs the
SD norm has to be analysed, i.e. recalculated in SD sense, hence we introduce a
little notation.

e Ve = ||G(jw)»KE(jw)||. Continuous-time optimal controller.
Continuous SD design

o V3= ||G(jw) xHK¢®'S)|. Step Invariant transformation &F to KgS'.

e V2 = [|G(jw) xHK¢"'S||. Bllinear transformation oK® to Kq"'.
Discrete SD design

o V3 = ||G(jw) xHKq " S||. DiscretiseG by the step invariant transformation,
find discrete-time controllefy .

Lin the author’s interpretation
2Some direct design methods are implemented in Matlab TM
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e V! = | G(jw) xHKq'HS|. DiscretiseG by fast discretisation, find discrete-
time controllerky .

Direct SD design
e Vsd=||GxHKyS|.

Assume the sampling rate is fixed

Then there is a certain (restriction) gap betwgeandysq. In fig. A.1 the per-
formance indices for continuous SD design using the step invariant and bilinear
transformatiof are compared with the direct design index.

\ \ \

|
I )
' Ysd VE' Ve

Figure A.1: Continuous SD design

In fig. A.2 the performance indices for discrete SD design using step invariant
and fast discretisation are compared with the direct design index.

Y

Ve VIRRVA Ve

Figure A.2: Discrete SD design

Remark 5 Empirically, the continuous SD design, especially using the bilinear
transformation, is better than the discrete SD design. However, as the number
of oversamplées n, increases using fast discretisation this index converges to the
direct design index.

That is fast discretisation approximates the direct SD deslﬂn,e Ysd asn —
oo, but this convergens is very slow and the computational burden grows as the

Sthe bilinear transformation is often better than the step invariant
4same as fast discretisation with= 1
Sthe computational burden is soon larger than the direct design
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number of input and output grows linearly withfor the optimisation problem to
be solved.

An advantage of fast discretisation is that it is very simple to implement, further
it is the only known way to solve the SD problem for thenorm (4.26) and mixed
problems with it.

Remark 6 If no direct SD design method is knotiast discretisation is then the
better choice.

Next we will assume that the sampling rate is free to design

As the sampling rate is increased (fast sampling) then the performance of the
continuous-time optimal (analog) controller is recovered by the continuous SD de-
sign,y&,\2' — y. ash— 0. Furthermore, there exist$gso that foth < hg stability
is assured.

Fast sampling is not a “free lunch”, it is costly and gives rise to FWL (Finite
Word Length) problems etc. Furthermore,

Remark 7 Rules of thumb are inadequate. Say that the rate is chosen correspond-
ing to a frequency even a hundred times higher than the bandwidth of the closed-
loop, there may anyway be complications, (arbitrary) difference in norm.

E.g. due to resonance peaks [DD95].

Remark 8 A simple analysis is better. Calculate the SD ndi@w HKq4'S|| with
the given controlleiKy' (or approximate it by fast discretisation) and compare it
to the continuous-time optimal controllgg. Judge if the archived performance is
acceptable; remember there is a restriction gap.

Note that the gap betwegnandysg also vanish when the sampling is fast.

A direct SD design often needed when the sample rate is low or the specifica-
tions are against the underlaying continuous-time nature, ill-posed (e.g. Dead-beat
or no cost on actuators) or the system has resonance peaks. But there is no safe
clue to when they are not needed. Hence comply with the synthesis and analysis
remarkg 4, 6 and 8 which are also good for the uncertain case.

Finally, note that the problem of given a performance level find an appropriate
his also superiorly solved by the direct SD methods.

Simplemented
"Remark 4 is an open problem, but it seems it will remain so
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A.2 Fast Discretisation
Fast discretisation, section 4.5.1, due to [KA92], formulas from [CF95], in Matlab:

function [dsys]=sdfast(sdsys,nmeas,ncon,h,N)

%][dsys]=sdfast(sdsys,nmeas,ncon,h,N)
%

% Inputs:
% SDSYS - interconnection matrix for control design
% (continuous time) see Matlab mu-tools TM
% NMEAS - # controller inputs (np2)
% NCON - # controller outputs (nm2)
% h - sampling period of the controller to be designed
% N - number of over samples
%
% From 8.3 SD [CF95]
% MLR 1995
if nargin"=5,
error('usage:%[dsys]=sdfast(sdsys,nmeas,ncon,h,N)’);
return
end

[typ,p,m,n]=minfo(sdsys);

if typ™='syst’,
error( Plant is not a system’)
return

end

[a,b,c,d]=unpck(sdsys);

b1=b(1:n,1:m-ncon); b2=b(1:n,m-ncon+1:m);
cl=c(1:p-nmeas,1:n); c2=c(p-nmeas+1:p,1:n);
d11=d(1:p-nmeas,1:m-ncon); d12=d(1:p-nmeas,m-ncon+1:m);

d21=d(p-nmeas+1:p,1:m-ncon); d22=d(p-nmeas+1:p,m-ncon+1:m);

% check data

if rank( diag( exp(eig(a)*h) + ones(n,1) ) ) < n
error(" System is pathalogically sampled’)
return
end

% Fast discretisation, first discretise at the slow rate
[ad,b2d]=c2d(a,b2,h);

% Discretise at the fast rate
[af,bt]=c2d(a,[b1,b2],h/N);

b1f=bt(:,1:m-ncon); b2f=bt(:,m-ncon+1:m);
at=eye(n);
bvl=Dblf; cvl=cl;

dv11=[d11 zeros(p-nmeas,(N-1)*(m-ncon))];

dv21=[d21 zeros(nmeas,(N-1)*(m-ncon))];

dvl2=di12;

for i=1:N-1
dvll=[dv11;[c1*at*blf dv11((i-1)*(p-nmeas)+1l:i*(p-nmeas), ...

(m-ncon)+1:N*(m-ncon))]J;

dv12=[dv12;cl*at*b2f+dv12((i-1)*(p-nmeas)+1:i*(p-nmeas),:)];
at=at*af;
bvl=[at*blf bv1];
cvl=[cvl;cl*at];

end

dsys=pck(ad,[bvl b2d],[cv1;c2],[dvll dv12; dv21 d22]);
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B Multiobjective Sampled-Data Design

The aim here is a discussion @&/ 7, mixed control and related multiobjective
control in the SD setting. This serves to find good starting points for D-K iteration
like iteration for robust SDH, performance and

Remark 9 Itis hard quantify a good controller into a single number/norm.

In other words to capture the multiobjective nature of many control problems.
This may to some extent be handled by “the art” of choosing weighting matrices,
some clues are given in [SP96].

Remark 10 The optimal solution generally has an extreme behavior, hence choose
a solution only close to the optimal solution.

This remark is most notable fdit, design; anyhow it is general. However, the
methods mentioned below are often suboptimal in nature.

In the line of work pointing towards robugf, performance [BH89, ZGBD94,
DZGB94, KR91] the controller provides nominal performance and robust stability.
Furthermore, the approach is restricted to either one input W) or one output
(=2 infig. 3.3.

A connection to a simila#s/ H,, problem, see [Pag96a], and the analysis con-
dition 2 on page 59 is,

Proposition B.1 Partition the inputv= W, Wz}'forthe systetVl = [Me  My]
then the following are equivalent:

1. condition 2 holds foX = | and somér' (0)
2. ForB>0,3n > 0:sup(|[Mw||Z, : [[We ||, + %HWZHZ <1,w, € Wy g)

Proof. See proof of 6.20 and [Pag96a]. |
Here we prefer to study th2x 2 RP problem. This may be attacked using

multiobjective control#b/#H,, as in [SGC97] and1/H, [SB98] and#a/¢; with
more in [ED97].

B.1 Multiobjective Sampled-Data Design

The #4/¢1 problem is similar to thet/#., problem, but the uncertainty is here
bounded in thé;-norm. The “dual” problem is also solved [ED97].



102 APPENDIX B. MULTIOBJECTIVE SAMPLED-DATA DESIGN

The #,/¢1 problem is similer to RPH,, (), but the uncertainty is here bounded
in the /1-norm. Combines time and frequency requirements [SB98], it is a convex
problem.

For the multiobjective sampled-data setup we use the notation in chapter 4. The
system is given by

Al B B
G(s)=| C;| D11 D12 (B.1)
G| O 0

Considera andb channels irw andz
A‘ Bi‘ BE B,
a0 _ | C3| D33 D3 D3,

G(s) = (B.2)
C7|Dif DR DI
C| 00 0
and
B
K(\) = |2 | Br (B.3)
Ck | Dk

This setup gives 4 combinations of closed-loops. However, we prefer the some-
what more flexibel setup where the closed-loop is

T =GxHKyS (B.4)
and the appropriate input/output channels are choosen by the matrjiégsas
T =LTR (B.5)

i.e. w= Rjw; andz; = L;z, see [BB91]. Lefl,, Ty be two closed-loops as above
with the same dynamics. Then a generic (two) multiobjective problem with two
norms is given by

Problem B.1 Find controllerK,

inf I Talla (B.6)

K internally stabilising

subject to:
[Tollb <y (B.7)

This can be restated using the result of parameterisations of all stabilising con-
trollers [YJB76, Fra87]. This is a main idea [SB98, ED97].
For the multiobjective sampled-data problems the following is apparent

Imore details are out of the scope
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Remark 11 A solution based on fast discretisation, section 4.5.1, is straightfor-
ward, the cavaet is finding bounds like (4.26) from [BDP93].

Moreover, one do not expect any better for the cases fvithcluded.

Remark 12 Some motivation is found in that the result like (4.26) from [BDP93]
holds for general’,-induced spaces. Th& version is proved in [KA92] which a
better convergence rate th:#wvas obtained.

Though it seems worth to conjectérthat these bounds exist, it will require
elaborated versions of proof depending on case.

For the mixed L/ #, problem we expect an “exact” discretisation as this is the
case in the pure forms the problems. We will outfiaesuch line of attack in below
section with some cavaets.

B.2 “4b/H., Multiobjective Sampled-Data Design

The synthesis (and analysis) method in [SGC97] (may handle even more objec-
tives) requires

1. Common dynamic8 matrix and state.
2. Single Lyapunov matrix.

The conservatism introduced by 2. is justified by the tracable solution see
reference. Further, the optimab/#, controller is infinite dimensional, but the
single Lyapunov matrix gives one with the same order as the plant.

Whereas in the SD setting 1. complicates things a bit, since Uguahd #,
discretisation give differerA matrices. But 1. can be accomplished in to ways

o fast discretisation (i.e. approximation), leaves a question of convergence rate
and the problem becomes computational heavieriagncreased. However,
it is a well motivated approach, see remark 12.

e 7, SD without Loop-Shifting.

Pick 45 and H., channels inv andz. AssumeD1; is zero for two reasons; to
have a finite#, norm and have a simple way to exprefgs-norm.
For the#, channels the usua; discretisation is applicable,

2At least M. A. Dahleh with his deefy insight expect so fof, /¢4
Sthis is from work under preparation
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B A_d ‘ __1 B_Zd
G(A) = Cp | D11 D12 (B.8)
G| 0 0

However, for the#H,, channels we need a representation with the same dynam-
ics Aq, this is the remaining task in next section.
Besides, one must find

o Linearising change of variable discrete version (similar [SGC97] (33)).

o Obtain discrete versions of ([SGC97] (v),(42)).

B.2.1 %, SD without Loop-Shifting

Recall that the lifting step gives a system of the form

~ [Ad| B By
G: Cl Dll D12 (Bg)
G| 0 O

the operators are given in (4.6) afh, Byg) is the usual discretisation (step invari-
ant) of (A, By).

= LG« :
& B GxKyg (B.10)
D11 is compact a1, = 0. So isT therefore its norm equals its largest singular
value.

We will next use the ¥4, norms, Riccati equations, symplectic matrix, LMIs”
lemma in [PD93].

A starting point for finding the representation is [CF95], but the pitfall here is
the implicit use of loop-shifting.

_ [ A:cl :Bcl

o We need to find the representation.
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