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ABSTRACT.

This paper gives a general and concise formulation of the Loop
Transfer Recovery (LTR) design problem. Necessary and sufficient
conditions are given for obtaining LTR for non-strictly proper
systems when general observer-based controllers or general output
feedback controllers are applied. The connection between these two
controller types is also described in the light of LTR.

1. INTRODUCTION.

The scope of this paper is to introduce a more systematic and
general way of describing the recovery conditions. This will be done
by considering different types of recovery errors, i.e. the differences
between the desired and the obtained loop transfer functions, for
both open and closed-loop transfer or sensitivity functions. The
recovery error description is general, because it is not related to any
specific controller type. Open-loop recovery errors was first
introduced by Goodman [4] for full order observer-based controllers,
and later extended to include minimal-order observer-based
controllers [7]. LTR design by using full-order or minimal-order
oberver-based controllers for non-strictly proper minimum phase
systems has also been treated in [2].

Instead of using specific observer-based controllers, we will use the
much more general Luenberger observer formulation [6] in
connection with LTR-design. The Luenberger observer includes all
known observer types as special cases [7]. The second controller
type which will be used here is a general output feedback controller.
Based on these two controller types, it is possible to give general
necessary and sufficient conditions for obtaining exact recovery, i.e.
a zero recovery error for non-strictly proper systems. It will be
shown that the two sets of conditions for obtaining exact and
asymptotic recovery, are the same for both controller types. The
connection between the two controliers will also be treated in the
light of LTR.

The two controllers will be introduced in section 2 and the general
LTR conditions are derived in section 3 followed by a discussion in
section 4.

2.0 CONTROLLER TYPES.

Let the FDLTI plant model be represented by a minimal state-space
realization S(A,B,C,D):

,]JXx=Ax +Bu, xeRuek
E'{y=Cx+Du, yem @
G(s) = C(sI - A)'B = CO(s)B

with n > m 2 r and C,B of full rank. To contro! the plant, a general
controller is used, described by:

¥ 2=Hz +aGu +By,z e &, a € {0,1) @
"|lw=Pz+Vy

with the transfer function:
C(s) =V + Ps - H + aGP)''(E - aGV) &)

The matrices H,G,E,P and V must satisfy:

@ H is stable,

(i) TA -HT =EC

() G =TB - ED, @
(i) F =PT + VC

(i) VD =DV =0
where F is the is the state feedback gain called the target design.
Egs. (4) is a generalization of the Luenberger conditions for strictly
proper systems [6] to non-strictly proper systems. ¥ is the general
Luenberger observer for @ = 1 and the general output feedback
controller for a = 0. The separation theorem is not valid for @ = 0,
so it must further be required that :

(i] ) (A+BK BP x) ®)
z EC H Az

is a stable system.
3. GENERAL LTR-CONDITIONS.

The LTR design method [1,4,7,8,9] will now be applied in the sequel
the for design of the general controller. First, different types of
recovery errors are defined independent of the applied controller.

Definition 3.1. Let the open-loop recovery error E;(s) the sensitivity
recovery error Eg;(s) and the input-output recovery error E,,(s) be
defined as:

Efs) = FGI-A)'B - C(s)G(s)
Eg(s) = A-FOEB)’ - A-CE)G(E)™ ©
By (8) = GEI+FOE)B)™ - GE)A-C(E)G(S) ™

These recovery errors can be rewritten into more convenient forms
by using X.:

Lemma 3.2.
Define:
Ms) = PGsI-H)™'G @
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Then

E(s) = Ms)(I+aM(s) ' I-aFOB)
Eg(s) = -(-F&B)'M,5)A-FOB+(a -DM,s)) '(-aFoB) ®)
Eo® = GOEg(s)

Proof. The proof of Lemma 3.2 is omitted. An equivalent proof can
be found in {7] for o = 1.

Based on this result, it is possible to give necessary and sufficient
conditions for achieving exact recovery, i.e. E = 0. It is clear that if
one of the recovery errors in Definition 3.1 is zero, the other two
recovery errors will also equal zero.

Theorem 3.3
Exact recovery is obtained if and only if one of the following
equivalent conditions holds:

@ Eg =0, () M) =0, (i) <H|mG>ckeP )

If we assume that H is non-defective all three are equivalent to:
(iiii) Pv, =0 VWG =0,i=1,..p

where v; and w;T are right and left eigenvectors, respectively,
associated with the eigenvalue A; of H.

Proof. See [7].

Note that the conditions in Theorem 3.3 are independent of a. It
ollows directly by rewriting the transfer function of the controller
into:

C®) = @ + aME)'(V + PGl - B)7'E) 10
that C(s) is independent of & when exact recovery is obtained.
Each of the four equivalent conditions in Theorem 3.3 are necessary
and sufficient for achieving exact recovery. Only in rather special
cases, however, it is possible to achieve exact recovery with a free
target design F. Therefore it is interesting to study the asymptotic
recovery case, to which condition (i) generalize, as we shall see in
the sequel.

Aymptotic recovery is defined by the following.

Definition 3.4,
Asymptotic recovery is said to be achievable if and only if Ve > 0

there exist a controller C,(s) such that:
ISie(s) - Sy < e

where S, is the closed-loop sensitivity function comesponding to
C,(s) and || || ; is any ’suitable’ norm, e.g. the H, or H_-norm.

an

The following is an immediate consequence of Lemma 3.2.

Corollary 3.5,
Asymptotic recovery is possible if and only if ¥e > 0 there exist a
controller C,(s) such that:

@ IM6x < e
(ii) The closed loop system is stable.
where M, (s) is the recovery matrix carresponding o C,(s).

Note again that the asymptotic recovery condition is independent of
a as in Theorem 3.3.

4. DISCUSSION.

The LTR results for non-strictly proper plants derived in this paper
all concern the input-node case. The dual LTR results for the output-
node can be derived in a similar way. Further, the conditions derived
for obtaining exact recovery can directly be used in the discrete-time
case.

We have in this paper only considered the two controller types
described by a = 0 or 1 in eq. (2), but the LTR result derived here
are also valid for all values of « in the interval [0,1]. As it has been
shown in sec. 3, the abtained LTR controllers will be exactly equal
when exact recovery is achieved, where as the two LTR controllers
will approach in the asymptotic case. Considering the controller for
a =0 in eq. (2) is motivated by the asymptotic recovery result in
[3], where it has been shown that this controller type result in
smaller gains than observer-based controllers {a=1) for the same
recovery level. A more systematic recovery analysis for a € [0,1] in
eq. (2) based on recovery conditions derived here and in {3] will be
given in a forthcoming paper. The connection between LTR
controllers and the unknown input observer described in [5] is also
considered.
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