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ABSTRACT.

Ths paper gives a general and concise formulaon of the Loop
Trander Reovery (LTR) desip pvblem. Necessary and sufficient
conditions are given for obaining LTR for non-strictly proper
systems when general observer-based controlers or general output
feedback controllers are applied. The connection between these two
controller types is also described in the light of LTR

1. INTRODUCTION.

The scope of this paper is to intoduce a more systematic and
general way of describing the recovery conditions. This will be done
by considering different types of recovery erros, ie. the differences
between the desired and the obtained loop tansfer functions, for
both open and closed-loop tansfer or sensitivity functions. The
recovery error description is general, because it is not related to any
specific controller type. Open-loop recovery error was first
introduced by Goodman [41 for full order observer-based controHers,
and later extnded to include minimal-order observer-based
controllers [7]. LTR design by using full-order or minimal-order
oberver-based controllers for non-strictly proper um phase
systems has also been treated in [2].
Instead of using specific observer-based controllers, we wil use the
much more generl Luenberger observer formulation [6] in
connection with LTR-design. The Luenberger observer includes all
known observer types as special cases [7]. The second controller
tpe which will be used here is a generl output feedback controller.
Based on these two controller types, it is possible to give geji
necesr and sufficient conditions for obtaining exact recovery, i.e.
a zero recovery error for non-strictly proper systems. It will be
shown that the two sets of conditions for obtaining exact and
asymptotic recovery, are the same for both controller types. The
connection between the two controlers will also be mteated in the
light of LTR.
TMe two controllers will be intrduced in section 2 and the general
LTR conditions are derived in secton 3 followed by a discussion in
section 4.

2.0 CONTROLLER TPES.

Let the FDLTI plant model be represented by a minimal state-space
realztion S(A,B,CD):

(1)S . x = Ax + Bu Ex e It, u e t
Iy = Cx + Du, y E r

G(s) = C(sI - A)-'B = CO(s)B

sC f i = Hz + aGu + By, z er, a e 10,1)
c Lw Pz + Vy

(2)

with the tansfer function:

C(s) = V + P(Is - H + aGPY1(E - aGV) (3)

The matrices H,G,EP and V must satisfy:

(i)
(ii)
(fii)

(jill)
Clffl)

H is stabl,
TA - HT = EC
G = TB - ED,
P = + VC
VD = DV = 0

(4)

where F is the is the state feedback gain called the target desigm
Eqs. (4) is a generalization of the Luenberger conditions for strictly
proper systems [6] to non-strictly prop systems. Z is the genl
Luenberger observer for a = 1 and the general output feedback
controller for a = 0. The separation theorem is not valid for a = 0,
so it must further be require that:

(= (A+BK BPy(x
zi EC H Az)

(5)

is a stable system.

3. GENERAL LTR-CONDMONS.

The LTR design method [14,7,8,9] wil now be applied in the sequel
the for design of the generl controller. Fis, differnt types of
recovery errors are defined independent of the applied controller.

Definition 3.1. Let the open-loop recovery error E1(s) the sensitivity
recovery eror E54(s) and the input-output recovery err EOIl(s) be
defined as:

E1(s) = F(-A)-B - C(s)G(a)
Ess) = (i-F(s)B)-l - (1- (s$G(s))-l
E,4s) = C<s)+FO(s)B)-1 - G(s)XI-C(s s))-

(6)

liese recovery errors can be rewritten into more convenient forms
by using Z2:

Lemma 3-2.
Define:

M(s) = P(sI-HG (7)

with n > m > r and C,B of full rank. To control the plant, a general
controller is used, descibed by:
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Then

E1(s) = M(s)(1+aMjs))-W(I-aFQB)
Es,s) = -(I-F0B)Y'M(s)I-F0B (a -l)M,(s))-1(I-aF0B)(8)
Ero(s) = G(s)E,(s)

Proof. The proof of Lemma 3.2 is omitted. An equivalent proof can
be found in [7] for a = 1.

Based on this result, it is possible to give necessary and sufficient
conditions for achieving exact recovery, i.e. E, = 0. It is clear that if
one of the recovery errors in Definition 3.1 is zero, the other two
recovery errors will also equal zero.

Theorem 3.3
Exact recovery is obtained if and only if one of the following
equivalent conditions holds:

(i) Es, = 0, (ii) M1s) = 0, (iii) <H lImG> c krrP (9)

If we assume that H is non-defective all three are equivalent to:

(iiii) Pvi = OV wiG = 0, i = 1'...-p

where v, and wiT are right and left eigenvectors, respectively,
associated with the eigenvalue Xi of H.

Proof. See [7].

Note that the conditions in Theorem 3.3 are independent of a It
follows directly by rewriting the trnser function of the contoller
into:

C(s) (a + aM1s))-1(V + P(s - H) (10)

that C(s) is independent of a when exact recovery is obtained.
Each of the four equivalent conditions in Theorem 3.3 are necessary
and sufficient for achieving exact recovery. Only in rather sPcial
cas, however, it is possible to achieve exact recovery with a free
target dlesign F. Thferefore it is interesting to study the asymptotic
recovery case, to which condition (ii) g alize, s we shaUll see in
the sequeL
Aymptotic recovery is defined by the following.

Definition 3.4.
Asymptotc recovery is said to be achievable if and only if Ve > 0
taexdst a cnler C,(s) such that:

IS (s) - S(s)6 < (11)

where Sa, is the closed-loop ity funcon corresponding to

CC(S) and - 1I H iS anY 'sitable' norm, e.g. the H2 or Ht-nom

The following is an immediate consequece of Lemma 32.

Corollar 3.5.
Asympic recovery is possible if and only if Ve > 0 the exist a

controller C,(s) suh that

() HIM,(S)IIH < B
(i) The closed loop systm is sbe.

where Ntjs) is the reosvery matrix cs).

Note again that the asymptotic recovery condition is independent of
a as in Theorem 3.3.

4. DISCUSSION.

The LTR results for non-strictly proper plants derived in this paper
all concern the input-node case. The dual LTR results for the output-
node can be derived in a similar way. Further, the conditions derived
for obtaining exact recovery can directly be used in the discrete-time
case.
We have in this paper only considered the two controller types
described by a = 0 or 1 in eq. (2), but the LTR result derived here
are also valid for all values of a in the interval [0,1]. As it has been
shown in sec. 3, the obtained LTR controllers will be exactly equal
when exact recovery is achieved, where as the two LTR cntrollers
will approach in the asymptotic case. Considering the controller for
a = 0 in eq. (2) is motivated by the asymptotic recovery result in
[3], where it has been shown that this controller type result in
smaller gains than observer-based controllers (a=l) for the same
recovery level. A more systematic recovery analysis for a E [0,1] in
eq. (2) based on recovery conditions derived here and in [3] will be
given in a forthcoming paper. The connection between LTR
controllers and the unknown input observer described in [5] is also
considered.
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