FA3 9:45

Loop Transfer Recovery with an H_ Optimality Criterion.

Jakob Stoustrup! and Haps Hearik Niemann®

Mathematical Institute, Tech. Univ. of Denmark, Bldg. 303, DK—2800 Lyngby, Denmark.
*Institute of Automatic Control Systems, Tech. Univ. of Denmark, Bldg. 326, DK—2800 Lyngby, Denmark.

Abstract.

A formulation of the Loop Transfer Recovery (LTR) design
problem using an 7%, (sub-) optimality criterion i3 presented in
this paper and state space formulae are given as its solution. The
LTR problem is formulated as an 1, norm constraint for a reco-
very error which can be defined in two ways: either as a recovery
error of the sensitivity function or as a recovery error of the
input-output transfer function. Applying output feedback control-
lers we proceed from the recovery errors to an 1, state space
formulation. The control problems corresponding to the two
Tecovery error types are given as two different 7, state space pro-
blems. Each 7, problem is decomposed into the well known
regular problem and a totally singular ¥roblem. The dynamics of
the obtained controllers are at most of order 2n. Moreover, the
2./LTR method handles both minimum phase as well as non
minimum phase systems in a common framework.

In the original setting, LTR was intimately related to LQG
design methods of full order observers [Doyle and Stein 1981] for
the design of robust observer based control systems. Later,
however, other design methods such as eigenstructure assignment
techniques for full order observer based controllers ’II}SK aard-
And:;sa«;n 1989] etc. have also proved to be efficient L esign
met .

LTR design is the last step in a three step procedure for the
design of robust observer based controllers. In the first step, the
design specifications, i.e. robust stability and performance specifi-
cations, are formulated. The second step is a state feedback
(t.arget?) design, which has to satisfy the design specifications, fol-
lowed by the LTR-step where the target loop is recovered by
using a dynamic measurement based controller [Athans 1986).

Recently, l[Moore and Tay 1989) pioneered a new approach to the
LTR problem. Their approach is based on an %, optimization of a
suitably chosen recovery function for a controller structure, the
Q-observer, consisting of a standard full order observer with an
additional dynamic feedback structure attached at the estimation
error node. The approach presented in [Moore and Tay 1989]
suffers from a number of drawbacks. First, the approach handles
only the minimum phase part of a system, and for systems with
RHP zeros no guaranteed norm bounds can be given for the
overall system. Moreover. the resulting controller orders turn out
to be at least 2n, which is unnecessarily large and due to the fact
that the authors use frequency domain methods rather than the
state space methods, which has meanwhile proven more powerful.

In this paper we present an alternative approach to the T/LTR
design problem based on the standard ¥, setup. The dsign
method is based on the main results in the Ph.D. thesis
Stoustrup [1990] also reported in {Stoustrup and Niemann 1990
where a more thorough treatment of the method can be found.
Further, an equivalent 7/LTR approach based on observer based
controllers can be found in [Stoustrup 1990 and Stoustrup and
Niemann 1990]. The 2./LTR problem is formulated in Section 2
based on the recovery error concept [Niemann et al. 1990]. Two
71./LTR design problems are formulated based on optimizations
of the sensitivity recovery error and the input-output recovery
error. The two problems are solved in Secs. 3 and 4, respectively
by using the socalled singular ¥, approach [Stoorvogel 1989,
Stoorvogel and Trentelman 1990], which make it possible to
calculate the 2n'th order controllers (n'th order for minimum
phase systems) in a straightforward manner. A discussion is made
in Section 5.

2. The L/LTR Problem Formulation.

In this section we shall shortly introduce the Loop Transfer
Recovery (LTR) design method. Further, the 7/LTR design
problems will be formulated as standard 7, problems.

2.1. Loop Transfer Recovery (LTR).

Let us consider a finite dimensional, linear, time invariant
{FDLTI) plant model, represented by a state space realization
X = Ax + Bu

8.C -

with transfer function G(s) = C(sl-A)"1B. where x € Re, u € Rm,
z€Rp, and A, B and C are matrices of appropriate dimensions.
The system is assumed to be stabilizable, detectable and left
invertible. Moreover, we shall make the technical assumption,
that A(A)NC® = §. Note, however, that this can always be

ed by applying a preliminary static output feedback.
Furthermore, this preliminary static output feedback can be
chosen arbitrarily small.

2.1)

To design a controller for the system I by the LTR methodo-
logy, we first determine a (static) state feedback, the target
design, which satisfies our design specifications. The design
specifications, such as robustness and performance, are assumed
to be reflected to the input node [Athans 1986, Stein and Athans
1987]. The resulting target loop transfer function becomes GrpL
= F(sl-A)"1B, where F is the n;c‘::}et (state feedback) design.
Second, the LTR step is perfo , where the target design is
recovered over the range of frequencies by a dynamic
compensator C(s), giving a full loop transfer of the form é:l(s) =

C(s)G(s).

The associated semsitivity and input output transfer functions
are given by:

STFL(S) =(- GTn(s)).lv SI(S) = (- GI(S))'I

GIO,TFL(S) = G(S)STFL(S)’ G‘o(s) = GI(S)SI(S)

Using these transfer functions, we can define the sensitivity
recovery error and the input-output recovery error.

(2.2)

DEFRINTTION 2.1. The sensitivity recovery error Es is defined by:
Es(s) = STFL(S) - SI(s)

E10(9) = 610,151 (8) = Gy (8)

?9%10? types of recovery errors are considered in [Niemann et al.

The Y. standard philosophy is to define a fictitious plant &*
which is a realization of the compound transfer function on
which the ¥, constraint is posed, rather than of the plant itself
(see e.g. g‘rancis and Doyle 1987]). Consider the closed loop
system in Fig. 2.1.

(2.3)
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Fig 2.1. The 7, Standard Problem.

Denote the transfer function of the controller EH by Q(s) € M.
Then the closed loop transfer function from w to z becomes:

Gzw(s) = Tou{8) + T2u(8)QS)(FTyu(S)Q(S)) 1 Tywls) (2.4)

where Tow(5), Tzu(5), Tyu(s) and Tyw(s) are the open loop
transfer functions from w ~ 2, u+ z, u » y and w + y, respectively.
Now, with Gzw{s) being the sensitivity recovery error Es(s) or
the input-output recovery error Elo(s) introduced in Definition
2.1., we have:

LEMMA 2.2. A linear fractional transformation of Es(s) and
Elo(s) in the form (2.4) are given by the following transfer
functions:

ES: EIO:

T,4(5) = (I-F(sl-A)"'B)"™
Tou(8) =+

T,(s) = C(si-A)B
T,e(s) = C(s1-A)B

T,.(5) = C(sl-A-BF)'B-C(sl-A)'B
T,.(s) = C(sl-A)"B
T,u(s) = C(s1-A)B
T,u(8) = C(s1-A)1B

(2.5)

Using the expressions in Lemma 2.2 for Es(s) and E]o(s) we get
the following two 7/LTR problem formulations:
PROBLEM 1. Let v > 0 be given. Find, if possible, a FDLTI

controller Q(s) such that when applied as a dynamic measure-
ment feedback controller we achieve:

IES) Il <7
and the closed loop system is internally stable.

(2.6)

PROBLEM 2. Let v > 0 be given. Find, if possible, a FDLTI
controller Q(s) such that when applied as a dynamic measure-
ment feedback contraller we achieve:

2.7)

I Egs) Il <7
and the closed loop system is internally stable.

In this section we Sha!tlul providel state 11space sol:é.ion:gltl.lo thi
sensitivity recovery problem, applying the so-called singular
approach which iesr\y;n'eﬂy summarized in Appendix A.

When applying a general controller Q, Q € 7%, , the sensitivity

ge;c)wery error introduced in Section 2.1 has the form (Section
Ey(s) = F(sl-A-BF)1B-Q(s)(1-C(s-A)'BQ(s))IC(s1-A) B (3.1)

which is a linear fractional transformation in Q(s).

The state space formulation equivalent to (3.1) is:

X = A0 x+[B v+ B]w
. 0 A+BF 0 8
ZS' y=[C 0 ]x + 0w (32
z=[0 F ]x - lu

or, short
x=Ax+Bu+Ew
E y=Cx+
S z = Cox + Dau

In this case Assumption A.l. amounts to the requirement that
A, B, C, 0) has neither zeros nor poles on the imaginary axis.
his is assumed throughout this section.

l-)lw

In the sequel we shall study the solutions of two certain matrix
inequalities introduced in Appendix A: The Quadratic Matrix
Inequality (QMI) and the Dual Quadratic Matrix Inequality
(DQMI) for which the solutions are crucial to the controller
expressions below.

We see that Da = | is injective and Dy = 0, which means that the
Quadratic Matrix Inequality is regular, and that the Dual Quad-
ratic Matrix Inequality is totally singular - see Appendix A.

In the sequel the structure of the solutions to the QMI and the
DQMI will be described. Based on these solutions we shall
describe the so-called QM- and DQM-transformations, which
transform the feedback and estimation subproblems into
equivalent minimum phase problems, for which the controllers
can be derived.

For the QMI we have:

THEOREM 3.1. For the system L, described by (3.2), the

solution P of the QMI is:

-[27]

where P is the unique solution to the algebraic Riccati equation:

(3.3)

AP + PA-PBB'P =0 (3.4)

P is given by:

P = -"(0G ") (3.5)

Here, G is the controllability gramian, and 11 is the orthogonal

projection onto X-(A)' along X_(A), the generalized stable

e:ieenspaoe of A.

The associated quadratic matrix becomes:
-PB
F.(P)= | PB+FT [ B8P BTP+F -l,]
-l
ProoF. See [Stoustrup and Niemann 1990},

(3.6)

Note that solvability of, and the solution to, the QMI does not
depend on 7. Hence solvability of the T, problem is equivalent to
solvability of the transformed DQMI below.

From Appendix A we achieve the following QM-transformed
matrices associated with the %, problem (3.2):

Rp=K C=C), Cyp=[87P BP4F |, B,=0, (3)

Now, the dual version of Coroll A.4 can be applied to the
QM-transformed system to obtain the solution of the DQMI.
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LEMMA 3.2. For the DQMI associated with the system Elo with

C.z replaced by C, ., the solution Y:

Y, Y
v = [ :_l 12}
12 Yz
is the unique solution to:
. ViVAT Rl 7 . T
(i) AY+YAT+EE +YC2,pC2,pY = EP,QF.P‘q 20
(ii) CY,,; =0 and CY;, =0
(iii) rank(E, Q) = normrank H(s)

2,P’
(3.8)

(iv) rank [sé'A -SP,Q} = n + normrank H(s), Vse ¢
1
with H(s) = C(s-A)7B .

In [Stoustrup and Niemann 1990] an algorithm is provided to

construct Y satisfying conditions (i-iv) of Lemma 3.2. It turns
out that the algorithm involves only the solution of a reduced
order Riccati equation.

The DQM-transformation proceeds as follows:
11 at2
Apo=A+7NC 0,0 = [ Q P’Q} (3.10)
Q 2P2P 21 aA22
Apq Ap,
with:
Atq= A+72%(Y,,-Y15)PBBTP-72Y ,F'BTP
A= 7X(Y]5-Yp)PBBTP-y2Y,,F BTP
A= 7(Y15-Y;,)(PBBTP+PBF)+72Y,(FTBTP+F F)
AQ= Ap+72(Ypp-Y]2)(PBBTP+PBF)+72Y,(FBTP+FF)
2T
EP'Q =B+9 NCQ,PDP
B+72(Y,,-Y9)PB-72Y ,FT
- TH(Y12-Yp)PB-7 Yo |
After these two transformations, we have a transformed system
which i3 minimum phase, and the final controller Q(s) can be
designed directly, by means of the solutions to the two norm
inequalities given by (A.11) and (A.12). It is readily seen that
(A.11) is trivially satisfied for:
L= [-B*P BTP+F]

since this choice solve an (exact) disturbance decoupling
problem.

(3.11)

(3.12)

LEMMA 3.3. Let P be as above and let M = [MI M;]T be an
output injection satisfying:
I (o o ME,IEy o o< /1,1

with AP Q+MC1 stable. Then an admissible controller for the
above ¥, problem is given by:
L
M

(3.14)

(3.13)

-1
sl-A+BBTP-M,C -BB"P-BF

Qs) = .[.B*P aTP+F]x
-M,C s1-A-BF

PROOF. Lemma 3.3. follows by substituting the above matrices
in the expression of Theorem A.5. The relaxed norm bound in
(3.13) (compared to (A.12)) is achieved by exploiting that L
solves an exact disturbance decoupling problem.

The selection of M in Lemma 3.3. is always possible, since the
transformed system (AP,Q’ EP,Q’ C,) is minimum phase. Note
that the controller depends on Y only indirectly (via M).
If the system is invertible and minimum phase, the following
controller results by substituting Y = 0 in Theorem A.5.

LEMMA 3.4. Assume that Y = 0 is the solution of the DQMI.
Then an admissible controller for the above 1, problem is given

by:

Q(s) = F(sl-A-BF-NC)IN (3.15)

where N satisfies:
Il (8-A-NC)'B o< ¥
with A+NC stable, and:
% = 7/||B"P(d-A-BF)'BF+F(s-A-BF)}(d-A){l (3.17)

(3.16)

PROOF. Assume that N is any (stabilizing) matrix satisfying
(3.16). Then by substitution it can be shown that M = [N™ N"|"
satisfies (3.13) and that AP,Q+MC1 is stable. (3.15) is obtained
directly by reduction of (3.14).

In this section we shall consider the input-output recovery
problem with an ¥, optimality criterion (Problem 2).

When applying a general controller Q, Q € 7%, the input-output
recovery error introduced in Section 2.2 has the form:

E,o(5)= C(sl-A-BF)1B - C(sl-A) B

- C(sl-A)'BQ(s)(I-C(s-A)BQ(s)) 1C(sI-A) B (4.1)

which is again a linear fractional! transformation in Q(s). The
state space formulation equivalent to (4.1) is:

Blw

B

*=[A 0 ]x+[8]u+
0 A+BF 0
2[0: y=[C 0 ]x + Ow

[-C C ]x+ Ou

(4.2)

z2=
or, short

x=Ax+Bu+Ew

2 {y=Cix + Ow

10 _

z = Cox + Ou

The 7, problem to be considered in the following is totally sin-
gﬁu (see Appendix A) since both D; and D, are equal to zero.
uently Corollary A.4 can be applied to solve the asso-
ciated QMI and DQMI. This time Assumption A.1. amounts to
the requirement that (A, B, C, 0) has no purely imaginary zeros.

THEOREM 4.1. Consider the system %, given by (4.2). The
solution P to the associated QMI has the following form:

=[]

where P is the unique matrix satisfying:

(4.3)
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. T T
(i) ATP+PA+CTC =: CGpCop2
(i) PB=0
(iii) rank(C, ;) = normrank G(s)

si-A -B

0 (4.4)

(iv) rank } = n + normrank G(s), Vse {*
2,P

with G(s) = C(s-A-BF)!B .
The associated quadratic matrix (see Appendix A) becomes:

T
C2,P

(4.5)

PROOF. Follows by Corollary A.4., see [Stoustrup and Niemann
1990}.
Note, that the QMI in this case reduces to a dissipation inequali-
ty (known from classical LQ-theory) of n'th order. This inequali-
ty is normally solved by transformation to a reduced order
Riccati equation.
The QM-transformation becomes:

Rp=AClp=Cplyp= [CZ,P 'CZ,P]’ D=0 (46)

On the QM-transformed system, the dual version of Corollary
A.4. can now be applied to derive the solution of the DQMI.

LEMMA 4.2. For the DQMI associated with the system E‘lo with
C, replaced by C, ., the solution Y:
Y sz]

Y-:Z Y22

2,P’

(4.7)

is the unique solution to:
(i) AV+YAT+EET+YC] G, V= E
(ii) CY;; =0 and CY,;, =0

(iii) ra.nk(EP,Q) = normrank H(s)

T
rQtPQ 20

(iv) rank [S(I:'A 'EP,Q

0 = n + normrank H(s), Vse T*
1

with H(s) = C(sl-A)B .

Again, conditions (i-iv) can be reformulated as a reduced order
Riccati equation.

If the system (A, B, C, 0) is minimum phase, P = 0 is the unique
solution to the QMI satisfying the involved rank conditions

(iii-iv). Further if (A, B, C, 0) is also invertible, then Y = 0 is
the unique solution to the DQMI satisfying the two rank
conditions.

For non-trivial transformations we obtain the following matrices
for the transformed system:

11,12

Rp o= [Agiq Agéq}
" LA q Mg

where:

11 _ -2 T
Ap=A+ 7Y Y1)C pCop
12 _ L T
Ap q= T (Y131 pCop
21 _ LonyT T
Ap = 7T (Y13 Y0)Co pCop
22 _ -2 T \T
AP,Q =A+BF+7 (Y22'Yl2)c2,Pc2,P
EP,Q =B (4.8)
1
E - EP!Q
P.Q~ | g2
P)Q
Cl p= Cl

Eventually, an admissible controller, solving the % problem is
obtained in terms of these transformed matrices.

LEMMA 43. Let L =

L, L, | De astate feedback satisfying

(A.11), and let M = MI M; T be an output injection satis-

fying (A.12). Then, an internally stabilizing controller, making
the 1, norm of the closed loop transfer function from w to z
smaller than 7 is given by:

All a1 M .Al2 gy 14
o= [ M A
AZLMC stAlZo | (M,
(4.9)

Again, in the minimum phase case, we only need an n'th order
controller:

LEMMA 44. If P = 0 and Y = 0 are solutions to QMI and
DQMI, resp., the controller is given by:

Q(s) = F(sI-A-BF-NC)™'N (4.10)
where N is any matrix satisfying:
I (s1-A-NC)™'B || < 7/[Fl (4.11)

with A+NC stable.

PROOF. By substitution, it can be verified that L = [ F 0 ] and

M=[N" 0], with N as above, satisfies (A.11) and (A.12) in
the minimum phase case.

An alternative approach to the LTR design philosophy is
introduced in this paper where the LTR design problem is resta-
ted as an 7, standard problem. The actual 7, standard problem,
however, does not satisfy the normal regularity assumptions in
1. theory, and therefore we invoke the so called singular 7,
theory for the calculation of the controllers. Programs implemen-
ﬂ“ﬁ the obtained controller formulae are included in the
TLAB toolbox [Niemann and Stoustrup 1991].
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This T/LTR design method provides directly controllers of the
same dynamic order as the order of the %, standard problem
formulation, meaning 2n for general systems and n for minimum
phase systems. This is a pay-off of the state space approach,
since frequency domain methods give controllers of dynamic
order 3p-1 [Moore and Tay 1989).

Two problems are considered: The sensitivity recovery problem
and the input-~output recovery problem. The two resulting con-
trollers are given in terms of the unique solutions to two Dual
Quadratic Matrix Inequalities (DQMI's) or order 2n, and additi-
onally by the solution to an n'th order singular Riccati equation
(sensitivity recovery) or, respectively, by an n'th order dissipa-
tion inequality (input-output recovery). It turns out that the so-
lution of the two DQMI's with additional rank constraints invol-
ves only the solution of two reduced order Riccati equations.

Co! ing the T/LTR design methods proposed above to tradi-
tional LTEI methods, a maj%lr advantage is that non-minimum
phase systems can be treated by exactly the same techniques as
minimum phase systems after a preliminary transformation has
been performed. This preliminary transformation involves a
state space transformation and the solution to a reduced order
Riccati equation. The preliminary transformation is a one-shot
process requiring no iterations.

The main limitation of the suggested methods is due to the fact
that 7, methods generally try to average out the errors over the
whole frequency range. This situation is not desirable for LTR
problems, since the acceptable errors might be low for instance
at low frequencies (performance specs.). Hence, to overcome this
limitation, it would sometimes be reasonable to incorporate
weig(l’ltiniﬁmctions in the problem formulation. This can easily
be done, but only at the cost of more controller states.

As an alternative to the method proposed in this paper, one
might restrict the attention to consider only observer based con-
ers, motivated by the traditional LTR setup. In fact, this
can be done in a similar way to the above. The observer based
1/LTR methods include a direct and an indirect method. The
direct method [Stoustrup 1990, Stoustrup and Niemann 1990
involves an observer based solution to the problems consid
in the present paper. The indirect method [Stoustrup 1990,
Stoustrup and Niemann 1991] is based on cient conditions
only for the solution to the above problems, but provides always
an n'th order controller.

APPENDIX A.

‘The necessary preliminaries for the 7, methods used in this

paper will be introduced in this appendix. The a.psproach taken is

based on the results in [Stoorv 1989, Stoorvogel and

Treatelman 1990], the so called si approach. This is a very

general approach which includes the well known approach by
yle et al. [1989] as a special case.

In the state space approach to %, the standard problem is as
follows:

Consider a finite dimensional, linear, time invariant system:
x=Ax +Bu 4+ Ew

2 y=Cx +

z=0x + Dy

Weabslsume that v > Ofbas beenF ven,
possible, an internally stabilizing compensator u =
such that the %, norm of the resulting closedJoop transf
function from w to z is smaller than 7.

D,w (A1)

iven. We wish to d&sigx(, )\5
s 3
er

ON A.l. It is assumed that the systems (A,B,C;,D3)
and (AE,C,,Dy) have no invariant zeros in (0.

The main result is:

THEOREM A.2. Consider the system I above satisfyin
Assumption A.1. Let v > 0 be E‘iven. Then, there exists a FDL
compensator u = Q s}y for which the X, norm of the resultin
closed-loop transfer function from w to z is smaller than 7, if ang
only if there exist P > 0 and Q > 0 for which:

(DF (P)20

(2)6,(Q)2 0

(3) rank F7(P) = normrank G

(4) rank G’Y(Q) = pormrank H

(5) rank [L7(P,s)] = n + normrank G, Vse C*uC?

F(P)

(6) rank | M7(Q,s) G7(Q) }=n+ normrank H, Vse C*U(0
(7) (PQ) < 2

where the notation used is as follows:

F(P)= ATP+PATC] Cy+PPEETP Pstc;oz] (A2)
BTP+D}C, DID,
T T -2 T T T
6.(Q) = AQ+QA +EE +'yT QC,0Q QC,+ED; (A3)
7 C,Q+D,E D,D]

L,(P.s) = [ sl-A-y?EE"P B

M (@) = [ “""’Qq@] (A4)

<,
G(s) = Cy(s1 - A)'B + D, , H(s) = C,(sl ~A)E + D, (A.5)

The proof of Theorem A.2 can be found in [Stoorvogel 1989). We
shall refer to condition (1) as the Quadratic Matrix Inequality
gQMI), and any P > 0 satisfying (1) will be called a solution to

ML Analogmsly we shall call (2) the Dual Quadratic Matrix
Inequality (DQMI), and refer to solutions of DQMI any Q 2 0
satisfying (2). Conditions (3) and (s)aﬁaxa.ntees that a solution
to QMI i3 unique and of minimal rank (and dually for DQMI
with (4) and (GB(.) (7) is a typical 7, coupling condition, which
also appears in [Doyle et al. 1989).

Further, we shall need a couple of corollaries.

COROLLARY A.3. The Regular Case. Assume that Dy is
injective. Then (1), (3) and (5) is satisfied if and only if
AP+PA+GCy+ 7 ?PEET P-(PB+C0,)(D; D) H(BTP+;C)) = 0
and
A(A+72EE"P-B(D;D,)(B"P+D3Cy)) € €
COROLLARY A4. The Totally Singular Case. Assume D; = 0.
Then (1) is equivalent to:
ATP+PA+CICo+7%PEETP 2 0
where P satisfies PB = 0.

The two corollaries have straightforward duals, which we shall
also utilize in the sequel.

Expressions for admissible controllers will be given in the follo-

wing in terms of the matrices for certain transformations of I.
First we define C, ,, and D, by the following factorization:

— Tx
F,y(P)—[Cz’P DP] [cu, DP],
Moreover, we will need the following matrices:

(A.6)
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A, = A+73EETP, Cp= C,+7D,E™P (A7)

Y = (I-y2QP)1Q (A8)

Apq = Apt7 TYC pCop Bpg=B+7 2YcT Dp (A9)
Weahallrefertot.hesystemwhereAP Cl ,Cu,andD substi-

tute A, C,, C and D, as the QM-transform of the system . The
DQMI for the QM—tra.nsformed system becomes:

T T - T T T
G,,(Y) _ [APY+YAP+EE +9 ’Ycz o pY YC| p+ED ]___
T T
C1 ‘PY+D1E DlD1
T T T
[E,Q P,Q] [E,Q DPQ]>O (A.10)
Substituting A and D for the corresponding

P.Q PQ’ PQ
variables in the previous system w:ll be referred to as the
DQM-transformation.

In terms of these transformed system matrices we can compute
the desired 7, controller:

THEOREM A.5. LetA PQ.’de be as above. Let L be a
state feedback L, such that AP L is stable, and such that:

(€, p+DpL)(sHAp B PQL)-*u < /(3 [Ep ) (A1D)

Let M be an output injection, such that A Q+MC is stable
and further:
I (s-Ap o MC, p)(Ep q+MDp ) la <7 (A12)
where
%= min{ /(3 [DpLI, [Ep gll/IBp QL }
Then the controller:
= —L(s-Ap o-Bp QLMC, p) "My (A.13)

makes the ¥, norm of the resulting closed loop transfer function
from w to z in ¥ smaller than .

The significance of Theorem A.5 is to transform the original 7,
problem to two disturbance attenuation problems, which can be
solved by well known methods, see e.g. [Stoorvogel 1989,
Trentelman 1986, Willems 1981).
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