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A formulation of the Loop Transfer Recovery (LTR) desip
problem using an 7. (sub-) optimality criterion is preseted in
this paper and state space formulae are given as its solution. The
LTR problem is formulated as an ? norm constraint for a reco-
very error which can be defined in two ways: either as a recovery
error of the ssitivity function or as a recoy error of the
input-output trasfer function. Applying output feedback control-
lers we proceed from the recovery errors to an Z, state space
formulation. The control problems correspoding to the two
recovery error types are given as two different 4 state space pro-
blems. Each t' problem is decomposed into the well known
regular problem and a totally singular problem. The dynamics of
the obtained controllers are at most of order 2n. Moreover, the
7VLTR method handles both minmum phase as well as non
minimum phase systems in a common framework.

In the oiginal setting, LTR was intimately related to LQG
design metho of full order observers [Doyle and Stein 1981] for
the design of robust observer based control systems. Later,
however, other design methods such as eigenstructure asignment
techniques for fuil order observer based controllers [S0gaard-
Andersen 1989] etc. have also proved to be efficient LTR design
methods.
LTR design is the last step in a three step procedure for the
design of robust observer based controllers. In the first step, the
design specifications, i.e. robust stability and performance specifi-
cations, are formulated. The second step is a state feedback
(target) design, which has to satisfy the design specifications, fol-
lowed by the LTR-step where the target loop is recovered by
using a dynamic measurement based controller [Athans 1986].

Recently, Moore and Tay 1989] pioneered a new approach to the
LTR probiem. Their approach is basd on an 4optimization of a
suitably chosen recovery function for a controller structure, the
Q-observer, consisting of a standard full order observer with an
additional dynamic feed structure attached at the estimation
error node. The approach presented in [Moore and Tay 1989]
suffers from a number of drawbacks. First, the approach handles
only the minimum phase part of a system, andfor systems with
RHP zeros no guaranteed norm bounds can be given for the
overall system. Moreover. the resulting controller orders turn out
to be at least 2n, which is unnecesarily large and due to the fact
that the authors use frequency domain methods rather than the
state space methods, which has meanwhile proven more powerful.

In this paper we present an alternative approach to the T7/LTR
design problem based on the standard 7, setup. The design
method is based on the main results in the Ph.D. thesis by
Stoustrup [19901 also reported in [Stoustrup and Niemann 1990
where a more thorough treatment of the method can be found.
Further, an eqivalent I/LTR approach based on observer based
controllers can be found in [Stoustrup 1990 and Stoustrup and
Niemann 1990]. The ZJLTR problem is formulated in Section 2
based on the recovery error concept [Niemann et al. 1990]. Two
X2/LTR desip problems are formulated based on optimizations
of the sensitivity recovery error and the input-output recovery
error. The two problems are solved in Secs. 3 and 4, respectively
by using the socalled singular 7,, approach (Stoorvogel 1989,
Stoorvogel and Trentelman 1990, which make it possible to
calculate the 2n'th order controllers (n'lth order for minimum
phase systems) in a straightfoard manner. A discussion is made
in Section 5.

2. Te LTR Problem FormulationL

In this section we shall shortly introduce the Loop Transfer
Recovery (LTR) design meod. Further, the ?WLTR design
problems will be rmulated as standard Lproblem.

2.1. Lo TCranfer Recover (LTR).
Let us consider a finite dimensional, linew, time invariant
FDLTI) plant model, represented by a state space realization

i =Ax+Bu
Z = Cx

(2.1)

with transfer function G(s) = C(sl-A)-'B. where x E Rn, u e RE,
z E RP, and A, B and C are matrices of appropriate dimensions.
The system is assumed to be stabilizable, detectable and left
invetible. Morover, we shall make the technical assumption,
that A(A) n co =C . Note, howeve, that this cn always be
achieved by applying a preliminay stic output feedback.
Furthermore, this preliminary static output feedback can be
Chown arbitrarily small.

To design a controller for the system S by the LTR methodo-
logy, we first determine a (static) state feedback, the target
desip, which satisfies our design specifications. The desip
specifications, such as robustness and performance, are assumed
to be reflected to the input node [Athans 1986, Stein and Athans
19871. The resulting target loop transfer function becomes G'rFL
= F(M-A)-B, where F is the target (state feedback) design.
Second, the LTR step is performed where the target design is
recovered over the range of frequencies by a dynamIc
compensator C(s), giving a full loop transfer of the form G(s) =
C(s)G(s).
The assocated sensitivity and input output transfer functions
are given by:

STFL(S) = (l- Sn (S))V1' S1(s) = (I -G-(s))-1

G10~,TL(S) = G(s)STFL(s) , G10(s) = GI(s)S1(s)
(2.2)

Using these transfer functions, we can define the seitivity
recovery error and the input-output reoovery error.

DENrMON 2.1. Tbe sensitivity recovery error Es is deffned by:

ES(S) = STFL(S) - SI(S)
(2.3)

EIO(S) = GIOTFL(s) - GIO(S)
Other types of recovery errors are considered in [Niemann et al.
1990.

2.2. TheILTR Setu.

The L standard philosophy is to define a fictitious plant S*
which is a realization of the compound transfer function on
which the 7 constraint is posed, rather than of the plant itself
(see e.g. [Francis and Doyle 1987]). Consider the closed loop
system in Fig. 2.1.
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l p [O A+BF] [O [B]
S Y = [C O ]x + Ow (3.2)

[Z=IO F ]x - Iu

FIg 2.1. The Standard Problem.

Denote the transfer function of the controller SH by Q(s) E P.
Then the closed loop transfer function from w to z becomes:

Gzw(s) = T(S) + TZU(s)Q(s)(I-TYU(s)Q(s)) 1Tw,(s) (2.4)

where Tgs), Tzu(s), Tyu(s) and Tyw(s) are the open loop
transfer functions from w H z, u H z, u H y and w H y, respectively.

Now, with Gz,(s) being the sesitivity recovery error ES(s) or

the input-output recovery error EIO(s) introduced in Definition
2.1., we have:

LEmmA 2.2. A linear fractional transformation of ES(s) and

E1O(s) in the form (2.4) are given by the following transfer
functions:

Tz,(s) = (I-F(s-A)-'B)'-4 T2,,(s) = C(sI-A-BF)-'B-C(s-A)-'B

Tzu(s) = 4 Tzu(s) = -C(sI-A)-IB
Tyu(s) = C(sI-A)YIB T,,(s) = C(sI-A)-B (2.5)

Tyw(s) = C(sI-A)-'B Tyw(s) = C(sI-A)>1B

Using the expressions in Lemma 2.2 for Es(s) and E5o(s) we get
the foHowing two LLTR problem formulations:

PRLE 1. Let t > 0 be given. Find, if possible, a FDLTI
controller Q(s) such that when applied as a dynamic measure-
ment feedback controller we achieve:

11 ES(s) 11 < 7 (2.6)
and the closed loop system is internaBly stable.

PROBLEm 2. Let y > 0 be given. Find, if possible, a FDLTI
controller Q(s) sucb that when applied as a dynamic measure-
ment feedback controller we achieve:

11 EO$s) 11 < 7 (2.7)

and the closed loop system is internally stable.

3. fSentivity Raneryin t tStandArd Formulation.

In this section we shall provide state space solutions to the
sesitivity recover problem, applying the so-called singular
approac which is briefly summarized in Appendix A.

When applying a general controller Q, Q E 2L, the sensitivity
recovery error introduced in Section 2.1 has the form (Section
2.2):

ES(s) = F(sI-ABF)-BB-Q(s)(1-C(sI-A)-1BQ(s))-1C(sI-A)-1B (3.1)

which is a linear fractional transformation in Q(s).

The state space formulation equivalent to (3.1) is:

r*=Ax+ B u-i ELw
:Y=C,x + FD}wS z = C2X + 02U

In this case Assumption A.1. amounts to the requirement that
(A, B C, 0) has neither zeros nor poles on the imaginary axis.
asis throughout this section.

In the sequel we shall study the solutions of two certain matrix
inequalities introduced in Appendix A: The Quadratic Matrix
Inequality (QMI) and the Dual Quadratic Matrix Inequality
(DQMI) for which the solutions are crucial to the controller
expresons bdow.

We see that D2 = is injective and = 0, which means that the

Quadratic Matrix Inequality is regular, and that the Dual Quad-
ratic Matrix Inequality is totally singular - see Appendix A.

In the sequel the structure of the solutions to the QMI and the
DQMI will be described. Based on these solutions we shall
describe the so-called QM- and DQM-transformations, which
transform the feedback and estimation subproblems into
equivalent minimum phase problems, for which the ontrollers
can be derived.

For the QMI we have:

TaoREM 3.1. For the system ES desribed by (3.2), the

solution P of the QMI is:

p -P ~~~~~(3.3)[-P P]
where P is the unique solution to the algebraic Riccati equation:

ATP + PA - PBBTP= 0 (3.4)
P is given by:

P = -IIT(IGjlT)-11 (3.5)

Here, Gc is the controllability gramian, and II is the ortbogonal
projrction onto X-(A)' along X-(A), the generalized stable
eigenspa of A.
The asscated quadratic matrix becomes:

-PB
F =(P) PB+FT jx [ P B P+F 4] (3.6)

I

PIOF. See [Stoustrup and Niemann 1990].

Note that solvability of, and the solution to, the QMI does not
depend on y. Hence solvability of the problem is equivalent to
solvability of the transformed DQMI below.

From Appendix A we achieve the followin QM-transformed
matrices associated with the problem (3.2):

p A, cp Cl C2,P = [-BTP BTP+F], D5p= 2 (3.7)

Now, the dual version of A.4 can be applied to the

QM-transformed system to obtain the solution of the DQMI.
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LEMMA 3.2. For the DQMI asted with the sytem ;O with

C2 replaced by C2p, the solution ?:

[1Y[12 Y22] (3.8)
is the unique solution to:

(i) A?+?AT+EET+?C PC2 p? =: Ep QET Q > 0
(ii) CYl= 0 and CYv2=o
(iii) rank(Ep Q) = normrank H(s)

(iv) rank [ si-A EP,QJ n + normrank H(s), Ys E
Cl 0

witb H(s) C(s-A)4B .

In [Stoustrup and Niernann 1990] an algorithm is provided to
construct ? satisfying conditions (iiv) of Lemma 3.2. It turms
out that the algorithm involves only the solution of a reduced
order Riccati equation.

The DQM-transformation proceeds as follows:
[p A12

Ap'Q = A + _2,P2PT =2 A2Q JIQ (3.1O)

with:
AllQ = A+y-2(Y11-Y12)PBBTP-yWY2FTBTP
A21 1-2(yTi )PBBTP--2Y22FTBTP
Ak2Q = y2(Y12NY1)(PBBTP+PBF)+yz2yj(FTBTP+FTF)
A;2Q AAF+ 2(Ynx12)(PBBTP+PBF)+2Y22(FTBTP+FTF)

BPQ B+ 2pp

[B+f2(Y I-Yi2)PB-fYn2FT 1 (3.11)
L -t12-Y2P 8 s

After these two transformations, we have a transformed system
which i minimum phase, and the final controller Q(s) can be
designed directly, by means of the solutions to the two norm
inequalit given by (kA1) and (A.12). It is readily seen that
(A.11) is triviay satisfied for:

L= [-BTP BTP+FF (3.12)

since this choice solve an (exact) disturbance decoupling
problem.

LEmA3.3. Let P be as above and let M =[M M T bean
output injtion satisfing:

ii (S[Ap Q4_MCd1pPQ IIa<'7/11C2,pIt (3.13)

with Ap½Q+MCl stable. Then an admissible controller for the
above Lproblem is given by:

Q(s) = BTP BTP+ x [sA+ BBPMIC -BB P-BFI x [Ml
-M2C s I -A-BFJ MJ

(3.14)

PlOOF. Lemma 3.3. follows by substituting the above matrices
in the exprion of Theorem A.5. The relaxed norm bound in
(3.13) (compared to (A.12)) is achieved by exploiting that L
solves a exact disturbance deoupling problem.

The selection of M in Lemma 3.3. is always possible, since the
transformed system (½p, , ,p,Q C1) is minimum phase. Note

that the controller depends on ? only indirectly (via M).

If the system is invertible and minimum phase, the following
controller results by substituting'? = 0 in Theorem A.5.

LEMMA 3.4. Assume that? = 0 is the solution of the DQMI.
Then an admissible controller for the above 4. problem is given
by:

Q(s) = F(sI-A-BF-NC)-IN (3.15)
where N satisfies:

fl (si-A-NC)-18 fl0< (3.16)

with A+NC stable, and:

7 = /B1BTP(s4BF)-BF+F(sA4F)-'(-A)tI,, (3.17)
PRooF. Assme that N is any (stabilizing) matrix satisfying
(3.16). Then by substitution it can be shown that M = [NT NT]T
satisfies (3.13) and that Ap +MCl is stable. (3.15) is obtained
directly by reduction of (3.14).

4. hut-QOutRut Reoverv in the LStandard FomulAtic.

In this section we shall consider the input-output recovery
problem with an toptimality criterion (Problem 2).

When applying a general controller Q, Q E 14, the input-output
recovery error introduced in Section 2.2 has the form:

E1o(s)= C(sI-A-BF)-'B - C(s{-A) B8
- C(sI-A)-1BQ(s)(I-C(sM-A)-'BQ(s))1IC(sI-A)-1B (4.1)

which is agam a linear fractional transformation in Q(s). The
state space formulation equivalent to (4.1) is:

A 0 +[BjiU+ [:3w
0 A+BF ] B]

X :IO : = [ C A4B]x + Ow (4.2).z =[-c c 3x u
or, short

xc = A x + Bu + Ew

£10: f:~YCx+ Ow
Io

Z=02x + OU
The 4 problem to be considered in the following is totally sin-
gular (we Appendix A) since both D1 and D2 are equal to zero.
Consequently Corolary A.4 can be applied to solve the asso-
ciated QMI and DQMI. This time Assumption A.1. amounts to
the requirement that (A, B, C, 0) has no purely imaginary zeros.

THOREM 4.1. Consider the system SO given by (4.2). The

solution P to the associated QMI has the following form:

= [~ - ] (4-3)

where P is the unique matrix satisfying:
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(i) ATP+PA+CTC =: CT C >02,P 2,P-
(ii) PB = 0
(iii) rank(C2 p) = normrank G(s)

(iv) rank [sI-A ] n + normrank G(s), VsEd

with G(s) = C(si-A-BF-'B.
The asoated quadratic matrix (see Appendix A) becomes:

Ft(p) {2,P x 2,P -C2,P °] 45CT 1

PROOF. Follows by Corollary A.4., se [Stoustrup and Niemann
1990].
Note, that the QMI in this case reduces to a dissipation inequali-
ty (known from classical LQ-heory) of n'th order. This inequali-
ty is normally solved by transformation to a reduced order
Riccati equation.

The QM-transformation becomes:

Ap = A, C1P-= cl, c2,P= C2,P-c2], Dp= (4.6)

On the QM-transformed system, the dual version of Corollary
A.4. can now be applied to derive the solution of the DQMI.

LEWA 4.2. For the DQMI associated with the system S0 with

C2 replaced by C2p,P the solution ?:

y 1

. Y12 Y22
(4.7)

is the unique solution to:

(i) A?+?AT+EET+?C;C2 = EpQEQ > 0

(ii) CY,, = 0 and CYt2 = 0

(iii) rank(EpQ) = normrank H(s)

(iv) rank [sI-A EP,Q] =n + normrank H(s), VS E

with H(s) = C(sI-A)-B.

Again, conditions (iiv) can be reformulated as a reduced order
Riccati equation.

If the system (A, B, C, 0) is minimum phase, P = 0 is the unique
solution to the QMI satisfying the involved rank conditions
(iii-iv). Further if (A, B, C, 0) is also invertible, then ? = 0 is
the unique solution to the DQMI satisfying the two rank
conditions.

For non-trivial transformations we obtain the following matrices
for the transformed system:

r A;Q A;Q]
AwQ 1 r22

where:

(4.4) All = A + 2(y -Y )CT CP,Q 11 12) 2,PC2,P
A12 = f2(Y -Y l)CC

A21 =-YT Y2)CTP,Q + 2(P2,P

A;,Q = A + BF + f(2_TC8 =8~~~~1)2,C,

P,Q,

C,P = C

C2,P = [C2,P -c2P]

(4.8)

Eventually, an admissible controller, solving the 4. problem is
obtained in terms of these transformed matrices.

IEMMA 4.3. Let L = L1 L2 be a state feedback satisfyg

(A.1l), and let M = MT T be an output injection satis-
fying (A.12). Then, an internaly stabilizng controller, making
the 4 norm of the closed loop transfer function from w to z
smaller than 7 is given by:

Q(s) = rL L1, P,Q 1 1 ?,Q 21 1
1121121 -m c sI-22

P,Q2 ~ P,Q .2
(4.9)

Again, in the niinimum phase case, we only need an n'th order
controller:

LEMA 4.4. If P = 0 and ? = 0 are solutions to QMI and
DQMI, resp., the controller is given by:

Q(s) = F(si-A-BF-NC)-'N
where N is any matrix satisfying:

11 (si-A-NC)'-B 11I,< y/11FII

(4.10)

(4.11)
with A+NC stable.

PROOF. By substitution, it can be verified that L = [F 0] and
M = [NT 0 IT, with N as above, saisfi (A.11) and (A.12) in
the minimum phase case.

.s.D d.
An alternative approach to the LTR design philosophy is
introduced in this paper where the LTR design problem is resta-
ted as an L standard problem. The actual 4 standard problem,
however, does not satisfy the normal regularity assumptions in
4 theory, and therefore we invoke the so called singular 'I.
theory fr the calculation of the controllers. Prorams implemen-
ting the obtained controller formulae are included in the
MATLAB towlbox [Niemnan and Stoustrup 1991].
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This Z/LTR design method provides directly controllers of the
same dynamic ordeas the order of the 4 standard problem
formulatio, ng 2n for geeral systems and n for minimum
phase systems. This is a pay-off of the state space approach,
since frequency do method give controllers of dynamic
order 3-1 [Moore and Tay l989j.

Two problems are cnsidered: The senstivity recovery problem
and the input-output recovery problem. The two resulting con-
trollers are given in terms of the unique solutions to two Dual
Quadratic Matrix Inequalities (DQMI's) or order 2n, and additi-
onally by the solution to an n'th order singular Riccati equation
(ssitivity recovery) or, respectively, by an n'th order dissipa-
tin inequality (input-output recovery). It turn out that the so-
lution o the two DQMI's with additional rank constraints invol-
m only the solution of two reduced order Riccati equations.

Comparing the ?4LTR desip methods proposed above to tradi-
tional LTR methods, a major advantage is that non-minimum
phase systems can be treated by exactly the same techniques as
minimum phase systems ater a preliminary transformation has
been performed. This preliminary transformation involves a
stae space transformation and the solution to a reduced order
Riccati equation. The prelminary transformation is a one-shot
process requing no iterations.

The main limitation of the suggested methods is due to the fact
that 4 methods generally try to average out the erors over the
whole frequency range This situation is not desirable for LTR
problems, since the acceptable erros might be low for instance
at low frequenies (performance spe.. aence, to overcome this
imitation, it would sotimes be reasonable to incorporate
waghting functions in the problem formulation. This can easily
be done, but only at the cost of more controller states.

As an altenative to the method proposed in this paper, one
might restrict the attention to consider only observer based con-
troler, motivated by the traditional LTR setup. In fat, this
can be done in a similar way to the above. The observer based
LJLTR methods include a direct and an indirect method. The
direct method [Stoustru 1990, Stoustrup and Niemann 19901
involves observe based solution to the problems considered
in the preset paper. The indirect method [Stoustrup 1990,
Stoustrup and Niemann 1991] is based on sufficient conditions
only for the solution to the above problems, but provides always
an n'th order controller.

The necsary preliminar for the 4 methods used in this
paper wiU be introduced in this appendix. The approach taken is
based on the resuts in (Stoorvogel 1989, Stoorvogel and
Trentlman 1990], the so cad app . This is a very
geeral approach which includes t we known approach by
Doyle et al. [19l9)asa special case.

In the state space approach to 4 the standard problem is as
folows:

Consider a finite dimensional, linear, time invaiant system:
i=Ax + B u + Ew

Z y = C1x + Dlw (A.1)
z=C2x +D2u

We assume that 7 > 0 has been gven. We wish to design, if
possible, an interaly stabilizing FDLTI compensator u -=Q()y
such that the 4 norm of ther ting clod-oop traner
function from w to z is smaller than 7.

ASSUMPnON A.1. It is assumed that the systems (A,B,C2,D2)
and (A,E,C1,Di) have no invariant zeros in (C.

The main result is:

TuFRom A.2. Consider the system S above satisin
Assumption A.I. Let y> 0 be gIven. Then, there exsts a FDL7
compensator u = Q(s)y for wich the 4 norm of the resulting
closed-loop trasfer function from w to z is smaler than y, if a
only if there exist P . 0 and Q a 0 for which:

(1) F7(P) .0
(2)G7(Q) .O
(3) rank F7(P) = normrank G
(4) rank G7(Q) = normrank H

(5) rank [L7(P S) =n + normrank G, Vs E CuC0

(6) rank [M.(Q,s) G(Q)) = n + normrank H, Vs E (+1:0
(7) p(PQ) < -P
where the notation used is as follows:

F7(P) - APP+;2+7 ETPP+;2 j (A.2)
BTP+DTC2 DTD2

G (Q) = [AQ+QAT+E ET+72QCC2Q QC{+EDI(A{3)
C=Q+D1E DP ID

L7(P,s) = (slA-,-r2EETp _B]I

M (Q,s) = [tA-&QC2C2] (A.4)

G(s) = C(sI - A)-1B + 1)2, H(s) = C1(si - A)-'E + D1(A.6)

The proof of Theorem A.2 can be found in [Stoorvogel 1989]. We
shall refer to condition (I) as the Quadratic Matrix Inequality
(QMI), and any P > 0 satisfying (l) wil be called a solution to
QMI. Analogously we shall call (2) the Dual Quadrtic Matrix
Inequality (DQMI), and refer to solutions of DQMI any Q . 0
satisfying (2). Conditions (3) and (5) guarantees that a solution
to QMI is unique and of mimal rank (and dually for DQMI
with (4) and (6)). (7) is a typical 4. coupling condition, which
also appears in [Doyle et al. 1989].
Further, we shall need a couple of corollaries.

COROLL4RY A.3. The Regular Cas Assume that D2 is
injective. Then (1), (3) and (5) is satisfied if and only if

ATP+PA+C2+2ETCP-(PE+4 )(&)-V(BTP+bC.) = 0
and

A(A+72EETPB(DD22)2(BTP+DC2)) C C

COROLLARY A.4. The Totally Singular Case. Assume D2 = 0.
Then (1) is equivalent to:

ATP+PA+CTC2+-2PEETP > 0
where P satisfies PB = 0.

The two corollaries have straightforward duals, which we shall
also utilize in the sequel.

Expressions for admissible controllers will be given in the follo-
wing in terms of the matrices for cetain transformations of L
First we define C2 and Dp by the following factorization:

i(P) =n C2,pDpfo xC2,pDPm (Ai6)
Moreover, we will need the following matrice:
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A = A+r1EETP, C1 p = C1+YID1ETP (A.7)

Y = (I-f2QP)-Q (A.8)

ApQ = A+f2yCTC2 p, B.pQ = B+A'CT pDp (A.9)

We .abl refer to the stem where Ap, Clp, C2, and Dp substi-
tuteA, C1, C2 and D2 asthe QM-Cornmofthe systemL The
DQMI for the QM-transformed system becomes:

'A Y+YAT+EET+-2YC; c YCT +EDT

Pcl,Y+D ET DP2 DliL C1 pYDEP I I J

[E;TQ DTQ] [EQ DPQ] 0 (A-10)
Substituting Ap,,, Bp Q1 Ep and Dp for the corresponding
variables in the previous system wil be referred to as the
DQM-transfomation.

In terms of these transformed system matrices we can compute
the desired4 controller:

TDEOERE AM5 Let A BpQ and C p beas above. Let L bea
state feedback L, such that Ap,Q+Bp,QL is stable, and such that:

1I(C2,P+DPL)(s1 Apep QL)-1JJO: < -t/(3. J1Ep Q11) (A.ll)
Let M be an output injection, such that Ap Q+MCl is stable
and further:

(SlApq4AC1pY')-(Epq+MDpq) Il&<& (A-12)
where

= min{ 7/(3 IDpLI), IIEPQII/IIBPQLII }

Then the controller:
U = 4(s1-ApQ-BpQLMC1 P)-'My (A.13)

makes the 4 norm of the resulting cdosed loop transfer function
from w to z in S smaller than 7.

The significance of Theorem A.5 is to transform the original 7.,
problem to two disturbance attenuation problems, which can be
solved by well known methods, see e.g. [Stoorvogel 1989,
Trentehnan 1986, Willems 1981].
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