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ABSTRACT. 

The emphasis of this paper is on an altemative approach to the Loop 
Transfer Recovery (LTR) design problem based on H, optimization. 
An HJLTR design problem is formulated as an H- optimization of 
the weighted Recovery Matrix. 

This general recovery formulation includes the indirect HJLTR 
design problem (equivalent to LQGLTR), the HJLTR sensitivity 
and the input-output recovery problem as special cases. Moreover, the 
weight matrix is also used for obtaining robustness in the final 
design. The control problem corresponding to the general HJLTR 
design problem is formulated as a standard H., state space problem. 
The state-space solution to the H, problem is derived and the 
corresponding HJLTR controller is implemented as a Luenberger 
observer of order at most n + n, (n, is the order of the weight on the 
Recovery Matrix). 

The proposed HJLTR method handles both minimum phase as well 
as non-minimum phase systems in the same framework. 

1. INTRODUCTION. 

Since the paper by Doyle and Stein [4,5] has introduced the concept 
of Loop Transfer Recovery (LTR) design of observer-based 
controllers, a lot of methods based on this concept has been derived, 
see e.g. [1,8.11,12,14,17.24,27] for both continuous-time and discrete- 
time systems. 

The first recovery methods was based on the LQG method, 
LQGLTR, and only related to minimum phase systems, where the 
difference between the desired and the obtained transfer functions can 
be made arbitrary small, i.e. asymptotic recovery can be obtained, 
[14,19]. The applied norm on the difference between the desired and 
the obtained transfer functions, which will be called the recovery 
error [15], is of less importance when asymptotic recovery can be 
obtained. The most common way for analyzing the recovery design 
is by using singular value plots of the recovery errors. Such a design 
scheme has an iterative nature where no guarantee is given for 
obtaining a satisfactory recovery design except in the asymptotic 
case. However, the iterative part in the LTR design process can be 
removed by using H, methods in combination with LTR. The LTR 
step in the controller design process becomes a systematic design step 
when H, methods are applied. The LTR step can then be separated 
into three parts: First, specification of a weight matrix on the 
recovery error, which reflect the upper bounds on the recovery error 
and a recovery bound. Second, testing (by a one shot method) if the 
specified recovery bounds can be satisfied by an H, controller. At 
last, an H, controller is determined which satisfies the specified 
recovery conditions. 

This LTR-concept has first been introduced by Moore and Tay [ 121 
where the sensitivity recovery error, i.e. the difference between the 
desired and the obtained sensitivity transfer functions, has been 
minimized by using an H., method. However, the HJLTR method 
derived in [12] has three drawbacks: First, only approximative H., 
solutions are derived, due to the used frequency-domain method. 
Secondly, the order of the final observer based controllers are 2n for 
square systems and 3n-1 otherwise in the minimum phase case. 
However, it is always possible to reduce the H, norm of the recovery 

errors by nth order controllers in the minimum phase case, [22]. At 
last, for non-minimum phase systems only the minimum phase part 
is considered and no norm bounds are guaranteed for the over-all 
system. But as a matter of fact, the main importance of direct design 
methods, are their application to non-minimum phase systems, as it 
will appear in the course of this paper. 

The key contribution of this paper is to formulate a general and 
concise HJLTR design problem based on the Luenberger observer 
and derive the associated state-space solutions. By using recovery 
errors, a certain matrix named the Recovery Matrix, has a vely 
central role for observer-based controllers, [ 151. Our general HJLTR 
design problem is formulated as a minimization of the H., norm of 
the weighted recovery matrix. The direct and indirect HJLTR 
methods for observer based controllers [22,23] are all included in this 
formulation as special cases. 

The freedom in selecting the weight matrix in the criterium gives a 
very flexible LTR design method. This freedom can be used to obtain 
HJLTR control feedback systems satisfying robustness 
specifications, minimizing RHP zeros' influence on the final feedback 
loop etc. It is also possible to make LQGLTR-like controllers by this 
method. 

Derivation of the state space solution to the HJLTR problem is 
based on the requirement that the applied observer is a Q 
parameterized observer. This requirement does never prevent 
solvability, since all Luenberger observers can be realized as Q- 
observers, [15]. 

The solution is derived based on the singular H, approach [18,19,20], 
which is a generalization of the regular DGKF approach [3]. As a 
main difference, the singular H, approach includes two certain 
quadratic matrix inequalities with some associated rank constraints, 
rather than the two matrix Riccati equations known from [3]. When 
the singular H, theory is applied on the HJLTR problem, we can 
derive the associated H A T R  observer-based controllers and reduce 
the order to n + n, (n, = order of the weight matrix) without any 
approximations. Further, only one of the applied quadratic matrix 
inequalities depend on the selected H, constraint. Both minimum 
phase as well as non-minimum phase systems are handled in a 
common framework. 

The paper is organized as follows. In section 2 the background will 
briefly be summarized and the general H 5 T R  design problem will 
be formulated. Further, an analysis of the selection of the weight 
matrix for obtaining robust feedback design are included. In section 
3 the state-space solutions are derived based on the singular H., 
theory followed by a conclusion in section 4. 

2. A GENERAL LTR PROBLEM FORMULATION. 

A general HJLTR design problem will be formulated in this section 
when the general dynamical measurement feedback controller, the 
Luenberger observer is used. 

2.1 The Luenberger observer based controller. 

Let's consider the FDLTI system represented by the state space 
realization (A,B,C): 
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with the transfer function: 

G(s) = C(sI - A)-'B = C@(s)B (2.2) 

Here x E B", U E R"', y E R' and A,B and C are matrices of 
appropriate dimensions. The systems Z is assumed to be stabilizable, 
detectable and left invertible. Moreover, we shall make the technical 
assumption that (A,B,C) has no transmission zero on the imaginary 
axis. 

A Luenberger observer [lo] is used for the feedback control of the 
system X. The Luenberger observer is described by the following 
state-space realization: 

2,: { i = D z + G u + E y  
v = Pz + v y  

where the matrices in (2.3) satisfies [lo]: 

(2.4) i) A@)&- 2) TA - D T  = EC 
G) G = T B  a) F = I T + V C  

The output signal w from the Luenberger observer is related to the 
state feedback signal as: 

(2.5) U = v + r = F2 + r 

where i is an estimate of the plant state and F is the state-feedback 
gain. 
Due to the following recovery design, the implementation of the 
Luenberger observer is given in the following form, also called the 
recovery form [15]: 

C(S) = (r + M,(S))-'NAS) (2.6) 

where 
MAS) = P(SI - D)-~G 
Nds) = P(sI - D)-'E + V 

The same observer form has been described in [9] in connection with 
a coprime factorization of full order observers. 

MI(s) in (2.7) will in the following be called the Recovery Matrix, 
because M, has a very central role in the recovery design. 

2.2 The General HJLTR Design Formulation. 

The general HJLTR design problem will firstly be defined when a 
Luenberger observer are used as the feedback controller, followed by 
a description of the generality in the HJLTR design problem. 

Consider the following FDLTI system represented by the state space 
realization (Aw,Bw,Cw,Dw): 

(2.8) x = A g  + B p  
2, :{ y = C p  + D,u 

with the transfer function: 
W(S) = C,(sI - A,)-*B, + D, (2.9) 

Here x E R"", U E R', y E Rp and A,, B,, C, and D, are matrices of 
appropriate dimensions. The system Z,, is assumed to be stabilizable, 
detectable and without transmissions zeros on the imaginary axis. 

With W(s) as the weight matrix in the HJLTR design problem, we 
are now able to formulate the general HJLTR design problem: 

Problem 2.1. The general HJLTR design problem. 
Let the weight matrix W(s)  be as in (2.9) and let y > 0 be given. 
Find, if possible, a FDLTI Luenberger controller such that the 
weighted t rader  function from U to v, M I ,  satifies: 

IW(W)ll, < Y (2.10) 

Here 1-1, is the H, norm. 

2.3 Selection of W(s) for the recovery design. 

Some special selections of the weight matrix W(s) in Problem 2.1 are 
studied in this section. Further, the connection between Problem 2.1 
and other HJLTR design methods [16,22,23] are also derived. A 
more detailed description of the results given in this section can be 
found in [15,22,23]. 

Let the target open-loop, the target sensitivity and the input-output 
(closed-loop) transfer functions be given by: 

%(s) = F(sI - A)-'B 
= (I - Gm(s))-I (2.11) 

Gm0(s) = C(s1 - A - BP)-'B 
and equivalently for the full-loop transfer functions: 

G,(s) = C(s)G(s) 
SAS) = (I - G1(s))-' (2.12) 

GU&) = G(s)Q - G@)-' 
where C(s) is the Luenberger observer given by (2.6). Further, let the 
open-loop recovery error E&), the sensitivity recovery error E&) 
and the input-output recovery error E,@) be defined as the difference 
between the respective target and full-loop transfer functions, see 
[8,15,22]. These three recovery errors can be rewritten in more 
convenient forms: 

(2.13) 

Proof. The proof of Lemma 2.2 can be found in [15]. 

The recovery matrix M,(s) introduced in (2.6) as an open-loop 
transfer function from U to v in the Luenberger observer is very 
strongly related to the recovery errors as shown in Lemma 2.2. 
By selecting the weight matrix W(s) in the HJLTR problem as the 
target sensitivity or the target input-output transfer function, S,(s) 
or GmJo(s) resp., the obtained design problem is a minimization of 
the associated sensitivity or input-output recovery error as given in 
Lemma 2.2 [22,23]. Another special HJLTR problem is the indirect 
design case, which is obtained by using W(s) = I in Problem 2.1. 

Robust controller design using LTR can also be handled by the 
selection of the weight matrix W(s). 

Suppose the design specifications for the final feedback system are 
given as bounds on the sensitivity transfer function S(. ) and the 
complementary sensitivity transfer function T(* ): 

IW,OS(s)l, < Y (2.14) 

The performance specification (e.g. asymptotic tracking, bandwidth) 
are expressed by the weight function W (s) on the sensitivity function 
[5]. The weight W,(s) on T(.) reflects the systems uncertainties such 
as disturbance, noise and modelling errors, i.e. robust stability 
specification. 
It is assumed that the target design satisfies the design specifications 
given by (2.14). i.e. 

IW,(S)T(S)l" < Y 
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The full-loop transfer function will then satisfies the design 
specification in (2.14) if, [23]: 
r 1 r 

where 
Y - Y m  

YL* = - 
fi 

The weight matrix W(s) must therefore be selected as: 
r 1 

(2.17) 

(2.18) 

Note, that an upper bound on the recovery level is given in this case. 

2.4 The 0-r"eterized Observer. 

In this section we shall consider a special architecture for the 
Luenberger observer, the Q-observer. The Q-observer is a 
parameterized implementation of the Luenberger observer, which 
realize the class of all intemally stabilizing controllers in an observer 
based form by means of the Youla (or Q-) parameterization [2]. 
Briefly, the principle in the Youla parameterization is to take any 
stabilizing controller which is thereafter fixed, and then make a 
certain interconnection structure. The class of all stabilizing 
controllers are parameterized by applying the class of all H, systems 
at the interconnection nodes. In [2] it has been shown, that the 
construction shown in fig. 2.1 is an implementation of the Youla 
parameterization, which we shall refer to in the sequel as the Q- 
observer. 

We shall need the following result: 

Lemma 2.3. 
Assume that Q E RH,, with a state-space representation, say, 

(2.19) 

Here { E Rq, is the order of Q. Then the corresponding Q-observer 
is a Luenberger observer with the following parameters: 

1 A+KC o 1 
D =  

G =  

P =  

E =  

v =  

(2.20) 

= = [:I 
Proof. Comparing terms with (2.3) we obtained the above expressions 
for D,G,E,P and V. The Luenberger equation TA - DT = EC, G = TB 
and F = PT + VC are verified by inspection. Since A + KC and 
are stable by assumption, also D is stable. Thus the Luenberger 
conditions (2.4) are satisfied. 

In [15] it has been shown that the poles of the state feedback part, 
the full-order observer part and of Q(s) can be assigned separately. 

By using the equation for the recovery matrix in (2.7) together with 
the general HJLTR design problem for the Q-observer, Problem 2.1 
turns out to be: 

Problem 2.4. The general H JLTR design problem using Q-observers. 
With the weight matrix W(s) as in (2.9) and y > 0 be given. Find, if 
possible, a Q-observer such that the weighted recovery matrix MLs) 
satisfies: 

IW(jo)Ml(io)l, < Y (221) 

or equivalently: 
IW(jo)(r;yjoI - A - KC)-'B + Q(jo)C(joZ - A - KC)-'Bu, 

(222) 

The recovery matrix for the Q-observer as used in (2.22) is derived 
in [15]. 

This formulation of the general H L T R  design problem based on the 
Q-observer architecture will be used in the sequel of this paper. In 
the next section a state-space solution to (2.22) is derived. 

3 THE HJLTR STATE-SPACE SOLUTION. 

In the following we shall consider the general recovery problem 
formulated with an H, optimality criterion. Following the approach 
of [15] observer-based controllers will be studied, which posses the 
Q-observer structure introduced in Section 2.4 based on the Youla 
(Q-) parameterization (Problem 2.4). 

The weighted recovery matrix corresponding to the Q-observer 
structure given by: 

W(s)M,(s) = W(s)(F(sl -A -KC)-'B + Q(s)C(sI-A -KC)-'B) 

(3.1) 

has the following standard state-space H, representation (see e.g. [6] 
for a description of the standard H, problem): 

[i = [D,P c, jx + D,U 

where A, = A + KC. 
The HJLTR design problem for a given y is now, if possible, to 
design a FDLTI dynamic controller U = Q(s)y which intemally 
stabilizes the plant, and make the H, norm of the resulting closed- 
loop transfer function from w to z i.e. the norm of W(s)M,(s), smaller 

The H, problem with the state-space representation (3.2) is a so- 
called singular problem, because the direct feedthrough term of the 
w y transfer function does not have full column rank, (it is zero) 
as it is required in order to apply the standard regular H, theory as 
in e.g. [3]. Instead the approach of [18,19,20] will be taken, which is 
a generalization of the result in [3]. As a main difference, the singular 
H, approach of [18,19,20] includes two certain Quadratic Matrix 
Inequalities (QMI) with some associated rank constraints, rather than 
two matrix Riccati equations known from [3]. In our case, however, 
it is possible to recover one of the DGKF type Riccati equations, if 
the direct feedthrough term of U + z transfer function is injective. The 
singular H, theory used in this paper is shortly summarized in 
Appendix A. 

3.1 Solutions Of The Two Quadratic Matrix Ineaualities. 

The solutions of the two Quadratic Matrix Inequalities (QMI) will be 
derived in this section for the system hMQ given by (3.2) together 
with the associated transformations. 

From Assumption A.l it is required that (A,B,C,O) and 
(Aw,BW&,Dw) has no zeros on the imaginary axis. This is assumed 

than y. 
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throughout this section. 
First, we wish to find a solution to the QMI, so we can perform the 
quadratic matrix- (QM) transformation. For the QMI we have the 

Theorem 3.1. The QMI solution. 
The Quadratic Matrix Inequality associated with the system &,a has 
the solution: 

following. 

F = [," ;] (3.3) 

where P is the unique matrix sati@ing: 

+ PA, + Cg,,. PB, + C a w  
B> + D g ,  03, W P )  = 

with W(s)  = C ~ S ~ - A ~ J ' B ~ + D , .  

P,(P, factorizes as: 

The proof is omitted. 

Note that the solution of QMI does not depend on y. Solvability of 
the general HJLTR problem will effectively depend only on 
solvability of the transformed Dual Quadratic Matrix Inequality 
(DQMI). Further, in the special case when (Aw,Bw,Cw,&) is 
minimum phase, P = 0 is the unique solution for QMI. 

After the solution of the QMI, the QM-transformation is performed. 
In general, however, the QM-transformation will be non-trivial, and 
amount to, see (A.6) - (A.7): 

(3.6) 
& = A  CIP = c, 
CZP=[DpF C r p ]  & = D P  

On the QM-transformed system, the solution of the DQMI is now 
derived. The DQMI is a totally singular problem, so the dual version 
of Corollary A.4 is applied. 

Lemma 3.2. 
For the DQMI associated with the system &M,p with matrices 
modified as in (3.6), the solution: 

saisja CY,, = o and CY,, = o (3.7) 

in addition to the condition (4) and (6) of Theorem A 2  is the unique 
solution of the DQMI. 

Proof. Lemma 3.2 is a direct consequence of Theorem A.2. 

As for the solution to the QMI, it will also be possible to simplify the 
solution of the DQMI in special cases, as it appears from the 
following Corollary. 

Corollarv 3.3. 
If (and only if) the system (A,B,C,O) is minimum phase and invertible, 
Y = 0 is a solution to the tran.$ormed DQMI. 

More generally, though, the DQM-transformation will result in the 
following matrices: 

(3.10) 

B& = Y-~Y, ,F-~D~ + Y - ~ Y , , ~ ~ ~ ,  

g,: = B, + ~ - ~ Y ~ T , F T D J D ,  + y - 2 ~ , ~ ,  

Performing these transformations, we eventually obtain the controller, 
solving the H, problem as described in the following section. 

3.2 The General HJLTR Controller. 

Based on the transformed system in (3.6), (3.9) and (3.10). the 
controller Q(s) can now be calculated. 

Lemma 3.4. 
Assume that y has been chosen sup;ient large. Let L = [L, LJ be 
a state feedback and M = [M: M2 ] be an output injection sati@- 
ing: 

and 

I 

f 

(3.11) 

-1 
st  - AFa - MIC -A& (3.12) 

y ] EpA N, f 
-A& - M2C SZ - Apa 
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respectively. 

Then a controller, U = Q(s)y, making the closed loop internally 
stable, and making the H,  norm of the transfer function from w to 
z smaller than y is given by: 

(3.13) 
Proof. Lemma 3.4 follows directly from Theorem AS, see [18,19]. 

Moreover, whenever a solution exist, the state feedback L can always 
be chosen with a special structure. 

Lemma 3.5. 
The state feedback L used in the controller Q(s) Lemma 3.4 might 
always be chosen as: 

L E [  -F 41 (3.14) 

where L2 satisfy: 

The proof is omitted. 
The controller given by Lemma 3.4 is of order n + k, which means 
that the complete controller will be of order 2n + nw, if no reduction 
is carried out, It turns out, though, that a structural reduction can be 
performed without affecting the obtained H,-norm. The basic idea is 
to use the remaining freedom in the observer gain K to reduce the 
order to n + n,,. First we change the observer gain to K' = K + M, 
obtaining a modified observer L*, reobtaining the transfer function 
of the 2n + n, order controller. The 'cascading' controller is in 
general a little more complex than the original Q-observer. Only 
when D,,, is injective, the cascading controller will have the structure 
of an Q-observer, i.e. AP,<' + Bp,$L, = 0. But it will always be a 
Luenberger observer whose parameters are described in Theorem 3.6. 

Theorem 3.6. 
The cascade of EA' and %* described above is a Luenberger 
obsewer based controller with the following characteristic matrices: 

E = [ izM1 ] 
v = o  

(3.16) 

This Luenberger observer based controller, when applied to the 
weighted recovery matrix as described by (3.1) makes the H ,  norm 
of the closed loop t rader  function from w to z smaller than y. The 
controller order is of (n + nJth order. 

The proof is omitted. 

When applying a weight matrix with an injective D,, the norm 
inequality in (3.15) can be satisfied exactly by selecting: 

(3.17) 

which solves an exact disturbance decoupling problem. In this case, 
the output injection M must satisfy: 

(3.18) 

The reduced HJLTR controller has more simple Luenberger matrices 
than in the general case. 

Lemma 3.7. 
With Dw injective, the Luenberger matrices in Theorem 3.6 take the 
following form: 

A + KC + M,C 0 
D = I  A,-B,&C, 

P = [ F D;'C,] 

E = [ Ki2M1] 
v = o  

(3.19) 

. -  

. = [ : I  
where MT = [M: M;lT satisfy (3.18). 

Proof. Lemma 3.7 follows of Theorem 3.6 as a special case. 

When applying the HJLTR design method on minimum-phase 
systems, it is always possible to use nth order (full-order) observer 
based controllers for obtaining the specified H,-constraint y. The 
full-order observer is obtained by choosing M, = 0, as stated in: 

Lemma 3.8. The Minimum Phase Case. 
The Luenberger obsewer, described by the following matrices: 

D = A + KC + MIC 
G = B  
P = F  
E = K + M ,  
v = o  
T = Z  

will satisfy the H,-norm y of the weighted recovery matrix if (AB,C) 
is a minimum-phase system. 

The proof is omitted. 

4. CONCLUSION. 

An altemative approach to the Loop Transfer Recovery design 
problem based on H, optimization has been presented in this paper. 
The HJLTR approach is based on the Q-parameterized observer 
which is a parameterized implementation of the Luenberger observer. 
The general HJLTR design approach turns out to be an H, 
minimization of the weighted recovery matrix, which includes other 
HJLTR design methods based on the observer approach [22,23] as 
special cases. 

Based on this LTR approach, sufficient conditions for obtaining LTR- 
controllers which satisfies specified robust stability and performance 
design conditions for the final feedback loop has also been derived. 

State-space solutions to the general HJLTR design problem has been 
derived by using the singular H, theory approach [18,19,20]. These 
state-space solutions for the HJLTR controller can be derived 
without perturbations techniques by using the singular H, approach. 
Moreover, the order of the obtained HJLTR Controllers can be 
reduced to order n + n,, (n,, is the order of the weight matrix) in the 
general case and to order n for minimum phase systems. 
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The proposed HJLTR method includes several advantages compared 
to traditional used LTR methods. The HJLTR method handles both 
minimum phase as well as non-minimum phase systems in the same 
framework. Further, the iterative nature. in traditional used LTR F,(P, r' 
methods is replaced in the HJLTR method by a test ( one shot 
method) of the specified recovery conditions can be satisfied by an 
H, controller. 

An investigation of selection of weight matrices in the HJLTR G,(@ = I" 
design method for satisfying specified design conditions as e.g. in 
section 2.3, is subject for future research. 

where the notation used is as follows: 

+ PA + qTq + y-*€!E? PB + "1 (A.2) 

B %  + D,'c, D,'D, 

+ QAT + mT + Y--'%Q w: + m, '] ( A 3  
C,Q + DIET DID: 

APPENDIX A. 

The necessary preliminaries for the H, methods used in this paper 
will be introduced in this appendix. The approach taken in based on 
the results in [18,19,20], the socalled singular approach. This is a 
general approach which includes the well known approach by Doyle 
et.al. [3] as a special case. 

In the state space approach to H, the standard problem is as follows. 

Consider a finite dimensional, linear, time invariant system: 

We assume that y > 0 has been given. We wish to design, if 
possible, as intemally stabilizing FDLTI compensator U = Q(s)y such 
that the H, norm of the resulting closed-loop transfer function from 
w to z is smaller than y. 

Assumution A.l. 
It is assumed that the systems (A,B,G,DJ and (A,E,C,,D,) have no 
invariant zeros in c". 
The main result is: 

L,(P,s) = [ SI - A - y-'EJ3? -B ] 

The proof of Theorem A.2 can be found in [181]. We shall refer to 
condition (1) as the Quadratic Matrix Inequality (QMI), and any P 2 
0 satisfying (1) will be called a solution to QMI. Analogously we 
shall call (2) the Dual Quadratic Matrix Inequality (DQMI), and refer 
to solutions of DQMI any Q 2 0 satisfying (2). Conditions (3) and 
(5) guarantees that a solution to QMI is unique and of minimal rank 
(and dually for DQMI with (4) and (6)). (7) is a typical H, coupling 
condition, which also appears in [3]. 

Further, we shall need a couple of corollaries. 
Corollaw A.3. The regular case. 
Assume that D, is injective. Then (l), (3) and (5) is satisfied if and 
only if 

A ~ + P A + G = ~  + ~-zPEETP-(PB+G~D~)@~TD~)-~~~+DZTCZ) = o 

Theorem A.2. and 
Consider the system X above satisfying Assumption A.l. Let y > 0 
be given. Then, there exists an internally stabilizing FDLll 
compensator U = Q(s)y for which the H, norm of the resulting, 
closed-loop transfer function from w to z is smaller than y, if and 
only if there exist P 2 0 and Q 2 0 for which: 

(1) F,m 2 0 

A( A + . , - z E E ~  - B@:D2)-'(B9 + J$c,,)) c- 
co~l law A.4. The totally singular case. 
Assume D, = 0. Then (1) is equivalent to: 

A 9  + PA + qTq y-%E% L 0 

(4) rank Gy(Q = nonnrank H 

where P satisfies PB = 0. 

The two corollaries for admissible controllers will be given in the 
following in terms of the matrices for certain transformations of Z. 
First we define (Lp and D, by the following factorization: 

F,P) = [ Crp Dp ITx[G Dp 1 (A.@ 

Moreover, we will need the following matrices: 

m P m  Y' We shall refer to the system where Ap, CIp C, and Dp substitute A, 
C,, C, and D, as the QM-transformed of the system Z. The DQMI for 
the QM-transformed system becomes: 
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1 1 CVY + D,ET DlD: 

4 Y  + Y&T + E' + y-VC&%Y YC; + ED: 
c,cy) = 

Substituting Ap-Q, Bpvqg. bQ and Dpa for the corresponding variables 
in previous system wlll be referred to as the DQM-transformation. 

In terms of these transformed system matrices we can compute the 
desired H, controller: 

Theorem A.5. 
Let ApQ, BpQ and CIp be as above. Let L be a state feedback, such 
that Ai,Q + BPQL is stable, and such that: 

Let M be an output injection, such that Ap,Q + MClp is stable and 
further: 

Then the controller: 

makes the H., norm of the resulting closed loop transfer function 
from w to z smaller than 7. 

The significance of Theorem A.5 is to transform the original H, 
problem to two disturbance attenuation problems, which can be 
solved by well known methods, see e.g. [18,19,20]. 

REFERENCES. 

[ l ]  M. Athans, 1986:" A tutorial on the LQGILTR method", Proc. 
American Control Conf., Seattle, WA, p. 1289-1296. 
[2] S.P. Boyd, V. Balakrihnan, C.H. Barrat, N.M. Khraishi, X. Li, 
D.G. Meyer and S.A. Norman, 1988:" A new CAD method and 
associated architectures for linear controllers", IEEE Transact. on 
Aut. Control, vol. AC-33, no. 3, p. 268-283. 
[3] J. Doyle, K. Glover, P. Khargonekar and B.A.FrancisJ989: 
"State-space solutions to standard H, and H, control problems", 
IEEE Transact. on Aut Control, vol AC-34, no. 8, p.831-847. 
141 J. Doyle and G. Stein,1979 "Robustness with observers", IEEE 
Transact. Aut. Control, vol. AC-24, p.607-611. 
[5] J. Doyle and G. Stein,l981: "Multivariable feedback design: 
Concepts for a classicallmodern synthesis", IEEE Transact. on Aut. 
Control, vol AC-26, p.4-16. 
[6] B.A. Francis and J. Doyle,1987: "Linear control theory with an 
H, optimality criterion", SIAM J. Control and Optimization, vol 25, 
no. 4. 
[7] T. Geerts,l990:" Structure of Linear-Quadratic Control" Ph.D. 
dissertation, Eindhoven Univ. of Tech. 
[8] G.C. Goodman,l984:" The LQGILTR method and discrete-time 
control systems", M.Sc. thesis, rep. no. LIDS.-TH-1392, MIT, 
MA,USA. 
[9] T. Kailath,l980:" Linear systems", Prentice-Hall, New York. 
[lo] D,G. LuenbergerJ971:" An introduction to observers", IEEE 
Transact. on Aut. Control vol. AC-16, no. 6. 
[ 111 J.M. Maciejowski.1985:" Asymptotic recovery for discrete-time 
systems", IEEE Transact. on Aut. Control, vol. AC-30, p. 602-605. 
[12] J.B. Moore and T.T. Tay.1989:" Loop recovery via HJH2 
sensitivity recovery", Int. J. Control, vol 49, p. 1249-1271. 

[13] H.H. Niemann and J. Stoustrup,l991: "H, and Loop Transfer 
Recovery Design Toolbox, user's guide", Technical University of 
Denmark. 
[14] H.H. Niemann and P. S~gaard-Andersen,l988:" New results in 
discrete-time loop transfer recovery", Proc. American Control Conf. 

1151 H.H. Niemann, P. S~gaard-Andersen and J. Stoustrup,l991:" 
Loop Transfer Recovery for General Observer Architectures", Int. J. 
Control, vol. 53, no. 5, pp. 1177-1203. 
[16] H.H. Niemann, P. S~gaard-Andersen and J. Stoustrup,l991:"H, 
optimization of the recovery matrix", submitted for publication. 
[17] G. Stein and M. Athans,1987:" The LQGILTR procedure for 
multivariable feedback control design", IEEE Transact. Aut. Control, 

[18] A.A. Stoo~ogel,l989:" The singular H, control problem with 
dynamic measurement feedback", To appear SIAM J. of Control and 
Optimization. 
[19] A.A Stoo~ogel,l990:" The H, control problem: A state space 
Approach", Ph.D dissertation, Eindhoven Univ. of Tech. 
[20] A.A Stoorvoget and H.L. Trentelman.1989:" The quadratic 
matrix inequality in singular H, control with state feedback", SIAM 
J .  of Control and Optimization. 
[21] J. Stoustrup,l990:" On the solution to a certain algebraic 
Riccati equation appearing in robust control", MAT-Report No. 
1990-22, Mat. Inst. Tech. Univ. of Denmark. 
[22] J. Stoustrup and H.H. Niemann,l990:" State space solutions to 
the HJLTR design problem", submitted for publication. 
[23] J. Stoustrup and H.H. Niemann,l991:" An HJLTR method for 
robust controller design", hoc. AIAA Guidance, Navigation and 
Control Conf., New Orleans, LA, USA, 12.-14. August 1991, paper 

[24] P. S@gaard-Andersen.1989:" Loop transfer recovery - An 
eigenstructure interpretation", Control - Theory and Adv. 
Technology, C-TAT, vol5, no. 3. 
[25] H.L. Trentelman.1986:" Almost invariant subspaces and high 
gain feedback, CWI Tract, vol. 29. 
[26] J.C. Willems,l981:" Almost invariant subspaces: An approach 
to high gain feedback design - part 1: Almost controlled invariant 
subspaces", IEEE Transact. on Aut. Control, vol AC-26, p. 235-252. 
[27] Z. Bang  and J.S. Freudenberg,l990:" Loop transfer recovery 
for nonmimimum phase plants", IEEE Transact. on Aut. Control, vol. 

Atlanta, p.2483-2489. 

V O ~  AC-32, p. 105-114. 

IU. 91-2732, pp. 1160-1171. 

AC-35, p. 547-553. 

r - f  

[ i  
I 
I 
I 

f 

I 
C"! 

1926 


