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1. INTRODUCTION. 

This paper describes two 1, design methods for observer based 
controllers, where the controllers are required to satisfy speci- 
fic Loop Transfer Recovery (LTR) conditions. The two 
Y L T R  design methods presented are based on the main 
results in the Ph.D. thesis by Stoustrup 131 where a more 
thorough treatment of the methods can be iounh. 

In the original setting, LTR was intimately related to LQG 
design methods of full order observers Doyle and Stein 41 for 

however, other design methods such as eigenstructure assign- 
ment techniques for both full order as well as for minimal 
order observers S0gaard-Andersen 115, 161 etc. have also 
proved to be efficient LTR design methods. 

LTR design is the last step in a three step procedure for the 
design of robust observer based controllers. In the first step, 
the design specifications, i.e. robust stability and performance 
specifications, are formulated. The second step is a state feed- 
back (target) design, which bas to satisfy the design specifica- 
tions, followed by the LTR-step where the target loop is r e m  
vered b using a dynamic measurement based controller 
Athans 61. 
Recently, Moore and Tay [7] pioneered a new approach to the 
LTR problem. Their approach is based on an 1, optimization 
of a suitably chosen recovery function for a controller structu- 
re the Q-observer, consistin of a standard full order observer 
wkb an additional dynamic Ldback  structure attached at the 
estimation error node. The approach presented in [7 suffers 
from a number of drawbacks. First, the approach handles only 
the minimum phase part of a system, and for systems with 
RHP zeros no guaranteed norm bounds can be given for the 
overall system. Moreover. the resulting controller orders turn 
out to be at  least 2n, which is unnecessarily large and due to 
the fact that the authors use frequency domain methods rather 
than the state space methods, which has meanwhile proven 
more powerful. 

In this paper we propose two alternative approaches to the 
TJLTR problem. In Section 2 a general formulation of the 
LTR problem based on recovery errors Niemann, Sogaard- 
Andersen and Stoustrup [9] is shortly introduced along with 
the Q-observer based controller. The Q-observer is an 
implementation of the well known Youla (Q-) parameteriza- 
tion. Further, the TJLTR problem is stated in two different 
formulations, the indirect and the direct TJLTR problem. The 
indirect Y L T R  problem, which is strongly related to the 
LQG LTR problem, is solved in Section 3 by using the so 
called singular T, state space approach Stoorvogel 1111 
Stoorvogel and Trentelman (121. Solutions to the direct 
TJLTR problem, which was studied by [7], are derived in 
Section 4, followed by an example in Section 5, where the two 
proposed T$LTR.methods are compared to the LQG/LTR 
method. A ISCUSSIO~ is made in Section 6. 

the design of robust observer based control systems. 1 ater, 

2. LOOP TRANSFER RECOVERY AN INTRODUCTION. 

In this section we shall shortly introduce the Loop Transfer 
Recovery (LTR) design method. Further, we shall introduce 
the Q-bserver based controller, which is a certain implemen- 
tation of the Youla (Q-) parameterization. 

Let us consider a finite dimensional, linear, time invariant 
FDLTI) plant model, represented by a state space realization 
A, E, C, 0): 

C:( ;::;+Eu (2.1) 

with transfer function G(s) = C(slA)"B. where x E R", u E Rm, 
L E RP with m > p and A ,  B and C are matrices of appropri- 
ate dimensions. The system is assumed to be stabilizable, 
detectable and left invertible. Moreover, we shall make the 
technical assumption, that A A) n CO = 0. Note, however, that 
this can always be achieved (by applying a preliminary static 
output feedback. Furthermore, this preliminary static output 
feedback can be chosen arbitrarily small. 

To design a controller for the system C by the LTR method+ 
logy, we first determine a (static) state feedback, the target 
design, which satisfies our design specifications. The design 
specifications, such as robustness and performance, are 
assumed to he reflected to the input node Athans [l], Stein 
and Athans [lo] Sggaard-Andersen [15]. The resulting target 
loop transfer function becomes GTFL = F(sl-A 1E where F is 
the target (state feedback) design. Second, thk 2TR step is 
performed, where the target design is recovered over the range 
of frequencies by a dynamic compensator C(s), giving a full 
loop transfer of the form G,(s) = C(s)G(s). 

The associated sensitivity transfer functions are given by: 

Using these transfer functions, we can define the sensitivity 
recovery error. 

DEFINITION 2.1. The sensitivity recovery error E, is defined 
by: 

Other types of recovery errors are considered in [9 Note that 
Definition 2.1 is independent of the selected contrAier type. In 
this paper, however, we shall restrict our attention to the Q- 
observer based controller. 

The objective in the rest of this paper is to describe how the 
norm of the recovery error can be made small when applying 
the Q-observer, using 1, methods. 

2.1. The Qabserver .  

One approach to characterize general controllers is the Youla 
parameterization of all stabilizing controllers. Briefly, the 
principle in the well-known Youla (or Q-) parameterization is 
to take m y  stabilizing controller which is thereafter fixed, and 
then make a certain interconnection structure. Now, the class 
of all stabilizing controllers are parameterized by applyin the 
class of all TXm systems at the interconnection nodes. In Boyd 
et al. (21 it has been shown, that the construction shown in 
Fig. 2.1 is an implementation of the Youla parameterization. 
In the sequel we shall denote this particular structure as the 
&Observer. 
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Fig. 2.1. The Q-Ohserver. 

In the subsequent sections, we shall need the following result 
from [9]: 

LEMMA 2.2. Assume that Q t 'EXrn , with a state space 
representation, say, 

Here xp E Rq, where q is the order of Q. Then the 
corresponding &ohserver is a Luenberger observer with the 
following parameters: 

with the Luenherger observer given by the following equations: 

(2.5) 
i = Dz + Gu + Ey E; [ ii = Pz + vy 

It is easily verified that T, D, E, G, P, V satisfy the Luenberger 
conditions Luenberger 161: h(D) (1 E-, TA-DT = EC, G = TB 
and F = PT+VC. 

When the &-observer based controller is applied, the 
sensitivity recovery error of Definition 2.1 can be written in a 
more convenient form. 

LEMMA 2.3. Define 
~ ~ ( 3 )  = F(SI-A-KC)-~B - Q ( ~ ) C ( ~ I - A - K C ) - ' B  (2.6) 

PROOF. The proof of Lemma 2.3 can he found in [Y]  

The matrix valued function MI( .) is called the Recovery 
Matrix, and will be central in the indirect X&TR method in 
Section 3 below. 

2.2. ZFormulation of the LOOD Transfer Recovery Problem. 

The 'I, version of the LTR design problem can be stated in a 
two different ways which will turn out to have slightly 
different answers. 

PROBLEM 1. The Indirect 1 LTR Problem. Let 7 > 0 be 
given. Find, ifpossihle, a FDL$I system Q(s) such that: 

II M,(4 ( I m  < Y (2.7) 

or, equivalently, 
1 1  F(sl-A-KC)-'B - Q(s)C(SI-A-KC)-'B I j m  < 7 (2.8) 

is achieved, and the closed loop system is internally stable. 
Here 1 1  . 11, is the '&norm. 

Problem 1 is the subject of Section 3 

PROBLEM 2. The Direct XJLTR Problem. Let y > 0 be given. 
Find, if possible, a FDLTI system Q(s) such that when applied 
in a &observer: 

or, equivalently, 

II E@) Ilm < Y (2.9) 

II(I+F(SI-A-BF)-~B)(F(SI-A-KC)-~B + Q(S)C(SI-A-KC)-'B)II, < Y 

is achieved, and the closed loop system is internally stable 

Problem 2 is the subject of Section 4 

3. THE INDIRECT U L T R  DESIGN METHOD. 

Solutions to the indirect XJLTR problem, Problem 1,  will be 
derived in this section. 

With AK = A+KC, the recovery matrix (2.6) corresponding t o  
the Q-observer structure has the following standard state 
space 'X, representation (see e.g. Francis and Doyle [SI for a 
description of the standard I ,  problem): 

+ 0 . w  (3.1) 
z = F x - 1 . u  

To solve the corresponding I ,  problem we proceed along the 
lines of [ l l ,  121, summarized in Appendix A. In this approach 
we have to solve two certain quadratic matrix inequalities, see 
Appendix A. First, we note that the Quadratic Matrix Inequa- 
lity (see Appendix A) is regular, and hence we can write down 
the Riccati equation immediately (Corollary A.3 It  turns out 
that the solution to the Riccati equation is trivia: 

LEMMA 3.1. P=O is the unique matrix satisfying: 

ATP+PA-PBBTP = 0 and A(A-BBTP) c C- 

PROOF. P=O is clearly a solution, since AK is stable. Unique 
ness is proved in [13]. 

For P=O, the coupling condition (7)  of Theorem A.l vanishes. 
Hence, as a consequence of Theorem A.2 solvability of the 
'XdLTR problem always is equivalent to the existence of a 
solution QtO to the Dual Quadratic Matrix Inequality (see 
Appendix A), which is characterized by the following l e m a .  

LEMMA 3.2. Problem 1 is solvable if and only if there exists 
Q 1 0 such that the following conditions are all satisfied: 

(a) 
(h) 
(c) CQ = 0 
(d) (Ai+y-*QFTF, 8, C) is a minimum phase system 

PROOF. Lemma 3.2 is proved by applying Theorem A.2 to E,. 

In Stoustrup and Niemann (141 it has been shown how these 
four conditions can be combined to yield a single algebraic 
Riccati equation for Q, which can be solved by the standard 
methods. 

Since (A;+y-*QFTF, E, C) is a minimum phase system, it is 
possible to design an output injectlon G for this system such 

A ~ Q + Q A ~ + B B ~ + ? - ~ Q F ' F Q  =: BBT > o 
rank B = rank B 
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that AK+~- 'QF~F+GC is a stability matrix and the %,norm of 
?I -AK-~-~QF~F-GC)% can be made smaller than any speci- 
led level. Specifically, we wish to consider a G for which: 

(1 F(sl-AK-7-'QFTF-GC)-'B \Irn < 7 (3.2) 

The problem (3.2) is a (dual) disturbance attenuation problem 
which has been met by several approaches in literature, as e.g. 
Willems [IS], Trentelman [17]. G can be found by any of these 
methods. With such G we have the following result: 

LEMMA 3.3. Assume Q t 0 satisfies (a-d) in Lemma 3.2. Then 
a controller u = Q(s)y solving Problem 1 is given by: 

;.e. when applying the cantrol law u = Q(s)y to the system EM 
the closed loop system is internally stable, and the 1, norm of 
the transfer function from w to z is smaller than 7. 

PROOF. Lemma 3.3 follows by applying Theorem A.5 to C,. 

Q(s)  = -F(sI-AK-GC)-'G (3.3) 

By means of Lemma 3.3 the indirect Y L T R  problem has thus 
been reduced to the well known almost disturbance decoupling 
problem. 

The Q-observer based controller, constructed by applying EM 
to the plant and the preliminary observer, has dynamic order 
20. It turns out though that a structural reduction can always 
be carried out. The result of this reduction is just a standard 
full order observer based controller similar to the preliminary 
controller but with a modified gain. The result is as follows. 

TBEOREM 3.4. Let a Q-Observer based controller be given by 
a preliminary full order observer &bS with stabilizing gain K 
and an 1, controller E as in Lemma 4.3: Q 

Q(s)  = -F(sl-AK-GC)-'G (3.4) 

Furthermore, let a full order observer based controller Zbs 
with ohrrerver gain K* = K+G be given. Then for both control- 
lers the Recovery Matrix equals: 

MI(s) = F(d-A-K*C)-'B (3.5) 

Moreover, the Q-observer based and the full order observer 
based controllers can both be realized as Luenberger observer 
based controllers with the following choica of parameters: 

Q-observer: Full order OLWener: 

D = A+KC+GC 

G = B  

P =  [ F  - F ]  P = F  

E = [ -KT G']' 

v = o  v = o  
T = [ l  O l T  T = l  

PROOF. The result can be found in (131 

1 ,,= A+KC 0 

G = [ B T  OTIT  
[ - G C  A+KC+GC 

E = -K-G 

4. THE DIRECT 1 ILTR DESIGN METHOD. 

In the following we shall consider the direct Y L T R  problem, 
Problem 2 using the sensitivity recovery error. Using the Q- 
observer in)trodu& in Section 2, the sensitivity recovery error 
is given by: 

E&s) = STFL(s)M,(s) = (l+F@,B)(F@,B+Q(s)C@,B) (4.1) 

The state space formulation of equation (4-1) is given by: 

x = [ A + K C  B F  A+BF 0 ] x + [ ; ] u + [ ; ] w  

y = [  c 0 ] x  + Ow (4.2) 

z = [  F F ] x +  l u  

For simplification, we will denote A+KC by AK and A+BF by 
AF. In this case Assumption A . l  amounts to the condition 
that (A, B, C, 0 )  has neither zeros nor poles on the imaginary 
axis. This is assumed throughout this section. 

First we find a solution to the Quadratic Matrix Inequality 
and ;he associated QM-transformation (see Appendix A). 

THEOREM 4.1. For the system Cs,q described by eq. (4.2), the 
solution of the &MI with the associated rank conditions, is: 

P = [ ;  up]. (4.3) 

where P is the unique stabilizing solution to the algebraic 
Riccati equation, 

A~P+PA-PBB'P = o (4.4) 

F (P) factorizes as: 
7 

r C T  i 

F (e) = P B + F ~  .[ F B ~ P + F  I ]  (4.5) I )  1 
Performing the QM-transformation, we get the following 
matrices: 

- -  
A, = A, c1,, = c,, c2,p = [ F B ~ P + F ] ,  D, = D, (4.6) 

PROOF. see 114, 13). 

Note that the solution of the QMI does not depend on 7. 

Further, in the special case where A is stable, P = 0 is the 
unique solution, and the resulting QM-transformation is the 
identity. 

Now a solution Y to the DQMI for the transformed system 
has io be found in order to determine the corresponding DQM- 
transformation. 

LEMMA 4.2. Let the matrices A,, 6, E, c,,,, c,,,, Dl and D, 
be as in eqs. (4.2) and (4.6). Then the solution of the 
associated DQMI, 

(4.7) 

s a t i s f i e s  the conditions CY,, = 0 and CY,, = 0 

In the case where (A, B, C, 0) is invertible and minimum 
phase, Y = 0 is the unique solution of the DQMI. In this case 
no second transformation is needed. 

For # 0, the DQM-transformation proceeds as follows: 

A, ,4 = AP+y-2YC;,,C, , p '  BP ,Q = 6+7-2YC;,,D,, 

After the QM- and DQM-transformations, the controller 
u = Q(s)y described in Theorem A.5 can now be designed in 
order to satisfy the two norm ine ualities in eqs. (A 11) and 
(A.12). It is readily seen that (A.119) is satisfied for: 

'
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L = -c 
since this solves an (exact) disturbance decoupling problem 

Then with M = [ M: M: 1' satisfying (A.12) we have: 

LEMMA 4.3. Let M be as above and let P be the stabilizing 
solution to the Riccati equation (4.4). Then an admissible con- 
troller for the above X, problem is given by: 

Q(s) = F(sl-AK-MiC)-'M1 + 

2,p 

(B~P+F)(~I-A+BB~P)-~M,c(sI-A~-M,c)-~M, + 
( B ~ P + F ) ( s I - A + B B ~ P ) - ~ M ~  (4.8) 

PROOF The lemma follows directly by substituting the above 
matrices in Theorem A.5. 

The controller derived in Lemma 4.3 has dynamic order 2n. 
When inserted in the overall controller structure, as described 
in Section 2, we get a controller of order 3n, if no reduction is 
carried out. I t  turns out, though, that a structural reduction 
can be performed witout affecting the obtained 1, norm. The 
basic idea is to use the remaining freedom in the observer gain 
K designed in Section 2 to obtain some of the desired control- 
ler dynamics. By doing this we get the following result. 

THEOREM 4.4. Let the transfer function of the feedback sys- 
tem Cf, begiven by: Q*(s) = (BTP+F)(sl-A+BBTP)-'M2. 

When applying Cf, to a &-observer configuration with observer 
gajn K' = K+Ml, the X, norm of the transfer function from w 
to z equals the X, norm obtained when applying CQ described 
by Lemma 4.3 to a similar system with observer gain K. 

PROOF. See (141. 

For minimum phase systems it can be seen that an n'th order 
admissible controller is obtained by choosing Mz=O: 

TEEOREM 4.5. The cascade of 
is a Luenberger observer, described by the fo1,"wing matrices: 

and Cg descrhed above) 

N~nminimum phase sptm: Minimum p h m  systems: 

D =  IA+KC+M,C 0 1 D = A+KC+M,C 
M,C A - B B ~ P  

G =  [ BT 01' G = B  

P = F  

E = K + M ,  

v = o  v = o  
T =  [ I  01 '  T = l  

Moreover, the closed loop transfer function obtained by 
applying this Luenberger observer has X, norm smaller than 7. 

PROOF. See [13] 

Note that the overall controller is of order 2n in the non-mini- 
mum phase case, and n in the  minimum phase case. The rea- 
son, why the controller reduction from 3n (resp. 2n) to 2n (n) 
is possible, is the  remainin freedom in the preliminary obser- 
ver design. The dynamics from this observer will be cancelled 
by the X,controller and substituted by a more feasible one. 

Further, note that only the output injection M in the XJLTR 
controller depends on 7, L doesn't. 

5. A DESIGN EXAMPLE. 

Let the system C be given by the state space model (A, 6, C): 

A = -5.5000 0.63251, = [ HIIl], C~ = [ 1.00001 

The system is open loop unstable, and has a RHP zero at  
z = 1.00. 

As the target state feedback let us choose 

A ,standard LQG/LTR design gives the following observer 
gain: 

KLgG = [ -668.30 206.95 ] 

For the indirect XJLTR design method described in Section 3, 
the infimally achievable X, norm of the recovery matrix is 
7" = 0.9. As a bound for the X, problem we have selected 
y = 1.0 - 0.0 dB > y. By the design technique outlined in 
Section 3, we find: 

[ 0.6325 0.0000 -1.5811 

F = [ 1.00 -10.2175 ] 

KTnd = [ 19.023 20.818 ] 
as the observer gain in a controller which satisfies the X, 
bound y. 

The recovery matrices achieved by these two 2 n d  order 
controllers are shown in Fig. 5.1. 

10 ,  , I I I I I I I I  The , Recovery r , , , , , , ,  I Matrix / / / I , , / ,  I , , , , , , , ,  

10-2 10-1 100 10' 102 
Omega <Rad/s> 

Fig. 5.1 

Now, we apply the direct XJLTR method to Problem 2. First 
a preliminary observer design is determined: 

K& = [ 0.1115 0.5132 ] 

For this problem, the infimally achievable X, norm turns  out 
to be y* = 0.55, so let us choose y = 0.65 - -3.74 dB > as a 
bound for the XJLTR problem. 

The the 4'th order controller which can be computed following 
the line of Section 4 has the following XJLTR gain: 

M T  = [ 8.1907 15.0243 -13.0782 -7.6391 ] 
The Luenberger matrices for the controller can he computed 
applying Theorem 4.5. The solution to the singular Riccati 
equation is: 

= [ 0.1436 1.2650 
1.2650 11.14361 

An explicit expression for the solution 
Riccati equation can be found in [13]. 

to the totally singular 

The sensitivity recovery errors for the LQG/LTR design, the 
indirect XJLTR design and the direct XJLTR design are 
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Dir.H-inf: - - - - - - - - - 

shown in Fig. 5.2. The direct XJLTR design has a maximum 
which is 6.5 dB lower than the the maximum of the indirect 
T,/LTR design and 4.5 dB lower than the LQG/LTR design. 

Two TJLTR design methods have been introduced as state 
space solutions to the direct and the indirect IJLTR 
problems. 

The indirect TJLTR design method enerates an (at most) 
n'th order controller which makes the %mnorm of the recovery 
matrix smaller than a prespecified constant y. 

The direct TJLTR design method makes the 1, norm of the 
sensitivity recovery error smaller than a prespecified constant 
7. The resulting controller is of order at most 20. 

For both methods, the controllers have alternative implemen- 
tations. The controllers can he constructed either as an I ,  
appendage to an existing standard full order observer based 
controller or, alternatively, as a lower order combination of 
the two. The former has its significance in on-line tuning 
procedures, since the &,part can be appended in a continuous 
way to an existing controller. 

The design examples in Fi 5.1 and 5.2 are seen to have more 
'flat' responses than the LbG curves, thus giving rise to smal- 
ler maxima. Inherent to the properties of the &norm, the in- 
direct method can always be applied to achieve a smaller ma- 
ximum of the recovery matrix than the LQG method. Likewise 
can the direct method be applied to make the maximum of the 
sensitivity recovery error as small as desired, only bounded by 
the theoretical limit imposed by RHP zeros. 

Note also that in the example, the gains of the TJLTR con- 
trollers are smaller than the ain of the LQG/LTR controller. 
In general the gains of an IJLTR controller will be moderate, 
when the '&specification is not chosen too strict, i.e. to close 

The main limitation of the suggested methods is due to the 
fact that 1, methods generally try to average out the errors 
over the whole frequency range. This situation is not desirable 
for LTR problems, since the acceptable errors might be low for 
instance at low frequencies (performance specs.). Hence, to 
overcome this limitation, it would be sometimes be reasonable 
to incorporate weighting functions in the problem formulation. 
This ca.n easily be done, but at  the cost of more controller 
states. 

to p .  

The necessary preliminaries for the X, methods used in this 
paper will be introduced in this appendix. The approach taken 
is based on the results in [Il ,  121, the so called singular 
approach. This is a very general approach which includes the 
well known approach by Doyle et al. [3] as a special case. 

In the state space approach to Zb, the standard problem is as 
follows: 

Consider a finite dimensional, linear, time invariant system: 
X = A x  + B u  + E w  

y = c , x  + D l W  ('4.1) z : [  z = C2x + Dzu 

We assume that y > 0 has been given. We wish to design, if 
possible an internally stabilizing FDLTI compensator 
u = Q(s)y such that the 1, norm of the resulting closed-loop 
transfer function from w to z is smaller than 7. 

ASSUMPPION A.1. It is assumed that the systems (A,B,Cz,Dz) 
and (A,E,C~,DI) have no invariant zeros in Co. 

The main result is: 

TEEOREM A.2. Consider the system E above satisfying 
Assumption 3.1. Let y > 0 be given. Then, there exists a 
FDLTI compensator u = Q(s)y for which the 'L norm of the 
resulting closed-loop transfer function from w to z is smaller 
than y, d and only if there exist P > 0 and Q t 0 for which: 

(1) F p )  2 0 
(2) G7(Q)  2 0 
(3) rank F (P) = normrank G 
(4) rank Gy(Q) = normrank H 

(5) rank [ L;5;)] = n + normrank G , Vs E C W 0  

(6) rank [ My(Q,s) G 7 ( Q )  ] = n + normrank H , Vs E C'UCO 

where the notation used is as follows: 

7 

(7) dpQ) < y2 

A+P+PA+C;C,+~-ZPEE'P PB+C;D, 1 (A,2) 

B+ P+D:C, D:D* 

L (PJ) = [ sl-A-7-*EETP -B] 
7 

M y ( Q d  = 

G ( E )  C2(d - A)-'B + D2 , H(s) = C,(SI - A)"E + Dl (A.5) 

Further, we shall need a couple of corollaries 

COROLLARY A.3. The Re ular Case Assume that Dz is 
injective. Then ( I ) ,  (3) and 85) is satisfied if and only if 

A ' P + P ~ ~ ~ ~ + ~ - ~ P E E + P - ( ~ ~ ~ ) ( ~ ~ ) - ~ ( B ~ P + ~ ~ )  = o 
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and 
A(A+~-~EE~P-B(D;D~)-~(B~P+D:c,)) c c- 

COROLLARY A.4. The Totally Singular Case. Assume Dz = 0. 
Then (1) is equivalent to: 

A~P+PA+C;C,+?PEE~P 2 o 
where P satisfies PB = 0. 

The two corollaries have straightforward duals, which we shall 
also utilize in the sequel. 

Expressions for admissible controllers will be given in the follo- 
wing in terms of the matrices for certain transformations of E. 
First we define C,,, and D, by the following factorization: 

F7(P) = [ C2,, DP]'x[ C2,, D,]. ( A 4  

Moreover, we will need the following matrices: 
A,, = A+y-'EETP, C1,, = Cl+y?DIETP (A.7) 

Y = (I-y-'QP)-'Q ('4.8) 

We shall refer to the system where A,, C,,,, C and D, sub- 
stitute A,  C,, C, and D, as the QM-transform of the system E. 
The DQMI for the QM-transformed system becomes: 

1 [ Cl , ,Y+DIET DID: 

A,Y+YA;+EE~+ -~YC;,~C,, ,Y YC; ,,+ED; 
G (Y) = 

Substituting A,,Q, E,,Q and D,,Q for the corresponding 

variables in the previous system will be referred to as the 
DQM-transformation, 

In terms of these transformed system matrices we can compute 
the desired '&controller: 

TUEOREM A.5. Let Bp,Q and C1,, he as above. Let L be 
p,QL is stable, and such a state feedback L, such that A 

that: 
P,Q+B 

II(C,,p+DpL)(s'-Ap,Q-Bp,~L)-'II, < 7 / (3 '  llEp,Qll) (A'11) 

Let M be an output  injection, such that A,,Q+MC,,, is stable 
and further: 

ll (~~-A,,Q-MC,,,)~l(E,,Q+MD,,Q) I/, < 7 (A.12) 
where 

7 = mini 7/(3.IIDPLII)> IIEp,QI1/I/Bp,QL/I I 
Then the controller: 

u = -L(SI-A,,~-B L-MC )-'My (A.13) 
P.4 1,P 

makes the X, norm of the resulting closed loop transfer func- 
tion from w to z in C smaller than y. 
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The significance of Theorem A.5 is to transform the original 'X, 
problem to two disturbance attenuation problems which can 
be solved by well known methods, see e.g. [11, 17, is]. 


