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Loop transfer recovery for general observer architectures

HANS HENRIK NIEMANNt, PER S0GAARD-ANDERSENt
and JAKOB STOUSTRUP§

A general and concise formulation is given of the loop transfer recovery (LTR)
design problem based on recovery errors. Three types of recovery errors are
treated: open loop recovery, sensitivity recovery and input-output recovery
errors. The three corresponding versions of the asymptotic recovery problem tum
out to be equivalent, since the minimization of the recovery errors all amount to
the minimization of a certain matrix, the recovery matrix. Using the recovery
error definitions, simple necessary and sufficient conditions for the controllers are
derived both for the exact and asymptotic recovery cases. This general recovery
formulation covers all known observer based compensator types as special cases.
The conditions given in this setting are effectively the aim of all known LTR
design methods. The recovery formulation is interpreted in terms of a model­
matching problem as well, which is examined by means of the Q-parametrization.
It is shown how the general controller obtained by the Q-parametrization can be
written as a Luenberger observer based controller. In all cases, n controller states
suffice to achieve recovery. The compensators are characterized for errors both on
the input- and on the output-node (dual case).

I. Introduction
In the last decade, the concept of loop transfer recovery (LTR) has emerged as

an important approach to the design of robust feedback controllers. The attractive
theoretical properties of such controllers in combination with their conceptual and
computational simplicity has motivated their popularity and spread in the control
community (see Athans 1986, Dowdle 1979, Doyle and Stein 1979, 1981, Goodman
1984, Saberi and Sannuti 1988, Stein and Athans 1987, and Segaard-Andersen 1986
for continuous time systems and Dowdle 1979, Goodman 1984, Maciejowski 1985
and Niemann and Sagaard-Andersen 1988 for discrete time systems). Yet the
methodology suffers from several drawbacks.

In the usual LTR-setting, design rules are developed based on sufficient condi­
tions for recovery only. A consequence of this is that the design rules might not
necessarily point out the 'best' controller from an LTR point of view.

Another drawback lies in the assumed controller structure in previous ap­
proaches. Thus, it has not been investigated if different choices of controller types
would yield better general performance, or, conversely, which special performance
properties are associated with the different classes of compensators.

A third drawback is the lack of effective design rules for non-minimum phase
plants. Some design results have been outlined by Niemann and Jannerup (1990),
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Stein and Athans (1987), and Zhang and Freudenberg (1990), but no general
results have been available.

Yet another drawback in the usual setting has been the 'unsystematic' nature of
the recovery design step. Typically, certain design parameters (e.g. quadratic
weights, eigenvalues, or the like) are adjusted until 'reasonable' recovery is
achieved. The adjustment procedure is, hence, rather ad hoc, and no algorithms are
available for the fine tuning. The only result in this connection is the fact that
arbitrarily good recovery is achieved in the limit for minimum phase plants under
certain assumptions.

The purpose of this paper is to present some of the previous approaches in a
survey form, as well as to overcome some of their limitations.

Based on the concept of recovery errors (originally introduced by Goodman
1984) we derive necessary and sufficient conditions for the controller parameters
to obtain LTR. These conditions are formulated for observers satisfying the
Luenberger conditions, which actually apply to all stabilizing compensators (see
below). It turns out that a certain matrix, which we shall call the recovery matrix,
plays a fundamental role in the LTR-problem. Independently of the way the
recovery problem has been formulated, asymptotic LTR becomes equivalent to
minimizing the norm of this matrix.

Thereafter we show how these results can be specialized into the well-known
results for full and minimal order observers, and further we derive new strong
results for PI-observers (both full and minimal order).

More importantly, however, we use these necessary and sufficient conditions to
develop a much more general formulation of the recovery problem. By augmenting
the standard full state observer architecture with an additional dynamical feedback
structure attached at the estimation error node, we parametrize all possible compen­
sators which internally stabilize the closed loop system in the LTR context. The
structure thus obtained can be interpreted in terms of a model-matching problem.
It is possible to eliminate the n superfluous states introduced in this way by a
merging technique as described by Niemann et al. (1990 b).

The remainder of this paper is organized as follows.
In § 2 the necessary and sufficient conditions for LTR are derived for the

Luenberger observer. In § 3 these conditions are specialized to a number of
well-known observer architectures, and the most general controller structure, the
Youla-parametrized controller, is shown to be a Luenberger observer based con­
troller as well. The minimization of the associated recovery matrix is shown to be
a model-matching problem in the Youla parameter. The solution to this model­
matching problem is given by some recent results. Section 4 treats the dual case.
Finally, some concluding remarks are given.

2. General LTR-eonditions
In this chapter we describe the significance of LTR and give a brief introduction

to the Luenberger observer. Thereafter, necessary and sufficient conditions for
achieving recovery are derived for the general Luenberger observer.

2.1. Significance of loop transfer recovery
Loop transfer recovery is a tool applied in robust multi variable control. LTR­
design is the last step in a three step design procedure for constructing dynamic
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compensators. The first step in this procedure is a specification of the desired
properties for the final feedback control system. The second step is the design of the
target loop, using a state feedback, for which the specifications are satisfied,
followed by the LTR step, in which the target loop is 'recovered' by an admissible
measurement based compensator.

To apply LTR in robust control, suppose the robust stability and nominal
performance specifications are posed in the frequency domain via singular value
inequalities. In this paper, these specifications are primarily reflected back to the
plant input. Let the nominal plant be denoted by G(s), and let the true plant be
Ga(s). The sensitivity and the complementary sensitivity functions for the plant
input node are denoted by S(s) and T(s). Then,

Ga(s) = G(s)[1 + A(s)], s = jW} (2.1)
a[A(jw)] == l(jw)

Details of this assumption and some consequences thereof have been discussed by
Doyle and Stein (1981). The specifications can now be posed as

a[S(jw)] <p(jw) }
a[T(jw)] < 1/I(jw) (2.2)

where p(.) is some weight on the sensitivity functions which reflects the performance
specifications (e.g. asymptotic tracking, bandwidth), and 1(·) is the uncertainty
bound.

If the controller is a model-based compensator, a systematic procedure has been
derived for satisfying the constraints (2.2). First, a full-state design which satisfies
(2.2) is designed (see Athans 1986, Stein and Athans 1987, Segaard-Andersen
1986). This design is then recovered systematically for each frequency. Normally,
the system is assumed to be minimum phase (which, as shown later in this paper,
guarantees asymptotic recovery), i.e. the recovery can be arbitrarily well approxi­
mated at all frequencies.

Note that the specifications might also have been stated for the plant output
node. The results in this paper facilitate both formulations of the specifications-al­
though only details of the first type are given, whereas results for the plant output
node are summarized at the end of the paper.

At this point we should stress that the state feedback design can be performed
completely independently of the specific LTR procedure chosen. For non-minimum
phase systems, though, it might in special cases be convenient to choose a state
feedback with certain given properties (see Niemann et al. 1990 b).

2.2. Luenberger observer

Let the FDLTI plant model ~ be represented by a minimal state-space realiza­
tion (A, B, C):

~: {X = Ax + Bu, x E Ill", u E Ill' (2.3)
V= Cx, V E IIlm

with m ~ r, n > m, (C, A) observable and C, B of full rank.
Now let the plant be controlled by an observer-based compensator containing a

state feedback

U = - Kx+ r = r - w (2.4)
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where K is the feedback gain and ~ the state estimate. The states are estimated by
using a Luenberger observer (Luenberger 1971):

i. = Dz + Gu + Ey }
w = Ki = Pz + Vy (2.5)

where z E W is the observer state vector. The observer matrices T, D, E, G, P, V
satisfy (Luenberger 1971):

(i)

(ii)

(iii)

(iv)

D is a stablity matrix

TA- DT= EC

G=TB
(2.6)

The observer-based feedback system is shown in Fig. I.
Conditions (ii) and (iii) in (2.6) imply that the observer error:

e(l) = Z(I) - TX(I)

satisfies

8(1)= De(l)
and

lim e(l) = 0
'-00

(2.7)

(2.8)

(2.9)

because D is a stability matrix.
It is now simple to develop the following block triangular composite system

(Luenberger 1971):

[
X(I) ] = [A - BK BP]. [X(I)] for r = 0)
8(1) 0 D e(l) (

which shows that the separation principle is valid for the observer based feedback
system in Fig. I.

Based on the equations for the plant and the compensator, it is possible to deter­
mine the following transfer functions for the plant G(s) and the compensator C(s):

G(s) = CCIl(s)B, dim G(s) = m x r}
C(s) = V + P(sl- D + GP)-I(E - GV), dim C(s) = r X m (2.10)

where CIl(s) = (sl - A) -I.

r
-O-------,___o-j
+ ! _ 1...-__--.J

u·

Figure 1. Observer-based feedback system.

y
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2.3. Recovery types and LTR conditions

The loop transfer recovery (LTR) design method (see Athans 1986, Doyle and
Stein 1979, 1981, Stein and Athans 1987) is now applied to the compensator. In
order to formulate the loop-shape robustness constraints the uncertainties (distur­
bances, noise and modelling errors) are reflected back to the plant input node (see
Goodman 1984, Stein and Athans 1987). The target loop transfer is then the
full-state loop transfer GTFds):

GTFL (s) = KcIl(s) B (2.11)

(2.12)

where K is the target design and the full loop transfer is G1(s) (see Athans 1986,
Stein and Athans 1987):

G,(s) = C(s)G(s)

= VCcIl(s)B + P(sl- 0 + GP) -'(E - GV)CcIl(s)B

The difference between the target and the full loop transfer is defined as the loop
recovery error E1(s) at the input loop breaking point:

E,(s) = KcIl(s)B - C(s)G(s) (2.13)

The recovery error was first introduced by Goodman (1984) for full-order observer
based compensators. It is now possible to rewrite the recovery error E,(s) into a
more convenient form, as follows.

Lemma I

Define

(2.14)

Then

(2.15)

The proof of Lemma I is given in Appendix A.
The matrix-valued function M, turns out to be of great significance in what

follows. It describes the mismatch between the actual and the desired transfer
function. Therefore we will refer to M, as the recovery matrix for the plant input
node.

However, when the plant G(s) is unstable, the recovery error transfer function
E,(s) will also be an unstable transfer function. Instead of using open-loop transfer
functions, the recovery error can be defined in an equivalent way in terms of the
sensitivity functions. Let the sensitivity recovery error at the plant input-loop
breaking point be defined as

(2.16)

where

STFds) = (I + GTFds»-1 and SI(S) = (I + G,(s»-'

Both the target and the full-loop sensitivity functions are stable, which implies that
the sensitivity recovery error transfer function Es.,(s) is stable.

The power of M, is indicated by the following two lemmas.
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Lemma I

With M, as above, Es.,(s) becomes:

Es,,(s) = -STFds)M,(s) ( 2.17)

For the proof, see Appendix A or Segaard-Andersen and Niemann (1989).
The recovery problem has in a simple way been formulated as a sensitivity

recovery problem in Lemma 2 by means of the recovery matrix from the original
formulation in Lemma I.

The third type of recovery we define is input-output recovery (10 recovery). In
this case, V'fe look at the closed-loop transfer functions between input r and output
y in the control feedback system. The 10 recovery error is defined at the plant
input-loop breaking point as

E,o,,(s) = GT.cI(S) - G,.c'(s)

GT.cI(S) = C(sl - A + BK) -, B

G,.cI(S) = (I + CCII(s)BC(s»-'CCII(s)B

Again the introduction of M, simplifies the expression, as follows.

Lemma 3

With M r as above, E,o,,(s) becomes

E,o.,(s) = -CCII(s) BSTFds)M,(s)

= -GT,cI(S)M,(s)

(2.18)

(2.19)

Lemma 3 follows from Lemma 2.
By these three formulations of the recovery problem in Lemmas I, 2 and 3 the

very useful recovery matrix M I has been introduced. Most of the analysis in the rest
of this paper is based on this recovery matrix, owing to the results in the following
theorem.

By recovery in the rest of this paper we mean sensitivity recovery as defined by
Lemma 2, if nothing else is declared.

Let us look at the condition for achieving exact recovery, which is achieved if
STFL(S) =S,(s). This implies that the recovery error given in (2.16) or (2.17) must
be zero. Based on this result, it is possible to give four equivalent descriptions of the
event of exact recovery, as follows.

Theorem I

Exact recovery is obtained if and only if one of the following equivalent
conditions holds:

(i)

(ii)

(iii)

Es,,(s) =0 }

M,(s) = 0

(D, 1m G) c ker P

(2.20)

If we assume that D is non-defective, all of these are equivalent to

(iv) Pv, =0 v wTG =0, for i = I, ...,p
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where Vi and wi are right and left eigenvectors, respectively, associated with the
eigenvalue Ai of D, P = dim D.

Theorem I is proved in Appendix B.
The third condition in Theorem I can be checked very easily (see Appendix B).

The conditions (iii) and (iv) are given in terms of the Luenberger parameters, rather
than in the system data. Hence, the theorem provides a necessary and sufficient test
which a given controller has to satisfy to solve the exact recovery problem; so, in
the present form these conditions are not so interesting from an applied point of
view. To derive easily checkable conditions for direct solvability in the system data,
one has to exploit the structure of the desired controller architecture. This has been
done in § 3 for full-order and minimal-order observer based controllers. In general,
the conditions might look very different for the various controller architectures.

Only in rather special cases, however, will it be possible to achieve exact
recovery with a free target design K, see § 3.2. Therefore the conditions in Theorem
2.1 do not have a great significance of their own. But, as appears in what follows,
these conditions generalize within the framework of asymptotic recovery and
become the basis for this.

Asymptotic recovery is defined as follows.

Definition I
Asymptotic recovery is said to be achievable if and only if for all e > 0 there

exists a controller C,(s) such that

(2.21 )

where SI ,(.) is the closed loop sensitivity function corresponding to C,(s), and
II·IIH is ~ suitable norm.

The possible choices of the norm II·IIH are numerous, and should in principle
reflect the application. Note, though, that if asymptotic recovery is possible in any
norm it is achievable in (almost) any other norm as well, since as e tends to zero,
there has to exist a sequence of controllers that makes the error tend uniformly to
zero. Nevertheless, from an applied point of view the norm involved is not
unimportant, since the control objective whenever asymptotic recovery is possible
would typically be to satisfy a norm bound which 'suffices' and is attainable with
acceptable gains. An important special choice of norm is the Jl' 00 norm. Niemann
et al. (1990 b) have dealt with Jl' 00 guaranteed norm bounds for the asymptotic
recovery problem, as well as for the general non-minimum phase case. Non-iterative
procedures to fulfil the norm bounds were provided.

The following is an immediate consequence of Lemma 2:

Corollary I

Asymptotic recovery is possible if and only if for all e > 0 there exists a
controller C,(s) such that

(2.22)

where M t,,(·) is the recovery matrix corresponding to C,(s).
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In terms of the system data, solvability of the asymptotic recovery problem can
be expressed by means of the almost controlled invariant subspace 1':.g(:EF ) (see
e.g. Trentelman 1986) associated with the following auxiliary system:

{
X = ATx - CTu + KTw

LF : BTz= x

In this notation we have the following result.

Theorem 2

Asymptotic recovery can be achieved for the system L: (A, B, C) if and only
if the inclusion 1m KT c 1':.g(LF ) holds.

The theorem has been proved by Niemann et al. (1990 a).
The necessary and sufficient condition for asymptotic recovery given by

Theorem 2 is easily checked by the subspace algorithms given by Trentelman
( 1986).

At last, the recovery matrix is not just an abstract matrix which should be
minimized for achieving recovery, but M, really exists as an open loop transfer
function in the compensator. To show this, let us look at the signal u' as function
of the input signal u and the output signal y (see Fig. I). The signal u' inside the
compensator is given by

u'(s) = M,(s)u(s) + N,(S)y(S)}
N,(s) = V + P(sl- D)-IE

(2.23)

Using (2.23), Fig. I then takes the form shown in Fig. 2. This form can be
interpreted as the compensator transformed into what could be called the recovery
form.

This formulation shows that the physical effect in the compensator by achieving
recovery is that the coupling between u and u' will be minimized. The same
observer-form has been described by Kailath (1980) in connection with a coprime
factorization of full-order observers.

3. LTR conditions for specific observer types
The conditions for achieving recovery based on the recovery matrix M, derived

in § 2.3 will be used on compensators based on different observer types of the
Luenberger type.

yr u

:-1-_----,----1
I "------

Figure 2. Feedback system in the recovery form,



LTR for general observer architectures 1185

3.1. Full-order observer

The full-order observer is the most used observer type and is included in
the Luenberger observer. The full-order observer appears from the Luenberger
observer by the following selection of the matrices in (2.5) (Luenberger 1971,
O'Reilly 1983):

D=A- FC

G=B

P=K

E=F

V=O

T=I

(3.1)

where F is the observer gain matrix.
Based on these matrices, the recovery matrix is given by

(3.2)

This result was first found by Goodman (1984) and later used by Sagaard-Andersen
and Niemann (1989).

To formulate the next result, we need to consider the auxiliary system

{
X = ATX - CTU + KTW

~F: BTZ= x

By 1'"*(~F) we denote the supremal controlled invariant subspace (see Wonham
(1985) for this auxiliary system. Now we have the following result.

Lemma 4

Exact recovery is possible by the above full-order observer if and only if one of
the following three conditions is satisfied:

( i)

(ii)

(iii)

M1(s)=O }

(A - FC I1m B) c ker K

1m KT c 1'"*(~F)

(3.3)

Conditions (i) and (ii) are immediate from Theorem I. Condition (iii) follows
from condition (ii) by applying Theorem 4.2 of Wonham (1985). The constructive
solution to the exact disturbance decoupling problem of Wonham (1985) can be
applied to solve the exact LTR problem. An explicit LTR design method for
achieving exact recovery based on condition (iv) in Theorem I has been derived by
Sagaard-Andersen (1987 a).

However, exact recovery cannot in general be achieved by observer design.
Instead, asymptotic recovery might be obtained by a suitable parametrization of the
observer gain, F = F(q), q E 1Kl+ such that

(3.4)
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A sufficient condition on F(q) for obtaining asymptotic recovery was first given by
Doyle and Stein (1979, 1981), as follows. If

F(q)
- -+ BW for q -+ <Xl (3.5)

q

where det W,e 0, we achieve asymptotic recovery, i.e. M,-+O for q -+ <Xl, provided
(A, B, C) is minimum phase. Observer gains which satisfy the asymptotic recovery
condition in (3.5) can be designed by using LQG with suitable selections of the
weight matrices (see Athans 1986, Dowdle 1979, Goodman 1984, Stein and Athans
1987, Segaard-Andersen 1986) or by using eigenstructure assignment (see Segaard­
Andersen 1986, 1989). Later, the sufficient condition on F was relaxed by Matson
and Maybeck (1987) for square plants and by Saberi and Sannuti (1988) for left
invertible plants. .

Asymptotic recovery is normally impossible for non-minimum phase plants (see
Niemann et al. 1990 b). The recovery matrix will converge to a non-zero matrix
function, MI.RHP, when the LTR design method is applied to non-minimum phase
systems. Explicit expressions for this non-zero function can be found in the work of
Niemann and Jannerup (1990), Segaard-Andersen and Niemann (1989) and Zhang
and Freudenberg (1990). M r,RHP turns out to be dependent on both the target
design and the RHP zeros (A, B, C).

3.2. Minimal-order observer

The general LTR condition developed in § 2.3 is now related to the minimal­
order observer.

First, let the plant (A, B, C) be partitioned as

A = [::: :::l B =[:J} (3.6)

C =n, 0]

There is no loss of generality in assuming that C = [1m 0]. This can always be
achieved by change of coordinates when C has full row rank.

The minimal-order observer of the 'parametric class' for the system (A, B, C)
defined in (3.6) has been given by O'Reilly (1983) as

D = A22 - V2A I 2

G=B2-V2B,

(3.7)

V=K[;J

K=[K 1 K2 ]

T=[-V2 I]

where the matrices D, G, P, E and V are the Luenberger observer parameters in
(2.5). V2 is the observer gain.
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Based on the matrices in (3.7) the recovery matrix for the minimal-order
observer then becomes

(3.8)Mt(s) = K2(s l - A22 + V2AI2)-1(82 - V28 1)

Again we introduce an auxiliary system:

{
ic = AT1x+ AT2U + KIw

LM: T T
Z = 8 2 x + 8 1 U

By '1'*(LM ) we denote the supremal controlled invariant subspace (see Stoorvogel
1990) for this auxiliary system. Now, we have the following result.

(3.9)

(i)

(ii)

(iii)

Lemma 5
Exact recovery is achieved if and only if one of the following conditions holds:

Mt~)=O }

(A22 - V2A'21 1m (82- V28d) c ker K2

1m KI c '1'*(LM )

The second condition follows directly by using the Luenberger matrices for the
minimal-order observer in the third condition in Theorem I. The third condition
follows from (ii) by applying the solution to the exact disturbance decoupling
problem for systems with direct feedthrough terms (Stoorvogel 1990).

It is possible to achieve exact recovery in the following case. Assume the system
is left invertible and rank (8 t) = r, i.e. the system includes the maximal number of
zeros =n - r (a rare case). Then exact recovery can be obtained for minimum
phase systems (Segaard-Andersen 1986, 1987 b) by:

(3.11)

V2= 8 28,1 (3.10)

When exact recovery cannot be obtained, asymptotic recovery can be achieved for
minimum phase systems as in the full-order case.

Asymptotic recovery is achieved if the minimal-order observer gain V2 is
designed as (Sagaard-Andersen 1986, 1987 b):

V2 = V 2(q), q E IR+}
V2(q)-B2 fJ 8

-+ 2Ct, q -+ co
q

where Ct E ker 8 2 , fJ = Bt and (A, B, C) is minimum phase.
Equation (3.11) is a sufficient condition. The sufficient condition on V2 can be

relaxed and is given by Saberi and Sannuti (1988). Observer gains satisfying (3.11)
can again be designed by using LQG (Dowdle 1979, Madiwale and Williams 1985,
Segaard-Andersen 1986, 1987 b) or eigenstructure assignment (Sagaard-Andersen
1986).

As in the full-order case, the recovery matrix will converge towards a non-zero
matrix function M t •R H P in the non-minimum phase case. Explicit expressions for
M r,RHP can be found in the work of Niemann and Jannerup (1990).

Madiwale and Williams (1985) have found sufficient condition for achieving
exact recovery:

(3.12)
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where

cJ)22(S) = (sl- A22 ) - 1

and shown that (3.12) is satisfied if:

K2(sl- A22 + V2A , 2) - I( B 2 - V2 B d = 0

which is the same as M, = O.

(3.13)

3.3. Full-order PI observer

A proportional integral observer (PI observer) will now be used in the recovery
design. The PI observer for the system (A, B, C) has been given by Beale and
Shafai (1989) and Shafai and Carroll (1985):

i = Ai + F(y - Ci) + Bu + HW}
Iiv=y-Ci (3.14)

where WE IRm
, F is the P observer gain and H the I observer gain. It is required

that the observer given by (3.14) be stable, which is satisfied if

lim aCt), r = 0

and

lim wet) = 0 (3.15)

where a(t) = x(t) - X(/) represents the observer error. Equation (3.15) is equivalent
to the requirement that all the eigenvalues of the matrix

(3.16)R =[A- FC
-C ~J

have negative real parts (see Beale and Shafai 1989).
Note that the two gains F and H cannot be designed independently, which

complicates the observer design. The PI observer is shown in Fig. 3.
Now the recovery matrix for the PI observer can be developed by using the

equation for M, from the Luenberger observer, because the PI observer is included
in the Luenberger observer. The Luenberger matrices related to the PI observer are
given by

D=[A=~C ~J

G=[~J
P = [K OJ

E=[~J
(3.17)

V=o

The following result is proved in Appendix C.
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Figure 3. PI-observer.

Lemma 6
The recovery matrix is given by

M,(s) = P(sl- D)-'G

= SK[S21- s(A - FC) + HCj-'B

M, could also be interpreted as the transfer function between u and u'.

1189

( 3.18)

Lemma 7
Exact recovery is achieved if and only if one of the following conditions holds

(i)

(ii)

M,(s) = 0

([A=~C ~] I 1m [:]) C ker [K OJ
(3.19)

The result is again an immediate consequence of Theorem I.
Note that the recovery matrix given in Lemma 6 might equal zero in the steady

state (s -> 0). We denote this as time recovery. The conditions for time recovery are
given in the following lemma.

Lemma 8
Time recovery is obtained if and only if the I observer gain H satisfies

1m B C 1m H + A(ker Cnker K) (3.20)

For the proof, see Appendix C.
This steady-state property of the PI observer indicates some advantages in the

LTR design in comparison to a normal full-order observer. However, the design of
PI observers is not simple (Beale and Shafai 1989, Shafai and Carroll 1985), and
therefore no systematic LTR design method for PI observers has been developed
until now.

PI observers have also been used in connection with LTR design by Beale and
Shafai (1989) and a sufficient recovery condition has also been found by Beale and
Shafai (1989):

(sF + H)(sl - C(sl- A) -'(sF + H)) -, = B(C(sl- A) -I B) -, (3.21)
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This condition can be derived from the original Doyle-Stein (Doyle and Stein
1979, 1981) sufficient recovery condition for the normal full-order observer case by
substituting F + s -I H for F.

Note that the recovery condition given by (3.21) concerns only square systems,
and it is only satisfied in the steady state if the I observer gain is selected as
H = BW, where det (W) ~ 0, which is a reduction of the freedom in the observer
design compared to the necessary and sufficient condition in Lemma 8.

3.4. Minimal-order PI observers
PI observers also exist in a minimal-order form (see Shafai and Carroll 1985).

The equations for minimal-order PI observers have been given by Shafai and
Carroll (1985):

{t2 = (A22 - V2A12)i 2 + (AnV 2 - V2A I 2V 2 - V2A\I + A 21 + H2)Y}

+(B2 - V 2B I)u + H 2 w (3.23)

w = -(All +A I2V2) y - Blu -A12 i 2

where V2 is the P observer gain, H2 is the I observer gain and the partition of the
system (A, B, C) is given by (3.6).

The observer given by (3.22) is stable if all the eigenvalues of the matrix

R = [A22
- V2A12

H
2J (3.23)

-A ' 2 0

have negative real parts (Shafai and Carroll 1985).
As in the full-order case, the two gains V2 and H2 cannot be designed

independently, which complicates the observer design.
The minimal-order PI observer is also a Luenberger observer with the following

Luenberger matrices:

D = [A22 - V2A I2 H0 2J-A 12

G = [B2
- V2B 1J
-B,

P~IK OJ [~_. :]

(3.24)

V~[K 01 [~,]
K = [K I K2 ]

T=[=~2 ~J



LTR for general observer architectures 1191

The recovery matrix can now be computed for the observer by using the matrices
defined by (3.24) in (2.14).

Lemma 9

For the minimal PI observer, the recovery matrix is

M,(s) = P(sl- D)-'G

=sK2(S21- S(A22 - V2 A , 2) + H2A I2 ) - '(B2 - V2B,)

+ K2(S21- S(A22 - V2 A 12) + H2A 12) - 'B, (3.25)

The proof of Lemma 9 is omitted, because it is similar in spirit to the proof of
Lemma 6.

The following result is easily obtained by exploiting (3.20).

Lemma 10
The recovery matrix given by (3.25) equals zero in the steady-state if the I

observer gain H2 and the input matrices satisfy

(3.26)

From an LTR design point of view, the minimal-order PI observer is only
interesting for systems where B, = 0, i.e. cascade-connected systems, in which the
directly excited states have to propagate through the system before reaching the
output. If B1 # 0 the steady-state value recovery error will in general be different
from zero and therefore even asymptotic recovery will not be possible.

3.5. Q parametrized observer

The last observer type which is treated in this section is the Q parametrized
compensator C(Q) implemented as an observer-based compensator. The motiva­
tion for considering the Q structure lies in the powerful fact that it is possible to
parametrize all stabilizing compensators C( Q) for G(s) with an arbitrary
Q E fJt:tf 00' as has been pointed out by Francis and Doyle (1987).

3.5.1. Q parametrization. The derivation of the Q parametrization can be per­
formed in several ways. The normal way to find a Q parametrized compensator is
to start with a preliminary compensator that stabilizes the plant. Doyle has shown
one nice way to realize a Q parametriation by using an observer-based compensator
as shown in Fig. 4 (for further details, see Boyd et al. 1988). Thus, Fig. 4 illustrates
the class of all possible controllers which internally stabilizes the plant. It is
required that the state-feedback and the observer are stable. The basic idea in the
construction is that the transfer function from the terminals of the 'new' compensa­
tor Q is zero. Hence, the closed-loop transfer function becomes affine in Q, as
shown by Boyd et al. (1988).

Q(s) in Fig. 4 is a stable proper transfer function with the realization

'<'Q '. {:i<q =_ Aq xq + s, uq'" (3.27)
Yq - CqXq + Dquq
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Figure 4. Class of all stabilizing compensators.

e

y

Based on the equations for the full-order observer in § 3.1 and Q(s) in (3.27), a
state-space description of the composite system in Fig. 4 can be determined. With
state vector composed x, xq and e = x - i, the composite system yields

[
~ ]_[A- BK BCq
x q - 0 Aq

e 0 0

BK + BDqC] [X]
BqC xq (for r=O)

A-FC e
(3.28)

Equation (3.28) shows that poles for the state feedback, the observer and Q(s) can
be assigned separately.

3.5.2. LTR condition for the Q-based system. Before the recovery matrix M. is
determined for the Q-parametrized compensator, the observer is transformed into
the Luenberger form:

D=[A- FC 0 ]
BqC Aq

G=[~J
(3.29)

v= -Dq

T=[~J

Lemma 11
The recovery matrix for the above system is given by

M,(s) = P(sI - D)-'G

= KC])FB + Q(s)Cc])FB

where C])F = (sI - A + FC) -'.

(3.30)
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Figure 5. Model matching problem.
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A proof of this result is given in Appendix D.
At first glance the minimization of M, seems to have become more complicated

by the introduction of O(s). However, the minimization of M, in Lemma II now
has the form of a standard Jf co model-matching problem (if the infinity-norm is
used instead of the 2-norm), where the constant observer gain F and O(s) are the
design parameters.

The model matching problem is shown in Fig. 5 where the transfer matrix Tzw
represents a 'model' which is to be matched by the cascade TzuOTew of the two
given transfer matrices Tzu, Tewand the 'controller' 0 which are to be designed. It
is assumed that Tzw, Tzu and TewE [JpJf co and it is required that 0 E [JpJf co ' Thus the
four blocks in Fig. 5 represent stable linear systems.

The model-matching criterion is to satisfy the following (Francis and Doyle
1987):

(3.31)

where y > 0 is the prescribed matching level. Thus the energy of the error z is to be
within the specified bound for the worst input w of unit energy. An equivalent
criterion for (3.31) is (Francis and Doyle 1987):

(3.32)

It is now simple to see, using Tzw= KCIlFB, Tzu = I and Tew= CCIlFB (which are
all stable), that minimizing the infinity norm of M, is a special case of the
model-matching problem in Jf co »

Since Tzw is strictly proper, the Jf",/LTR formulated here always involve a
standard problem in which the direct feedthrough matrices does not have full rank,
i.e. a so-called singular problem. Therefore the well-known approach of Doyle et al.
(1989) cannot be applied. Instead, the approach of Stoorvogel (\989) and Stoor­
vogel and Trentelman (1990) must be taken. This problem has been solved by
Niemann et al. (1990 a). Here we briefly summarize the solution.

In order to formulate the result, we first need to introduce the following matrix
function:

(3.33)

Where y > 0 is a given constant specifying the desired recovery level. We assume
that (A, B, C, 0) has no transmission zeros on the imaginary axis. Under this
assumption, we have the following theorem.

Theorem 3

There exists an internally stabilizing FDLTI compensator O(s) which satisfies
(3.32) if and only if there exists a P ~ 0 satisfying

(I)
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(2)

(3)

(4)
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CP=O

rank 5 = rank B

(AF + Y-2PKTK, 5, C, 0)

is a minimum phase system.
Moreover, a feasible choice of controller is

Q(s) = K(sl - A F - GC) -IG

where G is any matrix satisfying

II K(sl- A F - y-2PKTK - GC) -1j~11"" < Y

(3.34)

(3.35)

The theorem has been proved by Niemann et al. (1990 a), who also showed that
for a minimum phase system, (I) -(4) of Theorem 3 is satisfied for P = 0, for all y.
For non-minimum phase systems, y has to be chosen sufficiently large. The proof of
the theorem is based on the work of Stoorvogel (1989), in which the conditions
( I) -(4) are reduced to the solvability of an algebraic Riccati equation. Hence, the
general non-minimum phase case is reduced to the solution of a reduced order
Riccati equation and the almost disturbance decoupled estimation problem (3.35),
which have both been thoroughly treated in the literature.

At first glance, the overall controllers emerging from the Jf""/LTR method
based on the Q observer structure appears to be of order 2n. Fortunately, however,
it turns out that the overall controller, i.e. the preliminary full-order observer
parallelled with the controller (3.34), can always be reduced to an nth-order
controller, which can be implemented as a normal full-order observer based
controller. This fact is reflected in the following corollary.

Corollary 2
Let G be as in Theorem 3, where y has been chosen sufficiently large. Then the

nth-order controller

C(s) = K(sl- A F - GC + BK)-'(F - G) (3.36)

when applied to the original plant (A, B, C) makes the norm of the recovery matrix
smaller than y.

This easy corollary has been proved by Niemann et al. (1990 a).
The requirement that y should be 'sufficiently large' refers to the fact that in the

non-minimum phase case, arbitrarily good recovery cannot in general be achieved.
However, y might be specified as any number greater than the theoretical infimum.
In the minimum phase case, y can be chosen aribtrarily.

As a result of Corollary 2, Jfco /LTR designed observers provide an attractive
alternative to the 'standard' LTR design methods, since the controllers are of the
same order. Furthermore, for both minimum phase and non-minimum phase
systems the Jf 00 based approach is more systematic in the sense that for a given
level of recovery, the controllers can be directly computed by the method described
by Niemann et al. (1990 b). This is in contrast to the usual iterative design
techniques. Stoustrup and Niemann (1990) proposed a more direct Jf",,/LTR
design approach in which the Jfco optimization problem is formulated directly for
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the recovery errors. Moore and Tay (1989) describe an approach using frequency
domain techniques. This method, though, suffers from the drawback that the
controllers are of order 2n for square systems and 3n - I otherwise.

4. Dual LTR condition
The general LTR condition developed in § 2.3 is expressed at the input-loop

breaking point. However, it is also possible to formulate LTR at the plant
output-loop breaking point (see Athans 1986, Goodman 1984, Stein and Athans
1987). By doing this, the target loop transfer is then the full-order observer transfer
GTFds):

(4.1)

where F is the target design.
Before working out the general LTR condition for the output-loop breaking

point, let us consider the dual Luenberger observer (Luenberger 1971).
The dual Luenberger observer is given by the following equations:

Z=DZ+MW}
w=y+C5z

u=Jz+Nw

(4.2)

where z elRP is the observer state vector. The dual observer matrices 5, D, M, J
and N satisfy

(i)

(ii)

(iii)

D is stable }

A5-5D=BJ

F=5M+ BN

(4.3)

The dual observer-based feedback system is shown in Fig. 6.
The feedback system in Fig. 6 is described by the equation

BJ + BNC5J [XJ
D+MC5 z

(4.4)

y

+ +
u

r
-0'-------1
+ 1 - L-__---'

Figure 6. Dual observer based feedback system.
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Introducing 1) = x + Sz and using z and 1) as coordinates yields the composite
system

(4.5)

which is the dual of (2.9), and again the separation principle holds for the dual
observer.

The full-loop transfer for the system in Fig. 6 at the output loop breaking point
is given by

with

Go(s) = C(J)(s) BC(s)

C(s) = N + (J + NCS)(sl- D - MCS)-'M

(4.6)

Equivalently, we define as follows the various kinds of recovery errors as the duals
of those described in § 2.2.

Definition 2
By the dual loop transfer recovery error Eo(s), the dual sensitivity recovery

error Es.o(s) and the dual input-output recovery error Elo.o(s), respectively, we
denote

Eo(s) = GTFL(S) - Go(s) }

Es o(s) = STFL(S) - So(s)

EIO.o(s) = GT.c'(s) - GO.cl(s)

(4.7)

By introducing the dual of M 1(s) in these expressions we obtain the following
lemma.

Lemma 12

Let the dual recovery matrix Mo be defined by

Then

Eo(s) = (I - GTFds»(I- Mo(s» -I Mo(s) }

Es.o(s) = MO(S)STFL(S)

E,o.o(s)= MO(S)STFL(S)C(J)(s)B

(4.8)

(4.9)

The proof of Lemma 12 is equivalent to the proof of Lemmas I, 2 and 3.
Therefore it is omitted here.

The recovery matrix M o possesses the same properties as M I , so these can be
exploited for M o and henceforth we have the following theorem.
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.. y

(4.10)

Figure 7. Dual recovery form,

Theorem 4

The exact dual recovery can be obtained if and only if one of the following
equivalent conditions holds:

(i) Es.o(s)=0 }

(ii) Mo(s) = 0

(iii) <D I 1m CS) c ker M

If D is non-defective, (i)-(iii) are all equivalent to

(iv) CSvi=Ovw;M=O, fori=I, ...,p

where Vi and w; are right and left eigenvectors, respectively, associated with the
eigenvalues A, of D, p = dim D.

The proof is omitted.
Finally, the feedback system in Fig. 6 can also be transformed into the recovery

form, or, more correctly, into the dual recovery form as shown in Fig. 7:

(4.11)

This formulation of the dual Luenberger observer shows that the coupling between
e and v' is minimized when recovery is achieved.

5. Conclusion
In this paper we have derived necessary and sufficient conditions for the exact

recovery problem as well as for the asymptotic recovery problem for general
observer architectures. Three types of recovery have been considered: open loop
recovery, sensitivity recovery, and input-output (or closed loop) recovery. For all
observer architectures, the exact (respectively the asymptotic) recovery problem has
been reduced to the problem of making the norm of the rational matrix M,(s) (i.e.
the recovery matrix) equal to zero (respectively 'sufficiently' small).

The minimization of the recovery matrix has been studied for various observer
architectures proposed in the literature. For all observer types we have character­
ized the observer parameters for which exact recovery is achieved. For full- and
minimal-order observer based controllers, these conditions have been further stud­
ied to yield necessary and sufficient conditions directly in the plant parameters for
solvability of both the exact and the asymptotic recovery problem.

For PI observers, conditions for time recovery have been given, i.e. conditions
for which the steady-state recovery error is zero. Conditions have been derived both
for full and minimal-order PI observers.
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(A 2)

(A 3)

(A I)

A special structure, the Q observer, introduced by Boyd et al. (1988) has been
considered. This general class of controller, which is based on the Youla
parametrization, has been shown to be a special form of the Luenberger observer.
Further, the minimization of the maximum singular value of the recovery matrix
with this architecture turned out to be a model-matching problem. Hence, the linear
fractional transformation appearing for Q parametrized controllers has been sim­
plified. The model-matching problem can be solved using some recent results, both
in the minimum phase and the non-minimum phase case. The resulting controllers
are of order at most n. The solution to the model matching problem appearing here
is thoroughly treated by Niemann et al. (1990 b), where results from singular JIf 00

theory are used.

Appendix A

Proof of Lemma I

GTFL(s) = KCI>(s) B

= (PT + VC)CI>(s) B

C(s) = V + P(sl- 0 + GP)-'(E - GV)

= V + P(I +(sl- D)-IGP)-J(sl_ D)-'(E- GV)

= V + (I + PCI>oG)-IPCI>o(E - GV)

= (I + PCI>OG)-I(V + PCI>oE)

G,(s) = C(s)G(s)

= (I + PCI>oG)-'(VC + PCI>oEC)CI>B

E,(s) = (VC + PT)CI>B - (I + PCI>oG) - J(VC + PCI>o EC)CI>B

=,(1 + PCI>oG)-J(PT + PCI>oGVC + PCI>oGPT - PCI>oEC)CI>B

= (I + PCI>oG) -'PCI>o«sl- D)T + GVC + GPT - EC)CI>B (A 4)

Using VC + PT = K in (A 4) we obtain

E,(s) = (I + PCI>oG)-JPCI>o(sT - DT + GK - EC)CI>B

and

E1(s) = (I + PCI>oG)-IPCI>o(sT - TA + TBK)CI>B

by using TA - DT = EC in (A 5).

E,(s) = (I + PCI>oG) -IPCI>o(T(sl- A) + TBK)CI>B

= (I + PCI>OG)-lpCI>oTB(I + KCI>B)

= M,(s)(1 + M,(s» -'(I + GTFds»

(A 5)

(A 6)

(A 7)
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Proof of Lemma 2

E.(s) = KcD(s) B - C(s)G(s)

= I + KcDB - (I + C(s)G(s»

SI' = 1+ C(s)G(s) = 1+ KcDB - E,(s)

= S.;:"JL(s) - M.(s)(1 + M,(S»-'ST~L(S)

= (I + MI(S»-'ST~ds)

and hence

which implies

1199

(A 8)

(A 9)

(A 10)

Appendix B

Proof of Theorem I

The first two statements are due to Goodman (1984).
Proof of (i) -ee- (ii). If M1(s) = 0 then Lemma 2 implies Es,.(s) = O. Assume

Es,l(s) = O. Now, the stability of A - BK implies that 1+ KcDB is non-singular and
therefore M.(s) = 0 by Lemma 2.

Proof of (ii) -ee- (io). First let the recovery matrix be rewritten in the residual
form as

A = diag (A." ..., A.p )

where A.i is the ith eigenvalue of D.

V=[v, ... vp ] , W=[w•... w p ]

with Vi' Wi scaled such that

VWH=WHV=I

It follows that

D=VAWH

and the recovery matrix can be rewritten as

M,(s) = f pviwr G
;=1 S -Ai

(8 I)

(82)

(83)

if 0 is non-defective.
If condition (iii) holds then (83) implies that M,(s) = O.
Assume M1(s) = O. Then (83) implies that

O=pviwrG foralli=I, ...,p (84)

Let (Xi E IRm and Pi E IR' such that (Xi = PVi and pr = wr G. Then (84) implies
(Xi pr = 0 which implies, using (8 I), either (Xi = 0 or pr = 0 (or both) for all i.

Proof of (i) -ee- (iii), Consider a formal series expansion of pes I - D) -, G:

P(sl- D)-'G = PG +s-'PDG +r2P D2G + ...
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P(sl- 0) -'G = 0 for all s if and only if all the coefficients of its series expansion
vanish. Thus,

PG = POG = ... = POP- 'G = 0

PIG OG ... oP-'G]=O

ImlG OG ... Op-'G]=OckerP

(0 I 1mG) c ker P

Where (0 I1mG) denotes the reachable subspace for the system (0, G). This
completes the proof of Theorem I.

Appendix C

Proof of Lemma 6

M,(s)=IK O][SI-~+FC ~~r'[:J

= K(cIlF- cIlFH(sl + CcIlFH) -'CcIlF)B

where cIlF= (sl- A + FC)-I

M,(s) = K(cIlF ' +r'HC)-'B

by using A-' -A-1B(C-' + OA-'B)-IOA-' = (A+ BCO)-'

M,(s) =sK(scllF ' + HC)-'B

Proof of Lemma 8
By substituting s = 0 in (C I) we obtain

M,(O) = 0

[
BJ [-A+FC -HJ1m 0 c COker IK 0]

1m Be 1m H + (-A + FC)(ker Cnker K)

1m Be 1m H + A(ker Cnker K)

(C I)

(C 2)

(C 3)

(C4)
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which proves the necessity and sufficiency of condition (ii) for achieving Es., (r) -+ 0
as t-+oo.

Appendix D

Proof of Lemma 11

M,(s) = P(sl- D)-'G

[ (
D"= [PI P2] sl- D

21

where

(0 I)

Define

PI = K+ DqC,

D,,=A-FC,

D21= -BqC,

GI=B

P2 = c,
D)2= Oq

D22= Aq

(02)

M,(s) = [PI OJ-I [BJ
IIlZ2' 0

= PI Ill" B - P211l22D2111l" B (03)

= Kill" B + DqCIIl" B + CqIll 22BqCIIl"B (04)

= Kill" B + (Dq + c, 1Il22Bq)CIIl" B (05)

= Kill" B + Q(s)CIIl" B (06)
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