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LQG DESIGN OF DISCRETE-TIME PI-OBSERVERS 

HANS HENRIK NIEMANN' and JAKOB STOUSTRUP' 
Mathematical Institute, Technical University of Denmark, Building 303, DK-2800 Lyngby. Denmark. 

ABSTRACT. 
Two vmions of the discrete-time Pmportional Integral (PI)-observer iuc inuodu- 
ced. The observers are given in a form which makes it possible to use standard 
LQG design techniques. Further, the PI-observers are applied in recovery design. 
where it is possible to obtain time recovery for t --f -. Loop Tmsfer Recovery 
(LTR) design methods based on LQG are derived fa the PI-observers. 

1. PRELIMINARY. 
The continuous-time PI-observer has been introduced in [Z] and later used in 
[6,8] in connection with LTR design. Time recovery has also been introduced in 
16.8). In the discrete-rime it is possible to derive two versions of the PI-obmer: 
A prediction PI-observer and a filtering PI-ohserver equivalent to the full-order 
observer case [4,5,7,1 I]. 

1.1 Discrete-time PI-observers. 
Consider the discrete-time FDLTI system Z represented by the state space 
realization (A.B.C): 

with the transfer function: 

G,(z) = C(ZI - A)-'B = CO,(z)B (2) 

Here x E P". U E P", y E ll" and A.B and C are matrices of appropriate 
dimensions. The system Z is assumed to be stabilimble. detectable and without 
poles or zeros at the origin. Funher. it is assumed that CB hiu full d. 

The two versions of the discrete-time PI-abservers are considered in the follo- 
wing. The discrete-time prediction PI-observer is equivalent to the continuous- 
time version. Therefore we can directly formulate the prediction PI-observer in 
the following state-space description: 

(3) 
(t.1) = h ( t )  + K(C2(t) - y(t)) + Wt) + Bdt) 
(t+l) = V(t) t H(Ci(t) - y(t)) E,: e u(t) = Fi(t) 

where z is the state estimate. 
The PI-observer internally stabilizes Z if and only if [6,8]: 

(4) 

The discrete-time PI-observer can also be formulated in a filtering version as in 
the full-order observer case [4.5.1 I]. In a prediction observer, the feedback signal 
u(t) is based on measurement signals up to the time 1-1, w h m  the feedback 
signal u(t) is based on measurement signals up to the time t in a filtering 
observer. 

The state-splre description of the filtering PI-observer can be derived from the 
full-order filtering observer by including an integral term: 

* K(Ci(t) - y(t)) Bu(t) BHt) 
H(C4(', - ~(1)) (5) 

u(t) = F&(t) + F,K(Cz(O - y(0) 

where F = F,A. 

For deriving systematic design methods for the Pl-observers. the observers are 
formulated in B more compact form. the dual of the PI-state feedback [l]: 
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1.2 Recoverv in discrete-time. 
First, the recovery matrix are introduced for the PI-observers. Second, time 
recovery are defined and conditions for obtaining time recovery with the PI- 
observers is given. 

Let the sensitivity recovery error be defined 3s the difference between the target 
design and the full-loop design. [SI: 

E&) - %(d - S&4 - S,(z)M,(z) (8) 

with M,(s) (the recovery matrix) given by: 

for the prediction PI-observer and 

= (Z-I)FAA+KC)~ZI(Z-I) -(A tK&z -l)-BHC)-'B 

for the filtering PI-observer. 

(9) 

Further. we deftne time recovery for discrete-time systems in the following way: 

Definition 1.1. Let MJz) be rhe recovery matrix. Time recovery is obtained if 
and only if; 

MI(1) = 0 (11) 

The significance of time recovery is that the recovery error tends to zero a3 t 
tends to infmity, E+) = 0, (it is slnight forward to show this. Necessary and 
sufficient conditions for obtaining time recovery is given in: 

Theorem 13. Time recovery is obtained with a prediction PI-observer if and 
only if the largest invariant subspace of the matrix (I-A-KC)-'BHC contained in 
the controllable subspace of the pair ((I-A-KCJ,, (I-A-KCf'B) corresponding to 
the eigenvalue I = 1 is itself contained in the unobservable subspace of the pair 

Proof. Omitted. 

Furlher, we have the following corollvy in connection to Theorem 1.2, which 
give a simple matrix condition to check for time recovery. 

Corollary 1.3. 
Let the Jordan normal form of rhe mrrix (EA-KC]"BHC be given by: 

( F. (I-A-KCr'BHC). 
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Where Jo contains all Jordan blocks associated with the eigenvalue z = I .  Then 
rime recovery is obtained if and only 

For the filtering PI-observer, the only difference is that the target design gain F 
in Thamm 1.2 must bc substituted by F,(A+KC). 

2. DISCRETETIME LOG AND LQGlLTR DESIGN. 
Applying the compact form of the PI-observers in (6). the LQG design is 
determined by the following Riccati equation: 

From the kist equation in (16) it can be seen direclly that CP,, has full nnk if 
and only if bbT = r, is positive definite. Moreover, r, is the only p a l  of r 
which has influence on H through P,? As in the continuous-lime case, we will 
obtain time recovery with LQG design generically. 

Discretetime LQG/LTR design is derived in the m e  way as for continuous- 
time systems [3,10], execpt that the design problem can be solved with a weight 
matrix X on the measurement signals e q d  to zero. Moreover, the solution to the 
Riccati equation with Z = 0 has been given in explicit forms in [91. 

LQG/L'IR design for full-order observer is computed by using r = BBT and Z = 
0, [4.11]. If the LQGLTR design of the PI-observers is done in the m e  way, 
we get (related io the Riccati equation in (14)): 

assuming (A.B,C) is minimum phase. Again. as in the continuous-time case, the 
integml effect vanish in the lri~ditioml LQGLTR design. However, by modifying 
r in (14) so the integd effect is preserved in the PI-observer, time recovery can 
then be obtained is the result. To do this, we first need the following result, 191: 

Lemma 2.1.The singular stationar Riccati equation ( Z = 0 ) is given by: 

P = APAT+I'-AXT(6C~-1CPAr (18) 

K = -AycL)-' (19) 

With r = LLT is the observer gain K the given by (for (A,L.C) minimum-phase): 

It is now simple to modify the LQG/LTR method, so ii is possible to handle the 
PI-observer suitable. 
Let's assume that (A,B,C) is minimum phase and let L be given by: 

The minimum phase condition for the system (4, L. CJ i s  

From (21) we have directly that I& must have all it's eigenvalues inside the 
unit circle for (A,. L, C,) to be minimum phase. 

Using r = UT with L given by (20) instead of L = B, as the weight matrix in 
lk. LQG/LTR design, result in the following observer gain by using Lemma 2.1: 

With L, = 0 in (22) we get the full-order LQG/LTR design. 

The integral weight L is now selected such that time recovery is obtained and 
the recovery matrix is minimized. 

The recovery mahix for the prediction observer in (9) together with the above 
obselver gain in (22) is now rewritten into a Taylor series: 

The last equation anived by using (A-AB(CB)'C)B = 0. 

An obvious choice for the integral weight L, is to use 
following recovery matrix: 

= I which gives the 

With this choice of L, we have: 

MA1) = 0, mnx M,(z) = 2 x mm +(z), M,&) = (25) 
Z 

where M,m is the recovery matrix for the full-order observer (L, = 0). In the 
minimum phase case. the discrete-time full-order filtering observer will always 
give exact recovery, [41, because F,(A+KC) = 0. The time recovery effect from 
the PI-observer is therefore unnecessary in this case. 
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3 Parameterization of All Periodic Covariance Controllers 
Define the following matrices 

rA(n)=rank[A(n)]  , r,(n)=(n,+n,)-rA(n) . ( l l c )  

Then the following Theorem presents the parameterization of all the 
covariance controllers which assign the given periodic covariance 
X(n). 
Theorem 2 

Suppose that the given periodic covariance X(n) is 
assignable, then the set of all contr@lers are parameterized by 
arbitrary matrices Z(n) E R(nu+nc) (n = 0, 1, ..., Tp-1) and 
arbitrary orthonormal matrices U(n)E Rrumu (n = 0, 1, .._. Tp-1) as 

+ Z(n) - B+(n)B(n)Z(n)M(n)M+(n) . 
For a proof of the above Theorem, see [lo]. 

Corollary 4 
In the case where B (n) and Mp(n) are of full rank. The 

freedom Z(n) ( n = 0 ,  1, ..., $p-l) in (12) disappears and G(n) is 
given by 

Corollary 5 
Suppose that the given Xp(n) is assignable via state feedback 

control and Bp(n) is offull rank, then the set of all controllers which 
assign this Xp(n) to the system is parameterized by arbitrary 
orthonormal matrices U,(n) E lRhXnu (n = 0, 1, ..., Tp-1) 

G(n) = B;(n)IL(n)Va,(n) 

where 

4 Example 
Consider the periodically time-varying system (1) with period 

Tp = 3, where the system matrices are given below. - -  
A(o)= Io 'I ; A ( I ) =  lo J ; A(2)= lo -1 '"I 1.2 ' . (16) -1 1 -1 1.1 

[P5] ; 

The covariance matrices of the input cyclo-stationary process 
wpG,n)  are 

(17) 
Firstly we consider the state feedback case. Let the steady state 
periodic covariance to be assigned be 

W(O)= 1 ; W ( 1 ) = 2  ; W ( 2 ) = 3  . 

14.1822 2.5932 . 

3.1675 0.6613 
x(2)= [ o m 3  i2.4794] ' 

Check the assignability condition (8). The norm of the left side of 
equation (8) is 0, 0 and 0.3553e-14 for n=O,  1. 2. Hence, the 
given covariance function is assignable numerically. In this case the 
dimension of the free unitary matrices U(n) is 1. By taking 

U(n)= 1 , n = 0 ,  1, 2 . 
we obtain the following state feedback controller which assigns the 
given covariance function (1 8) 
G(0) = [OS -0.51 ; G(1) = [0.2 -0.21 ; G(2) = [0.3 -0.31 , (19) 

and by taking 

U(n) = -1 , n = 0, 1, 2 . 
the control gain we obtain is different to (19). where 

G(0) = [lSOoO-1.13431 ; ( 2 0 d  

G ( l )  = [O.SOOO -0.69121 ; (20b) 

G(2) = [ 1.0333 -0.33891 . (20c) 

Hence the control gains which assign the same periodic covariance 
(18) are not unique. 

5 Conclusion 
For discrete periodically time-varying systems, the set of all 

assignable periodic covariances is characterized by two explicit 
conditions. The set of all the covariance controllers which assign the 
given assignable periodic covariance to the periodically time- 
varying system is parameterized with Tp arbitrary orthonormal 
matrices U ( n ) (n = 0, 1, ..., Tp-1). 
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