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Abstract 
This note considers the stability of uncertain matrices. It is 

shown that under certain structural assumptions on the uncer- 
tain matrices the Schur stability can be assured from comput- 
ing the numerical radius of the vertex matrices. This result is 
less conservative than that of using a simultaneous Lyapunov 
function method. Necessary and sufficient conditions are also 
obtained for the stability of a class of interval matrices. 

1 Introduction and Preliminaries 

In this note, Schur stability of uncertain matrices is considered. The 
results presented are based on some simple linear algebra facts. Nev- 
ertheless, they seem to give very reasonable robust stability criterion. 
To present these results, we shall adopt the following standard nota- 
tions. Co(S) denotes the convex hull of a set S .  The Euclidean norm 
of a vector x E C" is denoted by 11x11. Let A E C"'". Then A* denotes 
its complex conjugate, spec(A) denotes its spectral set, and p(A) de- 
notes its spectral radius. The induced 2 norm (or spectral norm) of 
A is denoted by 11A11. A matrix A E C""" is said to  be normal if 
A'A = AA'. 

Definition 1 Let A E C"'". The set 

F(A)  := {X'AT : x E C", llxll = l} 

is called the numerzcal mnge of A and the function 

r(.4) := max Ix'Axl 
ZEC", 11z11=1 

is called its numerical radius, 

The numerical range of a matrix A has the following properties 

Lemma 2 [7, S] Let A E C"'". Then 

(1) F ( A )  is Q compact and convex subset in  C .  

(ii) F (  w) = Re F (  A ) .  

(iii) spec(A) c F(A) .  

(iv) F(A)  = Co(spec(A)) if A is normal. 

(U) k IlAll I r(A)  5 114.  

(vi) p(A) 5 r ( A )  5 IJAl(. The equalities hold zf A is normal. 
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for some G,, H,,g;, h; where 6, E [L ,  6;]. In order t o  make this well de- 
fined, we assume ao+Czl 6,a;+C:;, 6,6,ai,+. . .+6162. . . 6ma12...m # 
0 for d l  6, E [h, &] 

Now define the vertex set of As as the matrices 

A,,, := { A s  : 6, E {&,6,}} 

Theorem 3 The uncertain matrix Ah is Schur stable if there exists 
a nonsingular matrix T such that ?-(TAT-')  < 1 for all A E A,,,. 
Moreover, if As is normal, then 

Proof. 
stability of Ab: we first note that, for each i 

To show that r(TAT-')  < 1 for all A E A,,, implies the 

Now, repeatedly applying the above results to  each i ,  we have 

m.sp(A) = maxp(TAT-')  5 max r(TAT-') = max r(TAT-') 
AEA4 AEA6 AEA4 4€AV.. 

which is the conclusion of the first part of the theorem. Finally if A6 

is normal, then i t  follows from Lemma 2 that 

U 

For the normal case i t  is easy t o  see from Lemma 2 that the un- 
certainty matrix As is (Hurwitz or Schur) stable if and only if  A,,, is 
(Hurwitz or Schur) stable. A similar result is shown in [14]. 

An immediate consequence of the above theorem is the following 
corollary. 

Corollary 4 The uncertain matrix A,- as Schur stable if there exists 
Q nonsingular matrix 1 such that IITAT-'II < 1 for all A E A,,, or 
equivalently there exists a P > 0 such that 

A'PA - P < 0 

for all A E A,,,. 

Proof. 
matrix T 

The conclusion follows from the fact that for any nonsingular 

p(A) = p ( T A T - ' )  5 r ( T A T - ' )  5 IlTAT'll 

Now let P = T'T. Then IITAT-'II < 1 if and only if A'PA - P < 0. 
U 

It is interesting to  note that the last condition is a discrete version 
of the so called simultaneous Lyapunov stability condition introduced 
in Boyd and Yang [3]. In addition, a numerical algorithm is given 
in [3] for finding a positive definite solution P which can not fail if 
such P exists. 
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It should be pointed out that the scaling matrix T in the above 
theorem is essential in improving the stability test. The results can 
be arbitrarily conservative without the scaling matrix. For example 

is Schur stable for any n since p(A) = infT r(TAT-’ j = infT 1ITAT-l [I = 
0. However, r (Aj  2 f IlAll = 5 can be arbitrarily large. 

Finding a T t o  minimize r(TAT-’)  for all A E A,,, is in general 
harder than to  find a T to minimize lITAT-’II for all A E Avex. Hence 
a suboptimal choice is to use the optimal T from the minimization of 
IITAT-’II in the stability test criterion r(TAT-’) for all A E A,,,. 

This will still lead to  a less conservative result than that of using 
((TAT-’II. 

It is also important t o  note that 

hence if min m TAT-’(I 2 2, then min m u  r(TAT-’) 2 1. In 

this case. we do not need to  compute the numerical radius of TAT-’ 
T A E X X I I  T AEA,.. 

since the test fails t o  assure the stability 

Next we consider the stability of a special class of uncertain matri- 
ces As which are called interval matrices. Let P = [p,,] and Q = [q,,] 
be n x n real matrices with (i,j)th elements pi, and q,, respectively. 
Let M(P,Q)  denote the following set of matrices 

Then the set M ( P , Q )  is called an interual matrix and is said to be 
Schur stable if p(A) < 1 VA E M ( P ,  Q )  where p( A )  denotes the spec- 
tral radius of A. 

It is easy to  see that interval polynomial problems are special cases 
of interval matrix problems. Hence it is conceivable that the interval 
matrix stability problem is much harder than the interval polynomial 
stability problems. In particular, the stability of the vertex matrices 
does not imply the stability of the interval matrices. However, under 
certain assumptions, necessary and sufficient conditions can be ob- 
tained for the stability of interval matrices. We will demonstrate this 
possibility by considering a special class of interval matrices. First 
we recall a matrix fact. A matrix A is called a nonnegative matrix 
if each element of A is nonnegative. Denote I AI the matrix obtained 
from taking the absolute value of each element of A,  i.e., (A(  = [laijl]. 
Then we have the following fact, see [7, p. 491). 

Fact 1 Let A E RnX”. Then p(A) 5 p(1AJ). 

Using this fact, we have 

Theorem 5 Let W = [wij] be a matriz with wij = max{~p,j~,~qi,~}. 
Then the interval matrdz M ( P , Q )  is Schur stable ifp(W) < 1. The 
converse is  also true if either one of the following conditions holds 

(i) 0 5 lpijl 5 qij holds for all i , j .  

(ii) 0 5 )q i j )  _< -pij holds for all i , j .  

The later part of the theorem can be regarded as an extreme point 
result since the necessary and sufficient stability condition is given in 
terms of the vertices of the interval matrix. Part of the results was 
also obtained by Shafai et ai [13] under the assumption of P and Q 
nonnegative which is much more restrictive. Some related results were 
obtained in [4] for the Hurwitz stability, see also the references therein 
for other related results. 

It is a trivial fact that  the necessary part (of course the suffi- 
cient part as well) of the theorem still holds under similarity trans- 
formation. Hence the above stability criterion applies to any interval 
matrices which satisfy either condition (i) or (ii) after the similarity 
transformation. For example, consider the following interval matrix 

1 [ 0.1, 0.3 ] [ -0.2, 0.1 ] 
M =  [ [ -0.5, -0.4 ] [ 0.5, 0.8 ] ‘ 

It is clear that  this interval matrix does not satisfy either condition 
(i) or condition (ii). However, after a similarity transformation, we 
have 

1 0.1, 0.3 [ -0.1, 0.2 ] [ -d ! I M [  -d ; I - ’ = [  10.4,  0.51 [0.5, 0.81 

which satisfies the condition (i). Hence the Schur stability of the 
interval matrix can be answered by checking the Perron eigenvalue of 

L 

(Actually, the Perron eigenvalue is smaller than 1, so the interval 
matrix is always Schur stable.) Of course, there are limitations to  
how much the similarity transformation can offer. 

In cases where the condition given above is not necessary, scaling 
methods as in the last section has to  be applied. 
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