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Abstract 

This paper considers robust performance analysis and state 
feedback design for systems with time varying parameter uncer- 
tainties. The notion of strongly robust %, performance crite- 
rion is introduced, and its applications in robust performance 
analysis and synthesis for nominally linear systems with time 
varying uncertainties are discussed and compared with constant 
scaled small gain criterion. It is shown that most robust perfor- 
mance analysis and synthesis problems under this strongly ro- 
bust H, performance criterion can be transformed into linear 
matrix inequality problems, and can be solved through finite 
dimensional convex programming. The results are in general 
less conservative than those using small gain type criteria. 

1 Introduction 

During the last decade, much progress has been made in the ro- 
bust control analysis and synthesis for linear timeinvariant systems 
with time-invariant uncertainties. In particular, the development of 
‘H, theory and structured singular value computation algorithms has 
greatly simplified the robust stability and performance analysis and 
controller design, see [3, 4, 5, 9. 101 and references therein. For sys- 
tems with time varying uncertaintics, some new results regarding the 
system robust stability have also been developed using the notion of 
quadratic stability, see [8, 1, 2, 11, 121. However, the robust perfor- 
mance problem for systems with time varying uncertainties has not 
been sufficiently explored. The most commonly used criterion in this 
case is the so-called constant scaled small gain condition [9]. This 
paper is motivated by the need t o  improve the results that can be 
obtained by the constant scaled small gain criterion. Our approach 
is closely related to the notion of quadratic stability and is a further 
extension of the results presented in [8, 1 ,2 ,  11, 12, 14, 151. 

In this paper we consider the notion of strongly robust ’K, per- 
formance. This is a natural generalization of the concept of quadratic 
stability and is related to  an analogous concept introduced in [14, 151. 
We consider linear time-invariant systems with real time-varying pa- 
rameter uncertainties which lie in a compact intervals. The main 
results of this paper show that both analysis and state-feedback syn- 
thesis problems can be reduced to finite-dimensional convex prograni- 
nling problems. 

2 Preliminaries 
Consider a linear time-varying dynamical system with a state space 
representation 

X = AAX + B A W ,  z(0) = 0 (1) 
z =  C A X  + D A W  (2) 

where A A ,  B A , C A ,  and D A  are continuous matrix functions of A ( t ) ,  
and A(t) E A is (possibly) a time varying uncertain matrix. The 
symbol A denotes a compact set of appropriately dimensioned matri- 
ces with a particular structure which will be specified later on. The 
function A ( t )  is assumed to  be a measurable function of t E [O, 03). 
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Definition 1 The system described by equations ( I )  and (2) with w = 
0 is said to be quadratically stable i f  there exists a symmetric matrix 
X > 0 such that V ( x )  = X ’ X S  is a Lyapunov function for the system, 
i .e . ,  V ( z ( t ) )  < 0 for all z # 0 and A E A. 

The key point here is that the Lyapunov function is fixed and 
is independent of uncertainty. It should be noted that this stability 
notion is quite reasonable since the uncertainty A ( t )  could be time- 
varying. Moreover this stability notion is useful even in the case of 
time-invariant real uncertainty due to the lack of better analysis meth- 
ods. This point will be further demonstrated in Section 5. 

Definition 2 The time-varying uncertain dynamical system described 
by equations ( 1 )  and (2) is said to satisfy strongly robust ‘H, per- 
formance criterion if ~ ~ D A J I  < t VA E A and them exists a constunt 
symmetric matrix X  > 0 such that 

Aa‘X + X A A  + ( X B A  + CA‘DA)R, ’ (BA’X + DA‘CA)  + CA’CA < 0 
( 3 )  

for all t 2 0 and A E A where RA = I - DA’DA > 0 .  

It is easy to see that if a system satisfies the strongly robust 31, 
performance criterion, then it is necessarily quadratically stable. This 
concept is also equivalent t o  a robust disturbance attenuation concept 
introduced in 114, 151. The strongly robust 3-1, performance criterion 
implies a standard ‘H, disturbance attenuation bound as shown in 
the following lemma. 

Lemma 3 Suppose that A is a compact set and the uncertain system 
in equations ( 1 )  and ( 2 )  satisfies the strongly robust ‘Hm performance 
criterion. Then the system is quadratically stable and them mists an 
6 > 0 such that 

l l 4 l 2  I (1 - ~)11W112. 

Proof. 

-Q A : = A A ’ X + X A A + ( X  BA+CA’DA)R,’ ( BA’X +DA’CA)+CA‘CA 

Then there exists a (sufficiently small) €1 > 0 such that for all A E A, 

RA := R A  - c 1 1 >  0 

Let V(z)  := d X z  and define 

and 

&A := 0 4  - (XBA + c ~ ‘ D ~ ) ( f l , ’  - R,’)(BA’X + D A ’ C A )  > 0 

It follows from the definition that the uncertain system is quadrati- 
cally stable. Furthermore, we have 

- (x’XZ)  d = - ~ ~ z ~ ~ 2 + ( 1 - ~ ~ ) ~ ~ w ~ ~ 2 - ~ ~ ~ ~ 1 ’ z [ R ~ ~ - ( B f ~ + ~ ~ ) z ] ~ ~ 2 - ~ ‘ ~ ~ z .  
dt 

If w E C2, then x E CZ, and integrating from t = 0 t o  t = cu gives 

11z11; - (1 - €1)11W11; = - ~ I R ~ ” ’ [ ~ A W  - ( B ‘ X  + D‘c)x]lli 
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Our objective in this paper is to derive some easily roinputable 
conditions for checking the satisfaction of the strongly robust H ,  
performance criterion for certain classes of uncertain systems. We 
shall also consider finding state feedback controllers to a.chieve the 
strongly robust H ,  performance criterion. The following result is a 
generalization of [i]. 

Theorem 4 Consider the umccrtain syslcm 

X = . 4 ~ X + B a l l ! f B z ~ U  ( 4 )  
i = C ' A X + D A W + D Z A V  ( 5 )  
y = x  ( 6 )  

arid suppose that there exists CL dynamic state ferdback controller 11 = 
I i ( s ) y  such that the closed loop system satisjcs the strongly robust 
7-1, performonce criterion. Then there exists a real matrix F such 
that with the static controller U = E'y ,  the closed loop system satisfies 
the strongly robust H, performance criterion. 

Proof. Suppose that there exists a dynamic state feedback controller 

i: = d i + U x  
U = P i + D X  

such that the closed loop system satisfies the strongly robust 'H, 
performance critelion. The closed loop svstein has the following state 
space representation 

[:] = ( [$ ; ;]+["a-.  ;I[: : : ] ) [ : ] + [ ? ] J j  

= - i [ ; ] + h  

= i .[:]+lIaIL 

By definition, thrre exists a .% > 0 such that 

J'X + X.4 + ( X B  t C ' D ~ ) I < L ~ ( E ' A '  t D ~ ' C )  t P C  < o (7) 

with R A  = 1 - DA'DA > 0. 
Define a matrix Mi and a matrix Y > 0 as 

and furthermore define 

x = 1r-I > 0, F = wy-1 

Then it can be shown using inequality (7 )  that X and E' satisfy the 
following inequality 

X(AA + B z A F )  + (AA + B2,F)'X 

+[KEA +(CA + D?AF)'DA]R,'[BA'X + D A ' ( ~ A  + D ~ A F ) ]  

+(('A + D2AF)'(CA + & A F )  < 0 

This implies that  the following system 

i = ( A A + B ~ ~ F ) x + B A w  
2 = (CA + DzaF)X + DAW 

satisfies the strongly robust 'H, performance criterion. In other 
words. U = F x  is a strongly robust 3-1, performance state feedback 
con troller. 

0 

3 Robust Performance of Uncertain Systems 

In this section, we slrall consider strongly robust H, performanre 
for n special class of uncertain systems. Suppose that the uncertain 
system admits a state-spac? realization in the following form 

where A A  = A t B , A C , ,  B A  = B t B b h C b ,  and CA = CtB,AC,.  For 
simplicity, we shall also assume that the uncertainty matrix A E A is 
real time varying and 

A = (blockdiag[dl(t)lk ,,..., 6,(t)lk,,,] : d , ( t )  E [4,,&]] 
For future references, we shall denote the vertex set of A as 

A,,, = {block diag[6llk,, . . ..d,Ih,] : 6, = & or b, = a,} 
It is easy to  see that, there are 2"' vertices in Avex. 

Remark 1 It is interesting to note that the uncertainty operator A 
can in fact be a nonlinear time-varying bounded operator and not 
necessarily linear time-varying gain matrix. As an example, consider 
a nonlinear uncertainty of the form 

where the nonlinear time varying functions g, (  t ,  qt), i = 1, . . . , q satisfy 

LV? 5 qtgi(t,vt) _< biq;. 

Then in this case, if we design a controller such that the closed 
loop system with the time varying uncertainty gain matrix A = 
diag(d1.. . , ,6,) with 6, E [&,6,] sat.isfies the strongly robust H ,  per- 
formance criterion, then the same statement holds for the nonlinear 
uncertainty as well. It is also important to  note that the operator 
A need not necessarily be uncertain for the aiialysis and synthesis 
approaches proposed here to  be applicable. These approaches may 
also be useful for systems with known but complicated operator A in 
order to  simplify the analysis and design. This is particularly true for 
the analysis and synthesis of nonlinear time varying systems. 

The following theorem is our main result of this section. 

Theorem 5 Consider the uncertain system described by cquations (8)  
and (9) .  Define 

Thwn the followiny statements are equivalent: 

R1 := I - Dll'Dll  

( i )  The system satisjes the strongly robust H ,  performance crite- 
rion. 

( i i )  RI  > 0 and thew exists an X = X' > 0 such that 

. 4 A ' s  +,I-.%, +(xB* +c*'D,, )R;'(B~'x + D, I'~a) +c,'c, < o 
for nll 4 E A,,, 

(iii) RI > 0 and there csisls an X = .Y' > 0 swch that 

+ [ ] < 0 

JOT all A E Avex. 

Proof. The proof for ( i )  ==+ (ii) is trivial since A,.,x c A and the 
implication of (ii) tj (iii) follows from Schur complement formula. 
To show (i i )  ===+ ( i ) ,  let us first ddine 
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AA'X + X A A  [ X B A  + C A ' D ~ I  CA' 

Since A appears linearly in &A, it is easy to see by convexity that 

max hmx (&A) = max Amax ( B A )  
A E A  AEA,., 

Tlus implies that QA < 0 VA E A if and only if 0~ < 0 VA E 
Avex. On the other hand, it is easy to see from the Schur complement 
formula that QA < 0 VA E A is equivalent to 

A A ' X + X A A  + ( X B A + C ~ ' D ~ ~ ) R ; ' ( B A ' X +  D ~ I ' C A ) + C A ' C A  < 0 

for all A E A, i.e., strongly robust 'H, performance criterion is sat- 
isfied. 

0 

Now the key point i s  that finding a positive definite symmetric 
matrix X > 0 such that condition (iii) holds can be done through 
conuez progmmmmg. In particular, the numerical algorithm described 
in [2] can be modified easily for this problem. 

Remark 2 In fact, the above results (and the results presented in 
the rest of the paper) apply t o  a much more general class of uncertain 
systems. For example, suppose the uncertain system matrices satisfy 
the following conditions: DA = Dll is fixed and, for each ti,, there 
exist appropriately dimensioned matrix functions E,, H,, and scalar 
functions a,, p, which are all independent of 6, such that 

Then it is easy t o  see that the following relation used in the proof is 
still true: 

A€ rnaxh,, A ( B A )  = A E A ~ ~ ~  max A,, (&A> 

Hence the theorem holds for uncertain systems satisfying the above 
con& tions. 

Remark 3 It is not hard to  show that for the class of uncertain 
systems considered above, the system matrices can be written in a 
matrix linear fractional form: 

for some matrices A, B1, BO, CI, CO, Dlo, D ~ o ,  Dm and A E A. Hence 
this problem can also be treated in the general linear fractional frame- 
work and the constant scaled small gain condition can be used as 
suggested in [9]. The advantages of these approaches will be further 
discussed in section 5. 

4 Robust State Feedback Control 

In this section, we shall consider state feedback controller design such 
that the closed loop system satisfies the strongly robust 'H, per- 
formance criterion. For technical reason, we shall only consider the 
following class of uncertain systems: 

X = AAX 4- B ~ w + B z ~ l l ,  A E A (10) 

z = C A X + D I I W + D ~ A U  (11) 
y = x  (12) 

where A A ,  BA,  &A, CA, and are any affine matrix functions of A 
as assumed in the last section and A is the same compact set defined 
in the last section. In fact, they can be more complicated matrix 
functions as pointed out in the last section. 

Theorem 6 Thcre exists a state feedback controller such that the 
aboce closed loop system satisfies the strongly robust U, performance 
crdterion if and only if R1 := I - D11'DI1 > 0 and thew ezist a matriz 
IV and a matriz Y = I" > 0 such that 

&12 Y C a ' f  W'Dza' 1 < O  

Q11 
(2 := -RI  0 
- [ Q12' 

-I CAY$DzAlY 0 

f o r  all A E Aver where 

all := YAA' + AAY + W ' B ~ A '  + & A ~ Y  
012 := BA -!- Y C A ' D ~ ~  + w'Dz~'D11 

Aforeover, the state feedback controller can be taken as a ronstunt gain 
as 

F =  WY-'.  

Proof. (=+) By Theorem 4, it can be assumed without loss of gener- 
ality that there exists F such that the closed loop system with U = Fr 
satisfies the strongly robust 3-1, performance criterion. The closed 
loop system can be written as 

X = ( A A + B ~ A F ) X + B A W  
z = (CA + D Z A F ) ~  + Diiw 

By the definition of strongly robust H, performance criterion and 
Theorem 5, there exists an X = X' > 0 such that 

~ ( A A  t &AF) + ( A A  + B ~ A F ) ' ~  + ( C A  + DzAF)'(CA + D ~ A F )  

+ [ X B A  + (CA + D ~ A F ) ' D I I ] R ; ~ [ B A ' X  + D I I ' ( ~ A  t DzaF)] < 0 
for all A E Avex. Now define 

Y := X-', W = FX-' 

Then the above inequality can be written as 

YAA' i- AAY + W'BZA' + BZA W + (YCA' + W'DZA')(CAY + DzAW-) 

+[BA + YCA'DII + w'Dza'Dn]R;'[Ba' + DII'CAY + DII'DzAW] < 0 

or equivalently < 0 for all A E Avex. 

(e) This follows easily by reversing the above steps and using 
the state-feedback gain 

F = W Y - ' .  

0 

This theorem shows that the problem of state feedback synthesis 
can be reduced to  searching for the matrices W ,  Y satisfying the linear 
matrix inequality above. The main point is that this matrix inequality 
is convex in W , Y  and thus convex programming techniques can be 
used to  solve for W , Y .  This result is similar t o  [l, 121. The above 
theorem can be simplified considerably if B ~ A , C A ,  and D ~ A  are $1 
intlepwdent of uncertainty A and furthermore Dll = 0. 

Corollary 7 Suppose Dll = 0,  BZA = B2,Ca = ci, and &A = 
D12. Define R2 := D12'D12 > 0 and let DL be any matrix such that 

Then thtre ezists a state feedback controller such that thr above closed 
loop system satisfies the strongly robust U ,  performance criterion if 
and only if there ezists an Y = Y' > 0 such that 

for all A E A,,, where 

Moreover, the state feedback controller can be taken as a constant gain 

F = -tl;'(D~2'C1 + B2'Y-I). 
as 
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Proof. 
X = X’ > 0 such that 

(==+) Similar to  the proof of Theorem 6, there exists an 

( A A  + Bz F)’X + X( A A  + Hz F )  + XBA Ba‘X + ( CI + Di?F)’(Ci + DizF) < 0 

for all ,4 E Avex. Now complete square with respect to  F to get 

( A A  - B ? R ; ~ D ~ ~ ’ C ~ ) ’ X  + X ( A &  - B ? R ; ~ D ~ ~ ’ C ~ )  

+Ci’(I - DIZR,’DI?’)CI + X B A B A ‘ X  - XBzR;’B?’A’ 

+ ( F  + R;l (D~z’C~ + B z ’ X ) )  ‘Rz ( F  + R;’(Diz‘Ci + &IS)) < 0 
Then we have 

( A A  - E?RTID~?’CI)‘S + ,\-(AA - B ~ R ; I D ~ ~ ’ c I ~ )  

+Cl‘([ - D ~ ~ R ; ~ D ~ ~ ‘ ) c ~  + X B ~ B ~ ’ , Y  - A ’ B ? R ; I B ~ ’ S  < o 
for all A E A,cx. Now define I‘ := .Y-’. We have 

Y ( A A  - BzR;’D12’C1)‘+ ( A A  - B z R ; ’ D ~ ~ ‘ C ~ ) Y  

tYCi’DlDl’ClY t B ~ R A ’  - BzRi’R2’ < 0 
or equivalently 

for all A E Avex. 

(e) This again follows easily by reversing the above steps. 0 

5 Comparison with Small Gain Type Crite- 
rion 

In this section, we will analyze the conservativeness of the proposed 
analysis and synthesis framework. In particular, we will compare the 
proposed method with constant scaled small gain type analysis and 
synthesis methodology, i.e., time varying p framework. We will focus 
on a simple class of uncertain systems where the system can be shown 
as in Figure 1 with 

A f ( . 9 )  := [$q 
and A = diag[61j f ) ,bz( t ) .  . . . . 6 , , L ( t ) ] .  We shall also assume that the 
uncertainty is normalized so that 6t = -6, = 1. i.e, l l ~ l l  5 1. 

Figure 1: Uncertainty Description 

Now define the constant scaling matrix set as 

7 = {block diag(Tl,T*,. . . ,Tm) : 0 < T, = T,’ E RklXk,} .  

It is clear that for any T E I and A E A, we have TAT-’ = A. 
By small gain type of criterion. the system is robustly stable and 
l lzl lz < IIw(J2 for all A E A if there exists an T E I such that 

By Bounded Real Lemma, the above is true if and only if there is an 
X = X’ > 0 such that 
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we have 

X B ~ A C ~  t C ~ ’ A ’ B ~ ’ X  5 X B ~ T - ~ ( T ’ ) - ~ B ~ ’ X  t C,,’T’TC~ (14) 

for all A E A. Using inequalities (13) and (14), we have immediately 

X( A t Bo ACo ) + ( A t Bo ACo)’A- t X B1 B1 ’X + Ci ’CI < 0, VA E A 

i.e., the strongly robust 71, performance criterion is satisfied. How- 
ever, it  should be pointed out that  the strongly robust ‘& perfor- 
mance criterion condition does not in general imply the constant 
scaled small gain condition. This should be clear from the fact that  
quadratic stability for systems with structured real time varying un- 
certainty does not in general imply the scaled small gain condition, 
see [ll]. Hence the proposed method is in general less conservative 
than the constant scaled f i  method. They are equivalent if A is an 
unstructured full real block. This fact is a generalization of an anal- 
ogous result on the equivalence between quadratic stability and the 
small gain theorem for unstructured real uncertainty [8], and follows 
essentially from [6]. For completeness. we shall give a very short proof. 
We need a matrix fact which is referred to as Finder’s Lemma, see, 
e.g., [13]. 

Lemma 8 Let P,Q, and R be n x n symmetric matrices and P 2 0, 
Q < 0, and R 2 0 .  Assume 

( ~ ’ Q z ) ~  - 4 ( z ’ P z ) ( z ‘ R z )  > 0 

for all 0 # z E 2“. Then there ezists a constant X > 0 such that 

P t AQ t X2R < 0 

Theorem 9 Suppose A = BRmX”, i.e., A = (A E EmX”, IlAll 5 1). 
Then the system satisfirs the strongly robust ‘H, performance crite- 
rion ij and only if there exists Q constant d > 0 such that 

Proof. The “if” part is obvious from the previous discussion. We 
only need to  show “only if” part. Suppose that the system satisfies 
the strongly robust 3-1, performance criterion, i.e, there exists an 
X = X’ > 0 such that 

X(A+BoAC‘o)+( 4+nuACo)’.Yt YBIR~’Y+C~‘CI < 0, VA E A 

or equivalently for all 2 E 72”. we h a w  

z ’ (XA  t A’X t XBIBI’X t CI’CI)~ < -2 max z’.YBoAC0z 

The maximum in the right hand can be computed easily and we have 

A 4  

z’( Y A  t 4’X t XBIBI’X t Ci’c’1)~ < -2Jz’XBoBo’Xzz’Co’Coz 

By Finder’s Lemma, there exists a constant d > 0 such that 

(XBnBn‘X) t d 2 ( X A  t A’X t XB1Bi’X t CI‘CI) t d4C0‘C0 < 0 

or equivalently 

d-’(XBoBo’X) + ( X A  t A‘X + XBiBi’X + Cl’C1) t d2Co’Co < 0 

i.e., 

The last inequality implies by Bounded Real Lemma that 

0 
We now show that the inequality (13) implies the strongly robust 
H, performance condition. To do  that, we note that for any T E 7, 



6 A Numerical Example 

111 this section, we shall use a simple example to  illustrate the results 
obtained in the previous sections. We shall adopt the notation in 
Section 4 and assume 

where 16;) 5 6 and 6i E R. The ellipsoid algorithm has been imple- 
mented here t o  soIve this problem. 

It is found that  the open loop system (without applying state 
feedback) is quadratically stable if and only if 6 < 0.548 and V(x) = 

1 
X‘XX with 

0.1214 0.0865 
x=[ 0.0865 0.1035 

is a Lyapunov function for 6 = 0.54. 

robust ‘H, performance if and only if 6 < 0.225 and 
On the other hand, the open loop system satisfies the strongly 

I 

1 

6.10309 5.04167 
5.04167 5.95436 x =  [ 

Y = [  

is a solution t o  the inequality (3) for 8 = 0.224. 
Finally there exists a strongly robust ‘H, performance state feed- 

back if and only if s < 2.618. In fact, we find a positive definite 
matrix 

0.0826 0.0156 
0.0156 0.0707 

which satisfies the inequality in Corollary 7 for 6 = 2.61 and this gives 
a state feedback law 

U = [ -12.635 2.7946 ] x 

which makes the closed loop system satisfy the strongly robust ‘H, 
performance. 

7 Discrete Time Systems 

Having discussed the robust performaqce problem for continuous time 
systems, a natural question to  pose is whether similar results hold 
in the discrete time case. In studying discrete time systems, one 
can use the bilinear transformation to  convert the problem into a 
continuous time problem. In the present setting, this transformation 
complicates the description of the uncertain matrices AA, B A ,  etc. 
Consequently, we e h d  address the discrete time problem directly. It 
is shown below that  the robust performance problem for an uncertain 
discrete time system can also be solved using finitedimensional convex 
optimization. 

Consider the discrete time uncertain system 

zk+l = AAXk -k BAWk &auk (15) 
Zk = CAxk i DaWk + &Auk (16) 
Yk = xk (17) 

where again AA, BA, etc are assumed to be affine matrix functions of 
A E A and A is the compact set defined in Section 3. 

To derive the discrete time results, we need a discrete time 3-1, 
norm characterization. 

Lemma 10 [5] Let G ( z )  = [SI be a stabZe discrete time sys- 

tem. Then ~ ~ G ( z ) ~ ~ ,  < 1 if and onZy if there exists a nonsingular 
matrix T such that 

or equivalently there exists a X > 0 such that 

Note that. the matrix inequality characterization of bounded real func- 
tion is equivalent t o  the following Riccati inequality characterization: 
there exists a X > 0 such that I - D’D - B‘XB > 0 and 

A’XA - X + (B’XA + D’C)’(I - D’D - B’XB)-’(B’XA + D’C) + C’C < 0 

Now we can introduce the definition of strongly robust ‘H, per- 
formance criterion for discrete time system. 

Definition 11 The time-varying uncertain dynamical system describeu 
by equations (15) and (16) with U = 0 is said to satisfy strongly 
robust ‘H, performance criterion if there exists a constant sym- 
metric matrix X > 0 such that 

[ A A  B A ] ’ [  x o ]  [ A A  B A ]  - [  x o ]  < o  
CA D A  0 I CA D A  O I  

for all A E A. 

We also need a simple matrix fact, which follows from the standard 
Schur coniplement result, t o  prove our results. 

Lemma 12 Let A be any square matrix. Then P > 0 and A’PA - 
P < 0 if and only if 

Now the following result is obvious. 

l’iieorem 13 Suppose AA, B A , C A ,  and DA are afine matrix func- 
tions of A E A. Then the uncertain system described by equations (15) 
and (16) with U = 0 satisfies the strongly robust ‘H, performance cri- 
terion if and only if there exists a X > 0 such that 

[ A A  B A ] ‘ [  x o ]  [ A A  B A ] - [  x o ]  < o  
CA DA 0 I CA D A  O I  

for all A E A,,,. 

The state feedback results can also be obtained analogously. 

Theorem 14 There exists a state feedback controller such that the 
system described by equations (15) and (16) satisfies the strongly m 
bust ‘H, performance criterion if and only if there exist a matriz W 
and a matriz Y = Y’ > 0 such that 

-Y 0 -(AAY + BzAW) -BA 
- ( C A Y + D Z A W  -DA < o  

-I O I  

0 -I [ - ( Y A A ~ ~ ~ ’ B z A ’ )  (~’CA’ + W’D~A’)  -Y 
-DA’ 0 

for all A E A,,,. Moreocer, the state feedback controller con be taken 
a s  a constant gain as 

F =  WY-’ .  



Proof. (==+) Note that the discrete version of Theorem 4 holds and 
Can be proved along the same lines, Hence it can be assumed without 
loss of eeneralitv that there exists F such that the closed loop systenl 
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By definitions and ~h~~~~~ 13, there a ,y = > 0 such that 

AA + B u F  cember 1991. 

[SI J. C. Doyle, A. Packard. and h‘. Z ~ I O U ,  “Rcview of LFTs, LMIs, 
and p,” Proc. ZEEE Conf. Dec. Chnfr . ,  Ilrig!iton, England, De- 

[6] M. Fu, L. Xie, and C. De Souza, “H, (‘ontrol of Linear Sys- 
tems with Time- Varying Uncertainty”, in C.’ot>hol of Uncertain 
Systems, eds. S. P. Bhattacharyya and L. H. Keel, Proc. 1991 
International Workshop on Robust Control, Sa t i  Antonio, TX, 

for all A E Avex. Now using Lemma 12, we have 

A A  t H ~ ~ F  

pp. 63-75. 

[7] P. P. Khargonekar, I. R. Petersen, and M. Rotea, “H,-Optimal 
Control with State-Feedback,’’ IEEE Tmnsactiorts 0 1 )  fiulomatic 
Control, vol. AC-33, pp. 786-788, 1988. 

-[-‘;I ;] - [  C4$DzAF’ 

A A +  BZAF BA 1’ 
C A + & A F  DA - [ -: :] 

Now the result follows by pre- and post- multiplying the above in- 
equality by [8] P. P. Khargonekar, I. R. Petersen, and K. Zhou,“Robust Sta- 

bilization of IJncertain Linear Systems: Quadratic Stabilization 
and H, Control Theory,” IEEE Trans. on Automatic Control, 
vol. 35, pp. 356-361, March 1990. 

1 0  0 0 I ]  

and define 
y := rl. M; = F S - ’  

[9] J .  Krause, B. Morton, D. Enns, G. Stein, J .  Doyle, A. Packard, 
“A general statement of structured singular value concepts?” 
Proc. American Contr. Conf., pp. 389-393, 1989. 

(-) This follows easily by reversing the above steps and using [lo] A. Packard and J. C. Doyle, “Structured singular value with re- 
the state-feedback gain peated scalar blocks,” 1988 ACC, Atlanta, June 1988. 

8 Conclusions 

In this paper we considered the robust performance analysis and state 
feedback synthesis for a certain class of uncertain systems with time 
varying parameter uncertainties. A notion of robust performance for 
system with time varying uncertainties ~ strongly robust H ,  perfor- 
mance criterion - was introduced. 

It was shown that for the class of uncertain systems considered 
in this paper the strongly 71, robust performance problem can be 
formulated as a convex programming problem and gives, in general, 
less conservative results than those using scaled small gain condition. 
Parallel results were also obtained for discrete-time systems. How- 
ever, the strongly robust H ,  performance problem is still unsolved for 
systems with general linear fractional uncertainty although we could 
immediately generalize our results to  some class of systems with linear 
fractional uncertainty as we did a t  the end of Section 3. 

[I11 A. Packard and J .  Doyle, “Quadratic stability with real and com- 
plex perturbations,” IEEE Trnns. Auto. Contr., Vol. 35, No. 2, 
pp.198-201, 1990. 
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