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Abstract

This paper considers robust performance analysis and state
feedback design for systems with time varying parameter uncer-
tainties. The notion of strongly robust Ho, performance crite-
rion is introduced, and its applications in robust performance
analysis and synthesis for nominally linear systems with time
varying uncertainties are discussed and compared with constant
scaled small gain criterion. It is shown that most robust perfor-
mance analysis and synthesis problems under this strongly ro-
bust Heo performance criterion can be transformed into linear
matrix inequality problems, and can be solved through finite
dimensional convex programming. The results are in general
less conservative than those using small gain type criteria.

1 Introduction

During the last decade, much progress has heen made in the ro-
bust control analysis and synthesis for linear time-invariant systems
with time-invariant uncertainties. In particular, the development of
Hoo theory and structured singular value computation algorithms has
greatly simplified the robust stability and performance analysis and
controller design, see [3, 4, 5, 9, 10] and references therein. For sys-
tems with time varying uncertainties, some new results regarding the
system robust stability have also been developed using the notion of
quadratic stability, see {8, 1, 2, 11, 12]. However, the robust perfor-
mance problem for systems with time varying uncertainties has not
been sufficiently explored. The most commonly used criterion in this
case is the so-called constant scaled small gain condition [9]. This
paper is motivated by the need to improve the results that can be
obtained by the constant scaled small gain criterion. Qur approach
is closely related to the notion of quadratic stability and is a further
extension of the results presented in [8, 1, 2, 11, 12, 14, 15].

In this paper we consider the notion of strongly robust Hy, per-
formance. This is a natural generalization of the concept of quadratic
stability and is related to an analogous concept introduced in [14, 15}.
We consider linear time-invariant systems with real time-varying pa-
rameter uncertainties which lie in a compact intervals. The main
results of this paper show that both analysis and state-feedback syn-
thesis problems can be reduced to finite-dimensional convex program-
ming problems.

2 Preliminaries

Consider a linear time-varying dynamical system with a state space
representation

& = Aaz+ Baw, z(0)=0 1)

Caz + Daw (2)

z =

where Aa, Ba,Ca, and Dp are continuous matrix functions of A(t),
and A(t) € A is (possibly) a time varying uncertain matrix. The
symbol A denotes a compact set of appropriately dimensioned matri-
ces with a particular structure which will be specified later on. The
function A(t) is assumed to be a measurable function of t € [0, c0).
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Definition 1 The system described by equations (1) and (2) with w =
0 is said to be quadratically stable if there ezists a symmetric matriz
X > 0 such that V(z) = 2’ Xz is a Lyapunov function for the system,
ie., V(z(t)) <0 forallz #0 and A € A.

The key point here is that the Lyapunov function is fixed and
is independent of uncertainty. It should be noted that this stability
notion is quite reasonable since the uncertainty A(t) could be time-
varying. Moreover this stability notion is useful even in the case of
time-invariant real uncertainty due to the lack of better analysis meth-
ods. This point will be further demonstrated in Section 5.

Definition 2 The time-varying uncertain dynamical system described
by equations (1) and (2) is said to satisfy strongly robust H,, per-
formance criterion if || Da]l < 1 VA € A and there exzists a constant
symmelric matrizx X > 0 such that

Ap'X + XAa+(XBa +Ca'DAYRN(Ba'X + DA'Ca)+ Ca'Ca < 0

(3)
Jorallt >0 and A € A where Ra =1— Da'Dp > 0.

It is easy to see that if a system satisfies the strongly robust H
performance criterion, then it is necessarily quadratically stable. This
concept is also equivalent to a robust disturbance attenuation concept
introduced in [14, 15). The strongly robust H, performance criterion
implies a standard M., disturbance attenuation bound as shown in
the following lemma.

Lemma 3 Suppose that A is a compact setl and the uncertain system
in equations (1) and (2) satisfies the strongly robust H.,, performance
criterion. Then the system is quadratically stable and there exists an
€ > 0 such that

lI2ll2 < (1 = €)llw]la.
Proof. Let V(z):= 2'Xz and define
—Qa 1= AA' X +X Aa+(X Ba+Ca’Da)R;N(Ba'X +Da'Ca)+Ca’Ca
Then there exists a (sufficiently small) ¢; > 0 such that forall A € A,
Ra:=Ra—I>0
and
Qa:=Qa~ (XBa+Ca'Da)R3' = RN Ba'X + Da’Ca) >0

It follows from the definition that the uncertain system is quadrati-
cally stable. Furthermore, we have

d . - -
7 XD) = =[P+ (=) lwlP -1 Rz Raw—(B' X+ D' C)el|*~='Qaz.
If w € L2, then = € £;, and integrating from t = 0 to t = oo gives

203 = (1 - en)llwl3 = ~||R3"*[Raw — (B'X + D'C)al?

o9 ~
- / 2(t)Qaz(t)dt < 0.
()
Thus,
Izl < vVI—ellwllz < (1 - e)lwll2
for some € > 0. o
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Our objective in this paper is to derive some easily computable
conditions for checking the satisfaction of the strongly robust Hs
performance criterion for certain classes of uncertain systems. We
shall also consider finding state feedback controllers to achieve the
strongly robust Ho, performance criterion. The following result is a

7

generalization of [7].

Theorem 4 Consider the uncertain system

# = Aar+ Baw+ Baau (4)
z = Caz+ Daw+ Dapu (5)
y =z (6)

and suppose that there exists « dynamic state feedback controller u =
K(s)y such that the closed loop system satisfies the strongly robust
‘Ha performance criterion. Then there exists a real matriz F such
that with the static controller uw = Fy, the closed loop system satisfies
the strongly robust Ho performance criterion.

Proof. Suppose that there exists a dynamic state feedback controller
i = Ai+ Bz
U = éi' + Dz

such that the closed loop system satisfies the strongly robust He,
performance criterion. The closed loop system has the following state
space representation

HER IR M BRIk

i

By definition, there exists a X > 0 such that
XX+ XA+(XB+CDARZHBX +DACY+C'C <0 (D)

with Rpa = I- DAIDA > 0.
Define a matrix W and a matrix Y > 0 as

w W) _[D ¢ Y Yl g
Wy We | | B AT 7 | Y ¥l

and furthermore define
X=v1'>0 F=wy™!

Then it can be shown using inequality (7) that X and ¥ satisfy the
following inequality

X(Aa + Baa F) +(Aa + BaaFY'X
+[XBa +(Ca+ DgaF)’Da]RZI[BA'X + DA'(Ca + D2aF))
+HCa + DaaF)(Ca + D2aF) <0
This implies that the following system

(Aa + BQAF)I + Baw
(Ca+ DapaFlz + Daw

z

1]

F4

1]

satisfies the strongly robust H., performance criterion. In other
words. v = Fz is a strongly robust M., performance state feedback

controller.
a
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3 Robust Performance of Uncertain Systems

In this section, we shall consider strongly robust He performance
for a special class of uncertain systems. Suppose that the uncertain

system admits a state-space realization in the following form
z Aaz + Baw (8)
Caz + Dpw (9)

i

z

i

where Ap = A+B,AC,, Ba = B+B,ACy,and Cp = C+B.AC.. For
simplicity, we shall also assume that the uncertainty matrix A € A is
real time varying and

A = {block diag[6y() 1k, .., 6m(t) k] 1 &i(t) € (&, 6]}
For future references, we shall denote the vertex set of A as
Avex = {block diag(é1lx,,....bnlk,): & =6 or & =&}

It is easy to see that there are 2™ vertices in A ex.

Remark 1 It is interesting to note that the uncertainty operator A
can in fact be a nonlinear time-varying bounded operator and not
necessarily linear time-varying gain matrix. As an example, consider
a nonlinear uncertainty of the form

& qi(tm)
& g2(t, 1)
=], | =an= :
&, 9q(1,7q)
where the nonlinear time varying functions g;(t.7;),7 = 1,..., ¢ satisfy

&n? < migilt,mi) < bl

Then in this case, if we design a controller such that the closed
loop system with the time varying uncertainty gain matrix A =
diag(8y....,8,) with §; € [6;,6;) satisfies the strongly robust M., per-
formance criterion, then the same statement holds for the nonlinear
uncertainty as well. It is also important to note that the operator
A need not necessarily be uncertain for the analysis and synthesis
approaches proposed here to be applicable. These approaches may
also be usefu! for systems with known but complicated operator A in
order to simplify the analysis and design. This is particularly true for
the analysis and synthesis of nonlinear time varying systems.

The following theorem is our main result of this section.

Theorem 5 Consider the uncertain system described by equations (8)
and (9). Define
Ry:=1-Dy/'Dyy

Then the following statements are equivalent:

(i) The system satisfies the strongly robust H, performance crite-
rion.

(71) Ry > 0 and there exists an X = X' > 0 such that
Aa' X +XAp +{(XBa+Ca'Di)RTHBA'X + D1/’ Ca)+Ca'Cs <0
Jor all A € Agy.
(#i) Ry > 0 and there cxists an X = X' > 0 such that
[/\/ OHAA BA]JF[AA’ 0”)( 0]
0 I 0 0 Ba' 0 0 7
cxpn <o

Ca’Cy
+ [ Di/'Ca

for all A € Ayey.
Proof. The proof for (i) == (ii) is trivial since A,ex C A and the

implication of (ii) <= (iii) follows from Schur complement formula.
To show (ii) == (i), let us first define



Apa'X 4+ XAx [ XBa+Ca'Dpy Ca' ]
Qa = Ba'X + D11'Ca _ R, 0
Ca 0 I

Since A appears linearly in Qa, it is easy to see by convexity that

(QA) = Jmax Amax (QA)

AEDvex

max A

AEA MAax
This implies that @4 < 0 VA € A if and only if Qa < 0 VA €
Avex. On the other hand, it is easy to see from the Schur complement
formula that Q5 < 0 VA € A is equivalent to

Ap'X + X Ap + (X Ba+Ca'Di)R;Y(Ba’X + D1y'Ca)+Ca'Ca < 0

for all A € A, i.e., strongly robust H,, performance criterion is sat-

isfied.
a

Now the key point is that finding a positive definite symmetric
matrix X > 0 such that condition (iii) holds can be done through
convez programming. In particular, the numerical algorithm described
in {2} can be modified easily for this problem.

Remark 2 In fact, the above results (and the results presented in
the rest of the paper) apply to a much more general class of uncertain
systems. For example, suppose the uncertain system matrices satisfy
the following conditions: Da = Dy, is fixed and, for each §;, there
exist appropriately dimensioned matrix functions E;, H;, and scalar
functions ¢;, 3; which are all independent of §; such that

Aa Ba | _ Ei+&H;
Ca 0 |7 oaitéf;

Then it is easy to see that the following relation used in the proof is
still true:

max Amax (QA)

ma.g Armas (QA) = A€Avex

A€
Hence the theorem holds for uncertain systems satisfying the above
conditions.

Remark 3 It is not hard to show that for the class of uncertain
systems considered above, the system matrices can be written in a
matrix linear fractional form:

 2]-[2 &)

G Dy
for some matrices A, By, Bg, C1, Co, D10, D10, Doo and A € A. Hence
this problem can also be treated in the general linear fractional frame-
work and the constant scaled small gain condition can be used as
suggested in [9]. The advantages of these approaches will be further
discussed in section 5.

Aa
Ca

Ba
Dy

Bo

DIO]A(I—DDOA)‘I[CO um]

4 Robust State Feedback Control

In this section, we shall consider state feedback controller design such
that the closed loop system satisfies the strongly robust H, per-
formance criterion. For technical reason, we shall only consider the
following class of uncertain systems:

T = Aar+ Baw+ Boau, A€EA (10)
z = Caz+ Dyyw+ Diau (11)
y =z (12)

where Aa, Ba, Baa, Ca, and Daa are any affine matrix functions of A
as assumed in the last section and A is the same compact set defined
in the last section. In fact, they can be more complicated matrix
functions as pointed out in the last section.
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Theorem 6 There ezists a state feedback controller such that the
above closed loop system satisfies the sirongly robust Hoo performance
criterion if and only if By = I1— Dy’ Dy > 0 and there exist a matriz
W and ¢ matriz Y = Y* > 0 such that

- Qll Q12 YCA'+ W'Dy’
Q= Q12 —Ry 0 <0
CpY + DsaW 0 -1
for all A € Ayex where
Qu = YAN +AsY + WBaa' + BoaW
Q12 = Ba+YCa D+ W'Dya'Dyy

Moreover, the state feedback controller can be taken as a constant gain
as
F=wy™l

Proof. (=) By Theorem 4, it can be assumed without loss of gener-
ality that there exists F such that the closed loop system with u = Fz
satisfies the strongly robust M., performance criterion. The closed
loop system can be written as

z

(Aa + BaaF)z + Baw

z (CA+D2AF).’D+ Dpw

By the definition of strongly robust H,, performance criterion and
Theorem 5, there exists an X = X’ > 0 such that

X(Aa+ BaaF) 4+ (Aa + BaaFY X + (Ca + Daa FY(Ca + DaaF)

+[XBa +(Ca + D2aF) D1 )Ry [Ba'X + D11(Ca + D2aF)) < 0
for all A € Avex. Now define
Y:i=X"' W=FXx"!
Then the above inequality can be written as
YAs'+ AaY + W' Bz’ + BoaW + (YCa' + W' Dya")(CaY + Doa W)
+[Ba + YCa' D1y + W Daa' D) R7 M Ba’ + Dit/CaY + Dyt DaaW] < 0
or equivalently @ < 0 for all A € A,.

(+=) This follows easily by reversing the above steps and using
the state-feedback gain
F=wy™.

a

This theorem shows that the problem of state feedback synthesis
can be reduced to searching for the matrices W, Y satisfying the linear
matrix inequality above. The main point is that this matrix inequality
is convex in W,Y and thus convex programming techniques can be
used to solve for W, Y. This result is similar to [1, 12]. The above
theorem can be simplified considerably if Bya,Ca, and Dy4 are all
independent of uncertainty A and furthermore Dy; = 0.

Corollary 7 Suppose D1y = 0, Boa = B3,Ca = Cy, and Dap =
D13. Define Ry := D12’ D13 > 0 and let D be any matriz such that

DLDJ_I =1 - D]zR;IDlz'

Then there erists a state feedback controller such that the above closed
loop system satisfies the strongly robust Mo, performance criterion if
and only if there ezists an Y = Y’ > 0 such that

[y o Y 01;, , [ BaBs'— B2R;'By
RS R P L R

for all A € Dyex where
i [

Moreover, the state feedback controller can be taken as a constant gain

as

0
<o

Ap — BoR;'Dyp'Cy O
D,'C, 0

F= —R;l(DlQ'C] + ley—l).



Proof. (=) Similar to the proof of Theorem 6, there exists an
X = X' > 0 such that

(Aa+B2FY X +X(Aa+B3F)+ XBaBa'X+(C1+ D12 FY(C1+ D12 F) < 0
for all A € Ayex. Now complete square with respect to F' to get
(Aa ~ B2Ry'D12'C1)' X + X(Aa —~ ByR3 ' D1/ C1)
+C'(I = D1aR; ' D12")C) + XBaBa'X — XByR7'By' X
+(F+ Ry (D12'CL+ B2'X)) 'Ro (F + Ry (D12'Ci + B2’ X)) < 0
Then we have
(Aa = BaR;'D'ChY X 4 X(Aa — B2R;'D1a'Ch)
+Cy'(I — Dy2R7 ' D12"YC + XBaBa'X — XBaR;'By'X <0
for all A € Avex. Now define ¥ := X~1. We have
Y(As — BaR;'D1a'C1) + (Aa — ByR;' Dyi'Cr)Y
+YCy'D1D'CY + BaBa' — BaRy'By < 0
or equivalently
SURE
for all A € Ayey.
(<=) This again follows easily by reversing the above steps. O

07 5 BaBa'— BaR;'By’ 0
1 jl A+ [ 0 _7 <0

5 Comparison with Small Gain Type Crite-
rion

In this section, we will analyze the conservativeness of the proposed
analysis and synthesis framework. In particular, we will compare the
proposed method with constant scaled small gain type analysis and
synthesis methodology, i.e., time varying p framework. We will focus
on a simple class of uncertain systems where the system can be shown
as in Figure 1 with

M(s):=

and A = diag[él(l').ég(l),‘..,6,,1(Q]A We shall also assume that the

uncertainty is normalized so that &; = ~§; = 1, i.e, ||A|| < 1.

z w

M(s)

Figure 1: Uncertainty Description
Now define the constant scaling matrix set as
T = {block diag(T1, Ty, ..., Tr): 0< Ti =T’ € R**5}.

It is clear that for any T € 7 and A € A, we have TAT™! = A.
By small gain type of criterion, the system is robustly stable and
[jz]l, < ||wll, for all A € A if there exists an T' € 7 such that

T O 7' 0
(o el 2
By Bounded Real Lemma, the above is true if and only if there is an
X = X’ > 0 such that

<1

)

XA+A'X+X [ BT By |[ BoT™' By ]’X+[ TCCI" ]’[Fccl“ ] <0
(13)

We now show that the inequality (13) implies the strongly robust
Heo performance condition. To do that, we note that for any T € 7,
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we have

X BoACq + Co'A'By'X < X BoT™HT')V 'By’X + Co'T'TC,y  (14)

for all A € A. Using inequalities (13) and (14), we have immediately
X(A+ BpACy)+(A+ BUACQ),X'-F X By B|IX+ Cy ,Cl <0, VAeA

i.e., the strongly robust M, performance criterion is satisfied. How-
ever, it should be pointed out that the strongly robust H., perfor-
mance criterion condition does not in general imply the constant
scaled small gain condition. This should be clear from the fact that
quadratic stability for systems with structured real time varying un-
certainty does not in general imply the scaled small gain condition,
see [11]. Hence the proposed method is in general less conservative
than the constant scaled y method. They are equivalent if A is an
unstructured full real block. This fact is a generalization of an anal-
ogous result on the equivalence between quadratic stability and the
small gain theorem for unstructured real uncertainty [8], and follows
essentially from [6]. For completeness, we shall give a very short proof.
We need a matrix fact which is referred to as Finsler’s Lemma, see,

e.g., [13].

Lemma 8 Let P,Q, and R be n x n symmetric matrices and P > 0,
Q <0, and R > 0. Assume

('Qz2)* — 4(z'P2)(2'R2) > 0
for all0 # z € R™. Then there ezists a constant A > 0 such that
P+AQ+AR<0

Theorem 9 Suppose A = BR™ ™ e, A = {A e R™*™ ||A|| <1}.
Then the system satisfies the strongly robust H., performance crite-
rion if and only if there exists a constant d > 0 such that

dl,, 0 L 0
IHECI

Proof. The “if” part is obvious from the previous discussion. We
only need to show “only if” part. Suppose that the system satisfies
the strongly robust H., performance criterion, i.e, there exists an
X = X’ > 0 such that

<1

oo

X(A+ BoACo)+(A+ BoAC)Y X+ XB I B'X +C'C; <0, VA€ A
or equivalently for all z € R™. we have

XA+ AX 4+ XBB/'X +Ci'C)z < =2 mag ' X BoAGyz
Ae

The maximum in the right hand can be computed easily and we have
Z(XA+ AX + XBB'X + Cy'Cy)z < =2/2'X BoBo' X 22/Co'Coz
By Finsler’s Lemma, there exists a constant d > 0 such that
(X BoBo'X) +d¥ XA+ A'X + XBiB'X + C1'Cy) + d*Co'Cy < 0
or equivalently
A" X BoBo'X)+ (X A+ AX + XBiB/'X +C/'Cy) + d*Co'Co < 0

ie.,

XA+AX+X [ Bod™t By |[ Bod™t By J'x+| 9 || 40 ) <o
Ci Cy
The last inequality implies by Bounded Real Lemma that

dl, 0 n 0
EECE R

20




6 A Numerical Example

In this section, we shall use a simple example to illustrate the results
obtained in the previous sections. We shall adopt the notation in
Section 4 and assume

0 1 1 2 01 _ |03
AA=|:_10 _w]+61[_1 1]+62|:0 1]7 BA—[ 1

0
B2A=[$], CA=[(1) g], Dn =0, D2A=[l]

where |6;| < § and §; € R. The ellipsoid algorithm has been imple-
mented here to solve this problem.

It is found that the open loop system (without applying state
feedback) is quadratically stable if and only if 6 < 0.548 and V(z) =
z' Xz with

P [ 0.1214 0.0865 }
0.0865 0.1035

is a Lyapunov function for § = 0.54.
On the other hand, the open loop system satisfies the strongly
robust Ho, performance if and only if § < 0.225 and

X = 6.10309 5.04167
T | 5.04167 5.95436

is a solution to the inequality (3) for § = 0.224.

Finally there exists a strongly robust Ho, performance state feed-
back if and only if § < 2.618. In fact, we find a positive definite
matrix

y - | 00826 0.0156
= | 0.0156 0.0707

which satisfies the inequality in Corollary 7 for § = 2.61 and this gives
a state feedback law

u=[-12635 27946 ]:

which makes the closed loop system satisfy the strongly robust He
performance.

7 Discrete Time Systems

Having discussed the robust performance problem for continuous time
systems, a natural question to pose is whether similar results hold
in the discrete time case. In studying discrete time systems, one
can use the bilinear transformation to convert the problem into a
continuous time problem. In the present setting, this transformation
complicates the description of the uncertain matrices Aa, Ba, etc.
Consequently, we shall address the discrete time problem directly. It
is shown below that the robust performance problem for an uncertain
discrete time system can also be solved using finite-dimensional convex
optimization.
Consider the discrete time uncertain system

Tr41 = AaZi+ Bawk + Baaug (15)
2ze = Cami+ Dawr + Dapup (16)
W = Tk (17)

where again Aa, Ba, etc are assumed to be affine matrix functions of
A € A and A is the compact set defined in Section 3.

To derive the discrete time results, we need a discrete time Ho,
norm characterization.

AlB
c|D

tem. Then ||G(z)|l, < 1 if and only if there ezists a nonsingular
matriz T such that

T O A B 771 0
0o I ¢ D 0 I
or equivalently there ezists a X > 0 such that
4 BY[x o][a B]_[x0]_,
¢cpj|o1I||lc D o 1<
Note that the matrix inequality characterization of bounded real func-

tion is equivalent to the following Riccati inequality characterization:
there exists a X' > 0 such that ] — D’D — B'XB > 0 and

Lemma 10 [5] Let G(z) = be a stable discrete time sys-

<1

AXA-X+(BXA+D'CY(I-D'D-B'XBy Y (B'XA+D'C)+C'C<0
Now we can introduce the definition of strongly robust H., per-

formance criterion for discrete time system.

Definition 11 The time-varying uncertain dynamical system describeq

by equations (15) and (16) with u = 0 is said to satisfy strongly
robust M, performance criterion if there ezists a constant sym-

metric matriz X > 0 such that
As Bal'[Xx 0][4a Ba]_[x 0],
Ca Da||0 I||Cs Da o 1<
forall A € A.

We also need a simple matrix fact, which follows from the standard
Schur complement result, to prove our results.

Lemma 12 Let A be any square matriz. Then P > 0 and A’PA —
P < 0 if and only if

_p-!

—A

Now the following result is obvious.

—-A
4]

Tueorem 13 Suppose Aa,Bp,Ca, and Da are affine matriz func-
tions of A € A. Then the uncertain system described by equations (15)
and (16) with u = 0 satisfies the strongly robust H., performance cri-
terion if and only if there exists a X > 0 such that

Aa Ba
Ca Da

‘[x 0][4s Ba] [x 0 0
0 I||cCs Da 0 1<

The state feedback results can also be obtained analogously.

for all A € Ayex.

Theorem 14 There ezists a state feedback controller such that the
system described by equations (15) and (16) satisfies the strongly ro-
bust Ho, performance criterion if and only if there ezist ¢ matriz W
and a matrizY =Y' > 0 such that

-Y 0 —(AaY + BaaW) —Ba

0 ' —(CaY + DsaW) —Da
—(YAs"+ W'Bya") (YCA'+ W'D3a') -Y 0
—Ba' —-Da’ 0 ~I

Jor all A € Aex. Moreover, the state feedback controller can be taken
as a constant gain as

F=wy~L.

<0



Proof. (==) Note that the discrete version of Theorem 4 holds and
can be proved along the same lines. Hence it can be assumed without
loss of generality that there exists F' such that the closed loop system
with ux = Fzj satisfies the strongly robust Ho, performance criterion.
The closed loop system can be written as

(Aa + BaaF)ag + Bawk
(Ca + DaaF)z + Dawk

Tp =

1]

2k

By definitions and Theorem 13, there exists a X = X' > 0 such that

Aa+BaaF Bal'[X 0 As+ Boal BA]—[X 0]<0
Ca+ DoaF Da 0 I || Ca+DwaF Da 0 1

for all A € Avex. Now using Lemma 12, we have
[X'l U} __liAA-*-BzAF BA]
| o I Ca + DaaF Da
1] <0
Aa + BaaF Ba _ X 0 ]
" Ca+ DaaF Da 0 I

Now the result follows by pre- and post- multiplying the above in-
equality by

I 0 0 0
07 0 0
00 X1 o
00 o I
and define
Yi=X' W=FXx!

(<=) This follows easily by reversing the above steps and using
the state-feedback gain
F=wy™"

8 Conclusions

In this paper we considered the robust performance analysis and state
feedback synthesis for a certain class of uncertain systems with time
varying parameter uncertainties. A notion of robust performance for
system with time varying uncertainties — strongly robust H,, perfor-
mance criterion - was introduced.

It was shown that for the class of uncertain systems considered
in this paper the strongly H., robust performance problem can be
formulated as a convex programming problem and gives, in general,
less conservative results than those using scaled small gain condition.
Parallel results were also obtained for discrete-time systems. How-
ever, the strongly robust H,, performance problem is still unsolved for
systems with general linear fractional uncertainty although we could
immediately generalize our results to some class of systems with linear
fractional uncertainty as we did at the end of Section 3.
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