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A CACSD PACKAGE FOR H_ AND LTR DESIGN
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A CACSD Matisb package for 30, 3{, and Loop Transfer
(LTR) design and reisted methodsAools is presested. The 3¢, and 3{ design
methods are implemented in the most general form (i.e. the singular
where a0 conditions are imposed on the direct tenms in the controlled systems. The

bl

i the Matlab standard way. The namerical methods for the .m fanctions are also
described.

1. INTRODUCTION.

Today, one of the most popular ways 10 make new theoretical results in
the field of control systems available, is by i ing the results in namerical
programs on standard control software platforms. One of the most wsed standard
control software packages is the MATLAB program from MathWorks [22]. Several
control toolboxes have beea developed, commercial as well 2s non-commercial, for
the MATLAB package.

In this paper we present a non-commercial CACSD (Computer Aided
Controller System Design) package, based on the MATLAB program, for 3, and
3, design, LTR design and related methods. The control package is developed in
the last two years in close connection with our theoretical research, especially in
the field of LTR design, {13,18]. With this purpose in mind, only stae space
methods have been implemented for the 3, and 9{_ problems. For alternative
approaches the present toolbox comply 10 a wide extent with existing toolboxes.
The specialized solution algorithms have been implemented, however, in order to
threat specific namerical difficulties related 10 the design problem dealt with,

The woolbox is a result of a theoretical research in the field of L'TR
design methods, especially those based on 3, or 3 optimization. Using a
systematic description of the LTR problem based on recovery emrors [13], the
related 3, and I standard design problems are in general singular, i.e. the direct
feedthrough terms does not necessarily have maximal rank. Normally, one of the
direct feedthrough terms will be zero and the other terms depend on the specific
LTR design problem formulation, {13,18). Singular 3{, or 3{_ problems can be
solved in two ways: Perturbing the direct feedthrough terms and esintg the regular
theory developed by Doyle et.al. [6) or using 2 method which explicitly takes care
of the singularity in the direct feedthrough terms. Such a method has been derived
by Sworvogel [16,17] called the singular 3 approach. Our 100ibox is based on the
singuiar approach due 10 the need of explicit solwtions in the LTR design cases.
Moreover the regular approach is also incleded in the singular case as a special
case [16,17]. As a comparison, the two Matiab toolboxes by Balas etal. [1) and
Chiang and Safomov [4] arc only based on the regular 3{, or 3{_ approach.

The . fanctions are divided into two main groaps. In the first groop the
general .m fanctions are collected. Here we have fonctions for: Solving Quadmtic
Matrix Inequalitics, (QMI, related 10 the singular approach), solving regular and
singular Riccati equations, almost disturbance decoupling problems, 3, and 3 -
norm caiculation. The second includes more special .m fonctions which are based
on the general functions and the functions avaitable in MATLAB. Here we have
functions for: Transformations between different controller comfigarations, 3, and
Kmﬁd:&ummﬂmmwlnadmﬁ,mdﬂt
optimization and fumctions for calculating transfer functions.

In this paper, we will first introduce the singular 3{_ approach and the
LTR design concept based on recovery emors. Afterwards, the structure of the
soolbox and the different functions will be described.

This paper is not written as a manual for the wofbox. The intention is to
give an overview of the facilities in the toolbox.

FOUR B| OB
The standard four block setup is shown in fig. 2.1, where w is the
exogenous input, u is the control signal, z is the cutput to be controlled and y is the
measured output. X, represents a generalized plant and Iy represents a controller.
Let the transfes function of the controlier X, be given by K(s). Then the
closed loop transfer function from w 0 z becomes:
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where T (5), T.(s), T,.(s) and T, .(s) are the open loop transfer functions from w
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(FDLTI) and, heace, can be represented by the following state-space realization:

1= Ax + Ba+ Bw
E:{y =Cx + D + Dw @
I-C,!‘Dn“bn'l

wherexe R.ue R we K,.ye Randze I

The design problem is to design a FDLTI controller u(s) = K(s)y(s), if possible,
such that a suitable norm of the resulting closed-loop transfer function from w to
z is smaller than a specified level.

In the following, it will be assumed that the diagonal terms in D (D,, and
Dy,) is zero due to the applied 31, and 3 design methods. The system I with all
non-2e10 D-terms can be transformed inko & new system I, with D, = D = 0
using Loop Shifting [16). Controller design for T can instead be derived for the
loop shified system I, ; without affecting the closed-loop H_ norm.

The four block problem setup allows directly to formulate control design
problems such as e.g. robust stability design, servo design, feedforward design, etc
in a simpie way and in the same setup.

Design methods based on the setup in fig. 2.1 are considered in next
section.

3. DESIGN METHODS.

In the following the singular 9 design method will be considered

followed by a short description of the LTR design principie.
The si
Consider & FDLTI system:

2= Ax+ Bu+ Bw, x¢P, uel welk
D:{y=Cx+ Dyw, yelt 3
= Cx+ Dy, tel

ﬂnnngulrwwnwﬂlbebuedmﬂ\emhsm[lﬂwmhmavuy
general approach, and in particular it does not impose any assumption on the direct
feedthrough term of the standard problem (the four block problem), as it has been
done in other approaches as for instance [6]. The general approach where nothing
ummmw'mummn-kmw
contrary (o the regular approach, where the direct foodshrough term has 1o have a
special form. The necessary preliminaries for the singular H_ method will be
introdoced in the following.
Our design probiems are as follows:
The 3(_ case.

We assume that y > O has been given. We wish 1o design, if possible, an
internally stabilizing FDLTT controller x = K{s)y suck thot the 3{, norm of the

resulting closed-loop transfer function from w 1o z is smaller than ¥.

Note that only saboptimal controllers is obtained in the 3, case, duc to
the problem formulation.

First, let’s define the following matrix functions:
ATP + PA + CJC, + Y?PER™P PB + D,
B'P + DiC, DD,

Ry - @

v Q =

AQ + QAT « EET + y3QC,C,Q QT + EDJ
C/Q + DBT DD
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LyPs) = [od-A-yEBY -B]
J[d-A-rici
M(y,Q9) <

G®) = Cfdl - A'B + Dy, Ht) = G - A'B + D,y

Asssmptioa 3.1.
ziaéwthalkmmMJ.C,D)-d(AE.C,D,)mnmm

Lemma 32,

Consider a system L whick satisfies Assumption 3.1. Let /¢, > 0 be given. Then,
there exists a FDLTT comtrolier u = K(s)y for whick the resulting closed loop
System is internally ssable, and for which the srangfer function from w 10 3 has 3(
norm smaller than Y, if end only if there exist P 2 0 end Q 2 0 for which:

T
® Kvn-[‘;"‘:]x[q, D,]20

e GYQ-[::]::[I: pgla20

mak Ky,P) = sormesak G
mak G(yQ) = sommk H

-{ll‘,z"f"? = 3 + aossemnk G, VseC

(© oenk{ M(y,Q%) G(v/Q ] >2 + mormemk H, Vs € C'

M pQ < ¥

The proof of Lesma 3.2 can be found in [16). We shall refer o condition (1) as
the Quadratic Matrix Inequality, and asy P 2 O satisfying (1) will be called a
solution 0 the Quadratic Matrix Inequality. Analogously we shall call (2) the Dwal
Quadratic Matrix Inequality, and refer 10 solutions of the Dwal Quadratic Matrix
Incquality sy Q 2 0 satisfying (2). Conditions (3) and (5) guarantees that a
solution o the Quadaatic Matrix Inequality is wnique and of minimal rank (and
dually for the Dual Quadeatic Matrix Inequality with (4) and (6)). (7) is a typical
3¢, coupling condition, which also appesss in [6].

The admissible controliers will be gives in the following in terms of the
matrices for certain wansformations of L. For this, we will need the following
matrices:

Ay = A + y'EBTP
C"IClOYW»

Mg = & + YT QCC,
B, = B *+ va-r'mieD,

B, = 0-1QOP'R, ~

where C,,, D, and E,, are given by Lemma 3.2.

We shall refer 10 the sysiem where A,, C, . C,, and D, substituie A, C;,
C, and D,y as the full information ransform of the system I. Substituting A, .
By Epq and Dy, for the cosesponding variables in previoss system will be
referred 10 a8 the full control Eansformation. Note thet the two sransformations are
totally independent in the 3, case. Moreover, only the matrices E, C,, D), snd Dy,

are chamged.
Now, consider the ransformed sysiem Lo

®

hn = Argirn * Bagig * Bro¥
Yoo |70 = Corta * Dov ©
e " Griea ¢ © Dien

The connection between the original sysicm £ and the transformed system is given
ia the following lemma:

Lemma 33,
Let' s use an arbitrary controller u = K(s)y. Thea, the following two siatements are
equivalent:

1. The controlier K{(3) applied on X is insernaily sabilizing and the resuiting closed
locp sranyfer function from w 10 3 is stricsly proper and has 3, norm < y_.

2. The comroller K(s) applied 10 the transformed sysiem I,y is internally siabilizing
::mww-—wmmwm,,umpmu
norm < Y.

In terms of the transformed system mafrices we can compute the desired
3C comtrollers. In this paper we will only look at full-order observer based
coniroliers, becamse a systematic design method exist for obtsining the specified
norms for the tcansformed system. However, it is not always necessary 10 wee full-
ovder contsoliers (or minisssl-osder contsoliers) especially if we don’t go 100 close
0 the infimally achicvable acrms.

Theerem 34.

Let Apg Byq and C;p be @5 above. Let L be @ siute feedback, such that Apg +
By gl is mable, and mch thet:

K Cyp + DL )l = Agg = Brgl)™'L. < YISy 0D
Let M be an owpst injection, such thet Ayg + MC, , is ssable and further:
Kl - Apg - MGy + MDQJL < § ®
where

§ = min{y/GID,LD, I, VI8, L1}
Then the controller:

® e L - A - Byl - MGy ®
makes the 3C, norm of the resulting closed loop irangfer function smaller than ..
The sigaificance of Theorem 3.4 is 10 transform the original €, or 3,

probiem 10 two disturbance aticnsation problems, which can be solved by well

known methods, see e.g. {16,17). A thosough, numerical analysis of this approach
is given in [14].

™

The LTR design method has first been introduced by Doyie and Stein (7]
as am agiractive design priaciple for full-order observer-based comtroliess.
Aferwards, the LTR principie has been comsidered in many papers, sce ¢.g8.
{48,10,15,18,19].

The LTR design method consists of two steps. First, a target static state
Second, a dysamic controlier (normally a full-order obsesver-based controller) mast
be desived such that the propestics from the target loop is recovered as well as
possible in the final loop (the LTR step).

The motivation for applying two steps design methods, is the extra
freadom available in-the target design compared 10 one shot methods as 3¢ or 3,
methods. The choice of design method for the static stase feedback is free. One
poasibility is t0 usc an optimization method for the calculation of the feedback gain,
are satisfied. Whea the target loop is secovesed in the LTR step, the conditions,
satisfied by the target loop will also be recovered 10 some extent in the final loop,
(but there is no guaramice how well in geseeal).

Let’s apply the LTR technique method for the controller design of the
standard fowr block problem ia (3). Fiest, the casc of full state information is
congidered, i.e. C, = 1, Dy; = 0, and a (targes) state feedback comtrolier K(s) = F is
designed. The closed-loop target wransfier famction is given by G, (s):

G yf®) = (C; + Dyl - A - BR)'E

Second, the LTR step is performed where in 2 dynamsic controller K(s) is designod
such that the closed-loop tranefier fumction G, (s) recover the target loop G,,, ,(s) 23
ﬂ-whnﬂbmﬁuwmm[m“
sre now sbie 10 formelate a fowr block LTR design problem.

ae)

Problem 3.8,

Let the warpet closed-loop trangfer funcion and the full-loop srengfer function be
given by G, J(s5) and G (). respectively. The closed-loop recovery error E(s) is
dcfined by:

B = Ouyle) - Oul) an
Find, f possibie, a FDLTI comtreller K(s) whick minindize & swisable norm or make
& suisable norm of the recovery error E, (s) swallcr than & specified level.



The recovery error in (11) has the following statc-space realization in the standard
four block setup (i.c. fig. 2.1):
+BF 0 0 B
oo =l o A]‘ ‘[3]"[3]' (12)
Fly=[{0o Gjx Dy, w
1=[GeDF Glx-Dyu
With this state space description of the recovery error E_(s), controllers designed
by 3, or 3{_ optimization sechmiques can directy be applied. This kas been done
in [18] whese the scasitivity and the closed-loop secovery desiga problem
solved by 3, optimization. The LTR design probiem formulated i Problem 3.5 has
mmwum.w:mm-wmw
by, (8]
z.{t-h*ﬂul’y a3
L {uw =Rz + Vy

where the Lueaberger matrices INP.R and V have 0 satisfy:

A e C
-JT = PG,

N=-TB

F = RT + VG,

a4

for some matrix T.
When the Luenberger observer based controller is applied, the recovery error in
Probiem 3.5 can be written in a more convenicnt form.

Lemma 3.6.
Define

Ms) = Rl - )'(TE - PD,y) - VD, as

Then
B,®) = GyM ), G o) = (C;+DP)sl-A-BF)'B+D,,

Proof. See [4). Lemma 3.6 is a generalization of the closed loop recovery error
functions derived in {13].

The matrix valued function My(s) plays a very central role in LTR design
of observer based controllers [4,13,19). Therefore we will refer o M(s) as the
recovery matrix.

Using the recovery error description as in Lemma 3.6, we get the
following central results:

16)

Lemma 3.7.
Assume that G, /(s) has full row rank for almost every s € Cand let the recovery
error be as in Lemwna 3.6. Exact recovery, i.e. E_(s) = 0, is obtained if and only
v".

MG) =0 an
Further, asymptotic recovery is possible if and only ¥f for all & > 0 there exist a
controller C (s) such that:

B O <c
or equivalently, if and only if for all £ > O there exists K, such that

Pl < &
§olyiscither [ebor[el.

Proof. Lemma 3.7 is wivial by obeerving that G, (s) depend only on the system I
and the target desiga F, not of the observer design.

To obtain a more general LTR design probiem than in Lemma 3.6, let's
introduce a FDLTI system, which is left investible (as a rational matrix) given by:

W) - Dv + C'(‘-A')"B' @0
It is farther assumed that I, is stabilizable and detectable. Now we apply W(s) as
a weight function for M(s).

Definition 3.8.

Let M/s) be the recovery matrix corresponding 10 & given Luenberger observer
based controller, and let W(s) be & trangfer function &s above. Then we define the
(general) recovery error E(s) by:

D) = W)

s

19)

@n

&t is important 10 note thet the LTR formulation in the version given in
Problem 3.5 does not include the same frcedom as the above LTR formulation
based on Lueaberger observers.

To make the LTR problem constructively, we will apply the Q-observer
[13] which gives the following recovery magrix:

M) = Fe-A-KC)'(B+KDy)
+ QEOC,(I-A-KC) B +KD,)+Dy)

where K is a preliminary observer design, Q, Q € 9, is the contxoller t0 be
designed. The recovery error in Definition 3.8 has the following state-gpace form:

e fae MR el

ys= +Dyw
= D,P F +Da

The above LTR desiga problem is a standasd problem where e.g. 3 or
3 optimization can be applied directly. However, by using the special structure
in (23), the 34, or 3{_ optimization can be simplificd, becanse some of the involved
equations get very simple [13,18]). This can be wsed both for simplifying the
computer programs for calculating the LTR contsollers sad aleo reducing the order
of the final LTR controllers.

If an optimization of (23) has been dome directly, the final LTR
controliers will be of order 2n + n,, (a full-order observer + Q(s)). Applying the
structure in (23), the final LTR controller can be reduced (0 order & + a, without
any approximations [13,18).

4, THE CACSD PACKAGE.

The MATLAB CACSD package [11] is described in the following. First,
the structuse of the package is considered followed by a description of the .m
fonctions inciuded in the program package.

(22)

3

4.1 The Program Structure.
The program package is build upon the standard .m functions in MATLAB together
with some new .m functions solving some central equations/mequalitics as e.g.
Quadratic Matrix Inequalitics, Riccati equations etc. Based on these .m functions,
some more special .1 fonctions are derived for solving more specialized problems
as c.g. different 3(/LTR or 3{/LTR desiga probieses, reguinr and singular 3{, and
3{_ design exc. The structare of the package and it’s commection with MATLAB is
showm in fig. 4.1. Nosw that both the gemcral and the specialized functions are
directly available to the user.

The .m functions in the two boxes will be described in the following two
sections.

42. Geseral .m Functions.
The following general .m functions shown in Table 4.1 are derived for

the CACSD package:

BRI

Tabic 4.1. Genesal fanctions in the package.

'l\ef-wnnirﬂ,mulcﬂnc-beqlndbﬁb.m

AL, +LA; +BBI =0

, @0
AL +LA + GG =0
The H,-norm of G(s) is the givea by [6]:
19.00)E = ¥ace(CLCY) = mece(BrLB) @9

with G(s) = C(sl-A)"B,.
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The function for caiculating the 3(_ norm of a stable system described
by £: (A,B,C)D) is based on the bisecion'algorithm in [2).
The algorithen is as follows:
1) Caiculate an wpper and an lower bound for the 3 norm, %, ¥,
2) =%+ W2
3) Form M, and calculate the cigenvalues of M,
4) If M, has no imaginary cigeavalees.y, = yelse 4 = 7.
5 :?. % > 25 goto 2

6) Outpwt .
where M, is given by:
Bz, -]
e [NYC-S 6, -AlchDa s
R = DJD,-v’L § = DD -v1

Note that 7 is calculated with a relstive accaracy of ¢. The wpper and
lower bounds for v in step 1 cam be calculated wsing Hankel singuiar values.
Another method can be found in (3).

In the ricc.m fumction the Riccati equation:

XA +AX +XRX +Q =0
is solved using Schar decomposition.

In the singric.m function the unique solution X to the following Riccati
equation:

XA + ATX - XBBTP = 0 28)
satisfying A - BB'X is stable, is calculated. H is assumed that A has no imaginary
axis cigenvaloes and that (A.B) is a stabilizable pair. The solution can be given
explicit by [18]:

X = @G T

where G, is the controflability Grammiae of (A.B) and IT is the orthogonal
mmx(Armx(A),uwammmof
A. The singular Riccati equation i (28) appears in LTR design, see section 4.3.

Two fenctions (one gencral and one for the total singular case, D = 0)
are available for calculating the solution of the Quadratic Matrix Incquality for the
system I given by:

5 t=Ax+ Bu+ Br,xeRuveR, wel!
“lzecx+ Du sel
such that the following three conditions are satisfied:

ATP+PA+CIC+y*PEETP PB+CTD [D:][c’ B30

B'P+«DTC D™
mk C, =p
(A+yEETPB,C,D,) is a minissum phese system.
The positive semidefinite solution for the Quadratic Matrix Inequality is derived by
wsing the algorithm in {12]. if y > O has been selected 10 small (in the 3 case),
mamanm-onauuwmmuw
by the function.

Fuonctions for loop shifting based on the equations in [16]) are
implemented in different versions depeading of one or both the diagonal clements
i D (D,, and D,,) are non-zero.

26)

@n

29)

(39)

@n

The factor.m function calcelste the factovization of a positive scoidefinite
matrix X:
X =YY @)

‘The function is wsed for calculation of the transformed system I, based oo the
solutions of the Quadratic Matrix Inequality and the Dual Quadratic Matrix
Inequality.

In the last step of calculating 3, or 3 controllers by using the singular
approach, iavolves solving one or two Almost Disturbance Decospling Problems
(ADDPs). Let's consider the minimum phase system I givea by:

n:{t-h» Bu+ Bw, xRl sl we k! 15 )]
2= Cx+ D el

The ADDP for X is to determine a state feedback gain u = Fx such that:
KC+DPI-A-BP)'E|_<¢ (349

where ¢ > 0 is specified.

The ADDP functions ase based on three different methods for design the
state feedback gain F which satisfics the norm inequality in (34). The applied
methods are LQ-design, Eigeastracture assignment [19] and goometric methods
(16.20,21). kt should be notod that the . functions only handic minimum-phase
systiems, although of it is also possible sometimes 10 solve the ADDP for non-
minimum phase sysiems, [20). The reason is that the ADDPs appearing in 34, or 3,
design are always relsted 10 minimum-phase systems.

4.3. Special . Fuactions.
The package inciudes different types of special m functions which are
listed in table 4.2,

Translation functions
M, and 3H{_ related functions
LTR related functions
Transfer function calculations

Table 4.2. The categories of special . functions.

The .m functions in the four groups are shortly described.

This first group of functions has been created as a compromise between
genenality of functions, the need for specific implementations, and 2 not too large
number of functions. For reducing the number of functions, the Luenberger
observer has been applied in every function as the comtroller, except in the
functions for design of specific controllers. The translation functions take care of
the caiculation of the Lucnberger matrices for a variety of specific controller types.
Functions for the following observer-based controllers has been derived:

Full-order observer-based controllers

Minimal-order observer-based controtlers

Q-observer-based controllers

Full-order P .observer-based controllers

Minimal-arder PI observer-based controllers
Both matrices for the normal and the dual Luenberger observer can be calculated
13).

Moreover, some functions for calculating discrete-time systems from
comtinuous-time systems and vice versa based on the Tustin approximation are also
included. ‘

The K, and 3 related functions is one of the two main groups of special functions.

Different functions for 3, and 3 controller design for the four block
standard setup described in (1) are available. In both the 3, and 3 case we have
fanctions for state-feedback, i.e. C, = | and D,, = 0, for observer design, ie. B =
Iand D,, = 0, and for full-order observer design. Further, depending of the design
problem, functions for regular design (i.c. the direct terms has maximal rank),
singular design and for totally singular design (i.c. the direct terms are zero), are
available. In the singular case (general) case there is no conditions on the direct
terms, 0 the singular case include the two other cases as special cases.

In the regular case, the functions directly give the matrices for the
controllers, whereas in the two other cases, the matrices for the transformed system
I, are caiculated. These matrices for £, can directly be applied for the ADDPs.
The gencral ADDP functions can be used directly in the state-feedback case and the
obeerver case. In the full-order controller case, ADDP functions, based on the
gomeral ADDP functions, arc awailable. In every 3, design function, v~ is
caiculated.

LR reisted functions:

The second main group of special functions is the LTR relased functions.
m functions for both “chassical” LTR design as well as for 3/ based LTR
fumctions are derived. In the group of classical LTR design methods we have:
LQGATR and ES/LTR (cigenstructure assignment based LTR [19]) design for both
fall-order as well as for mimimal-order observer-based controllers. Further, functions
for LTR desiga at both the input and the output Joop beeaking' point are available.

In the group of 3,/3(_ based LTR functions, we have both functions for
direct as well as for indirect LTR design. By indirect LTR design means an
optimization of the recovery matrix (oaly for observer-based comtroliers), whereas



direct LTR design is am optimization of a specific recovery emor, {18). The
functions available for 3¢/LTR and 3(/LTR desiga asc based both on Problem 3.5,
where the comtroller type is not specified, and the recovery exvor in Defimition 3.8,
where sa observer-based coatroller is applied. Further, LTR design based on some
specific choice of W(s) in (23) are also implemented. The specific LTR functions
are : W(s) = 1, (mdirect design) W(s) = S,y (s), (semsitivity recovery) and W(s) =
Gm(-)(mmmom)
mentioned above, the structure in the 3 and 3, LTR problems are

w-u.wumu-&ammmm
important, for getting more explicit expressions for the controller gains.
3, or 3 LTR design based on the recovery emor in Definition 3.8:

B@) = WelMs) (kL))
can be reduced 1o find the solution 10 a n,’th order Quadratic Matrix Inequality
2 .{&'M‘nv" 36)

¥ |2z = Cx, + Dm,

sad the wsual Dual Quadratic Matrix Inequality for I, in (23) of order n + n,.
Note that the Quadratic Matrix Inequality for E, is independent of 7 which mean
that sotvability of the corresponding H_ATR problem depend only on solvability
of the Dmal Quadratic Matrix Inequality for X,. Further, if D, is injective, the
wa.".l lity is equivalent with the singular Riccati jon given

AJP + PA, - PB(D;D)'BJP = 0

The "static-foedback” gain R in the Luenberger observer (13) can always be
determined as [18]):

R=(F -L] ()

where F is the target feedback gain and L, must satisfies an n,’th order ADDP. If
D, is injective, L, can be desermined as:

L - Dic,

which solves the DDP exactly.

An equivalent simplification can also be obtained when the 3 /LTR
design problem is based on the recovery error in (11), where the controller type is
not specified. This is applied in the implementation of the .m functions for this
LTR approach.

The outpat from the LTR .m functions is the controller matrices/gains,
if they cam be calcuiated directly/exactly (i.c. reguiar 3(/LTR, LQG/LTR etc.), else
the transformed system matrices (0 be applied for the ADDP design.

@n

(3%

In this group we have functions for calkulating different transfer
functions. Further, also the maximal and minimal singular values at specified
frequencies are calculated. Special functions are derived for calculation of transfer
fenctions related 10 the LTR design concept as c.g. the recovery matrix, the
recovery error, the target loop, the full-loop transfer function eic.

5. DISCUSSION.

The presented CACSD package for 3G, 3{_ and LTR design is based on
the singular /3 approach by Stoorvogel [16,17]. In [12] a numerical smdy based
on the 100ibox has been presenied.

The reason for using the singular approach is twofold. First, it is natural
10 select the singular approach, since the LTR design problems normally give rise
0 singular problems. By wsing the singular approsch, we avoid (0 pertarb the
system 10 make i regular. Secomdly, from a numerical point of view, we are
normally satisfied if we can find a reasonable solution by using the pertarbation
technique. It can been shown that the singular problem (state feedback) can be
solved by wsing the cheap control principie from a theoretical point of view.
Further, it has also been shown that the soletion for the cheap control problem will
converget 1o the solation of the equivalent Quadeatic Matrix Imequality. In [12] it
has been shown, however, that the numerical problems will spoil this convergence.

The main conclusion of our work, both in theoretical as well as in
practical (nusmerical) research, {12}, is that the singulas approach st always be
applied when the design probiem is singular. The cheap control principle should be
qxhedonlym the equivalent singular theory/aumerical algorithms are not

Cwmwuksbeage-mdonmain*mmdme
toolbox.
REFERENCES.
{1] G.J. Balas et. al. 1991: "u-analysis and synthesis toolbox, User's Giude",
The MathWorks, Inc., South Natick, MA, USA.

[2) S.P. Boyd, V. Balakrihnan and P. Kabamba,1989:" A bisection method
for computing the 3( morm of e trangfer matrix and related probiems”,
Mathematics of Control, Signals and Systems, MCSS, vol. 1 no. 2.

31 N.A. Bruinsma aad M. Stcinbuch, 1989:"A fast algorithm to compute the
3{ norm of a transfer function™, Philips Rescarch Laboratories Eindhoven, The
Netherlands.

4} B. Chen, A. Saberi and P. Sannuti,1993: "Loop Transfer Recovery:
Asalysis and design”, Springer-Verlag.

51 R.Y. Chiang and M.G. Safonov, 1990: "Robust Control Toolbox, User's
Ginde", The MathWorks, Inc., South Natick, MA, USA.

{6} 1. Doyle, K. Glover, P. Khargonckar and B.A Francis,1989: "State-space
solutions to standard 36 and 3, control problems", IEEE Transact. on Aut Control,
vol AC-34, no. 8.

m J. Doyle and G. Stein,1981: "Multivariable feedback design: Concepts for
a classical/modern systhesis™, IEEE Transact. on Aut. Control, vol AC-26, p.4-16.
81 D.G. Luenberger,1971:" An introduction to observers”, IEEE Transact,
on Aut. Controt vol. AC-16, no. 6.

9] 1.B. Moore and T.T. Tay,1989:" Loop recovery via 3(/3C sensitivity
recovery®, Int. J. Control, vol 49, p. 1249-1271.

(10} HH. Niemasn and J. Stoustrup, 1991: "A general HLTR design
problem”, Proc. 30th IEEE Couference on Decision and Control, Brighton, England.
[nn H.H. Niemann and J. Stoustrup, 1993; *The { and LTR Matlab toolbox,
User's guide", Mathematical Institute, Technical University of Denmark,

[12] H.H. Niemann and J. Stoustrap, 1993: "Regular vs. singular methods in
cheap 3 control: A numerical study”, 10 be presented at ECC-93, The Netherlands.
[13]  H.H. Nicmann, P. Segaard-Andersen, J. Stoustrup,1991:" Loop Transfer
Recovery for General Observer Architectures”, Int. J. Coatrol, vol.53, no. 5.

{14] E. Schijfs, 1990:"A smmerical analysis of the singular 3(, comtrol
problen”, Masters Thesis, Eindsovea University of Technology, Dept. Math. and
Comp. Sci., The Nethertands.

[15] G. Sein and M. Athans,1987:° The LQGI/LTR procedure for
multivariable feedback control design”, IEEE Transact. Aut. Control, vol AC-32.
(16] AA. Sworvogel,1992:" The I comrol problem: A state space
approach™, Prentice Hall, London.

[17) AA. Swoorvogei,1992:" The singular 3G comtrol problem”,
AUTOMATICA, vol 28, no. 3, pp. 627-632.

[18] J. Stoustrup and H.H. Niemann,1993:" State space solutions to the
3(/LTR design problem™, 10 appeas in Int. J. Robust and Non-linear Control,
19] P. Spganrd-Andersen,1989:" Loop transfer recovery - An eigenstructure
interpretation”, Control - Theory and Adv. Technology, C-TAT, vol §, no. 3.
[20] J.C. Willems,1981:" Almost invariant swbspaces: An approach to high
gain feedback design -part 1: Almost controlled invariant subspaces”, IEEE
Transact. on Aut. Control, vol AC-26, p. 235-252.

[21) WM. Wonham,1985: “Linear mudtivariable control: A geometric
approach”, Springer-Verlag, New York, third edition.

[22]  "MATLAB User s Guide" The MathWorks, Inc., South Natick, MA, USA.
w z
To
L] Y
5

Fig. 2.1. The standard four block problem.
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