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Abstract
In this paper we shall consider the ioo control prob-
lem using static output feedback. Recently, this prob-
lem was solved in the regular case. We shall extend
this result such that no assumption concerning the
direct feedthrough term in the 74, problem is made.
The main result states that the -43 static output
feedback control problem is solvable if and only if the
general flH, static state feedback problem is solvable
and, further, that a certain 'geometric Riccati type'
side constraint is satisfied.

1 Introduction
Frequently, static output feedback controllers are de-
sired in miscellaneous control engineering problems
and are sometimes implemented, mostly in ad hoc
design schemes. Whereas static state feedback con-
trollers and dynamic output feedback controllers are
quite well understood from a theoretical point of view
and have systematic design algorithms which are easy
to implement, nothing similar is true for static out-
put feedback controllers and there is a great lack of
feasible design algorithms for such controllers.

It is not clear what characterizes the closed loop
systems which can be obtained by zeroth order con-
trollers. Recently [1], the static output feedback
problem has been considered in an eigenstructure as-
signment approach, where some important proper-
ties of static output feedback controllers has been
recorded.

Under 'generic' conditions, a static output feedback
controller can assign at most r closed loop poles where
r is the smaller of (1) no. of states (2) no. of in-
puts + no. of outputs - 1, and the paper provides
an algorithm for assigning these poles, whenever it is
possible. There is no guarantee, however, that the
unstable poles are among the assignable ones, and
henceforth pole assignment strategies do not provide

sufficiently general, systematic design techniques.
It has not been clear at all how to generalize the

popular X2 and No,x control design techniques to
static output feedback systems.

Recently, however, a solution to the regular static
output feedback It, problem has been given [8], in
terms of simultaneous solvability of a Riccati inequal-
ity and a partial Riccati inequality (see below). The
approach in [8] was based on methods from the co-
variance control literature [5, 6, 4].
The main restriction in this approach, besides com-

putational aspects, is the technical assumption that
the direct feedthrough term from controllers to out-
put should have full (column) rank. In the present
paper we shall try to overcome this difficulty.

2 Preliminaries
In the sequel we shall consider systems of the follow-
ing form:

z = Ax + Biw +
Z = C1: +
y = C2X

B2u
D12u (1)

for which we shall study control laws of the form
2= Ky for constant K which solve the Iti, standard
problem [3].

For technical reasons we shall assume that this sys-
tem has no invariant zeros on the imaginary axis, i.e.

(A-iwl B2
the matrix ( C has constant rank for
all w, but we shall make no assumptions on the rank
of D12.
We need to introduce the kernel of C2 in terms of

the matrix V2 given by the singular value decomposi-
tion of C2.

C2=( Ul U2 g VI V2 (2)



The main result of [8] provides the solution to the
static output feedback 7o43 problem for the special
case where D12 has full column rank:

Theorem 1 Consider the system (1). The following
two statements are equivalent.

(i) There erists a matrix K E R.mxP, such that when
applying the static output feedback law u = Ky,
the resulting closed loop system is internally sta-
ble, and the 7O. norm from w to z is smaller
than 7.

(ii) There exists a positive definite solution P to the
following two inequalities.

AP + PA + C CG + <-2PB,BIP
-(PB2 + ClD12)R-'(PB2 + ClDl2Y- < 0

(3)
V.(A'P+PA+CICi+<Y2PB,B'P)V2< (4V2 ( P+P C -2B1 B1 )2 < ° (4),

where R := DI2D12 and V2 is given by (2).

In this paper we shall extend Theorem 1 to the
general case where no assumptions are made on the
rank of D12. To that end, we shall need the solution
to the so called singular 743 state feedback problem
which can be found in [9].

Consider the following state feedback system:

z = Ax + Biw+ B2u
z = Cix + D12u
Y = ;

(b) mnr = rank ( Cp Dp )

= maxrank (Cl(sI - A)'lB2 + D12)
see

(c) rank ( sI-A--y2BiBBP -B2
Cp Dp)

= n + m,r, Vs E C+

Whenever P > 0 exists satisfying the three condi-
tions (2a-2c) of Theorem 2 such P can be found by
solving a reduced order Riccati equation. Moreover,
it can be shown that P is unique (see [9]).

3 Main Results
In this section, we shall derive necessary and sufficient
conditions for solvability of the general ?4oo problem
by static output feedback control.

First, however, we need the following preliminary
result.

Lemma 1 Consider the system

z = Ax + Blw + B2u
z = Cl,,x + D12,cU
Y = x

(5)

The existence of state feedback laws for (5) is char-
acterized by the following result.

Theorem 2 The following two are equivalent.
1. There exists a state feedback gain F such that
A +B2F is stable and such that

II(Ci + D12F)(sl- A - B2F)-'B1jj|, < y

2. There exists P > 0 such that the following three
hold

(a) F(P) =
( FI1(P) F12(P)

F21(P) F22(P) }

=: (P )( Cp Dp ) >0

where

F1l(P) = A'P + PA + C1C
+y-2PBiB'P

F12(P) = PB2 + C DI2
F21(P) = B12P +D12CI
F22(P) = D'12D12

(6)

|Ci D12
where C1,, = 2I) and D12,-= (

Then the following three statements are equivalent.

1. There exists a static state feedback F for the sys-
tem (5) such that A + B2F is stable and such
that tI(Ci + D12F)(sI - A - B2F)-1Bl ||,, <y

2. There erists El such that for all E E (0; ei] there
exists a static state feedback F6 such that A +
B2F& is stable and such that

jj(Ci, + D12,eF)(sI - A - B2F4)-BBl|| <7

3. There erists el such that for all e E (0; El] there
exists P, > 0 such that

e2I + A'PC + P6A + CIC1 + 7-2PcBlBPC
-(Pr 2 + C'D12)JRC'(P6B2 + Cl Dl2)' < 0

where R := D12D12 + c2I

Moreover, the sequence P6 is convergent, P6 - P,
and the limit P satisfies conditions (2a-2c) of Theo-
rem 2.
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Proof. The equivalence of Lemma 1(2) and Lem-
ma 1(3) is the well known regular state feedback re-
suit. The equivalence ofLemma 1(1) and Lemma 1(2)
is a general 74O cheap control result. The proof of
the regular case carries through to the general case
without any basic changes. Finally, that P6 P,
where P satisfies Theorem 2(2a-2c) is proved in [7].
0

Lemma 1 states that in the general case, the well
known regular case Riccati equation [2] has to be sub-
stituted with the three conditions in Theorem 2(2a-
2c) as E -. 0. Our main result states that solvability
of the general If,, control problem is equivalent to
solvability of a generalization of the three conditions
in Theorem 2(2a-2c) along with a 'geometric' condi-
tion -of the same type as Theorem 1(4).
Theorem 3 The following two are equivalent.

1. There exists a static output feedback gain K such
that A + B2KC2 is stable and such that

II(Cl + D12KC2)$BiIl|, <y
$(s) := (sI - A -B2KC2)-

2. There exists P > 0 and W > 0 such that the
following four hold

(a) Fw(P)=( Fiiw(P) Fi2w(P)
KF21iW(P) F22W(P)}

(Cp Dp )>0
where

Fllw(P) = A'P+PA+ClwClw
-2PBIB'P

F12w(P) = PB2 + CGwD12w
F21w(P) = B'P+Di2wCCw
F22w(P) = Di2wDi1w

(b) mnr :=rank( Cp Dp )
= maxrank (Ciw(sI - A)-1B2 + D12w)

8EC

(I-A-g-2B1 B'P -B2(c) rank p Dp

- + mflnr, Vs E Ct
(d) W21(A'P+PA+ClCC-1+-2PBB1BP)V2 < 0

where ( w
I)12WI

( Ciw D12w )

( CCN+ W CDL2
ad Vg 2Cl Div2Den b

and V2 is given by (2).

Proof. First, we note that the existence of a K sat-
isfying Theorem 3(1) is equivalent to the existence of
K, such that A + B2K6C2 is stable and such that

II(ClGe + D12,cKrC2)4tBjIIoo <7 (7)

(:= (sI-A-B-fBKC2)-C
where Cl,, and D12, are defined as in Lemma 1.

This is seen by a cheap control argument. Define
|Ci .. D12

C1,0 0 and D12,0 := ( 0 ) . Then,

I|(Cl,o + D12,oKC2)(sI - A - B2KC2)fBi c,

= Ij(Cl + D12KC2)(sI - A - B2KC2)-'Bi |[,
Also, it is easy to see that

jj(C110 + Dl2,oKC2)(sI - A - B2KC2)-lB1 11c

< IK(Ci,, + Dl2n,KC2)(sI - A - B2KC2)' Bll||o
for all c proving that (7) implies Theorem (3)(1).
Conversely, assume that

I(C110 + D12,oKC2)(sI - A - B2KC2)-'Bl11j0,
=-6, 6>0

Stability of A + B2KC2 implies boundedness of
11(sI-A-B2KC2)'-BBlK =: M. Obviously, el
can be chosen such that

il(Cl,c + D12,6eKC2) - (C1,o + D12,oKC2)tl < 2M

for all c E (0;e1].- Hence, for all £ E (0;cl],

II(C1 + D12KC2)(sI - A - B2KC2)'B1 L,

= II(Ci,o + Dl2,oKC2)(sI - A - B2KC2)1'B1 IK
= IR(Ct + D12,LKC2)(sI - A - B2KC2) 1B1
-((Cl,o + D12,oKC2) - (Cl,6 + Dl2,6 KC2))

x(sI-A-B2KC2)-E'BiII,c < y - 6 + 2M <2M
Thus, applying Theorem 1 we obtain that Theo-

rem 3(1) is equivalent to the existence of El, P, > 0,
W, > 0 and K such that

2 ~ ~ ~

e I+A'P +PsA+C1C1 +<aP6B1B1P6

-~~~~~~~~(PBll)tlRB ll) -Wt (8)

V2'(A'PC +PA + C1C1 +72P Bi B Pt)V2 < 0 (9)
where R& := DI,2D12 + C2and V2 is given by (2), for
all c E (0; 61c

62

=. CIP
UP



In (8) W, is bounded from below by 0, but from
standard Riccati theory W, is also bounded from
above. In fact (8) is solvable for all e E (O;e1] if
and only if it is solvable also with the right hand side
substituted with W, W5 > W > 0 Ve E (O;61].
Now, rewriting (8) as

c2I + A'Pe + PeA + ClwC1w + -2PeBIBWPc

-(PcB2 + CiWDl2w)R1'(PcB2 + CIwD12) =0
where Clw and Dl2w are defined by

CiW'A
D12w}

( Clw D12W )

(CCI + W CLD12 )
VDI'2C1 1LY2D12

We are now in position to apply Lemma 1 with
F = KC2 to obtain that lim_.o P, = P, where P > 0
satisfies Theorem 3(2a-2c). Finally, Theorem 3(2d)
follows from (9) as e tends to zero from continuity
of the eigenvalues of a matrix as functions of the en-
tries, and sufficiency follows from uniqueness of P.
(Actually, the proof given here does not give strict
inequality, but this can again easily be obtained by
perturbation techniques as above.) 0

1. There exists a static output feedback gain K such
that A + B2KC2 is stable and such that

11C0i4(BT + B2KD21)1I. <7z

-=(sI-A-B2KC2)-1

2. There exists P > 0 and W > 0 such that the
following four hold

(a) Fw(P)= FIIw(P) Fn2w(P)

P(P ) p

where

Fllw(P) = PA'+AP+B,wBIw
+-2PCiClP

F12W(P) = PC2+BiwD1w
F21w(P) = C2P+D2lwBIw
F22w(P) = D21WD21W

(b) mnr:=rank ( Bp Dp )
= max rank (C2(sI-A)-'1%w + D21w)

8EC

To obtain W > 0 and P > 0 satisfying Theo-
rem 3(2a-2d) one has to iterate on W and 'y. For
'y sufficiently large and for W sufficiently small there
exist a unique P > 0 satisfying 2a-2c which can be
found by solving a reduced order Riccati equation
(see [9]). Once such P has been obtained, condi-
tion 2d has to be checked. If 2d fails, one has to
decrease W and/or decrease 7. This scheme will con-
verge if and only if there exists any stabilizing static
controllers at all, which might not be the case even- if
the system is stabilizable and detectable in the usual
sense.

Given such P a static output feedback gain can
easily be determined, either through a cheap control
method using the approach in [8] or by finding an
appropriate state feedback gain and solving a number
of linear equations.

Finally, consider instead the system

x = Ax + B1w + B2u
z = Cit (10)
y = C2x + D21w

By dualizing Theorem 3 we get the following result

Theorem 4 The following two are equivalent.

k~sI-A--2PC'Cl Bp(c) rank -2 Dp)

= n + mnr, Vs E C+

(d) ttl(AP+PA'+BB,+g2PCBCP)O2 <0O

where

( Blw
D12W

B,B'+ W
BD21BI

and U2 is given by

(B1W Dj4W )

B1JJ2
D21 D'21J

C2=( ul U2 ) (

4 Closing Remarks
Above we have provided necessary and sufficient con-
ditions for the existence of zeroth order fl,t con-
trollers. The result was given as simultaneous solv-
ability of a quadratic matrix inequality, two asso-
ciated rank conditions and a 'geometric' side con-
straint.
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The conditions are constructive in the sense, that
the corresponding static output gains are calculated
directly in terms of the matrix P found in the neces-
sary and sufficient conditions. The actual algorithms
to determine P depend upon solutions to reduced or-
der Riccati equations as described in [9] in combina-
tion with an optimization approach.
The main drawback of the suggested approach is

probably the involved computational aspects. It is
the authors belief, however, that the algorithmic com-
plexity associated with checking the given conditions
relate to the complexity of the problem itself rather
than to the specific approach taken.
The advantages of the present approach in compar-

ison to a perturbation method based on [8] are im-
proved numerical aspects along with the more direct
approach from a theoretical point of view.

Finally, the methods used above and in [8] are con-
jectured to apply equally well for X2 or LQG prob-
lems and the like, which is a subject for further re-
search.

[9] A. A. Stoorvogel, "The X=, Control Problem -
A State Space Approach", Prentice Hall, 1992.
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