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Abstract 

In this paper, the loop transler recover> (LTR) of P and PI observer-based controllers with 
two additional paths. direct output and output error feedback. are analyzed. \Ye highlight 
the major differences and report new results which complement previous rvaults in LTR 
theory. In particular, it is shown that proper modification of system striicture leads to 
automatic generation of the aforementioned paths having static qams. and EL'IH can be 
achieved by a modified full-order P observer eventhough Cfl is nor full rank. 

1 Introduction 
To design a controller for the system C. {A, B.  C }  by the LTK deagn methodology. we first 
determine astat ic  state feedback, the target design. which satisfies our design specifications. 
Based on the target (full-state feedback) design gain F for the system E, the target loop 
and sensitivity transfer functions are glven by 

respectively. Next the LTR step is performed in which we attempt to recover the target 
design over a range of frequencies by a dynamic compensator C ( s )  This step gives a full- 
loop. sensitivity transfer function of the form 

S / ( S )  = ( I  - C(s)G(s))-' (3) 

where GIs) represents the plant transfer function. 
A s  a measure of the quality of the recovery. we define the sensitivity recovery error by 

E S ( s )  = S T F L ( S )  - s/(S). (41 

This error is related to the so-called recovery matrix .\ll(s) given in [i] by the equation 

There are various approaches available for observer-based LTR design. Once an observer 
structure is specified all implementations fall into two main categories: those involving 
structural changes to the basic observer architecture and those not. A separate publication 
191 considers the latter class, more specifically LQG/LTR design of PI observers. 

= S T F L ( S ) M / ( S ) -  

Consider the full-order P observer based controller having the transfer function 

CIS) = P ( s I  - A - XC - BF)- l  K ( 5 )  

where F and K are the regulator and observer gains. respectively. Then ELTRI is achieved 
if and only if M I ( $ )  = 0 where 

.U,(s) = F ( s f  - .4 - KC)- 'B .  (61 

In practice. the condition M,(s) = 0 can not always be satisfied exactly. Consequently, the 
size of M l ( s )  should be made small in some sense. 

obtain ALTRI we seek a X ( q )  such that 
Let the controller he parameterized in terms of the observer gain by KIP). Then to 

.M,(s) = F ( s I  - A - l<(q)C)- l  fl - 0 as q - ca. I T )  

The literature reports a variety of methods to solve the recovery problem IS]. [I] ,  [ 1 4 ,  
[19], [IZ]. [17], [le], [13], [E] h few approaches consider observer based controllers having 
structural changes so that either ELTRor ALTR is achieved without large filter or regulator 
gains. In this paper we concentrate on these approaches and provide new techniques to 
resolve several problems associated with LTR designs. Consider the closed-loop system 
comprised of a plant and full-order P observer-based controller as shown in Fig l(a) Both 
closed-loop asymptotic stability and ELTRI can be achieved under the assumptions that (1) 
F E  = 0, (2) the plant has all of its infinite zems of order one (i.e., C E  has full rank), and 
(3) the plant is left invertible and has all of its invariant zeros in the left half s-plane (i.e.. 
the plant is minimum phase). 

Since F f l  = 0 severly restricts the design of ELTRI systems. mmt  researchers have 
focused attention on ALTRI methods. Here one tries to find a gain h' which satisfies (7) as 
we discussed earlier. If the plant is left invertible and minimum phase. it can be shown that 
there exits such a gain which both achieves ALTRI and guarantees asymptotic stability. 

The 1098 of robustness in observer based systems is due to  the path from the control 
signal U to the oberver  via the control distribution matrix B as depicted in Fig. I .  Based 
on this observation Chen el al. [4], [SI removed this path at  the outset of controller design. 
This technique leads to  a new compensator design philosophy which is outside the realm 
of observer theory and. hence, the separation principle. Consequently, one must prove that 
closed-loop stability and LTR are simultaneously achieved. For a plant which is neither 
minimum phase nor left invertible. Chen si al. [4], [SI also established necessary and suffi- 
cient conditions for the existence o f a  recoverable target loop for observer-based and general 
compensator structures. respectively. These results motivated us to examine several alter- 
native approaches reported in the literature. which will be referred to in the next section. 
and establish the connection. In this process we report new results which complement the 
theory. 
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2 Modified Structures for P Observers 
Within the framework of observer theory, attempts have been made to define alternative 
structures. An interesting approach which achieves ELTR, under the assumptions (2) and 
(3) above, is reported in [lo], for P observers and in [3] for PI observers whereby an output 
feedback path having a gain Q, shown by the broken line of Fig. l (a ) ,  is added to the 
configuration. Unfortunately, this approach leads to a coefficient matchin8 problem and can 
not be used systematically. Alternatively, one may add an output estimating error feedback 
loop with gain P a8 shown by the broken line of Fig. l (a)  [l l] ,  [14]. 

Reference [ l l ]  considers the inserted paths with static gains and provide optimization 
techniques to achieve asymptotic recovery. On the other hand, when the result of reference 
[I41 is applied for the ELTR case and compared with the one in [3], the equivalent effects 
of both paths are identified. 

Let us elaborate on these paths individually. To avoid repetitive notation in our future 
development, we assume that the stabilizible and detectable system C is in the output 
identifiable form: 

and has an equal number of inputs and outputs (i.e., m = r). It should be pointed out that 
one can always transform a system to the above form by a similarity transformation. 

Recall that a reduced-order P observer-based controller for I: has the form 

I = O r + G y + H u  

CRpC : i = I u I + l v y  (10) { U = Fi=. \ i :+ ,Vy 

under the following constraints and associated parameters: 

Constrainre Parameters 

L e m m a  2.1 The senstiiuiiy recovery error and ncouer). m a i m  for ihe reducrd-order P 
observer-based controller are given by 

E s A 4  = S T F L ( S ) . ~ ~ I ~ S ) ,  (11)  

M,,(s) = ~ ~ i ( d  - L A ~ ~ ) - ~ H .  (12) 

respeciivtly. Furthermore. ELTRI is achieved if and only If one of ihe followtng condiiions 
holds: Es,(s) = 0 or M J , ( s )  = 0; and ALTRI 1s obiained i f  and only tf /or all E > 0 ihere 
ensis a conirollrr C.(s) such tho1 IIEs.,.(.)IIH < E or equivalenily llM,,,,(.)l[~ < c where 
1 1 .  I I H  is the H2 or 71, norm. 

Theorem 2.1 Lei ihe system E be lcfl inverlable, minimum p h a e  and have all of its infinite 
:ems of order one (i.e..  let CB Aave full mnk). Then the rrdund-order P obsemer-baaed 
confrollcr CRPC achieves boil asympiotic siabtlriy of the clored-loop rysiem and ELTRI if 

ond only if M,, ( s )  = 0 or equiuanfly H = T B  = B1 + LEI = 0 .  Furthermore, ERPC 
achieves both osympioiic siabilitg of ihe closed-loop system and ALTRI tff the sysfem C 1s 

lefl inveritble ond minimum phase. 

The above exact recovery condition implies that  the reduced-order P observer-based 

(13) 

controller transfer function 

G(s) = F ( M ( s 1 -  O)-'G+ N )  

has n - m poles identical to LTR observer poles. which are the n - m transmission zerm of 
the system E. For this reaeon the structure of the reduced-order P observer is unique. Note 
that with the previous assumptions on the system C. the matrix 81 is non-singular. and we 
have 

15 = -BzB;'. (14) 
Comparing ERPC with a full-order P observer-based controller EPC represented by 

yields i = :, A + K C  = 0 ,  -IC = G ,  B = H, F = A?, and T = I which shows that the term 
,V = F N  in C ~ p c  distinguishes the two structures. This fact motivates one to mimic the 
structure 01 Enpc using E p c  to achieve recovery with respect t o  the modified structure. 
hence, justifying the term Q shown by the broken line of Fig. 118). 



2.1 Direct Output Feedback 
For static Q the transfer function between r and y is given by 

G,,,(s) = C(aI - A - BF - BQC)-'B. 

Now the minimization of .\II,(s) has the form of a standard 31, model-matchlng p r o b  
l a :  

with TI = F(s1 - A - XC)-'B repnsenting the model. T2 = I. and TJ = C(sZ - A - 
KCI-IB. Since Tt is strictlv orooer. the H,/LTR formulated here involves the so-called 

11% + TlPElIca < 7 (29) 

(16) 
- - - ,  ~ ~- ~. _ .  . -. 

and the retnrn difference matrices at the input and output poinu are. respectively, singular probkm in H, control theory emsidered by Stoorvogel [MI. For a detailed treat- 
ment of N,/LTR refer to [II] and [IS]. In order to explore the basic idea, the following 

T h e o m  2.3 Then  erirts an intern all^ stabilizing compcnsator P ( s )  which satisfies (29) 

z(s) = ( I -  F ( s I - A - t i C ) - ' B ) - ' ( I - ( F + Q C ) ( s l - A ) - l B ) .  (17) theoremisinstrumental. 

T o ( s )  = - C(sr - ' ) - I K )  ( I  - c(sl - A - B F -  BQc)-'(K - BQ)) ' ( la)  

The resulting c l d - l o o p  characteristic equation i. the product of de t (s I  - A - KC) from 'jgnd If then a ' 
the stable obaerver or Kalman filter and det(a1- A - BF - BQC). The latter polynomial 
remains stable despite the size of Q provided that CB hM rank m and .!(a) has rank n+ m 

(30) Z , ( P )  = Bd'T>O, 
C P  = 0. 131) 

. L  " 1  
Okada et al. 1111 propord  an optimization technique to determine a Q M that  stability 

and performance robuatneas requiremenu are .atLAed while ALTRl or ELTRI is d i d .  
However, M in the codficient matching t d n i q u e .  this technique U not transparent. One 
usually faces the condicting godm of recovery level, r m r  noise reduction, and conml(ence 
of the algorithm. A p m o m p m u ~ t o r  may be wed to improve tha laponae pmpucies with 
rapeet to parameter per turb t iom and d * t u r b ~ c a .  The prrcomperuUor n d a  the pur- 
tnrbed claed-loop sysm between r and y behave similar to that of the optinul,  full-.C.te 
regulator. Given such a p r e c o m p n s n t ~  Gt(a), it  U required tha t  

C(sI - A - BF - BQC)-'G,(.) = C ( d  - A  - BF)-'B.  

~ ~ ( 8 )  = r - Qc(d - A - BF)-'E 

(20) 

One can ewily show tha t  

(21) 

db) = AB) ,  
01 well as the system 

{At + ~ - ~ P F T F . B , c . o }  

being a minmam phase spatcm when At = A + tic. Z, (P)  = A&P+ PA:+ BBT+ 
7-1PFTFP Frrthermow, a feastbk choice for the contmllcr i s  

P ( s )  = F ( r l  - A t  - GC)-'G (34) 

whew G 18 any matnr satisfying 

i F ( s l -  A t  - 7-'PFTF - GC)-'EIl, < 7.  (35) 

For minimum p h u e  system. Eqns. (30)-(33) are satisfied for P = 0 for all 7.  and for 
non-minimum p b a v  sys tem 7 hM to be c h a e n  sufficiently large. Coasequently, it  can be 
shown that the controller 

C(s)= F ( s I - A I - G C + B P ) - ' ( K - G )  (368) 
satisfies thm requirement. For arbitrary response characteristics one can use a prefilter or 
extended perfect model following mth& [io], The drawback of thcac precom-tion 
methodo in the increew in controller dimenoion. 

when applied to the o r i ~ n d  plant {A, B, C )  nukes the norm of the recovery matrix smaller 
than 7.  Important condwiona have bern nude io [18] concerning the  performance of 
N, /LTR Y comnued to traditional LTR method. and controllus found from DUE N, 

2.2 Output Error Feedback 

--, ~ 

deaign. The main 'advanty  of N, /LTR d e a i p  is  that non-minimum phase sys tem can 
be treated by exactly the name technique M minimum phase systems. However, a major 

To overcome i n c r e d  controller dimension. one Can alrernatively d d  an output 
error feedbwk loop with gain P m shown by the b m k n  line of Fig, I(*). in 
transfer function between r and y given by 

concern in %&TR d a i p  is the hid;dimrmionality of the controller. 
TO a tab l i ih  a link betreen P ( s )  and Q(s) ,  we n m w e  P ( s )  from Fig. l(a1 and define 

a new structure with dynamic state and output feedback t r a d e r  functions P ( s )  and Q ( s ) ,  
rapectively. The  following m u l t  is an immediate consequence of Theorem 2.3. 

[he 

Ct.,(a) = C(rl  - A  - BF)-'B (22) 

matched the full-state feedback implementation and is indepenenr of P .  The need for a 
precompeMator u therefore avoided, and the rault ing system is termed a model matching 
system. The  pcaibility of obtaining recovery at both the plant input and/or output nuked 

Corollary 2.1 Lei Q(6)  = P(8)  be tAe internally stabilizing compensator defined in The+ 
rrm 2.3. Then 

F ( a )  = F - P(s)C (37) 
this method advantageous; although, it  is generally diWcult to d u e  this god with a fixed 
gain P ,  and one is required to UY a dynamic gun nut r ix  P ( r ) .  To la this. the return 

' le "Ie ofreco"erl In '"' 
diflennce matrices at the input and output p i n t a  are given by To recover rohlucnem by keeping F constant and allowing Q to be dynamic leads to 

'H,/LTR techniques encountem similar difficulties. In any case. the uae of dynamic Q ( s )  
or P ( s )  is not consistent with the objective to reduce the dimension of the feedback system. 
T h u  problem could be avoided by choaing constant gains. howewr. it is generally difficult 
to find such g Y we d k u n e d  in our  alpi is. This difficulty may be overcome by taking a 
slightly diflvcnt appmsrb, namely. to modify the system structure. We will show tha t  such 
a modification manifesu iuelf inCO a sysrematic way of designing [he dorementioned paths, 
&foR persuing t h b  app& we continue our analysis for the cav of PI and ace 
whether or not we get any beneiiu by adding extra paths M compared to the P obrrver  

T i ( r )  = ( - ( F  - - A - K c ) - l B )  - I  ( I  - F(81 - A)-lB) , (23) 
compl icad  Pole p l m m e n t  Procdnres. An initial at tempt to  p a r m e t r h e  Q(4 and apply 

T,(s) = ( j  - C(8I - A ) - l K )  ( j  - C(8I - A - BF)-1(K - B p @ ) ) - ' ,  (24) 

rapectively, and we have the following rau l t .  

Theorem 2.2 Let the r#rtem E be /eJ? inoertible and minimum phue .  Then the modified 
i t rnc tun  comprimd of 06remerctued controller E p c  and the additional path P achieves 
recooerg at the i n p d  or output it 

P, = NiD,;', (25) 
Po = D,'N., (28) 

nsnecdiwrlw. where ,Vi = Flsl  - A - Ir'CI-'B. D. = ClsI - A - KCI-lB. Na = Cfd - 3 Modified Structures for PI Observers 
. _. . .  - .  

A - BF)- 'K,  D. = C(s1 - A - BF)-'B. F a r t h e r m i .  the neowerg k n d i t i o u  for d d t c  
g a i u  become F = P i c  and K = BP,. 

Thus, the problem of  finding Pi or P. reduca to the realization of fractional repmentL- 
tion (25) or (26). respectively. For a s t u i c  gain, recovery can be achieved by the optimization 
kcbnique of [I I]; h o w ,  OM is faced with the conflicting godo of c lod- loop  stability, de- 
grac of n u m r y ,  and convergenoer of tbe  "ry design algorithm. Although thu technique 
avoid. in- of contrdlar d i n w h o ,  it hu the drawback of robw~ner degradation. 

For a common static p i n  8 = P. I P, "very u n  be . c h i  at both p h t  input 
and output by using L rmult which tia tbU metbod to LQG duign. A future publication 
will elaborate on thi rault. 

For a dynunic gain, uuming that  exact recovery u n  not be obtained, we p a r M C I C r i ~  
P ( # )  and Malyre the &glee of r&wvery b a d  on the foll&ng raUk  b o r d  from [q. 
To be conaimtent with the notalion introduced in thu p a p a  we call the obrerver a P- 

The full-order PI observer b d  controller is defined oriCjndly in [Z], and its more elegant 
modified vemion, which allows one to derive systematic design methods. is defined in [e] as 

Z = A i + l i p ( C i - y ) + B ~ + B u  
(38) Pprc: U = ti,(Ci-u) { U F i  

Fig. l(b) shows a full-order PI obauver. It is clear tha t  when Kr = 0. t ip  = E we 
have a conventional P o k v e r .  The system EPIC can be represented M an extended state 
system: 

punmetrircd obsuver. 
w h  r h m  the pa" are cuily specified by (38). Thb augmentstion allows method. 
such Y LQG, aigamtrudure srignment,  etc. to be applied M in ordinary obaerver deaign Lsmnu 1.2 Auamc  that P(8)  E RN, ir gitnn bp the stale-space npnrcnt r t ion  
to determine the gain h;. 

The LTR de+ of PI obrrvem U studied extuuively in [e]. The main advantage of PI 
olmerven i. tha t  they whim ELTR M time tend. to  infinity, termed M time recovery. An- 
other over the mal fullorder P observer U the need for relatively low obenerver 
g h .  Merenoer [e] arrived at the conclusion tha t  there will be no difference between full- 
order P and PI o h m  in nornul asymptotic recovery (frequency recovery). In fact i t  
WY rhown tha t  the time m r y  &wt (integral &&) d i u p p c a n  in the LQG/LTR design 
of PI Obrervem U 9 tends to infinity. However, slymptotic recowry will in general result 
in high O k e m  gains. Thi. limitation of the fullorder P obmver  d a  the PI ob.erver 
intereating from a time recovery point of view. To obtain time recovery we do  not n-ily 
need high g u t s .  It is rlro important to point out tba t  the  reduced-order PI o b s e r v e r - b d  
controller %prc C M  be defined similar to the reduced-order P okrver b d  controller 
EWC using the structure defined for PI obsem.  

E&.: [ 2 = 4% + BPUP 
= Cptp+ 4% ' (") 

Then the comsponding P obrencr - turd  c o n i d l e r  h u  tAe folloviag pmmetm: 

D = [ 'i,Y l,], C = [I;], H E  [ :]. 
.G = [ F + D &  C, 1, N = -D p ,  T = [ ; I ;  

and the comapondin# recovery m a t w  becomes 

M,,(s) = P ( d  - A - K C ) - ' B  + P(r )C(r I  - A - KC)-'B, (28) 
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In the following discussion by dropping the subscript "c" in Y p c ,  EPIC, ZRPC, and 
PR~IC we obviously mean the corresponding observer structures. Now let  .A1 and A2 ( A I '  
and A2') denote the usual assumptions on the system C for ELTR (ALTR) based on full- 
order and reduced-order P observers. respectively Theii we may summarize one of our 
important results from [SI in a compact form as foliows. 

Theorem 3.1 Let t h e  sysfemY satrsfy A I  o r  .42 (.41' o r  A2'). Thcn EPI O P Y R P I  achteoes 
ELTR (ALTR) tf and only tf 11s corresponding Zp or  SRP achieves ELTR (.-ILTR). 

Recall that obtaining ELTR ties to  the inherent presence of an ouput feedback in PRP 
To achieve ELTR with C p  under the same assumptions made for ELTR with X R P  we need 
to add the extra path P or Q. However. Theorem 3.1 confirms that the effects of inserting 
these paths in Ep1 would be equivalent to their insertion in Y p .  Thus. we do not further 
discuss the modified structures for PI observers. 

4 Modified System Structures for LTR 
The previous section concludes that it is sufficient to work with P observers tihen inserting 
the P or Q path. The drawbacks of directly inserting these paths wPre discussed in Section 
2. In this section we modify the system structure and show how i t  leads to the automatic 
generation of these paths in static form in order to  avoid the increase in controller dimension 
In particular. we concentrate on the case of direct output feedback path Q. 

4.1 

In the derwation of reduced-order P observer ERP. the output derivative appearing in the 
initial observer equation plays an important role in achieving ELTR as stated in Theorem 
2.1 The output derivative can be avoided by a variable transformation in the final observer 
equation Here. our initial goal is to realize Q by modifying the structure of C in order to  
achieve ELTR with Ep under the same mumpt ion  o n  ?: required to achieve ELTR with 
 ER^. The idea is to  modify the output equation by taking the dprivative of the output and 
m i m c  the structure of PRP. this leads to a modified full-order P observer structure ,?p. 
The  new output is generated by one of the following two choices: 

Exact Recovery w i t h  Full-Order Observers ( p ( C E )  = m )  

Choice (1) g = y + Q l y ,  

Choice (2) 
g = [ gy ] 

Choice (1) Using the output  identifiable form for the system E, we define our first modified 
system Structure as 

where 

C = [ l + Q i A i i  QiAi? 1 .  D = QiBi 

I t  is not difficult to  show that (a)  the poles and transmission zeros of E1 and Z are the 
same and ( b )  there exists QI such that C=B has full rank and C I  is both stabilizable and 
detectable. 

The parameter Q1 plays an imortant role in our development a ~t can be seen from the 
following simple system. Let 

Then by using 0 = y + y (without 4 1 )  the new output vector becomes C = [O 11 and 
CB is not full rank despite the fact that the original CB is full rank. However. for any 
Q1 4 { (-3 i a ) / 2 ,  1)  the system remains detectable and C B  is full rank (non-singular). 
Proper selection of Q1 can also be useful in recovery design. 

Now. the modified full-order P observer-based controller ?pcI can be derived for Ci 
using the standard procedure which leads to  

where I = Z + K Q l y ,  and 

b = A + K C .  G = - ( A + K C ) I < Q l - I < ,  l? = B+h'D.  
,if = F ,  .v = - F K Q l .  

The corresponding recovery matrix IS given by 

.1/,,(s)= F ( s / - & ) - ' R .  (42)  

Theorem 4.1 L e t  the system Z be left tnuetttble. mintmum phase and have all of 11s tnfinite 
:ems of order one /I.e.. let CB haue full rank). Then the modtfied full-order P obseruer-bused 
controller BPCI achrcves both asymptottc stobtl i ty of the closed-loop system and ELTRI ~f 
and only if M , , ( s )  = 0 or eputnalcntly H = B +  K D  = 0 Moreover, a constructive method 
of obtatntng Cpc l  to achreuc bofh ELTRI and asymplolrc stabiltty of the closed-loop system 
can bc grvcn. 

Note that the condition FB = 0, imposed on LTR of regular full-order P observer-based 
controllers. is not necessary here. Note also that  subsitution of ti = -B(QlB,) in N defines 
our static output feedback gain Q = N = FBB;' which is independent of the choice QI 
Furthermore, the transfer function of the full-order recovery controller is given by 

Cj(s) = F(s1- A - K C ) - ' G  + N (43) 

Example 4.1 Consider the system 

= 1 - 1 5  -1.5 -2.5 -03 ] r +  [ : 3 (44) 

with the desired target loop transfer function LTpL(s) realized by the full-state feedback 
regulator 

U = F r  = [ -50 -10 ] r .  (46) 

[sing our systematic procedure we find that  the pair {Qi, Ii] = {Z, (-0.5 - O.5lT) specifies 
:he modified output  as 

e = [  -2 -1 ] r + 2 u  (47) 
and the modified full-order P observer-based controller as 

I ,  = [ -50 -10 ]:-6Oy. ( 4 9 )  

It is clear that although the very restrictive condition F B  = 0 is not satisfied. we achieve 
exact recovery with the above full-order observer. 

Choice (2) 
modified system structure as 

Using the output identifiable form for the system X. we define our second 

where 

The corresponding modified full-order P observer-based controller ?pcz can be derived in 
a similar fashion and 1s given by 

= b:+Cy+Hu 
= F.r = .cl: + .Vy 

where : = 2 + li?Q?y with li? defined by proper partitioningof K = [SI iiz] according to  
y. and 

$ = A + IiC. 
.l? = F .  

= - ( A  + SC) KQz - K l ,  H = B + K D .  
.v = -FIi?Ql.  

An exactly analogous theorem can be stated for this case. However, to avoid repetitive 
material. we provide a constructive method for obtaining Epc,. In particular we show that 
asymptotic stability of the closed-loop system and ELTRI can be treated separately. To 
establish this we rewrite d as 

e = [  A # + t i l  A? ] 
where A, = A1 + K ~ Q z A I I  and A 2  = A2 + KZAZAIZ. 

Theorem 4.2 The patr-{A,C) is detcctablc if and only rf the parr {.i.e.) IS dcieciablc, 
where A = [Al A?] and C = [I 01. 

Consequently there exists a matrix K l ,  such that  the composite matrix 8 has a prescribed 
set of eigenvalues. The following twwstep procedure achieves asymptotic stability of the 
closed-loop system and ELTRI independently: 

1. Obtain KZ from the ELTRI condition 

2 Obtain til such that b has a prescribed set of eigenvalues. a subset of which consists 
of transmission zeros of C. 

= B + K D  = 0 as A'z = -B(Q2&-'. 

Sote that ELTRO can be handled by duality 

Example 4.2 Let us consider the same system given in Ex. 4.1. Applying Step 1 we get 
I<? = 1-1. -1IT, Qz = 1. and applying Step 2 we get 

.ji = .A1 + ii2Q?AiI = [ 0 0 1' (33) 

.i? = A ? +  K ~ Q ~ A ~ ~  = [ o -2 1' (34)  

which specifies [ A , C )  in '$ = + K j C  with 

i = [; -;I, E =  [ 1 0 1  

Since the pair (2, e) is detectable one of the eigenvalues of d can be assigned arbitrarily 
a t  X = ti, E C-. and the other is the transmission zero a t  -2. 

4.2 

In this section we take advantage of the results of Section 4.1 to treat the difficult case of 
p(CB) < m. A double look a t  duality (recall Luenberger) reveals that  one needs also to 
take the derivative of the input and construct U as in Choice (1) or Choice (2). Here for the 
sake of brevity we consider Choice (2) with 

Exact Recovery w i t h  Full-Order Observers (p(CL3) < m )  

and define the modified system as 

( 5 5 )  

Note that we avoid the appearance of a D term in C M .  Since p(CL3) < m. the parameters 
Q2 and RI can be selected in such a way that  Q l C B  = 0 and CBR2 = 0. Thus, the 
modified system ZM can be represented by the triple {A.B,C),  where 

y = [ 1 0 1 .  (45) Again it is easy to  show that (a)  the poles and transmission zeros of E M  and E are the same 
and (b)  EM is stabilizable and detectable. 
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For the specid c w  of C B  = 0 ,  we c h m  Qz = R? = I. In the following we agume  tha t  
p(C5) < m while &AB) = m, which means tha t  ACE) = m. The modified full-order P 
observer-based controller E p c ~  is given by 

where i = i + KzQrg - &&U with K, and B 2  defined by proper partitioning of h' = 
[KI Xz] and B = 181 821 according to @ and 8,  and 

4 = A + E C .  G = -dKzQA, - Ii1. 
.V = ( I  - F&R2)-' f IiZQz. 

H = & , Q + R ? + & ,  
P = ( I  - F&R2)-' P .  

provided that r = I - F&R2 is noniingular. 

Lemma 4.1 The mafrir r = I - F&R, is non-singular if and only tf A, (FBzR, )  f 0 
V i  = 1,2.. ... m. 

It is intereating to point out the appearance of the term FAB in r. If FAB = 0 
then the non-singularity of r is guaranteed and A? = F .  .v = -FIi&'?. This establishes 4 

connection between the restrictive condition FB = 0 in ELTRI offull-order P observers and 
the noniingularity condition of r in ELTRI of modified full-order P obaerven considered 
here. The following theorem summsrisa the above result. 

T h e o r e m  4.3 Lei fhe system E be left moertible and minimm phase. Then the modified 
full-order P observer-baaed confwller 5pc.w nchirues boib aaymplotic sfobilily of fhr closed- 
loop syafem and ELTRI using a conalrnctiue mcfhod if ond only tf H = ( A  + K C )  &RI + 
BI = 0 and d e t r  # 0. 

Example 4.3 Consider the system 

c = [ -6 : -11 : -6 ' ] .+[+ (57) 

g = 1 4  1 o ] z  (58) 

with the target feedback loop realized by F = (-64.965 - 39.736 - 4.i4.581. Since C B  = 0, 
we have 02 = R, = I and the pair {c, B) is given by 

Following our constructive procedure we obtain 

and the modified full-order P okervu-bued  controller %.PCM is specified by 

-118 -43 -7 
-0.38706 1 ,  .q = -0.38708 

which achieves ELTRI. Note that a mlucedorder P obsrver can al.0 be daigned for the 
system (A, 8, c) to achieve ELTRI. T h u  ohrerver is given by 

i = - 4 i + [  1 0 IS, (60) 

(61) 
-4 1 

however, the derivative of the output is required to implement the controller. 

5 Conclusion 
Thu paper considered structural charyes to the baric observer architecture to facilitate LTR. 
Both P and PI observen with additional direct output and  output error feedback loop were 
analyzed. The M l v ~ t 8 g a  and drawbacks of t h e e  patha with static and dynamic (aim were 
d k u d .  In this proc- new raulta have dm been reported. We provided cotutructive 
method# of daigning modified full-order P observers to achieve both asymptotic stability 
of the c l d - l o o p  system and ELTR without impwing the restrictive condition of F B  = 0.  
T h e  o k v e n  mimic the structure of reduced-order observers and realize ELTR for C B  
having full and non-full rank. The desirable attributes required in LTR such ar  small g u n  
and low controller dimension M al.0 fulfilled. The results of thu paper can be uaed for 
non-minimum p h s a  system U well. Hewever, neeessary and sufticient condition to achieve 
ALTR should be #Lated. For ALTR we in tmd to compare the performance of our modihed 
structura with H,/LTR and 0th- existing LTR techniques. 
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