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Abstract

In this paper. the loop transfer recovery (LTR) of P and PI observer-based controllers with
two additional paths, direct output and output error feedback. are analyzed. \Ve highlight
the major differences and report new results which complement previous results in LTR
theory. In particular, it is shown that proper modification of system structure leads to
automatic generation of the aforementioned paths having static gains. and ELTR can be
achieved by a modified full-order P observer eventhough C'B is not full rank

1 Introduction

To design a controller for the system I: {A, B.C} by the LTR design methodology, we first
determine a static state feedback, the target design, which satisfies our design specifications.
Based on the target (full-state feedback) design gain F for the system T, the target loop
and sensitivity transfer functions are given by

Lrre(s) = F(sI—A)7'B. ()
Srrels) = (I=Lrre(s) ™, (2

respectively. Next the LTR step is performed in which we attempt to recover the target
design over a range of frequencies by a dynamic compensator C(s). This step gives a full-
loop, sensitivity transfer function of the form

Si(s) = - C(s)G(s) ™} (3)

where G(s) represents the plant transfer function.
As a measure of the quality of the recovery, we define the sensitivity recovery error by

Es(s} = Srrels) — Si(s). (4)

This error is related to the so-called recovery matrix M;(s) given in (7] by the equation
Eg(s) = Srre(s)Mi(s).

There are various approaches available for observer-based LTR design. Once an observer
structure is specified all implementations fall into two main categories: those involving
structural changes to the basic observer architecture and those not. A separate publication
[9] considers the latter class, more specifically LQG/LTR design of Pi observers.

Consider the full-order P observer based controller having the transfer function

Cls)=F(sI-A-KC-BF)y'K (5)

where F and K are the regulator and observer gains, respectively. Then ELTRI is achieved
if and only if M;(s) = 0 where

Mi(s)=F(s[—A-RC)™'B (6)

In practice. the condition M;(s) = 0 can not always be satisfied exactly. Consequently, the
size of M;{s) should be made small in some sense.

Let the controller be parameterized in terms of the observer gain by K(g). Then to
obtain ALTRI we seek a K(q) such that

Mi(s)y=F(sI—A-K(q)C)'B—0 as g—oo. )

The literature reporis a variety of methods to solve the recovery problem {8}, [1], [13],
[19}, (12}, [17], (38}, (13], [8]. A few approaches consider observer based controllers having
structural changes so that either ELTR or ALTR is achieved without large filter or regulator
gains. In this paper we concentrate on these approaches and provide new techniques to
resolve several problems associated with LTR designs. Consider the closed-loop system
comprised of a plant and full-order P observer-based controller as shown in Fig. 1(a). Both
closed-loop asymptotic stability and ELTRI can be achieved under the ptions that (1)
FB =0, (2) the plant has all of its infinite zeros of order one (i.e., CB has full rank), and
(3) the plant is left invertible and has all of its invariant zeros in the left half s-plane (i.e.,
the plant is minimum phase).

Since FB = 0 severly restricts the design of ELTRI systems, most researchers have
focused attention on ALTRI methods. Here one tries to find a gain A" which satisfies (7) as
we discussed earlier, If the plant is left invertible and minimum phase, it can be shown that
there exits such a gain which both achieves ALTRI and guarantees asymptotic stability.

The loss of robustness in observer based systems is due to the path from the control
signal u to the observer via the control distribution matrix B as depicted in Fig. 1. Based
on this observation Chen et al. [4], [5] removed this path at the outset of controller design.
This technique leads to a new design phil hy which is outside the realm
of observer theory and. hence, the separation principle. Consequently, one must prove that
closed-loop stability and LTR are simultaneously achieved. For a plant which is neither
minimum phase nor left invertible, Chen et al. (4], [5] also established necessary and suffi-
cient conditions for the existence of a recoverable target loop for observer-based and general
compensator structures, respectively. These results motivated us to examine several alter-
native approaches reported in the literature, which will be referred to in the next section,
and establish the connection. In this process we report new results which complement the
theory.
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2 Modified Structures for P Observers

Within the framewotk of observer theory, attempts have been made to define alternative
structures. An interesting approach which achieves ELTR, under the assumptions (2) and
(3) above, is reported in [10], for P observers and in [3] for PI observers whereby an output
feedback path having a gain Q, shown by the broken line of Fig. 1(a), is added to the
configuration. Unfortunately, this approach leads to a coefficient matching problem and can
not be used systematically. Alternatively, one may add an output estimating error feedback
loop with gain P as shown by the broken line of Fig. 1(a) {11], [14].

Reference {11] considers the inserted paths with static gains and provide optimization
techni to achieve asymptotic recovery. On the other hand, when the result of reference
[14] is applied for the ELTR case and compared with the one in [3}, the equivalent effects
of both paths are identified.

Let us elaborate on these paths individually. To avoid repetitive notation in our future
development, we assume that the stabilizible and detectable system I is in the output
identifiable form:

(%]

y

A A z B,
[ Az Am ] [ z2 ] * [ B, “ ®)
z
[In 0] [ 2: ] (9)
and has an equal number of inputs and outputs (i.e., m = r). It should be pointed out that

one can always transform a system to the above form by a similarity transformation.
Recall that a reduced-order P observer-based controller for £ has the form

z = ®z+Gy+ Hu
Zapc: : = Mz+Ny (10)
3

= Fi=M:+Ny

under the following and iated p
Constraints Parameters

Re[M®)] < 0 i = [IL"] B ]

TA-oT = GC =[-L 1].F=[A F]
H=7TB ® = Ay + LA

MT+NC = 1 G = An+ LA - LAl — Al
or H=58,+LB

o G _[o [ 1

MT+NC = F M'[l}‘N_[—LJ

Lemma 2.1 The sensitivity recovery error and recovery matriz for the reduced-order P
observer-based controller are given by

Ese(s) = Srro(s)Mi-(s), (11)
Mir(s) = Fa(sl — Aza — LA2)"'H, (12)

respectively. Furthermore, ELTRI is achieved if and only if one of the following conditions
holds: Ese(s) =0 or My.(s) = 0; and ALTRI is obtained if and only if for all e > O there
erists a controiler C¢(s) such that ||Es, (-Wu < € or equivalently || My, . (-)lly < € where
It- |l is the Hy or Hoo norm.

Theorem 2.1 Let the system E be left invertable, minimum phase and have all of its infinite
zeros of order one (i.c.. let CB have full rank). Then the reduced-order P observer-based
controller Zppc achieves both asympiotic stability of the closed-loop system and ELTRI if
and only if My,(s) = O or equivantly H = TB = By + LB, = 0. Furthermore, Lppc

h both asymptotic siabslity of the closed-loop system and ALTRI iff the system & s
left invertible and minimum phase.

The above exact recovery condition implies that the reduced-order P observer-based
controller transfer function

Ci(s) = F(M(sI - #)"'G + N) (13)

has n — m poles identical to LTR observer poles. which are the n — m transmission zeros of
the system . For this reason the structure of the reduced-order P observer is unique. Note
that with the previous assumptions on the system L, the matrix B, is non-singular. and we
have

= BB, (14)
Comparing Zrpc with a full-order P observer-based ller Epc tep d by
Tpe - { z = A.?+!\(Cz—ll]+5u (15)
u = Fz

yieldst =z, A+ KC =®,-K =G, B=H,F=M,and T = I which shows that the term
N = FN in Tgpc distinguishes the two structures. This fact motivates one to mimic the
structure of Egpc using Lpe to achieve recovery with respect to the modified structure
hence, justifying the term @ shown by the broken line of Fig. 1(a).
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2.1 Direct Output Feedback

For static Q the transfer function between r and y is given by
Gyaqls) = C(sI - A~ BF - BQC)™'B, (18)
and the return difference matrices at the input and output points are. respectively,

Tis) = (I-F(sI-A=KC)'B)™" (I-(F +QC)al - A)'B), an
Tis) = (I—C(sI - Ay 'K)(I-C(s] ~ A— BF - BQC)™ (K — BQ)). (18)

The resulting closed-loop characteristic equation is the product of det(sf ~ A — KC) from
the stable observer or Kalman filter and det{s/ — A — BF — BQC). The latter polynomial
remains stable despite the size of Q provided that CB has rank m and \(s) has rank n+m
for all s where

Am=[:1—,(1:~sr g ] 19)

Okada et al. [ll] proposed an optimization technique to d a @ so that stability
and per qui are satisfied while ALTRI or ELTRI is realized.
However, as in the coefficient hi hnique, this technique is not p One
usually faces the conflicting goals of movery level, sensor noise reduction, and convergence
of the ulgonthm Aprecompcnnwrmnybelued to imp the resp p ies with
respect and di The makes the pur-
turbed clooed -loop 'y-l.em between r and y behave similar !.o that of the optimal, full-state
regulator. Given such a p Gjy(s), it is required that

C(s] ~ A~ BF - BQC)™*Gy(s) = C(sl - A— BF)™'B. (20)
One can easily show that
Gy(s)=1-QC(sI - A—BF)"'B @)

satisfies this requirement. For arbitrary response characteristics one can use a prelilter or
extended perfect model followmg mﬂhodn [10] The drawback of these p
hods is the i in

2.2 Output Error Feedback

To i d ller di one can al ively add an output estimating
error feedback loop with gain P as shown by the broken line of Fig. 1(a). In this case the
transfer function between r and y given by

Graple) =

tches the full-st feedback impl

C(s] - A-BF)'B (22)

and is indep of P. The need for a
precompensator is therefore avoided, and the resulting system is termed a model matching
system. The pomb\hty of o\numn; recovery at both the plant input and/or output makes
this method advantag gh, it is ge lly difficult to realize this goal with a fixed
gain P, and one is required to use & dynnmc ;un matrix P(s). To see this, the return
difference matrices at the input and output points are given by

(I=(F=PClal - A= KC)'B) ™' (I-F(sl - A)"'B),  (23)
(I-C(sl = A)~'K) (I- C(s - A~ BF)"'(K - BR,))™',  (24)

Ti(s) =
To(s) =
respectively, and we have the following resuit.

Theorem 2.2 Let the system L be left invertible and minimym phase. Then the modified

Now the minimization of My,{s) has the form of a dard M., model

lem:

hing prob-

1Ty + T2 PTslleo < ¥ (29)
with T} = F(s] — A — KC)}~'B representing the model, T; = I, and T3 = C(sl ~ A —
KC)~'B. Since T; is strictly proper, the Ho /LTR formulated here involves the so-called
singular problem in M, control theory considered by Stoorvogel {16]. For a detailed treat-
ment of Mo, /LTR refer to [17) and {18]. In order to explore the basic idea, the following
theorem is instrumental.

Theorem 2.3 There erisis an internally stabilizing compensator P(s) which satisfies (29)
if and only if there exists a P > 0 satisfying

Z,(P) = BBT>o0, (30)
CP = ¢, (31)
AB) = AB), (32)
as well as the system
{A. +17*PFF,B,C.0} (33)

being @ minimum phase system where Ay = A+ KC, Z,(P) = AP+ PAJ+ BBT+

y~2PFTFP. Furthermore, a feasible choice for the controller is
P(s) = F(sI — Ax — GC)™'G (34)
where G is any matriz salisfying
nr(.l ~ Ap—y2PFTF ~ GC)-‘BL <. (35)

For minimum phase systems, Eqns. (30)-(33) are satisfied for P = 0 for ail v, and for
non-minimum phase systems 7 has to be chosen sufficiently lazrge. Consequently, it can be
shown that the controller

Cls) = F(sI - Ay — GC + BF)~(K - G) (36)

when applied to the original plant {4, B,C} makes the norm of the recovery matrix smaller
than 7. Important oonclunmu have been made in [18] concerning the performance of
Moo/ LTR as pared to traditional LTR methods and llers found from pure Mo
design. The main advantage of Ho, /LT R design is that non-minimum phase systems can
be treated by exactly the same technique as minimum phase systems. However, a major
concern in Heo/LTR design is the high di jonality of the il

To establish a link between P(s) and Q(s), we remove P(s) from Fig. 1(a) and define
a new structure with dynamic state and output feedback transfer functions F(s) and Q(s),
respectively. The following result is an immediate consequence of Theorem 2.3.

Corollary 2.1 Let Q(s) =
rem 2.3. Then

P(s) be the internally stabilizing compensator defined in Theo-

F(s) = F - P(s)C (37)
reglizes the same degree of recovery as in Theorem 2.3.

To recover robustness by keeping F constant and allowing Q to be dynamic leads to

li d pole pl: p d An initial attempt to parametrize Q(s) and apply
H.o/LTR techniques encounters similar difficuities. In any case, the use of dynamic Q(s)
or P(s) is not consistent with the objective to reduce the dimemion of the feedback system.
This problem could be avoided by choosi L it is g liy difficult
to find such g as we discussed in our mlym This dlmculty may be overcom by taking a
slightly different approach, namely, to modify the system structure. We will show that such
a modification ife iuelf into a i vuy of desi the af¢ d paths.

structure comprised of observer-based controller Epc and the additional path P achi
recovery at the inpxt or ouiput if
P = ND', (25)
P, = D;'N,, (26)

respectively, where N; = F(s]l — A~ KC)™'B, D; = C(sl — A~ KC)~'B, N, = C(sl ~
A=BF)Y'K, D, =C(sl = A~ BF)~'B. Furthermore, the recovery conditions for static
gains become F = P,C and K = BP,.

Thus, the problem of finding P; or P, reduces to the realization of fractional
tion (25) or (26), respectively. For a static gain, recovery can be achieved by the optimisation
technique of [11); however, one is faced with the conflicting goals of closed-loop stability, de-
gree of recovery, and convergence of the recovery design nl;omlun Allhough thu &ednmque
avoids i of ion, it has the drawback of

For & common static gain P; = P, = P, recovery can be achieved at both plant input
and output by using a result which ties this method to LQG design. A future publicati

Before persuing this h we inue our for the case of a Pl observer and see
whether or not we 5et nny benefits by adding exl.rn paths as compared to the P observer
case.

3 Modified Structures for PI Observers

The full-order PI observer based controller is defined originally in [2], and its more elegant
modified version, which allows one to derive systematic design methods. is defined in (9] as

¢ = Az +Kp(Ci-y)+Bu+ By
Sprc v = K{Ci-y) . (38)
u = Fi&

Fig. 1(b) uhu‘u a full-order PI observer. It is clear that when Ay = 0, Kp = A we

will elaborate on this result.

For a dynamic gain, assuming that exact recovery can not be obtained, we parameterise
P(s) and analyze the degree of recovery based on the following result borrowed from (7).
To be i with the duced in this paper we call the observer a P-
parametrised observer.

Lemma 2.2 Assume that P(s) € RMo is given by the state-space representation

p: #, = Apzy+ Bpuy @1
* { w = Gzp+ Dyup )
Then the corresponding P observer-based tler Aas the foll
A+KC 0 _[-K _|sB
=[5 &) emlm) 3]
o < I
M= [F+DC G, N=-D,, T=[o]:

and the corresponding recosery matriz becomes
Mip(s) = F(sl = A~ KC)™} B + P(s)C(sl — A - KC)™'B. (28)

have a | P observer. The system Ip;c can be represented as an extended state
system:
Shrc: { z i Az + K(Cez -~ y) + Beu (39)
v = Fgz:

where where the parameters are easily specified by (38). This augmentation allows methods
such as LQG, eigenstructure assignment, etc. to be applied as in ordinary observer design
to determine the gain K.

The LTR design of PI ob is studied ly in [8]. The main advantage of PI
observers is that they achieve ELTR a3 time tends to infinity, termed as time recovery. An-
other advantage over the usual full-order P observer is the need for relatively low cberserver
gains. Reference (9] arrived at the conclusion that there will be no difference between full-
order P and Pl obeervers in normal asymptotic recovery (frequency recovery). In fact it
was shown that the time recovery effect (integral effect) disappears in the LQG/LTR design
of PI observers as q tends to infinity. However, asymptotic recovery will in general result
in high obeerver gains. This limitation of the full-order P observer makes the PI observer
interesting from a timne recovery point of view. To obtain time recovery we do not necessarily
need high gains. It is elec important to point out that the reduced-order P observer-based
controller Spprc can be defined similar to the reduced-order P observer based controller
ERrpc using the structure defined for PI observers.
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In the following discussion by dropping the subscript “C" in £pc, Sprc, Lrpe, and
SRrprc we obviously mean the corresponding observer structures. Now let Al and A2 (AY
and A2') denote the usual assumptions on the system T for ELTR (ALTR) based on full-
order and reduced-order P observers. respectively. Then we may summarize one of our
important results from (9] in a compact form as foliows.

Theorem 3.1 Let the system T satisfy Al or A2 (41’ or A2'). Then Zpy or Sgpy achieves
ELTR (ALTR) if and only if its corresponding Sp or Tpp achieves ELTR (ALTR).

Recall that obtaining ELTR ties to the inherent presence of an ouput feedback in Egp.
To achieve ELTR with £p under the same assumptions made for ELTR with Zpp we need
to add the extra path P or Q. However. Theorem 3.1 confirms that the effects of inserting
these paths in Tp; would be equivalent to their insertion in Ep. Thus. we do not further
discuss the modified structures for PI observers.

4 Modified System Structures for LTR

The previous section concludes that it is sufficient to work with P observers when inserting
the P or Q path. The drawbacks of directly inserting these paths were discussed in Section
2. In this section we modify the system structure and show how it leads to the automatic
generation of these paths in static form in order to avoid the increase in controller dimension
In particular, we concentrate on the case of direct output feedback path Q.

4.1 Exact Recovery with Full-Order Observers (p(C B) = m)

In the derivation of reduced-order P observer Tpp, the output derivative appearing in the
initial observer equation plays an important role in achieving ELTR as stated in Theorem
2.1. The output derivative can be avoided by a variable transformation in the final observer
equation. Here. our initial goal is to realize Q@ by modifying the structure of £ in order to
achieve ELTR with Zp under the same assumption on ¥ required to achieve ELTR with
Tgp. The idea is to modify the output equation by taking the derivative of the output and
mimic the structure of Sgpp. this leads to a modified full-order P observer structure Lp.
‘The new output is generated by one of the following two choices:

Choice (1) j=y+ @y,

Choice (2) §= [ Qi!) } .

Choice (1) Using the output identifiable form for the system I, we define our first modified
system structure as

- An A B,
= [An A“]'*[B; “ (40)

1}
[o!
B
+
Q
&

where

C = [ I+QiAn Qi . D= QB

It is not difficult to show that (a) the pn_)les and transmission zeros of ¥, and ¥ are the
same and (b) there exists @, such that CB has full rank and £, is both stabilizable and
detectable.

The parameter Q; plays an imortant role in our development as it can be seen from the
following simple system. Let

A:[_i é] B:[é], C=1{10]

Then by using § = y + y (without Q) the new output vector becomes ¢ = [0 1} and
CB is not full rank despite the fact that the original CB is full rank. However, for any
Qi g{(-3% V/13)/2,1} the system remains detectable and CB is full rank (non-singular).
Proper selection of @1 can aiso be useful in recovery design.

Now, the modified full-order P observer-based controller pc; can be derived for T
using the standard procedure which leads to

{ i = $:+Gy+ Hu

w = Fi=M:4 Ny (1

Tpcy:

where z = z + KQyy, and

= A+KC, G = -(A+KC)KQ -K, H = B+KD.
M= F, N = -FKQ,.
The corresponding recovery matrix is given by
Mygls) = Fsi—&) " H. (42)

Theorem 4.1 Let the system T be left invertible, minimum phase and have all of its infinate
zeros of order one (i.e., let CB have full rankj. Then the modified full-order P observer-based
controller pcy achieves both asymplotic stability of the closed-loop system and ELTRI +f
and only if My;(s) = 0 or equivalently H = B+ KD =0. Moreover, a constructive method
of obtaining Lpcy to achieve both ELTRI and asymptolic stabslity of the closed-loop system
can be given.

Note that the condition FB = 0, imposed on LTR of regular full-order P observer-based
controllers, is not necessary here. Note also that subsitution of X = —B(Q, B1) in N defines
our static output feedback gain Q = N = FBB[! which is independent of the choice Q.
Furthermore, the transfer function of the full-order recovery controller is given by

Cy(s)= F(sI - A-KCY'G+ N (43)
Example 4.1 Consider the system

. -15 =05 1

z = [ -15 -25 ] "*[ 1 ] "' a9

v = [1 0]« (45)

with the desired target loop transfer function Lrpy(s) realized by the full-state feedback
regulator
u=Fzr=[ -5 -10]z. (46)

Using our systematic procedure we find that the pair {@1. A’} = {2.{—0.5 ~ 0.5]"} specifies
the modified output as

g=(-2 -1]z+2 (47)
and the modified full-order P observer-based controller as
. _ [-05 o}, 0

s [ 38 2]+ ]w )

w o= [ -30 -10 ]z - ¢60y. (49)

It 1s clear that although the very restrictive condition F B = 0 is not satisfied. we achieve
exact recovery with the above full-order observer.

Choice (2) Using the output identifiable form for the system L, we define our second

modified system structure as
. _ [ Au A 8,
{ ' = [ An An *t B |* (50)

i

7] Cr+ Du

w
[}

where

~_ [ 1 0 ~_ [ o
¢= [QnAn QzAn]’ b= [QnB\]A

The corresponding modified full-order P observer-based controller £pcy can be derived in
a similar fashion and is given by
- P = ®:+Gy+Hu
e - L b -
—pes { w = Fi=M:z+ Ny 1)

where : = r + K2Qay with K3 defined by proper partitioning of K = [A"; A'»] according to
¥, and

= A+KC. G = -(A+KC)KQy~ Ky, A = B+KD.
= F. N = ~FK,Q,.

An exactly analogous theorem can be stated for this case. However, to avoid repetitive
material, we provide a constructive method for obtaining £pcy. In particular we show that
asymptotic stability of the closed-loop system and ELTRI can be treated separately. To
establish this we rewrite & as

= o

b= A+k A ) (52)
where A, = A, + K2Q2A) and A, = Ay + RyAA)2.

Theorem 4.2 The ;uur_(A,C) is detectable if and only if the pair (A.C) is detectable,
where A = [A; Aa] and C = [1 0].

Consequently there exists a matrix &'y, such that the composite matrix & has a prescribed
set of eigenvalues. The following two-step procedure achieves asymptotic stability of the
closed-loop system and ELTRI independently:

1. Obtain A3 from the ELTRI condition A = B+ KD =0as K, = —-B(Q.81)'.

2. Obtain A’ such that & has a prescribed set of eigenvalues. a subset of which consists
of transmission zeros of T.
Note that ELTRO can be handled by duality.

Example 4.2 Let us consider the same system given in Ex. 4.1. Applying Step 1 we get
Ka=[~1.-1]%, Q2 = 1: and applying Step 2 we get

et

Vo= A+ ReQ@an=[0 0] (53)
o = A+ KaQeap=[0 -2]" (54)

which specifies {4,C} in & = 4 + K, C with

= 0 0 =

A= [0 _2], c=(10]

Since the pair {A.C) is detectable one of the eigenvalues of & can be assigned arbitrarily
at A = Ay € C~, and the other is the transmission zero at —2.

4.2 Exact Recovery with Full-Order Observers (p(C B) < m)

In this section we take advantage of the results of Section 4.1 to treat the difficuit case of
p(CB) < m. A double look at duality {recall Luenberger) reveals that one needs also to
take the derivative of the input and construct 1 as in Choice (1) or Choice (2). Here for the
sake of brevity we consider Choice (2) with

“[Qy:m]' ﬁ=[n';.]

and define the modified system as

M

{z’ = Az+ Ba .
v =

Gz . {53)
Note that we avoid the appearance of a D term in $ps. Since (CB) < m, the parameters

Q2 and Ry can be selected in such a way that Q2CB = 0 and CBR; = 0. Thus, the
modified system Lp can be represented by the triple {4, B, C}, where

- c
C=[ch,;]' B =[B ABR:|.

Again it is easy to show that (a) the poles and transmission zeros of £pr and £ are the same
and (b) Ty is stabilizable and detectable.
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For the special case of CB = 0, we choose Q; = R; = 1. In the following we assume that
#(CB) < m while p(CAB) = m, which means that p{C B) = m. The modified full-order P
observer-based controller Lpcyy is given by
{ i = &:4Cy+ Au

Srou:  \y o FioAa+fNy

{56)
where : = & + K2Qay ~ ByRyu with K and B; defined by proper partitioning of K =
{K; Ka) and B = [B, B} according to § and &, and
¢ = A+AC, G = —-dK,QAy - Ky A=
M = (I-FBuR))™'F. ¥ = (I- FByRy)™ FRaQa.
provided that T = / — F B2 R; is non-singular.

Lemma 4.1 The matriz T = I — FByR, is non-singular if and only if A (FBaR;) £ 0
Vi=12,...m

&8, + Ra+ By,

It is ml.:remng to point out the nppearance of the term FABinT. }if FAB =0
then the i of T i is g d and M = F. N = —~FRK2Qz. This establishes a
connection b the i dition £B = 0 in ELTRI of full-order P observers and
the non-singularity condition ot l‘ in ELTRI of modified full-order P observers considered
here. The following theorem summarizes the above result.

Theorem 4.3 Let the system T be left invertible and minimum phase. Then the modified
full-order P observer-based controfler Epcy achieves both asymplotic stability of the closed-
loop system and ELTRI using a consiructive method if and only if H = (A+ KC) ByRo +
By =0 and detl’ #0.

Example 4.3 Consider the system

o 1 o0 0
i = 0 0 tlz+|o]y (57)
-8 -11 -6 1

vy = {4+10]z (58)

with the target feedback loop realized by F = [-64.965 — 39.736 — 4.7458]. Since CB =0,
we have Q; = Ry = I and the pair {C, B} is given by

é—[“ L ‘] 8= [o _z]

Following our constructive procedure we obtain

=1 0
K= 6 0 (58)
-28 -1
and the modified full-order P observer-based controller £pcas is specified by

-4 0 0 1

& = 24 6 1], G=1-5

—-118 -43 -7 21

M = [ -52984 -32408 —0.38706 |, ¥ = —0.38706

which achieves ELTRI. Note that a reduced-order P observer can also be designed for the
system {4, B, C} to achieve ELTRI. This observer is given by

i = —4z+[1 0]p (60)
1 00
i = |-4|z+]| 1 0]|p (81)
0 -4 1
however, the derivative of the output is required to impl the ller.

5 Conclusion

‘This paper considered structural changes to the basic observer architecture to facilitate LTR.
Both P and PI observers with additional direct output and output error feedback loops were
analyzed. The advantages and drawbacks of these paths with static and dynamic gains were
discussed. In thu process new results have also been reported. We provided constructive
hods of d dified full-order P observers to achieve both asymptotic stability
of the closed-loop system and ELTR without imposing the restrictive condition of FB = 0.
These observers mimic the structure of reduced-order observers and realize ELTR for CB
having full and non-full rank. The desirable attributes required in LTR such as small gain
and low conr.rolle: dimension are also fulfilled. The results of this paper can be used for
phase as well. H , y and sufficient condition to achieve
ALTR should be mud For ALTR we intend to compare the performance of our modified
structures with Hoo /LT R and other existing LTR techniques.
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Figure 1: Modified structures based on (s) full-order P observer and {b) full-order PI observer
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