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Short Paper

Jx OPTIMIZATION OF THE RECOVERY
MATRIX"

H. H. NieMaNN,! P SoGAARD-ANDERSEN? AND J. SToUSTRUP!

Abstract. The emphasis of this paper is on an alternative approach to the Loop
Transfer Recovery (L'TR) design problem based on an .7, optimization of a cer-
tain matrix, the Recovery Matrix. The proposed .7../LTR method handles both
minimum phase systems as well as non-minimum phase systems in a common
framework. In both cases, the .7./L'TR design problem is transformed into an
almost disturbance decoupling problem. The resulting controllers are all of the
same dynamic order as the plant. As an application, robust control objectives are
studied, and sufficient conditions for the robust .7, problem are given in a form
supported by the design method presented in this paper. Furthermore, necessary
and sufficient conditions for solvability of the asymptotic recovery problem is giv-
en.

Key Words—ILoop transfer recovery, .7, theory, robust control, observer-based
controllers.

1. Introduction

In a series of papers, Doyle and Stein (1979; 1981) introduced the concept
of Loop Transfer Recovery (henceforth referred to as LTR) in the control com-
munity. In the decade that has elapsed since, the LTR concept has been the
focus of numerous studies (Moore and Tay, 1989; Saberi and Sannuti, 1990;
Stein and Athans, 1987; Segaard-Andersen, 1989; Zhang and Freudenberg,
1990).

In the original setting, LTR was intimately related to LQG methods. Later,
however, other design methods, such as eigenstructure assignment (Segaard-
Andersen, 1989) and singular perturbation techniques (Saberi and Sannuti,
1990) have also proved to be efficient LTR design methods.

Recently, Moore and Tay (1989) pioneered a new approach to the L'TR prob-
lem. Their approach is based on an .7, optimization of a suitably chosen recov-
ery function. This approach is promising in the sense that a more systematic
LTR procedure can be devised. In the usual LQG/LTR setting, the TR design
step is highly iterative. A more or less arbitrary design is made, and thereafter
tested to see if the specifications have been met. If not, an iterative series of
designs is required. .7, theory, however, offers an appealing alternative. The
J design philosophy is to make an advance specification of the .7, norm,
which is subsequently used in the design process. This reduces the need for
iterative numerical procedures, since a controller which achieves a specified
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M norm bound can be designed in a top-down manner. There are still,
though, unnecessary iterative steps in the Moore and Tay method. One of the
purposes of this paper is to overcome this problem. Another drawback of the
Moore and Tay approach is that for systems with right half plane zeros, only
the minimum phase part is considered, and, hence, no guaranteed norm
bounds for the overall systems can be given. Moreover, the resulting controller
order turns out to be at least 2r, which is unnecessarily large, due to the fact
that the approach uses frequency domain 7%, techniques, instead of the state
space methods which have meanwhile proven more powerful.

In this paper, we propose an alternative approach to the .7, /LTR problem.
The 7. /LTR design problem is formulated in Sec. 2 as an .., optimization of
a certain matrix valued function, the Recovery Matrix. We pose the problem in
a state space formulation with the ILuenberger observer-based approach
introduced in Niemann et al. (1991). An 7%, bound for the Recovery Matrix is
derived and acts as a sufficient condition for the robust .7, control problem.
Further, we prove constructively that the 7. /LTR design problem can always
be solved by an #nth order controller with a standard full order observer-based
controller structure.

A design procedure for the nth order .7,/LTR controller is provided in
Sec. 3. In this setting, we invoke some recent 7, results (Stoorvogel, 1992),
which directly allow singular systems; i.e., regularity of the direct feedthrough
terms is not assumed, as opposed to Moore and Tay (1989), where this restric-
tion is tackled by an approximation technique, which induces an unnecessary
iteration parameter. .

Necessary and sufficient conditions are given for the solvability of the .7,/
LTR design problem with a specified .7, norm bound on the recovery matrix.

For minimum phase plants, these results imply simple design algorithms.
The designer may specify any level of recovery, and the solution is then a mat-
ter of solving linear equations. For systems with RHP zeros, the situation is
similar, except that the designer is not allowed to specify an arbitrarily small
recovery error. For non-minimum phase systems, the solution involves a state
space transformation and a reduced order Riccati equation. By means of these
two operations, the problem is thereafter transformed into an .7../L'TR prob-
lem for a minimum phase problem.

Originally, LTR was introduced as an approach to solve the mixed sensitivity
problem. However, the methods known for the mixed sensitivity problem at
this point are all based on sufficient conditions; i.e., they are inherently conser-
vative. In this paper, we compare various approaches to the mixed sensitivity
problem and provide bounds for their conservatism. The method introduced
here is conservative as well, since it considers only a common factor of various
transfer functions commonly chosen as objects of optimization. However, in
Sec. 4, we shall give an example of robust controller design arising from these
different .%./LTR methods showing that our methods are sometimes less con-
servative than the known methods, even though the controller order is lower.

2. Robust Control and the Recovery Principle
The main issue in the robust control paradigm is to design dynamic feed-

back compensators which optimally track a reference signal in the face of vari-
ous kinds of uncertainties, which are usually thought of as e.g., disturbances,
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measurement noise, unmodeled dynamics or unknown future reference signals
to be applied.

It is well known (Chiang and Safonov, 1988) that all these types of uncer-
tainties relate to two transfer functions, the sensitivity function S(s) and the
complementary sensitivity function 7(s), given by

SGs) = I = QE®)G() ™!, T(s) = - (QE)GE) ™ H™, (21

where G(s) is the plant transfer function and @(s) is the controller to be de-
signed. S(s) has to be small to suppress disturbances and obtain good track-
ing. On the other hand, to achieve robust stability subject to unmodeled
dynamics and to eliminate the influence of measurement noise, 7(s) has to be
small. By introducing weighting functions expressing the a priori knowledge of
the frequency contents of disturbances and reference signals, W,(-), and the
frequency contents of measurement noise and unmodeled dynamics, W,(-), we
are led to the following problem formulation.

Problem 2.1. Let y > 0 be given, and let W;(-) and W,(-) be weight func-
tions for the sensitivity function and the complementary sensitivity function,
respectively. Find, if possible, a finite dimensional, linear, time invariant, inter-
nally stabilizing controller @(s), such that the resulting sensitivity and comple-
mentary sensitivity functions satisfy

[ W ()SC) [w<y and | Wo()TC) =< y. (2.2)

Problem 2.1 is an optimization problem for which there is no direct translation
to an .. standard problem. Hence, to obtain feasible solutions by means of an
s standard model, we have to introduce some amount of conservatism. In
this section, we shall discuss several approaches to perform this /. standard
problem modeling in a Loop Transfer Recovery (LTR) setting (see Stoustrup
and Niemann, 1993).

Let us consider a finite dimensional, linear, time invariant plant model, rep-
resented by a state space realization (4, B, C, 0),

x=Ax+ Bu, x€IR" ueclp”
> (2.3)

z = Cx, z e IR?.
To design a controller for a given system by the LTR methodology, we first
determine a formal (static) state feedback u# = Fx, the target design, which sat-
isfies our design specifications, in this case
| W,()8:) o<y and | Wy()Te() e < s (2.4)
where

Si(s) = I— F(sI—A)"'B)™' and Tu(s) = — F(sl — A — BF)"'B (2.5)

are the sensitivity function and the complementary sensitivity function, respec-
tively, obtained when applying a state feedback. The target design can be done
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in a number of ways, which will not be discussed further in the present paper.
Subsequently, the recovery step of the LTR design procedure has to recover
the target design sufficiently well by means of a dynamic measurement feed-
back controller. In the standard 1.QG/LTR setting (Doyle and Stein, 1979;
1981), only full order observer-based controllers, i.e., a controller # = Q(s)y,
where @ has a realization of the form,

% =A%+ Bu + K(CE — y)
3.8 (2.6)

u = Fx

are considered. This means that we only have to design an observer gain K,
such that when applying the corresponding full order observer-based controller
with feedback gain F, (2.2) is still satisfied. In this paper, it will be shown that
the full order observer-based controller structure can be imposed also in the
Jo/LTR case with good results compared to higher order controllers (see the
discussion below).

The first approach to formulate Problem 2.1 as an .7, standard problem in
the LTR setting was taken by Moore and Tay (1989). They applied a frequency
domain method to an .7, optimization problem based on the recovery error
E(s),

E(s) = S(s) — Sx(s) = Ti(s) — T(s) (2.7)

(where S + T = [ is exploited).

The motivation for studying an .7, norm bound on E(s), which is not ex-
plicitly mentioned in Moore and Tay (1989), is the following. When the actual
sensitivity functions S(s) and T(s) are sufficiently close to the target sensitivity
functions Sp(s) and Ty(s), respectively, so will (2.2) be satisfied when (2.4) is.
To be more precise, we require the relations

[Wi()SC) o<y, [[Wo()TC) || < 7, (2.8)
which are satisfied, if and only if
[Wi(O(EC) + Se() le<y, [ Wo()(Tp(-) — EC)) =<y, (2.9)

which in turn is implied by

| WOEC) [« + [ TGS [l < V}_ (2.10)

IWo(EC) [ + [ Wo()Te() [l < v

Hence, (2.2) is guaranteed, if E(s) satisfies the bound in the following problem.

Problem 2.2. let y > 0 be given. Find, if possible, a finite dimensional,
linear, time invariant, internally stabilizing controller @(s), such that the result-
ing recovery error E(s) satisfies

| Wi O)Se() =y = Wo() T () |
(RU1O) PR I Wy () |l

1EC) |l < min{ vl } (2.11)
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In Moore and Tay (1989), an %, problem with an optimization constraint on
E(s) is studied in frequency domain, giving rise to controllers of order 3z — 1
or 2n for square systems. State space formulae for the solution to Problem 2.2
were given in Stoustrup and Niemann (1993) with controller orders of, at most,
2n.

In Sec. 4, we shall study an example, which demonstrates that the bound
given by (2.11) is rather conservative. The reason is that we consider an un-
weighted optimization of E(s), which means that we have to accept a low fre-
quency sensitivity error of the same magnitude as the unavoidable error
caused by non-minimum phase zeros. This makes the performance specifica-
tions very conservative.

To avoid the conservatism of Problem 2.2, we have to introduce the two
weights W,(s) and W,(s) for E(s). This gives rise to the following problem.

Problem 2.3. Let y > 0 be given. Find, if possible, a finite dimensional,
linear, time invariant, internally stabilizing controller @(s), such that the result-
ing recovery error E(-) satisfies

Wl
[ wfeo].

As in Problem 2.2, the right hand side of (2.12) is an upper bound for the 7.
optimization of the weighted sensitivity recovery error, which guarantees that a
controller solving Problem 2.3 also is a solution of Problem 2.1. Problem 2.3 is
a sensible approach to a robust %, design method in the LTR methodology
with regard to conservatism. Provided the target feedback has been carefully
selected, the design will be no more conservative than 6 [dB]. On the other
hand, a conservatism of 6 [dB] is inevitable, when Problem 2.1 is modeled as
an .7, standard problem. The solution to Problem 2.3 is given in Niemann and
Stoustrup (1991).

The drawback of applying an %,/LTR method based on Problem 2.3 is
associated with controller orders. Since the dynamic order of E(s) is 2%, a con-
troller for Problem 2.3 will, in the general case, be of order 2n + n, + %y,
where #,, and #,, are the dynamic orders of W,(s) and W,(s), respectively.

The method proposed in this paper will always yield controllers of order at
most #. Before introducing the associated .7, standard problem, we first need
a preliminary observation. The recovery error E(s) for a feedback system with
a full order observer-based controller of the form (2.6) can be written as the
following product (Niemann et al., 1991):

< min{y —| Wy(-)Sp(:) [leor 7 =l Wo()Tp(s) ||} (2.12)

E(s) = Sp(s)M(s), (2.13)
where S,(s) is given by (2.5) and the Recovery Matrix M(s) is given by

M(s) = F(sl — A - KC)™'B (2.14)
and K is here the observer gain to be designed. Since Sy(s) is independent of
K, clearly | E() ||.— 0, if and only if || M() |»— 0 for a sequence of control-

lers. Hence, for the minimum phase case, considering 7. bounds on M(-) is
equivalent to considering % bounds on E(-). In the general non-minimum
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phase case, (2.2) leads to the following 7, constraint on the recovery matrix.

Problem 2.4. let y > 0 be given. Find, if possible, a finite dimensional,
linear, time invariant, internally stabilizing controller @(s), such that the result-
ing recovery matrix M(-) satisfies

Yy =W e v =Wy Te() |l
ACLEON NN M AOR- O *

[ M() || < min{ } (2.15)

This 7, constraint constitutes a sufficient condition for a solution of Problem
2.4 to be a solution of Problem 2.1, also. In Sec. 4, however, we shall show that
sometimes Problem 2.4 has a solution, although Problem 2.2 has not, meaning
that Problem 2.2 has a more conservative bound than Problem 2.4 in some
cases. The reason is that for typical designs, the “min” of (2.11) and of (2.15)
are determined by the first operand in both cases. This means that if
4 = 20=(log || W (-)Sp(-) |» — log | W,(-) ||.) is a positive number, which it
will always be for reasonable target designs, then an #,/LTR method based
on Problem 2.4 will be A4 [dB] less conservative than a method based on Prob-
lem 2.2. Moreover, since the dynamic order of M(s) is #, the solution to Prob-
lem 2.4 will be a controller of order, at most #, and hence only half the number
of controller states, as in Problem 2.2, is required.

For the purposes in this paper, the recovery matrix function M(s) is defined
in terms of full order observer-based controllers. It can be proven, however,
that (2.13) holds for any controller type (see Niemann et al., 1991), and (2.13)
can hence be taken as the defining equation.

Let us consider for a moment the more general Luenberger observer-based
controller,

- =DE+Gu+ E
1'{5 S il 3 5, (2.16)

u = PE+ Ty,

where D, G, E, P and V satisfy the Luenberger conditions (Luenberger, 1971),

AD) C C”
TA - DT = EC
, (2.17)
G=1TB
F=PT+VC

for some matrix 7. The recovery matrix for the Luenberger observer based
controller is given by

M, (s) = P(sl — D) ~1G. (2.18)

It is possible to implement any observer-based controller in the Luenberger
architecture (Niemann et al., 1991). Because of this generality, it is relevant to
use the Luenberger observer in LTR design, instead of restricting the attention
to specific observer types as e.g., full order or minimal order observer-based

controllers.
However, for the LTR design problem considered in this paper, i.e., Problem
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2.4, it turns out that it contains no loss of generality to consider only full order
observer-based controllers as stated in the following result.

Theorem 2.5. Let y > 0be given. The following two statements are equiva-

lent:

(1) There exists an internally stabilizing Luenberger observer-based controller,
such that the resulting recovery matrix M, (-) satisfies | M () [» < y-

(2) There exists an internally stabilizing full order observer-based controller,
such that the resulting recovery matrix M(-) satisfies || M(-) ||~ < 7.

Proof.  See Appendix A.

Theorem 2.5 shows that if Problem 2.4 is solvable by any observer-based
controller, then it is solvable also by a full order observer-based controller. Us-
ing this important observation, we restrict the attention to full order observer-
based controllers throughout this paper.

To summarize, we have restated the original .7, optimization Problem 2.1,
which concerns both sensitivity functions, as an .7 standard problem in three
different formulations. Each standard problem formulation is an .7, optimiza-
tion of a single term, rather than the two terms of Problem 2.1. During this
transformation, we (unavoidably) retain only sufficiency of the solutions rela-
tive to Problem 2.1. The sufficiency is stated as the following result, which is
verified through trivial calculations.

Lemma 2.6. Let Q(s) be a finite dimensional, linear, time invariant, inter-
nally stabilizing controller, satisfying either (2.11), (2.12) or (2.15). Then, (2.2)
is also satisfied.

3. Solutions to the .7./LTR Design Problem

Solutions to Problem 2.4 will be derived in this section in terms of design
methods for full order observer-based controllers.

The transpose of the recovery matrix (2.14) corresponding to the full order
observer has the following standard state space ./, represcntation:

] £ =A% + C'u + FTw,
o (3.1)

z=B%+ 0-u

The 7. /LTR design problem for a given y > 0 is now, if possible, to design a
state feedback control # = KT, which internally stabilizes the plant and makes
the 7. norm of the resulting closed loop transfer function from w to 2, i.c., the
norm of M(-), smaller than y =y ... The matrix K will then be the observer
gain in the resulting full order observer-based controller.

Applying the so-called singular /s approach, we shall give a solution to the
general non-minimum phase 7,,/LTR problem in Sec. 3.2. As special cases, we
shall apply the result to minimum phase systems and pseudo-minimum phase
systems, the latter being systems which can be asymptotically recovered for
only certain target specifications. In Sec. 3.4, necessary and sufficient condi-
tions for the asymptotic recovery problem will be provided.

3.1 The singular approach to J../LTR The /. problem with the state
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space representation (3.1) is a so-called singular problem, because the direct
feedthrough term of the # — z transfer function does not have full column rank
(it is zero) as is required in order to apply the standard regular 7. theory, as
in e.g., Doyle et al. (1989). Instead, the approach of Stoorvogel (1992), which is
a generalization of the results from Doyle et al. (1989), will be taken. As a main
difference, the singular 7, approach of Stoorvogel (1992) includes a certain
quadratic matrix inequality with some associated rank constraints, rather than
the matrix Riccati equation known from Doyle et al. (1989). In our case, the
quadratic matrix inequality specializes to a Riccati inequality with three rank
constraint, since the system is totally singular; i.e., the direct feedthrough term
is zero. Effectively, we have the following result.

Lemma 3.1. There exists an internally stabilizing state feedback u# = K'x,
which makes the %, norm of M(-) smaller than y > 0, if and only if there
exists a matrix P = 0 satisfying the following four conditions:

(@ AP+ PA" + BB" +y ?PF'FP A BB" = (

(b) rankB = rankB

© CP=0

(d (A +y 2PFTF, B, C) is 2 minimum phase system

(3.2)

Proof.  The four conditions in Lemma 3.1 are obtained from the results in
Stoorvogel (1992), when utilizing the fact that the state feedback problem is
totally singular.

3.2 Non-minimum phase systems When the system X considered in-
cludes right half plane zeros, the unique matrix P satisfying LLemma 3.1 (a)—(d)
will be nonzero and depend on y. Moreover, the recovery level y cannot in
general be selected arbitrarily small, thus giving rise to finite recovery errors.
For full and minimal order observer architectures, the existence of lower
bounds for recovery has been studied in the literature (Niemann and Jannerup,
1989; Stein and Athans, 1987; Zhang and Freudenberg, 1990). However, when y
has been chosen greater than the infimally achievable recovery level, i.e., when
Problem 2.3 has any solutions at all, then a full order observer-based controller
solving the ., /LTR problem can be found by the following procedure. First, a
matrix P is found, satisfying Lemma 3.1 (a)-(d). This step amounts to perform-
ing a state space transformation and solving a reduced order matrix Riccati
equation (see Stoorvogel, 1992; Stoustrup and Niemann, 1993) for computation-
al details. Secondly, K is determined as a solution to a dual almost disturbance
decoupling problem, which can be solved following the line of Weiland and
Willems (1989). When applying a full order observer-based controller with K as
the observer gain to the original plant, we obtain a solution to the .%./LTR
problem. We have the following result.

Theorem 3.2. Assume that P = 0 satisfies conditions (a)—(d) of Lemma
3.1. Assume that K is an output injection which makes A +y ?PF'F + KC
stable and further satisfies

| F(sI = A —y 2PFF — KC) "'B||. < 7. (3.3)
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Then, a controller # = Q(s)y, which internally stabilizes the system >T and
makes the 7. norm of the closed loop transfer function from w to z smaller
than v, is given by

Il

A+ KC K-y,
DI {5 (AsHo0 + 50 (34)
u=—FE+0-y.

Proof  The lemma is obtained from the results in Stoorvogel (1992).

The interpretation of Theorem 3.2 is that the construction of an LTR control-
ler for a non-minimum phase system can be performed as a recovery design
problem for a different, transformed plant. The transformed system
(A + y~%PF"F, B, C) is by construction minimum phase. Hence, the trans-
formed problem is an asymptotic recovery problem, for which explicit solu-
tions are known.

3.3 Minimum phase systems It is well known that for minimum phase
systems recovery can be achieved arbitrarily well; i.e., asymptotic recovery is
always possible. Correspondingly, a sufficient condition for the conditions in
Lemma 3.1 to be satisfied for any choice of y, is that the system X considered
is minimum phase.

Lemma 3.3. Let y > 0 be given. Assume that X is a minimum phase sys-
tem. Then P = 0 is the unique matrix satisfying conditions (a)-(d) of Lemma
3.1

Proof P = 0 is seen to be a solution for all y, since the dependency of y in
conditions (a) and (d) vanishes, and B = B. Hence, everything remaining is
just the requirement that ¥ is minimum phase, which was assumed. Unique-
ness has been proved in Stoorvogel (1992).

Clearly, for a stabilizable and detectable system, the corresponding /e
problem will be solvable, provided y has been chosen sufficiently large. Hence,
for systems where solvability does not depend on y at all, the .. problem
must be solvable for any value of y. This is the case for minimum phase sys-
tems, as seen by the above lemma. For such systems, we are typically faced
with the task of designing an infimizing sequence of controllers, which make
the 7. norm tend to zero, rather than just the design of a single controller for
a fixed value of y. To be more specific, the asymptotic recovery problem is the
following variant of Problem 2.4.

Problem 3.4. Find, if possible, a series of observer gains K, such that for
every ¢ > 0 the closed loop system is internally stable, and

|F(sSI—A—K.C) 'B|.<e (3.5)

The relationship between & in (3.5) and the original design specifications is
again given by the formulas in Sec. 2. To obtain a suitable K, it might be con-
venient to note that (3.5) has the form of a dual almost disturbance decoupling
problem; i.e., the problem is to find a stabilizing state feedback F = KT for the
auxiliary system,
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=A%+ Clu + F'w,
pIE (3.6)

z=B%+ 0-u

which makes the .7, norm of the transfer function from w to z smaller than e.
This can be done constructively, using e.g., the approach of Weiland and
Willems (1989). Hence, one interpretation of Lemma 3.3 is that for a stabiliz-
able and detectable minimum phase system, almost disturbance decoupling is
always possible. The design of full order observer-based controllers for mini-
mum phase systems is well studied (Stein and Athans, 1987; Segaard-Andersen,
1989), so we shall not elaborate any further on this here.

3.4 Pseudo-minimum phase systems In Sec. 3.3, it was demonstrated
that asymptotic recovery is always possible for minimum phase systems. The
minimum phase condition, however, is not necessary for asymptotic recovery.
To provide necessary and sufficient conditions for solvability of the asymptotic
recovery problem, we shall use some notions from geometric control theory. It
turns out that the relevant subspace for our problem is the infimal /-almost
detectability subspace, which is normally denoted by ./;, (Weiland and
Willems, 1989). This subspace has the interpretation that it is the smallest sub-
space with the property that the factor system modulo ./, is minimum phase.
Algorithms for determining ./ 5, can be found in Appendix B.

Theorem 3.5. Consider a system (A, B, C) with a target state feedback F.
Asymptotic recovery is possible, if and only if F satisfies

F/p, = (. (3.7)

Proof.  'The theorem is proved in Appendix B.

To check the necessary and sufficient condition of Theorem 3.5, one com-
putes ./, using the algorithms (B.1). Note that ./, is independent of F.
Hence, it is possible to design a state feedback which is guaranteed to be
asymptotic recoverable by allowing only for partial state feedback. To be more
specific, assume that in the basis for the state space representation, the first
dim(./ ;o) basis vectors span ./ j,. Now, the target feedback can be recov-
ered, if and only if it has the form F = [0 F,]; i.e., the problem of designing a
recoverable target state feedback is equivalent to the formal design of a static
output feedback # = F,y, with the fictitious measurement y = [0 I]x (when
the system is given in the above basis).

The necessary and sufficient condition (3.7) for achieving asymptotic recov-
ery can be interpreted as a requirement that the kernel structure associated
with right half plane zeros of the triple (4, B, F) coincides with that of (4, B,
C). In the scalar case, this reduces to the condition that the RHP zeros of (4,
B, F) coincide with the RHP zeros of (4, B, C), in which case the RHP zeros
of M(-) cancel. Accordingly, we shall refer to (3.7) as the pseudo-minimum
phase condition. The pseudo-minimum phase condition is only satisfied for non-
minimum phase systems, if F is chosen properly, as it is seen by the following
corollary.

Corollary 3.6. Let a system (A, B, C) be given. Then asymptotic recovery
is possible for all stabilizing F, if and only if (4, B, C) is minimum phase.
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Proof By Theorem 3.5, asymptotic recovery is possible for all stabilizing F, if
and only if F./#, = ¢ for all stabilizing F. This is equivalent to ./ 4, = ¢,
meaning that (A, B, C) has no RHP zeros.

4. A Non-minimum Phase Example

In this section, we shall study an example of a non-minimum phase system,
for which we shall compare design methods for achieving robust stability and
nominal performance based on the solutions to Problem 2.2 and Problem 2.4,
respectively. The latter is the subject of this paper, and the first is treated in
Stoustrup and Niemann (1993).

The steps in the applied 7. /LTR algorithms will not be studied in detail.
For a more thorough exposition of the methods, please refer to Stoustrup and
Niemann (1993). The algorithms for determining /./LTR controller parame-
ters have been implemented as short MATLAB programs, which are available
on request to the authors.

Consider the nominal system given by

A= 1.00 0.00 0.00 |,

0.00 1.00 0.00

1
B=[O] c=[0 1 -5],
0

I:— 0.80 -0.37 -0.05

which has an RHP zero in z = 5.
As the target feedback, let us take

F=[-520 -—17.6925 — 23.2313].
The closed loop system matrix A + BF has the eigenvalues
— 2.5 — 175 + 2.5.

The target feedback loop satisfies the performance and robust stability condi-
tions in (2.4) for the following weights:

(s + 1.5)8

= 0.283- L,
Wils) = 0233 o1y

W,(s) = 0.3

for y = 1.0.

Now, let us apply the two % /LTR controller design methods based on the
formulations in Problem 2.2 and Problem 2.4, respectively, to this non-mini-
mum phase system. First, we consider Problem 2.4. The largest permissible
. norm of the recovery matrix, for which robust stability/nominal perfor-
mance is guaranteed by the bound (2.15), is given by

| M(-) || < min{1.9146, 1.9169).

By iterative methods, we can compute the infimally achievable .. norm of the
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recovery matrix, which is y,; = 1.65 ~ 4.35 [dB]. One choice for the 7. opti-
mization bound y,, of M(-) is y,, = 1.85 ~ 5.24 [dB]. This is feasible, since
165 < y,, < L9L

An observer gain which achieves | M(-) ||. < 1.85 is given by

K" = [131.43 30.20 6.09]-10°

The sensitivity and complementary sensitivity functions for this design and for
the target design are shown in Figs. 1 and 2, along with the design specification
bounds; i.e., | Wy(s) |7 and || Wy(s) || 2.

Next, let us for the same example turn to the formulation in Problem 2.2,
where we consider the sensitivity recovery error E(s), as has been done in
Stoustrup and Niemann (1993).

20
10F i semargg,
0 F - e —————— ‘—;—/-f_tn—
2 -1t o
E - ZO.L / Performance spec.
ot 30| -/ Target design ———-
@ - 3 [ M) w<y oo
—40 IEs() <y — — =
<" 7/
— 50 ___’//
—6() 1 fod.d § ELEE 1 ] R T 0 Y 1 1 IIIIIII‘ L 11 JJII(
107! 10° 10! 102 103
o [rad/s]
Fig. 1. The sensitivity function.
20
10F
e /:\\ -----------
N
5 -10f . TN
== AN .\.
5 - 20f NN
= Robust stability —— AN \.\
& — 307 Target design —--- S
_gop IMOa<y
IEs() <y —— ™
- 50t .
— 60 L [ NI U T T B S A W W Ll
101 100 101 102 103
w [rad/s]

Fig. 2. The complementary sensitivity function.
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The upper bound on | E(-) || is given by (2.11) as

However, since the infimally achievable .7, norm of the sensitivity recovery
error E(s) (determined by an iteration technique) is y; = 0.58 ~ — 4.73 [dB],
no feasible choice of an /., constraint for E(s) exists. Consequently, no method
based on the inequality (2.11) can be guaranteed to satisfy the specifications.
For comparison, we have computed the sensitivity function and the complemen-
tary sensitivity function resulting from an optimization with the optimization
constraint || E(-) ]]oo < 0.65 ~ — 3.74 [dB]. This design will lead to a controller,
since y = 0.65 > y} = 0.58, but it is not guaranteed that we will meet the spec-
ifications. In fact, the design violates the nominal performance specifications, as
it is seen in Fig. 2, where, as expected, the sensitivity at low frequencies is
significantly worse than for the above design (even though the robust stability
is slightly better, see Fig. 1). The specification | W,(s)S(s) | and || W,(s)T(s) ||
are shown in Fig. 3. Note, that || W;(s)S(s) | for the design based on E(s) is
significantly above the y = 1.0 ~ 0.0 [dB] specification.

Hence, we see that for this example, a design based on %, optimization of
the recovery matrix M(s) was less conservative (with other choices for W; and
W, this would not necessarily be true) with respect to nominal performance/
robust stability specifications than a design based on the sensitivity recovery
error E(s), even though the recovery matrix design led to a controller with
three less controller states. For the present example the classical LQG/LTR
method (Doyle and Stein, 1981), which optimizes the %, norm rather than the
. norm, did not meet either of the specifications (the design is not shown in
the plots). In the scalar case with one RHP zero, the LQG/LTR method will
result in a recovery matrix having its %, norm exactly twice the infimum
(Niemann and Jannerup, 1989) which is not sufficient for the specifications in
this example.

E() ||~ < min{0.0058, 2.7109}.

40—

30 LN | W,(iw)S(iw) | for Problem 2.4.——
|| W(iw)S(iw) || for Problem 2.2.-==~

20 r N | Wylio)T(iw) | for Problem 2.4.------

10 b \\|| W,(iw)T(iw) | for Problem 2.2.—-—

— B0 L1 11l (IR RE Lo Lt 111l

| W,(i0)S(iw) |, | Wy(iw)T(w) | [dB]

10-1 100 101 102 103
o [rad/s]

Fig. 3. Weighted sensitivity and complementary sensitivity functions.
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5. Discussion

Although LTR emerged as an approach to robust control, LQG/LTR does
not provide guarantees for robust stability/nominal performance. Hence, the
//LTR design approach proposed in this paper offers a serious alternative to
the well known LTR methods for designing robust controllers.

The authors find that this alternative is appealing for a number of reasons.
The design method proposed embarks from a prescribed recovery error level.
Through a one-shot test procedure, it is determined whether the specifications
can be met by a subsequent design procedure or not. This eliminates the need
for a full analysis of the closed loop behavior of an iterative sequence of control-
lers. For (pseudo-) minimum phase systems, the specifications can always be
met. For non-minimum phase systems, the synthesis is carried out by means of
an auxiliary minimum phase system, which is obtained as a byproduct of the
performed test, and the design is eventually carried out exactly as in the mini-
mum phase case. Hence, the method provides a systematic and transparent
treatment of non-minimum phase systems, which is only endogenous iterative.

Moreover, in terms of controller order, the method here provides a small
controller having only # controller states, compared to the competing ap-
proaches mentioned above which had controller orders of 2xn, 3. Surprisingly,
this does not necessarily mean that more conservatism is introduced, as shown
in the design example of Sec. 4, where the present approach based on the re-
covery matrix was, in fact, less conservative than the sensitivity error based
approach, which did not lead to a design satisfying the specifications.

From a conceptual point of view, it is convenient to interpret the .7./LTR
design problem as disturbance attenuation problems. To be more precise, the
exact %,/LTR problem (which has not been treated in this paper) is equiva-
lent to an exact disturbance decoupling problem (see Niemann et al., 1991), the
asymptotic . %./LTR problem is equivalent to an almost disturbance de-
coupling problem (see Sec. 3.2), and the general non-minimum phase .7, /L TR
problem is equivalent to an .7, disturbance attenuation problem (i.e., the prob-
lem of making the disturbance transfer smaller than a prescribed y—see Secs.
3.1 and 3.2). The latter is by means of an auxiliary minimum phase system,
again interpreted as an almost disturbance decoupling problem. Making stable
and efficient algorithms for the almost disturbance decoupling problem there-
fore becomes the main effort in developing software for the 7. /LTR problem.
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Appendix A: Proof of Theorem 2.5

The proof proceeds as follows. In this appendix, we shall prove the equiva-
lence of the existence of a Luenberger observer-based controller to four certain
conditions. The same four conditions are shown in Sec. 3 to be equivalent to
the existence of a full order observer-based controller. This establishes the
theorem.

A complete characterization of all possible recovery matrices obtainable by
applying a Luenberger observer-based controller is given by (Niemann et al,
1991) the expression

M, (s) = P(sl — D)~ 1G
= F(GsI-A—-KC)"B+ Q(s)C(sI — A — KC)™ B, (A1)
where K is an arbitrary but fixed gain such that A + KC is stable, and
Q € A%, is a free parameter. The result is based on the Youla parameteriza-
tion of all stabilizing controllers. The real rational subclass of these has, in fact,
a simple parameterization in the form of Luenberger observer-based control-

lers (Niemann et al., 1991).
The %, optimization || M,(-) ||~ < ¥ or equivalently

|FGI — A - KC)~"'B+ Q(s)C(sI — A - KC)'Bll.<y  (A2)

becomes a singular model matching problem in the unknown parameter
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Q € RH,. By applying the singular %7, theory introduced in Stoorvogel
(1992) we get the following conditions for the existence of a @ € R.#.,, such
that | M;() [« < y.

Lemma A.1. There exists an internally stabilizing (in terms of the full
closed loop system) transfer function @ € R.%,, which makes the 7, norm
of M;(-) smaller than y > 0, if and only if there exist matrices P, = 0 and
P, = 0 satisfying the following seven conditions:

(1) (A+KC)P, + Py(A+ KC)" + BB + y~2P,F'FP, 4 BBT = (.

(2) rankB = rankB.

@ CP,=0. )

4 (A+KC+ )/‘ZP2 F'F, B, C) is a minimum phase system.

() (A + KC)™P, + P;(A + KC) + y~2P,BB"P, = 0.

(6) A + KC + y~?BB'P, is a stability matrix.

@) Q(Plpz) < VZ-

Proof.  The 7 conditions in Lemma A.1 follow by applying the main result of
Stoorvogel (1992) to the model matching problem (A.2).

By the stability of A + KC, it follows (Stoustrup, 1990) that for any y, the
unique matrix satisfying (5), (6) and (7) is P; = 0. Hence, an admissible
Luenberger observer, i.e., a stabilizing controller, for which | M,(:) |« < 7, ex-
ists, if and only if conditions (1)-(4) above are satisfied. Now, in Sec. 3, these
four conditions will be shown to be equivalent to the existence of an admissible
full order observer-based controller. This establishes Theorem 2.5.

Appendix B

In Sec. 3.4, necessary and sufficient conditions for asymptotic recovery
were given in terms of a certain subspace ./ ;.. We shall here provide algo-
rithms for determining ./, in the “geometric” style, since matrix notation
tends to get unhandy, although the matrix algorithms are relatively simple. De-
fine the subspaces 4= ImB and .%X'= kerC. Consider the following recur-

sions:

=
ISA:
i = KA NATI N+ £)
and , (B.1)
F= @
ACSA, : ,
Sy = BHAK N S)

and denote . V* = .4, /* = ./, (ISA stands for Invariant Subspace Al
gorithm, ACSA stands for Almost Controllability Subspace Algorithm). Let
L be an arbitrary output injection satisfying (A + LC)./* C ./* (such that
L can be found using the DDP algorithm in Wonham (1985). Let a(4)
=a_(A)a,(A) be the minimal polynomium for A + LC, where the
roots of a_(1) lie in €~ and those of a,(A) lie in C*. Define
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Z-(A+ LC) =Ima_(A + LC);ie, #-(A + LC) is the orthogonal comple-
ment to the generalized stable subspace of (4 + LC)T (which can be found by
calculating the ordered Schur form of (A4 + LC)7). Then,

Shg = N*N(S* + (A + LCY). (B.2)

Hence, to check the pseudo-minimum phase condition (3.7), a finite recursion
of solving linear equations and a Schur decomposition is required.

We now proceed to the proof of Theorem 3.5, which is done by dualization.
First, we claim that the dual subspace of ./ §, is 7, the supremal /-almost
stabilizability subspace. This is verified by observing that the algorithm given
above is the dual of the algorithm given in Weiland and Willems (1989) for de-
termining 7 ;.. Consider the auxiliary system,

¥=A+ C'u + F'w,
3 (B.3)

z=B% + 0-u

Now, the .. almost disturbance decoupling problem is solvable for X7 if and
only if the following inclusion holds (see Weiland and Willems, 1989),

ImFTC 775,E), (B.4)

which is equivalent to
kerFD ¥§,(27)y = S5, (2), (B.5)
F/i,(2) = ¢. (B.6)

On the other hand, by definition the .#.-almost disturbance decoupling prob-
lem for X7 is solvable, if and only if for all y > 0 there exists F,, such that

| B(sI — AT — C"F,) "WFT|. < y, (B.7)
or equivalently
]]F(sIFA—F$C)‘"1B||w<y, (B.8)

which settles the proof by chosing K* = FJ.
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