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Abstract. In this paper we consider the problem of designing a stabilizing controller
which minimizes the H2 norm of a transfer matrix while maintaining the H∞ norm
of another transfer matrix below a specified level. This problem is unsolved, but we
approximate the problem by a tractable convex method, and we improve on the H2 norm
bound in the literature. Our main result shows that our formulation is less conservative
and the problem can still be solved by convex programming.
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1 INTRODUCTION

After reaching a mature state H∞ control theory
(Doyle et al, 1989), much emphasis has been placed
on the mixed H2/H∞ control problem which com-
bines the H∞ control problem and the classical H2 (
or LQG ) control problem (Bernstein and Haddad,
1989; Doyle et al, 1989; Zhou et al, 1990; Khar-
gonekar and Rotea, 1991; Ridgely et al, 1992a and
b), where a stabilizing controller is sought which
minimizes the H2 norm of a transfer matrix subject
to an H∞ norm bound on another transfer matrix.
Such a problem is important since it represents one
way of formulating a robust control problem where
robustness is guaranteed by the H∞ norm bound
and the performance as measured by the H2 norm.

The first approach to this problem by Bernstein et
al. (1989) utilized the fact that the solution to the
Riccati equation describing the H∞ norm bound
constraint is an upper bound for the state covari-
ance, and formulated a problem of minimizing the
H2 upper bound obtained as the trace of the out-
put covariance bound. Their approach resulted in
coupled Riccati equations which are nontrivial to
solve except for the ”equalized” case ( a single trans-
fer matrix is considered for both H2 and H∞ per-
formance ) where the optimal controller is shown
(Mustafa, 1989) to be the maximum entropy H∞
controller (Glover and Mustafa, 1989). To over-
come the numerical difficulty in Bernstein and Had-
dad (1989), Khargonekar and Rotea (1991) took an
”inequality approach” and formulated an equivalent
problem as a convex optimization problem. How-
ever, the H2 upper bound based on the H∞ Ric-
cati solution is conservative. There are no results
available which solve the original (nonconservative)

problem with a numerically tractable algorithm (e.g.
Ridgely et al. 1992a and b).

This paper introduces a less conservative measure of
H2 performance by adding an extra freedom (a pos-
itive scalar α) to the formulation of Khargonekar
and Rotea (1991). Since our feasible set is larger
than that of Khargonekar and Rotea (1991) due to
the extra freedom α, our optimal H2 norm bound is
guaranteed to be less than or equal to that of Khar-
gonekar and Rotea (1991). Moreover, our formula-
tion also allows convex programming. The precise
problem formulation will be given in the next sec-
tion.

2 PRELIMINARIES

We shall consider finite dimensional, linear, time in-
variant systems of the form

ẋ = Ax + B1w + B2u
z∞ = C∞x + D∞u
z2 = C2x + D2u

. (2.1)

For such systems we shall consider static state feed-
backs, i.e., control laws of the form u = Fx. Let the
closed loop transfer matrices (w 7→ zi) be denoted
by

Gi(s) = (Ci +DiF )(sI −A−B2F )−1B1 (2.2)
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where i = 2 or ∞. The set of H∞ controllers is
defined as

F∞ := {F ∈ Rm×n : A+B2F is stable,
‖G∞‖∞ < 1} (2.3)

where ‖·‖∞ denotes the H∞ norm. The ultimate
goal of the mixed H2/H∞ control problem consid-
ered in this paper is to solve:

γ0 := inf{‖G2‖2 : F ∈ F∞} (2.4)

where ‖ · ‖2 denotes the H2 norm. Recall that the
H2 norm can be computed as the trace of the out-
put covariance matrix Ycov := limt→∞ E [z2(t)z′2(t)]
for the white noise exogenous input w with unit in-
tensity, where E [·] denotes the expectation operator.
It is known Ridgely et al. (1992a and b) that directly
minimizing trace(Ycov) subject to F ∈ F∞ results in
a computationally nontrivial problem to solve. Re-
cent work by Khargonekar and Rotea (1991) reduced
the problem to a convex programming problem by
minimizing an upper bound for the H2 norm. This
paper improves the H2 norm bound of Khargonekar
et al. (1991) by introducing the ”α-constrained co-
variance bound”. To this end, consider the follow-
ing three sets, each of which characterizes an upper
bound for Ycov achievable with an F ∈ F∞.

ΦT := {(F, P,X, Y ) : P > 0, X > 0,

ric(P ) < 0 lyap(X) < 0, oc(X) < Y }

ΦR := {(F, P, Y ) : P > 0, ric(P ) < 0,

oc(P ) < Y }

Φα := {(F, P, Y, α) : P > 0, ric(P ) < 0,

α > 0, lyap(αP ) < 0, oc(αP ) < Y }

where F, P,X and Y are matrices of appropriate di-
mensions and α is a real number and

ric(P ) := (A+B2F )P + P (A+B2F )′ +B1B
′
1

+P (C∞ +D∞F )′(C∞ +D∞F )P

lyap(X) := (A+B2F )X +X(A+B2F )′ +B1B
′
1

oc(X) := (C2 +D2F )X(C2 +D2F )′.

In each set, the conditions P > 0 and ric(P ) < 0
describe the necessary and sufficient condition for
F ∈ F∞, and the matrix Y corresponds to the out-
put covariance upper bound, i.e., Ycov ≤ Y . If we
denote the infimum of trace(Y ) over the sets ΦT ,
ΦR and Φα by φT , φR, and φα, respectively, then
we have the following;

φ0 = φT ≤ φα ≤ φR. (2.5)

The first equality holds since the matrix X in ΦT
is a ”tight” upper bound for the state covariance.
Unfortunately, infimizing trace(Y ) over ΦT is still a
difficult task numerically. The inequality φ0 ≤ φR
was first utilized by Bernstein et al. (1989), and
Khargonekar and Rotea (1991) solved the problem
equivalent to inf{trace(Y ) : (F, P, Y ) ∈ ΦR} by con-
vex programming. However, this approach may be
conservative since the matrix P in ΦR is an upper
bound for the state covariance which is not neces-
sarily tight. This paper considers the set Φα where
the state covariance upper bound X in ΦT is re-
stricted to those satisfying X = αP for some α > 0
and P > 0, ric(P ) < 0. Although this formulation
is still conservative (φ0 ≤ φα), the upper bound by
Khargonekar et al. is indeed improved (φα ≤ φR)
since, if (F ∗, P ∗, Y ∗)∈ Φ̄R gives the solution φR
to inf{trace(Y ) : (F, P, Y ) ∈ ΦR}, then the choice
(F ∗, P ∗, Y ∗, 1)∈ Φ̄α surely yields the same value of
the H2 norm bound as φR, where Φ̄R and Φ̄α denote
the closures of ΦR and Φα, respectively. Moreover,
any element (F ∗, P ∗, Y ∗, α) ∈ Φ̄α yields smaller H2

norm bound than φR whenever α < 1. Obviously,
the set Φα is not convex, but we will show in the
next section that the mixed H2/H∞ control prob-
lem with the improved covariance bound;

φα := inf{trace(Y ) : (F, P, Y, α) ∈ Φα} (2.6)

can also be solved via convex programming.

3 MAIN RESULTS

The following theorem states that the above opti-
mization problem can be converted to that of in-
fimizing a convex function over a convex set de-
scribed by three linear matrix inequalities. A for-
mula for the optimal state feedback gain is also
given.

Theorem 1: Let ΦC be the convex set defined as fol-
lows; (L,X, Y, α) ∈ ΦC if

Q+B1B
′
1 < 0, (3.7)

[
Q+ αB1B

′
1 XC′∞ + L′D′∞

C∞X +D∞L −αI

]
< 0, (3.8)

[
Y C2X +D2L

XC′2 + L′D′2 X

]
> 0 (3.9)

where

Q := AX +XA′ +B2L+ L′B′2.
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Then we have

φα = inf{trace(Y ) : (L,X, Y, α) ∈ ΦC} (3.10)

and if ΦC 6= {φ}, the optimal state feedback gain
which yields φα is given by

F ∗ = L∗X∗−1. (3.11)

where (L∗, X∗, Y ∗, α∗) ∈ Φ̄C is the solution to the
optimization problem (10) and Φ̄C is the closure of
Φc.

Proof: Defining

X := αP, L := FX, (3.12)

the conditions ric(P ) < 0, lyap(αP ) < 0 and
oc(αP ) < Y in Φα can be expressed by

AX +XA′ +B2L+ L′B′2 + αB1B
′
1

+(XC′∞ + L′D′∞)(αI)−1(C∞X +D∞L)′ < 0
(3.13)

AX +XA′ +B2L+ L′B′2 +B1B
′
1 < 0 (3.14)

(C2X +D2L)X−1(C2X +D2L)′ < Y. (3.15)

Using the equivalence

A+BCB′ < 0
C > 0

}
⇐⇒

[
A B
B′ −C

]
< 0,

and the conditions α > 0 and P > 0 in Φα, (3.13)
and (3.15) reduce to (3.8) and (3.9), respectively.
The convexity of the set ΦC is obvious since it is
characterized by linear matrix inequalities. The
state feedback gain F is obtained by solving (3.12)
for F .

ut

If the infimum of the problem (3.10) is not attained,
then the optimal state feedback gain F ∗ given by
(3.11) does not satisfy F ∗ ∈ F∞ and lies on the
boundary of the set F∞ where A + B2F

∗ has an
eigenvalue on the jω-axis or ‖G∞‖∞ = 1. However,
in practice, the open convex set ΦC in the problem
(3.10) can be approximated by a closed convex set
Φ̂C(ε) ⊂ ΦC defined by adding ( or subtracting )
εI to (3.7)-(3.9) where ε > 0 is a sufficiently small
scalar and replacing the strict inequality < by ≤.
In this case, the state feedback gain (3.11) always
satisfies F ∗ ∈ F∞ and attains the optimal value

min{trace(Y ) : (L,X, Y, α) ∈ Φ̂C(ε)}, which can be
made arbitrarily close to φα by choosing arbitrarily
small ε > 0. To solve the convex optimization prob-
lem, standard methods such as the cutting plane
technique (Geromel et al, 1991) and the ellipsoid al-
gorithm (Rotea (to appear)) can be applied. See
Beck (1991), Boyd et al. (1991) for more general
review of convex programming methods relevant to
control engineering.

4 CONCLUSION

We have defined a mixed H2/H∞ control problem
with an improved covariance bound. It is shown that
the problem can be solved by a convex optimization
programming.

Although we considered only the H2 norm as an ad-
ditional performance measure, it is straight forward
to incorporate some other specifications such as the
L2 to L∞ gain of the closed loop system (Rotea and
Khargonekar, 1991; Wilson, 1989; Zhu and Skelton,
1992) by minimizing the maximum diagonal entry
of Y or the maximum singular value of Y , in which
case, the objective function is still convex.
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