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Abst rac t  

This paper deals with the combination of system identifica- 
tion and robust controller design. Recent results on estima- 
tion of frequency domain model uncertainty are utilized in  ro- 
bust analysis and controller design using p.  It ts shown how 
estimated frequency domain uncertainty ellipses may be rep- 
resented within the general p-framework using a mized per- 
turbation set. A methodology f o r  synthesizing optimal mized 
perturbation set p-controllers has been developed. A control 
design strategy achieving - i f  possible - robust performance 
control systems given the uncertainty estimates could then be 
formulated. The design method was successfully applied to  
a laboratory centrifugal pump/induction motor configuration 
resembling a small domestic water supply system. 

1 In t roduct ion  

The combination of system identification and robust con- 
troller design has been the focus of active research during 
the last couple of years, see e.g. [I] and references therein. 
However only a very limited number of practical application 
results have been published. 
In this paper we will show how p-based methods for analyz- 
ing the performance and robustness of systems with struc- 
tured uncertainties may be combinea with stochastic em- 
bedding methods for estimation of frequency domain model 
uncertainties. The combination allows for coherent model 
identification and robust controller design. .4 design pro- 
cedure for SISO plants has been developed and has been 
successfully applied to a domestic water supply test system, 
including an AC-motor driven centrifugal pump. 
The remaiaing part of the paper has been organized as fol- 
lows. A short review of the main results from mixed pertur- 
bation set p-theory will be presented in Section 2. In Sec- 
tion 3 a methodology for synthesizing optimal p-controllers 
given a mixed perturbation set will be developed. Then the 
main principles of the stochastic embedding methodology 
for uncertainty estimation will be reviewed in Section 4. In 
Section 5 it will be demonstrated how the estimated fre- 
quency domain uncertainty ellipses may be expressed in a 
general p framework. In Section 6 a general design proce- 
dure for SISO-systems will be outlined and finally in Sec- 
tion i the design procedure will be applied to a laboratory 
pump/induction motor configuration. 
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2 Robust Stabil i ty and Performance 

The general framework for robustness analysis of linear sys- 
tems is illustrated in Figure 1. Any linear interconnection 
of control inputs U ,  measured outputs y ,  disturbances d‘, 
controlled outputs e’, perturbations w and a controller K 
can be expressed within this framework. For the particular 
problem addressed in this paper the rearrangement is sim- 
ple and illustrative. Within the general framework analysis 

General Framework 

d‘ e’ 

U 

K 
Analysis / 

d‘ 

U 

e’ 

Figure 1: The general p framework with emphasis on analy- 
sis and synthesis. 

and synthesis constitutes two special cases as illustrated in 
Figure 1. Conventionally scalings and weights are absorbed 
into the transfer function M in order to normalize d’, e’ 
and A to norm 1. For robust analysis the transfer function 
F,, from d‘ to e’ may be partitioned as a linear fractional 
transformation: 

e’ = F,(M,A)d’ (1) 
= [M22 + MziA ( I  - MilA)-’ Mi21 d’ (2) 

A is a member of the bounded subset: 

BA = {A E AI8(A) < 1) (3) 

where 8 denotes largest singular value and A is defined by: 

A = {diag ( S I I r , , . . . ,  6 ~ ~ I , , ~ , 6 f l r , r + l , . - , 6 f c l ’ ” , r  

0-7803-1872-2/94/$4.0 0 1994 B E  

~ 

1585 

~~ 



1 A i , .  .. .A,) 16: E R, 6: E C ,  A, E C",+mc+J x'mv+mc+> 

(4) 
The positive real-valued function p is then defined by: 

1 
min {c?(A) : A E A,det ( I  -MA)  = 0) fiA(M) 

unless no A E A makes I - MA singular, in which case 

Unfortunately Equation ( 5 )  is not suitable for computing p 
since the implied optimization problem may have multiple 
local maxima [ 2 ] .  However upper and lower bounds for p 
may be effectively computed for both complex and mixed 
perturbations sets. Algorithms for computing these bounds 
have been documented in several papers, see e.g. [2, 31. For 

PA(M) = 0. 

' M E CYxn, define Pmln as: 

inf ( P I 8  [ ( I + G 2 ) - '  (DMD-'- 
Pmin = BER+,GEG,DED 

then 
zg d Q M )  I P A ( M )  I Pmrn (7) 

Here p denotes spectral radius and Q is the set: 

Q = (Q E A 16: E [-l; 11, C.6: = 1, A;Aj = Irmr+nrc+J } 
(8) 

where denotes complex conjugate and D is the set of in- 
vertible matrices: 

lD,EC"X",de tD,#O,dJ  E C , d , # O }  (9) 

where rm = T ~ , + ~ ~ + , , .  Finally, G is the set: 

G = {diag (SI, . . ., gn, 7 on, ) 191 E R } (10) 

where nr = Et"=', rt and nc = n - nr. 
For purely complex perturbation sets (G = 0) the above 
bounds reduce to: 

with 

In Equation (7) and (11) the lower bound is actually an 
equality [3] but unfortunately the function p ( Q M )  is non- 
convex so we cannot guarantee to find the global maximum 
and hence we only obtain a lower bound for p. 
In this paper the algorithms provided in the fi-Analysis and 
Synthesis TooZBoz for use with MATLAB' [4] were used for 
computing p-bounds. 
We now have the following two Theorems for assessing ro- 
bust stability and robust performance [ 2 ] :  

'MATLAB is a registered trademark of The Mathworks, Inc. 

Theorem 1: The controlled system is stable for all A E 
BA iff: 

l l P A  (M1l)ll, 5 
where: 

A 
IlPA (MlI)ll, = SUPp (M11 ( e J w T s ) )  

(L 

Theorem 2: Let an 'H, performance specification be given 
on the transfer function from d' to e' - typically a 
weighted sensitivity specification - of the form: 

(lF'u(M, A)((, = SUP 5 (Fu(M, A)) < 1 
0 

Then Fu(M,  A) is stable and JJF,(M, A)ll, < 1 vA E 
BA ifT 

IIPA(M)II, 5 1 

where the perturbation set is augmented wi th  a full 
complex performance block: 

A =  { d i a g ( A , A p ) ~ A ~ A , A p € C k x k ~ ~ ( A p )  < I }  

Theorem 2 is the real payoff for measuring performance in 
terms of the co-norm and bounding model uncertainty in the 
same manner. Using p it is then possible to test for both 
robust stability and robust performance in a nonconservative 
manner. Indeed, if the uncertainty is modeled exactly by A 
- i.e., if all plants in the norm-bounded set can really occur 
in practice, then the p condition for robust performance is 
necessary and sufficient. 

3 p-Controller Design 

For robust synthesis the transfer function Fi from [w d'IT to 
[ z  e']= may be partioned as the linear fractional transforma- 
tion: 

Koticing that Fl( IV,K)  = M and using Theorem 2 a stabi- 
lizing controller K achieves robust performance if and only if 
for each frequency w E [O, CO], the structured singular value 
satisfies: 

PA (Fl(Ai, K )  ( e J W T s ) )  < 1 (15) 

In pursuit of the optimal p-controller inspired from the upper 
bound in (7) we will construct the interconnection scheme 
"(2) given by: 

"(2) = Gi(z) ( D ( z ) f i ( z ) D - ' ( z )  - G ~ ( z ) )  GI(~) (16) 

where Gl(z), & ( z )  and D ( z )  are stable transfer function 
estimates of (1 + @)-*, JPG and D respectively (extended 
properly with trailing ones or zeros) at every frequency w. 
We may then pose the optimization problem: 

{ IIA(?> Wll, 1 (17) 
A-( z )  stabilizing 

G 1 ( z ) , G 2 ( z ) ,  W z )  stable 
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Unfortunately it is not known how to solve Equation (17) 
directly. An approximation to  p-synthesis can be made iter- 
atively by a series of minimizations, first over the controller 
K (holding 81, 8 2  and D constantj, and then over the scal- 
ing matrices holding the controller h- fixed. This is usually 
referred to as D-If iteration. D-Ii- iteration works well for 
complex perturbation sets, since we need only to fit the D- 
scalings and only in magnitude since any phase in D will be 
absorbed into the complex perturbation set A. However for 
mixed perturbation sets Standard D-Zi iteration fails since we 
must fit the 8 and D scalings both in magnitude and phase 
and because G consists of real elements it will not be possi- 
ble to generate proper corresponding stable transfer function 
estimates. We have not been able to find published results 
within synthesis of mixed perturbation set p-controllers. 
We propose that all the effects of the real perturbations G 
should be lumped into one multiplicative scaling matrix r. 
The idea is to scale the corresponding complex perturbation 
set p-problem to obtain a system with complex perturba- 
tions A, having the same p-response as the original system 
with mixed perturbations. Minimizing the p-value of the 
scaled system we obtain a (sub-)optimal @-controller for the 
mixed perturbation set problem. Consider the interconnec- 
tion: 

P( ) = r ( ) D( ) N ( ) D - I  ( ) (18) 

where T(z)  is a stable transfer function estimate of the fre- 
quency dependent scalar y given by: 

A, is the corresponding complex perturbation set ( E :  E C ,  
see Equation (4)). We then pose the optimization problem: 

Equation (20) is solved iteratively by a series of minimiza- 
tions, first over the controller K (holding r and D fixed), and 
then over the scalings holding the controller A- fixed. This 
can be done since we need only fitting the scaling-matrices 
in magnitude. We will denote this procedure modzfied D-If 
iteration f o r  mized perturbation sets. In (19) upper bounds 
for p will be used for computing y. 

4 Estimating the Model Error 

rl very interesting approach to identification of model un- 
certainty in the presence of both noise and undermodelling 
has been manifested through a series of papers by Goodwin 
8i co-workers, see e.g. [5 .  61. The methodology is commonly 
known as the stochastic embedding approach since stochas- 
tic behavior is embedded on the model bias. The main idea 
of the approach is to impose stochastic behavior not only 
on the variance error but also on the bias error by assuming 
that the undermodeling is a random variable with known 
distribution. Henceforth the true transfer function of the 
system is assumed to be a stochastic process. 
I t  is furthermore assumed that the true transfer function for 
the single input single output system may be decomposed 
as: 

GT (eJYT') = G (eJYTs,&) + GA ( e J d T s )  (21) 

with the following important property: 

E {GT ( e J W T s ) }  = G (eJ"T',Bo) (22) 

where 00 is a vector in the parameter space. Kotice that 
Equations (21) and (22) describe a class of systems from 
where the true system is just one member. Thus the expec- 
tation E {.} in Equation (22) means averaging over different 
realizations of the undermodeling. Of course, for any given 
system we will have just one realization. If however, statisti- 
cal properties of the class of systems defined by (21) and (22) 
may be determined these properties may be used to evaluate 
the particular realization in question. Consequently we will 
estimate the properties of the stochastic process (21) from a 
single realization, namely the true system. 
In [6] an excellent survey of the method is presented assum- 
ing white measurement noise and an exponentially decaying 
undermodelling impulse response. In [7] it is shown how 
other noise and undermodelling descriptions equally well 
fit into the framework of the embedding methodology. In 
this paper we will follow the path outlined in ['i] where an 
XRMA, noise description is adopted, frequency domain un- 
certainty ellipses were computed around the nqminal fre- 
quency points of the parametric model G(eJWTs,  0,) from a 
finite set of measured data points. 

5 General Framework Formulation 

We will now develop a formulation of the estimated fre- 
quency domain uncertainty ellipses which fits into the gen- 
eral p-framework. 
The model uncertainty is assumed to  be additive, see Equa- 
tion (21). Unfortunately we cannot directly express fre- 
quency domain ellipses using neither a complex nor a mixed 
perturbation set. Using a mixed perturbation set we may 
however derive an approximate description of the ellipses. 
Assume that the additive uncertainty La is approximated 
by the mixed perturbation set: 

La = Wc6' -+ Wr6' 

where 6' and E' are a complex and a real norm-bounded 
perturbation: 

116'11 < 1 - 1 < E' < 1 (24) 

and W, and Wr are frequency dependent weighting func- 
tions. The perturbation set La then maps icto the frequency 
domain as shown in Figure 2. We will use L,  as an approx- 
imation of the estimated frequency domain uncertainty el- 
lipses. Consider an ellipse in the complex plane with form 
matrix P-I: 

XTP,-'X = 1 ( 2 5 )  

The major and minor principal axes a and h respectively and 
the major principal axis angle 0 is then given by: 

where ( ~ 1 ~ ~ 2 )  is the eigenvalues of the form matrix P-' 
and V is the corresponding eigenvector matrix. In order to 
express the estimated uncertainty ellipses the perturbation 
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Figure 3: Frequency domain representation of the perturba- 
tion set La. 

set weighting functions Wc(z) and Wr(z) consequently must 
fulfill for every frequency w: 

(W, ( e J w T s ) /  zz a - b  Vw (29) 
L W ~  (eJwT5) e vw (30) 

IW, (eJwT')  I z b vw (31) 

Least-squares fitting techniques were used to approximate 
W,(z) and W c ( z ) .  

6 Design Procedure for SISO Plant 

A design procedure for SISO plants may now be formulated. 
Consider the block diagram in Figure 3 where the-plant has 
been augmented with a mixed perturbation set L Q ( z )  and 
a performance specification W p ( z )  on the error e(.). The 
transfer function M, see Figure 1, is then given by: 

Wr2K Wri3'K Wr2'K 
M ( z )  = WcGK W,cK W,Gh* ] (32) [ WpG WpG WpG 

where G = ( I  + KG)-'. We propose a design methodology 
consisting of the following steps: r 

1. 

2. 

3. 

4. 

5. 

Estimate a parametric model G(eJwT',$.v) and fre- 
quency domain uncertainty ellipses using system iden- 
tification and stochastic embedding of the model bias. 

Fit weighting functions W, ( eJwT* ) and Wc(eJWTs ) in or- 
der to obtain a mixed perturbation set L a ( e J w T )  as 
approximation for the uncertainty ellipses. 

Specify performance constraints through an additional 
weighting function W p ( e J w T s ) .  

Form the interconnection structure {A, N ,  K )  given in 
Figure 1. 

Synthesize a (sub)-optimal p-controller using modified 
D-h' iteration. 

7 Application of the Design Methodology 

The outlined design procedure has been applied to a prac- 
tical example, namely a centrifugal water pump driven by 

Figure 3: Nominal-system augmented with mized perturba- 
tron set L a  and performance specification K,. 

an induction motor. The pump was a typical domestic wa- 
ter supply pump with a capacity of approximately 3 m'/hr 
at  2.5 barg. The induction motor was a 840 Watt fre- 
quency modulated micro-computer controlled asynchronous 
type motor. A 3.5 liter rubber membrane buffer tank was 
placed in the outlet pipe from the pump. 
The data acquisition and control of the system were per- 
formed using an (A/D, D/A) data acquisition card and a 486 
personal computer. Input to the system was the induction 
motor frequency and the outlet water pressure was recorded 
as output. The system dynamics was dominated by a low 
frequency 1st order component with a time constant of a p  
prox. 1 sec. The low frequency component originates from 
the membrane buffer. Furthermore smaller high frequency 
components originates from the inertia in the induction m e  
tor and centrifugal pump. 

Identification Procedure 
The system was sampled with sampling frequency 50 Hz. 
The input sequence was a 0.4 Hz fundamental square wave. 
500 samples were collected, 300 of which were used to get 
rid of initial conditions effects. The last 200 samples were 
used for estimation. A second order Laguerre model: 

( 3 3 )  
& z - l  

1 + cz-' 

f9zz-1 (1 - (2  + c ) z - ' )  

+ (1 +Cz- ' )2 
G ( z - I )  = - 

was fitted to the data. The Laguerre pole C was chosen as 
0.96. The least-squares estimate of the parameter vector B 
was found as: 

e  ̂ = [ 19.2.  -3.33. 1' ( 3 4 )  

Frequency domain uncertainty ellipses were estimated using 
the stochastic embedding approach. A 90% confidence in- 
terval was chosen and the corresponding uncertainty ellipses 
were used in fitting the weighting functions Wc( z )  and M i , ( z )  
as described in Section ti. In Figure 4 the estimated un- 
certainty ellipses are compared with the corresponding fre- 
quency domain representation of La(z). Also shown are the 
nominal model and a frequency response estimate measured 
on the pump using sinosoidal inputs. Notice that the model 
error estimate gives a fair description of the difference be- 
tween the model and the measured frequency response. It is 
seen that L a ( z )  gives an reasonable description of the esti- 
mated model uncertainty. 
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Figure 4: Comparison of estimated uncertainty ellipses Figure 5: Time domain response p s t e p ( t )  (upper) cor- 
(solid) and L,(i) (dashed). Also shown are the nominal responding to the chosen performance specification Sp(z) 
model G(e3"=. , d ~ )  (solid) and a frequency response estimate (lower). 
based on pump measurements (*). 

Performance Specification 
Before synthesizing the controller a performance specifica- 
tion must be made. There exists generally no explicit for- 
malisms for obtaining such specifications. In this paper 
we have used time domain demands on the pump pressure 
response towards sudden changes in water flow Q, to for- 
mulate a maximum sensitivity bound. A standard step of 
AQ = 2/3 m3/h was used as the performance measure. The 
time domain demands on the outlet pressure p ( t )  given a 
standard step on AQ(t) were formulated as2: 

In this paper a 1st order discrete-time sensitivity specifica- 
tion was chosen: 

(36) 
1.4132 - 1.413 

i - 0.951 SP(Z) = 

-4s seen in Figure 5 the corresponding time domain response 
p s t e p ( t )  fulfill the stated demands. 
The 'H, performance specification, see Theorem 3: puts a 
unity bound on the transfer function from d' to e'. Letting 
d' = d and e' = W p e  we have the performance specification: 

. .  
maximum transient error: 0.4 bar, 

* max 0.1 bar settling time: 2 sec, 

max stationary error: 0.1 bar. 

p-Synthesis 
The first step in synthesizing an optimal p-controller is to de- 
sign a optimal 'Hm-controller for the 'nominal' system N ( z ) .  
We have again used the algorithms provided in [4] for com- 
puting the optimal 'H,-controller. The second step is the? 
to compute upper and lower bounds for p a ( ~ ( e ~ " T s ) ) .  p 
is for 

It was observed that step disturbances on the flow AQ acted 
approximately through a 1st order system to d .  For a stan- 
dard step AQ(s)  = KSs-l we then have3: 

A- h*s 
s +  T-1 s 

specific problem given as: 

(35) 0 EP 
dstep(s) = - . - 

where K and r are the gain and time constant of the 1st 
order filter respectively. .K = K K ,  and T were measured 03 

the pump set-up as K = 1.3 bar/(m3/h) and T = 0.75 sec. 
Given a sensitivity specification S(s)  = p ( s ) / d ( s )  the corre- 
sponding time domain response p s t e p ( t )  may then be com- 
puted. We wiU then use the heuristic assumption that our 
time demands will be fulfilled for a given compensated sys- 
tem having a sensitivity which falls below the specification 
for all frequencies. This is probably not guarantied to be 
true for all systems, but works well in practice. 

In the upper plot of Figure 6 upper and lower bound for 
p d ( M ( e j W T s ) )  (solid) together with c?(M(P" ' ) )  (dashed) 
are plotted versus frequency w .  Note that the upper and 
lower bound for p virtually coincides. We immediately nc- 
tice that the controlled system does not have robust per- 
formance since Ilpa(M)llm > 1. Also notice that the 'Hw- 
norm II(M(e'"Ts)llm is much larger than the p-norm since 
the uncertainty structure cannot be incorporated into the 
'H,-design. In order to improve system performance modi- 
fied D-K iteration as outlined in Section 3 were applied by 
performing the iteration: 

1. Fit the D-scalings from the complex perturbation set 
fi  upper bound and the ratio y with stable minimum 
phase transfer functions D ( z )  and r(i) - the D-iteration 

2These demands originates in design goals from a major danish 
pump producer. 
3h order to facilitate things we will carry out the derivation 

for a continuous-time system and simply transform the results to 
discrete-time. step. 
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Figure 6: 
fied D-K iteration (lower). 

Results from 31, design (upper) and from moda- 

0.967 
0.966 
0.970 

2. 

3. 

4. 

The 

Design an optimal H,-controller K ( z )  for the aug- 
mented system r D - ’ N D  - the K-iteration step. 

Repeat step 1 and 2 until no further improvement in 
( A ( N , K )  (eJwTs))II, can be obtained. 

Applying model reduction methods, reduce the order 
of the controller K as much as possible. 

results of the iteration is disdaved in the lower plot of - -  
Figure 6. Here the upper bound on p for the 31, design 
(dash-dotted) and for the first (dashed) and fourth (solid) 
D-K iteration are shown. Notice how rapidly the D-K iter- 
ation converges. Only little improvement is obtained after 
the second iteration. I lpa ( A ( N ,  K ) ( e J W T a ) )  11, for each it- 
eration is given in Table 1. 

Table 1: ] ] p a  ( A ( N ,  K ) ( e J W T s ) )  / l o o  for each D - K  iteration 
and for the reduced final controller h-6. 

D - l i n o .  1 1 1:ou 
D - K no. 2 I 0.972 

The final controller K had 52 states, but was reduced to 6 
states with only little degradation in performance, see Ta- 
ble l. 

Test Results 
The sixth order controller h-6 was implemented in the lab- 
oratory experimental set-up. In order t o  evaluate controller 
performance 2 tests were performed. First the system re- 
sponse to a standard flowstep AQ = 0.6i m3/hr was ob- 
tained, see upper plot in Figure i .  A s  seen the disturbance 

10.’ 1 oo 10‘ 10’ 

Figure i: Test results. In the upper plot the pressure re- 
sponse (solid) to p o w  steps AQ (dashed) is shown. Below 
the nominal sensitivity (solid) with error bounds (dashed) are 
compared with the performance specification (dash-dotted) 
and with measured sensitivity points (*). 

rejection of the controlled system easily complies with the 
stated demands, see Figure 5 .  
In order to further investigate system performance a sensi- 
tivity measure was made, see lower plot in Figure 7. It is 
seen that the sensitivity measurements are virtually within 
the computed error. The error bounds comply very nicely 
with the performance specification. This is due to the fact 
that the mixed perturbation set p response was “squeezed” 
during the design iteration procedure. 
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