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Abstract

The difficult problem of robust stabilization and perf of d

under structured uncertainty motivates one to look into alternative solutions. Due to
the conservatism and limitation associated with two lines of research; namely, robust
recovery of LQR in LQG design and quadratic stabilization, we introduce a new
feasible solution to this problem. The main idea is to design controllers for robust
stabilization of uncertain systems such that the resulting closed-loop systems are
structurally constraint to certain classes of systems with desirable properties. The
special classes of systems considered in this paper are nonnegative and metzlerian.
‘We make use of previously reported results for these classes of systems and introduce
a new design approach called stability radius optimization loop transfer recovery,
SRO/LTR, which can be regarded as a two step procedure similar to the LQG/LTR
method. However, the flexibility offered by the SRO allows constraints to be imposed
on the structure of the resulting closed-loop target feedback loop.

1 Introduction

The stability rob can bei i d based on p b in the trans-
fer fi ion models or vari in the state space models. It has been
recognized that the robust stability for one form does not necessarily mean the ro-
bust stability for the other since the relation between corresponding perturbations
is complex. Consequently, in LQR, the robustness with respect to parameter vari-
ations in the state space models is quite different from the robustness with respect
to the multiplicative perturbation in the transfer function models. It is known that
the LQR may become unstable even with small parameter variations and the sta-
bility of LQR with Observer or Kalman filter, LQG, may be very sensitive to small
parameter variations even when the LQG/LTR [1] or any other alternative LTR
method [2], [3] is used. So, as a first step of our analysis, it is important to discuss
the bounds of allowable parameter variations in LQR and LQG. Let us consider the
continuous-time system described by

(t) Aaz(t) + Bau(t) 1)
y(t) = Caz(t) 2)

[}

where z(t) € R™, u(t) € R™, y(t) € R® and the matrices Aa, Ba, Ca are of
appropriate dimensions. We assume that the nominal system is controllable and
observable and consider perturbation AA on the matrix A only, i.e. Aa = A+ AA,
Ba = B, Ca = C. The observer or Kalman filter may be expressed by

3(2) = A#(t) + Bu(t) + K(y(t) - Cx(t)) (3)
and with the control law u(t) = Fi(t), the closed-loop system becomes
A+ BF + AA -BF z
[:]-] R[] 8

where ¢(t) = z(t) — £(t). Note that F and K are obtained through the well-known
algebraic Riccati equations or by other alternative methods.

Using Lyapunov theory one can provide robust stability bounds for LQR and
LQG [4)-[8]. It has been shown [7],[8) that under certain restrictive assumptions the
bounds of allowable parameter variations in the LQG can become as lasge as those
bounds of the LQR in the state space models. Although these bounds are conser-
vative and less conservative bounds are available [9], they are useful in the design
of LQR and LQG for systems under structured uncertainty. It has also been estab-
lished that the robustness of the LQG can be the same as that of LQR regardless
of the structural p ( ditions) for model inty provided
that the regulator and observer gains have special forms. The conservativeness issue
makes one to look into an alternative robust stabilization solution, which can be
tied to the properties of the linear quadratic regulator solution. In this connection,
the quadratic stabilization results established in [10], {11],{12] play an unportant

role. See also [13], {14}, [15], [16], [17] for further devel in this di
Based on {12] a recent publication 18] considers two types of uncertainty structures;
namely, norm-bounded and bounded uncertainties, and blish the rela-

tionship between quadratic stabilizability of linear systems and the existence of a
positive definite solution to a set of modified Riccati equations. Also, [17] considers
the constraint stabilization and performance for general uncertain interval systems
as an extension of [15]. This structurally constraint stabilization takes into account
the nice properties of metzlerian systems and establish strong results in connection
to quadratic stabilization.
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In this paper we avoid quadratic stability idea and introduce a new design strat-
egy called stability radius optimization loop transfer recovery (SRO/LTR). The
motivation behind this new idea lies in the fact that recently, in light of several
outstanding results (see {19), [20] and references therein), direct stability radius for-
mulae are obtained for the classes of nonnegative and metzlerian systems [21]. This
allows one to determine the supremum of the stability radius which can be achieved
by linear state feedbu:k control law in terms of the feedback gain. The constraints
in this optimi: blem are fi lated through stability conditions and spe-
cial structure d with leri Y The sol of this stability
radius optimization (SRO) plays the same role as tuget feedback loop deangn in
LQG/LRT method. However, SRO allows additi ints to be i d in
the optimization problem. It is clear that similar to LQG/LTR design methodology
we may add an observer structure to SRO (whenever the states are not available)
in such a way that robustness properties are preserved to the extend possible. This
leads to SRO/LTR design methodology.

2 Stability Radii for Nonnegative and Metzlerian
Systems

This section considers the special classes of nonnegative and metzlerian systems
and provide procedures to compute their real and complex stability radii. First, we
briefly discuss the nonnegative and metzlerian stabilizations for general uncertain
discrete and continuous systems, respectively. Then, under the assumption that the
system is nonnegative or metzlerian stable, we give direct formulae for their stability
radii computations.

2.1 N gative and Metzlerian Stabilizations

The nonnegative stabilization of uncertain interval discrete systems has been treated
in [22). In order to have a flavour of structurally constraint stabilization, let us
consider the dual results of [22] for the continuous-time metzlerian system. For the
sake of parallel treatment, we assume interval characterization of uncertain system
(1) where only A is uncertain and is defined by the set

M(P,Q) = {A(ai;) : P(pi;) < Alai;) < Q(aii)} 5
for all pi; < ai; < gijy i =1,...,2.

Definition: The interval set M(P,Q) becomes metzlerian set M(P,Q) if and
only if @i <0, a;; > 0.

Theorem 2.1 Let (1) be lerian system ch d by M(P,Q). Then (1) is
stable for all A € M(P,Q) if and only if | - Q(a)| > 0, where a € N is the order of
the leading principal minor.

It should be noted that strong stability bound can be found for this class of systems

similar to the dual case of nonnegative systems. This will not be given here, rather,
we state the following result.

Theorem 2.2 The feedback control law u = Fz robustly stabilize the general inter-
val system (1) characterized by M(P, Q) and makes the closed-loop system met:lerian
if and only if the matrices

P = P+BF ()

Q = Q+BF (7)
are metzlerian and that the leading principal minors of the matriz —Q are positive.

Thus the set of robustly stabilizing state feedback controllers maintaining metzlerian

structure can be characterized by

M(F) = {F € R™" : P(F)i < 0, P(F);; > 0 Q(F)ii < 0, Q(F);; >0, | - Q(a)l >
0} (8)

If the feedback snllmon lo the set (8) exists, then one can formulate the problem in

terms of a h P ing with any d ble objective fi

2.2 Real and Complex Stability Radii

Consider the discrete and continuous time systems:




2(k+1)
(t)

which are subjected to parameter perturbations. It is assumed that the unperturbed
system is stable, i.e. A € Fm*", A(A) C C, where the good stability regions for
(10) and (9) are defined by C, = {s € C; Re(s) < 0} and C, = {z € ;2| < 1},
respectively. Perturbations of the form A = A4 + AA where AA represented by
single perturbation structure AA = DAE with given D € F** | E g Pi*» and
unknown A € F'X9 is considered. The structured stability radius of A with respect
to perturbation structure (D, E) is defined in [19] as

Aa(k),
As(t),

ke N
te Ry

9)
(10)

re(A,B,C) = inf{[|All: A € F*%, MA+ DAE)NCs # 0} (11)
where F is R or C and C}, is the unstable (bad) region. If both structure matrices I
and E are identity matrices, we obtain the unstructured stability radius rg(A,1,7) =
rr(A). If A, D E are real, we obtain two stability radii, rg or r¢, according to
whether real (F = R) or complex (F = C) perturbations are considered. They are
known as real and complex stability radii, respectively. The complex unstructured
siability radius of A, as alternatively defined in [20], using spectral norm is given by

ro(A) = inf{#(A): A € C™™™ and A + A is unstable} (12)
The computation of ro(A) is not difficult and can be obtained by
ro(A) = infg(A - juln) (13)

using available algorithms reported in the literature (see [19] and the references
therein). Consequently for the specia) classes considered in this paper one can use
the same algorithms to obtain rc{A). However, using the properties of these special
classes, it is possible to compute the stability radins more efficiently. It is well-known
that

rR(4) 2 rc(4) (14)

and that the computation of real stability radius is difficult and needs extra care.
Consequently lower bouuds are established for real unstructured stability radias
7R(A) in [20] and references therein. It was claimed in [20] that the reported new
lower bound may turn out to be equal to the real stability radius. Motivated by
this claim, we i d in [21] the putation of real stability radius for other
special matrices in order to widen the class of matrices for which the validity of
their claim is confirmed. Although for the general case, it has recently been proven
{24] that the new bound is in fact equal to the real stability radius, its computation
however requires frequency sweeping and it is not trivial. Nevertheless an algorithm
is provided to compute the real stability radius.

In subsequent sections we consider the computations of stability radii for impor-
tant classes of nonnegative and metzlerian matrices. Strong necessary and sufficient
conditions exist for the stability of these matrices {22], [23]. We will make use of
these results and the spectral norm to compute the real stability radii. We show that
simple charactarizations of real stability radii for these special classes of matrices
lead to direct formulae for their computations.

2.3 Direct Formula for Stability Radius of Nonnegative Systems

The system (9) is if A> 0 elementwi
nonnegative system matrix be described by

,i.e. a;; 2 0. Let the perturbed
A=A+ DAE (15)

The following th on tive matrices is essential for the development
of our result. We state this theorem with respect to A defined in (15).

Theorem 2.3 The nonnegative system (9), with perturbation (15) is stable if and
only if all the leading principal minors of I — A are positive, i.e.

- Al.>0 (16)

where a € N is the order of the principal minor.

In a recent publication {21] we gave a crude analysis of real stability radius
associated with the abave system. Here, we provide a more compact treatment of it
and summarize the results without proofs. Consider the nonnegative system whose
stability radius is defined by

*3(A,D,E) = inf{||A} MA+DAE)NC, #0, A+ DAE >0}

Note that the condition A + DAE > 0 is needed in order to ensure nonnegativity

of the entire ses. Obviously, A has to be stable in order for the problem to be

meaningful (otherwise, ri(A,D,E) = 6}, ie. 4 > 0, p(A} < 1. This will be

assumed throughout.

Theorem 2.4 Let A be C, stable. Then the real stability radius of the nonnegative

system can be characierized by
(4, D, E) = inf{l|Al]

Suppose that || |} is tke 2 - norm , then from theorem 2.4, the following results can

be derived.

det(I — E(I - A)"'DA) = 0} an
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Corol.llry 2.1 Let A be C; stable. Then the real stability radii are given by the
following direct formulae depending on the associated charactarization of A.
Case | : Real unstructured A

1

RA.DE) = — o
Th( ) HET - A D) (18)
Cage 2 : A = diag(sy, 6z, ..5,)
MADE) = L (19)
maxgeq PR(E(I - A)-1DQ) ’
where
Q = {diag($1,63,...6,) : 6 = £1,i = 1,...,n}
pr(M) = maz; {|Ai] : A € R, det{\:] ~ M) = 0}
Case 3 : Define || A ||= maz; ;|6 ;1, where
Pudu ... pindin
Pban ... pada.
. . . Wi 20
Pubin ... pinbia
1
rMADE) s — 1
A D ) = e R BT = A7TDQ) @0
where
midu ... pradin
Pubn ... pandy
P B B " V6ij = %1
b . Prafin

2.4 Direct Formula for Stability Radius of Metzlerian Systems

The system (10) is metzlerian if a;; < 0, a;; > 0. Similar to theorem 2.3 we can
state a theorem for the perturbed form of continuous-time metzlerian system (10)
as follows.

Theorem 2.5 The metzlerian system (10) with perturbation (15) is stable if and
only if all the leading principal minors of —A are positive, i.e.

|-Ala>0 (21)
where a € N is the order of the principal minor.
The proof of theorem 2.5 follows i diately from th 23orch ion

of closely related A matrices.

Fact 1 Any stable metzlerian matrix A can be split as A = —pf + R, where
R20,p2p(R).
So, for metzlerian system 4 = A + DAE, we can write

Ad=A+DAE=—pI+ R+ DAE

Furthermore, in order for 4 to remain metzlerian, it is necessary that R+ DAE > 0.

It follows from these observation that
TR(A,D, E) inf{fja] :

inf{JlA}| :

det(~pl + R+ DAE) = 0}
det(Z - AE(pI - RYy'D) = 0}

where we have used the fact that

max; Re);(A) ~p + max; ReM;(R + DAE)

—p+p(R+ DAE) (since R+ DAE > 0)

nn

Remark Up to this point, the problem with metzlarian system has been transformed
into one with nonnegative systems. So, the above formulae derived for nonnegative
systems can be applied to the metzlerian systems directly with appropriate modifi-
cations. To avoid this conversion, one can simply replace / ~ 4 by — A in the derived
formulae to obtain equivalent results for the metzlerian case,

3 Stability Radius Optimization
Let us go back to the controlled perturbed system (1) with AA = DAE i.e.
2 =(A+ DAE)x + Bu (22)

Our goal is to determine the supremum of the stability radii which can be achieved
by linear state feedback u = Fz:

r§{A,D,E, B) = sup{rr{A+ BF,D,E): F € C"™", \(A+ BF) C C,}  (23)

If F = C, then the problem is called complex stability radius maximization. On the
other hand, if F = R, then the problem is called real stability radius maximization.

For the former case, by definition
re(A+ BF,D,E,B)=r15(A,D,E.B), MA)CGC, (24)

and the optimization problem (23) can be shown to be equivalent to the Ho, norm
minimization problem



min [|GFlleo subject to A(A+ BF)c C, (25)
where Gr(s) = E(s]- A- BF)™' D and {|GF(|o = max,er ||GF(jw)|. The problem
of finding a stabilizing feedback controller such that the resuiting closed-loop transfer
function has an H, norm strictly less than a given bound v, is known as the Hoo-

optimal control problem. Many papers appeared ia the past on this subject and

certainly the above equival tablishes a link b two areas of complex
stability radius op tion and H, optimal control probl In y, since
it is possible to ch ize the plex stability radius via an associated Riccati
one can also ch the 1 achievable complex stability radius
for a controlled system (using linear state o feedback) by a modified Riccati
(see [19] for more details):
(A+BF)YTP+P(A+BF) - PDD"P-pETE-&FTF =0 (26)

where €©p > 0 Starting with F = ¢~2 BT P, one solves iteratively (26) to yield an in-
Pi. The sup lution P leads to rg = lim,_g+ p(€).
Corresponding to this modified Riccati equation one can also form a Hamiltonian
matrix and its d Hermitian freq fi H (jw)

Hjw) = Gp(jw)Gp(jw)" - €*Gp(jw)Ga(jw)"

where Gp(s) = E(sI - A)™'D and Gp(s) = E(sI — A)'B. Denoting A(¢) =
8uPLeR Amaz(He(jw)) and Ao = lim,_.o max{)(¢),0} we have the following result
Theorem 8.1 Suppose that A\(A) C C,. Then

cti

@

r3(4,D,E,B)< 7t
§4,D,E,B)=;}

(@)
(i)
where §(A, D, E, B) is the complez stabilizability radius of the system ¢ = Az + Bu
defined by
§(A,D,E, B) = inf{|Al|, A € C'™,(A+ DAE, B) is nonstabilizable}
As a consequence of Theorem 3.1, we have a ch i of those sy whose
complex stability radius can not be improved by static linear state feedback. .
Fact 2 The complex stability radius of a stable system is optimal with respect
to state feedback if and only if its stability radius is equal to its stabilizability radius.
Hence, if r(A, D, E, B) < §(A, D, E, B) then there does not exist a feedback matrix
maximizing the stability radius. In other words, this gap causes high gain feedback.
Obviously the above result is also valid for the class of metzlerian system and no
further discussion is necessary. For the real stability radius maximization, there is
no general result available. A recent result shows that the real stability radius can
be computed by means of a two ptimization [24]. C ly, due to
its computational complexity, it is not yet apparent how to tackle its maximization
problem. Also there is no counterpart of the real stability radius in Ho, theory and
there is no obvious connection to any type of Riccati equation. This needs further
investigation and is a subject of future research.
Concentrating on the class of metzlerian systems, the problem of real stability
radius ion can be formulated and solved effectively. This is due to fact
that closed form expression has been derived for real stability radius of this class of
y as we di d in p section. Let us formulate the problem formally.
Problem Formulation: Given the system (22) find if possible a feedback
control law u = Fz such that the closed-loop system is metzlerian stable and the
associated real stability radius

(F) =

1
5(—E(A+ BF)-1D) 8

is maximized.
Note that we considered only (28) for simplicity. However, all stability radii
expressions derived in Section 2 for the case of metzlerian can be used as well.
Theorem 8.2 The matriz F solves the above problem if and only if the following
blem has a soluti

max r(F) subjectto F e M(F) (29)

where M(F) = {F € R™*" :(A+ BF);; <0, (A+ BF);; 20, (~|A+ BF}), > 0}
with a denoting the order of the leading principal minor.

The optimization problem (29) is termed stability radius optimization (SRO).
It is clear that similar to LQG/LTR design methodology we may add an LTR ob-
server structure to SRO (whenever an observer is necessary) in order to preserve the
robustness properties. This leads to SRO/LTR design methodology which will be
explored further in our illustrative example. Before doing this, let us consider an
important special case, which makes (29) linear.

Corollary 3.1 The system (22) with single input control law u = Fz realizing
metzlerian stabilization, and rank one perturbations | = g = 1 has

det(A + BF)

3. det(A + BF),
where (A + BF), is a matriz constructed from A + BF by replacing its ith row
(column) with the 1th row (column) of the matriz product DE. Furthermom the
associated oplimization problem (29) b a linear prog: i
that 3_;det(A + BF), is constant.

Note that one possiblity for this sum to be constant is B = D. A reliable method
for solving the general optimization problem (29) with various r(F) is currently
under investigation.

Example: Consider the unstable continuous system specified by the triple
{4,B,C} as

r(F) = (30)

g P p
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7 -6 -1 1
A=|1u 12 o B={1 c=[10 0]
12 -7 -5 1

with perturbation structure D = {1 1 17 and E [111]. A satisfactory target
feedback loop has been realized for the above system using LQR withQ = I, R=1.
The resulting feedback gain is given by F = [~4.9444 1.7871 0.5933] which yields
the real stability radius r = 0.66189. Note that FB # 0 and exact LTR can not
be achieved by full-order observer [2]. However, since the system is minimum phase
and CB = 1, one can design a reduced-order observer to achieve exact LTR.

Now we apply our SRO technique without requiring FB = 0. To achieve met-
zlerian stablhza.tlon with F = (f; f2 fs] and maximizing the stability radius, the
foll blem should be zolved
. SN
5(E(~A~- BF)-1D)
~.3104 — .3472f; - 2917, ~ .3611f3

g op

max 7

subject to
-11< <=7
T< fa<12
I<fs<h
—6fi—4f2,-18>0
~(23+25f, +21f2+26f3) >0

The objective function and the constraints are all linear and the solution to the
linear programming occurs at the corner point feasible solution f; = -11, f =7,
f3 = 1 with #* = 1.0972. Note that the coefficients of the objective function are all
rounded off. Hence, the value of r(F) becomes 1.0968, which is slightly less than the
optimal value r*. In order to show the flexibility of SRO, we choose the suboptimal
solution F' = (~10.996 7.1 1.1} which realizes a similar feedback loop as the one in
optimal LQR with equal phase margin of about 71°. The real stability radius is
computed with the above F and is given by r* = 1.03056, which is larger than the
one obtained from LQR. To recover this robustness property when observer is in
the Joop, we design the following reduced-order observer (see [2] and {3] for more
details)

i = 9¥z2+Gy
i = Mz+Ny
with
0 0 1
R IS P [ R
- 0 -1 1

Note that & has also metzlerian structure with real stability radius r = 2.27275. To
check the above result, one should compute the stability radius of the closed-loop
system matrix consisting of the feedback control law and the reduced order observer.

Next we show that the condition FB = 0 can be incorporated in the linear
programming problem above to obtain the feedback control Jaw and design a full-
order observer in the LTR step.

The sol to the linear progr with the
fi+ fa+ f3 = 0 yields the suboptimal solntmn F = [~10.99 9.98 1.01] with r =
0.22097 and the phase margin of the target feedback loop equals to 45°. In this
case the stability radius is reduced and it is smaller than the one obtained in LQR.
However, it is still possible to design a full-order observer in the recovery stage. This
full-order observer as expressed by equation (3) is realized by K = [1 0 1]7. The
eigenvalues of A— KC are at —1, -5, —5 and the stability radius of the closed-loop
system matrix as defined by (4) is 0 22097 which confirms the robust recovery.
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