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Abstract 

The difficult problem of robust stabilization and performance of dynamic systems 
under structured uncertainty motivates one to look into alternative solutions. Due to 
the consavstism and limitation d a t e d  with two lines of research; namely, robust 
recovery of LQR in LQG design and quadratic stabilization, we introduce a new 
feasible solution to this problem. The main idea is t o  design controllers for robust 
stabilization of nncertaiu systems such that the resulting dosed-loop systems are 
structurally constraint to certain classes of systems with desirable properties. The 
special dasw of systems considered in this paper are nonnegative and metzlerian. 
We make use of previously reported results for these dassea of systems and introduce 
a new design approach called stability radius optimization loop transfer recovery, 
SRO/LTR, which can be regarded as a two step procedure similar to the LQG/LTR 
method. However, the flexibility offered by the SRO allows constraints to be imposed 
on the structure of the resulting dosed-loop target feedback loop. 

1 Introduction 

The stability robustness can be investigated based on perturbations in the trans- 
fer function models or parameter variations in the state space models. It has been 
recognized that the robust stability for one form doea not necessarily mean the TD 
bust stability for the other since the relation between corresponding perturbations 
is complex. Consequently, in LQR, the robustness with respect to parameter vari- 
ations in the state space models is quite different from the robustness with respect 
to the multiplicative perturbation in the transfer function models. It is known that 
the LQR may become unstable even with small parameter variations and the sta- 
bility of LQR with Observer or Kalman filter, LQG. may be very sensitive to small 
parameter variations even when the LQG/LTR (11 or any other alternative LTR 
method [Z], [3] is nsed. So, as a first step of our analysis, it is important to discuss 
the hounds of allowable parameter variations in LQR and LQG. Let us consider the 
continnoua-time system described by 

where z ( i )  E R", u(t) E R", v ( t )  E RI and the matrices AA,  BA,  CA are of 
appropriate dimensions. We assume that the nominal system is controllable and 
observable and consider pertnrbation A A  on the matrix A only, i.e. AA = A + A A ,  
BA = B, C A  = C .  The observer or Kalman lilter may be e x p d  by 

i ( t )  = Ai( t )  + Bu(t) + K(y(i) - Ci(1)) (3) 
and with the control law u(t) = F i ( t ) ,  the dosed-loop system becomes 

(4) 
A + B F + A A  -BF [:I=[ A A  A - K C ] [ : ]  

where e(t )  = r(1) - i(t). Note that F and K are obtained through the well-known 
algebraic Ricuti equations or by other alternative methods. 

Using Lyapunov theory one can provide robust stability bounds for LQR and 
LQG [4]-[8]. It has been shown [7],[8] that under certain restrictive assnmptions the 
bounds of allowable parameter variations in the LQG can become as large p. those 
bounds of the LQR in the state space models. Although these bounds are conser- 
vative and less conservative bounds are available [9], they are useful in the design 
of LQR and LQG for systems under strnctured uncertainty. It has also been est& 
lished that the robustness of the LQG can be the same ad that of LQR regardless 
of the structural assumption (matching conditions) for model uncertainty provided 
that the regulator and observer gains have special forms. The conservativeness issue 
makes one to look into an alternative robust stabilization solution, which can he 
tied to the properties of the linear quadratic regulator solution. In this connection, 
the quadratic stabilization results established in [lo], [11],[12] play an important 
role. See also [13], 1141, [15], [16], [17] for further development in this direction. 
Based on 1121 a recent publication I181 considers two types of uncertainty structures; 
namely, norm-bounded and couvex-bonnded uncertainties, and establish the r e l r  
tionship between quadratic stabilizahility of linear systems and the existence of a 
positive definite solution to a set of modified Riccati equations. Also, [17] considers 
the constraint stabilization and performance for general uncertain interval systems 
as an extension of [15]. This structurally constraint stabilization takes into account 
the nice properties of metzlerian systems and establish strong results in connection 
to quadratic stabilization. 
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In this paper we avoid quadratic stability idea and introduce a new design strat- 
ear called stability radius optimization loop transfer recovery (SRO/LTR). The 
motivation behind this new idea lies in the fact that recently, in light of several 
outstanding results (see [l9], [XI] and references therein), direct stability radius for- 
mulae are obtained for the classes of nonnegative and metzlerian systems [21]. This 
allows one to determine the supremum of the stability radius which can be achieved 
by linear state feedback control law in terms of the feedback gain. The constraints 
in this optimization problem are formulated through stability conditions and spe- 
cial structnre associated with metzlerian systems. The solution of this stability 
radius optimization (SRO) plays the same role as target feedback loop design in 
LQG/LRT method. However, SRO allows additional constraints to be i m p o d  in 
the optimization problem. It is dear that similar to LQG/LTR design methodology 
we may add an observer structure to SRO (whenever the states are not available) 
in such a way that robustness properties are preserved to the extend possible. This 
leads to SRO/LTR design methodology. 

2 Stability Radii for Nonnegative and Metzlerian 
Systems 

This section considem the special classea of nonnegative and metzlerian systems 
and provide pmcedores to compute their real and complex stability radii. First, we 
briefly d i ~ u s s  the nonnegative and metzlerian stabilizations for gemeral uncertain 
discrete and continuous systems, respectively. Then, under the assnmption that the 
system is nonnegative or metzlerian stable, we give direct formulae for their stability 
radii computations. 
2.1 Nonnegat ive and Metalerim Stabi l ieat ions 

The nonnegative stabilization of uncertain interval discrete systems has been treated 
in [n]. In order to have a ia- of structurally constraint stabilization, let os 
consider the dual results of [Z] for the continuowtime metzlerian system. For the 
sake of parallel treatment, we assume interval characterization of u n d n  system 
(1) where only A is ~cnt . in  and is defmed by the set 

(5) M ( P . Q ) =  {A(%):  P h j )  S A(%,) 5 Q(qij)}  

for all p i j  5 q j  < qij, i. j = 1 ,..., n. 

only if 4'; < 0, oij > 0. 

Tbeorem 2.1 Lei-(1) bc m e t r l e h  .y.*m chamckrizal by B ( P . 0 ) .  Then (1)  ir 
6 t a b k f o r d l A  E M ( P , Q )  ifand only if1 -Q(a)l> 0, d e m o  E N U the adcr of 
the Iadingprincipd minor. 

It shodd be noted that strong stability bonnd un be found for this d+sa of systems 
similar to the dual case of nonnegative systems. This will not be given here, rather, 
we state the following result. 

Theorem 2.2 The feedback eontrd L m  U = Fs &tly stabilize the gcneml inter- 
mlwstrm (1) chamcterimi by M( P, Q )  and motu the closal-bop rystcm mct;lerian 
if and only if the matricu 

M u i t i o n :  The interval set M ( P , Q )  becomes metzlerian set B ( P , Q )  if and 

P = P + B F  
Q = Q + B F  

am metdenan and that ihe lading principal minors of the m a t e  -0 am positice. 

Thus the set of robustly stabilizing state feedback controllers maintaining metzlerian 
structure can be characterized by 

U ( F )  = { F E  RmX" : P(% < 0, P(F); ,  > 0 Q(F) , .  < 0 ,  Q(F), ,  > 0, I - Q(a)I > 

0 )  (8) 
U the feedback solution to the set (8) exists, then one can formulate the problem in 
terms of a mathematid programming with any desirable obpctive function. 

2.2 

Consider the discrete and wutinuous time systems: 

Rea l  and Complex Stabi l i ty  Radii 
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z ( k + l )  = Az(k), k €  N (9) 
z(1) = Az(t), t E R+ (10) 

which are sub+ted to parameter perturbations. It is  assumed that the unperturbed 
system is stable, i.e. A € Px", A(A) C C, where the good stability regions for 
(10) and (9) are deftned by C, = {U E C; &(U) < 0) and C, = { z  E C; 121 < 1). 
respectively. Perturbation. of the form A = A + AA where AA rep-ted by 
single perturbation structure AA = DAE with given D E F"", E E Pa' and 
unknown A E Firq is considered, The atructured stability radius of A with reapect 
to perturbation structure ( D , E )  is defined in [19] M 

rF(A,B,C) = inf(((A(( : A E , I x r ,  A(A + DAE) flCb # 0) (11) 

where F is R or C and Cb is the unstable (bad) region. If both structure matrices D 
and E are identity matrices. we obtain the unstructured stability radius rF(A, 1.1) = 
~F(A) .  If A, D E are real, we obtain two stability radii, rR or rc,  according to 
whether real (F = R )  or complex (F = C) perturbations are considered. They are 
known as real and complex stability radii, respectively. The complex unstructured 
Ab.Aility radius of A, U alternatively defined in [ZO], using spectral norm is given by 

rc(A) = iuf{a(A) : A E C"'" and A + A is onstable) (12) 

The computation ofrc(A) is not difficult and can be obtained by 

rc(A) = 4 R -  i d  s ( A  - jdn) (13) 

using available algorithms reported in the literature (we [19] and the references 
therein). Consequently for the specill dasl~s conf ided in this paper one can use 
the same algorithma toobtain rc(A). Horever, wing the propertica of t h a c  special 
clasws, i t  is pwible  to compute the stability radius more efficiently. It is well-known 
that 

td.4 2 r c ( 4  (14) 

and that the computation of real stability radius is difficult and needs extra care. 
Couequemtly lower bouuda are established for real unstructured stability radius 
m(A) in [20] and references therein. It was claimed in [XI] that the reported uew 
lower bound may turn out to be equal to the red stability radius. Motivated by 
this daim, we investigated in [21] the computation of real stability radius for other 
special matricea in order to widen the drss of matrices for which the validity of 
their claim is confirmed. Although for the general case, it has recently bem proven 
1241 that the new bound is in fact equal to the real stability radius, its computation 
however requires frequency sweeping and it is not trivial. Neverthelesa an algorithm 
is provided to compute the real stability radius. 

In subsequent sections we consider the computations of stability radii for impor- 
tant C ~ ~ S S ~ S  of nonnegative and metderian matrices. Strong necessary and sufficient 
conditions exist for the stability of these matrices 1221, 1231. W e  will make use of 
them results and the spectral norm to compute the real stability radii. We show that 
simple charactvizations of real stability radii for these special classes of matrices 
lead to direct formulae for their computations. 

2.3 

The system (9) is nonnegative if A 2 0 elementwise, i.e. a;, 2 0. Let tbe perturbed 
nonnegative system matrix be described by 

Direct Formula for Stability Radius of Nonnegative Systems 

A = A + D A E  (15) 

The following theorem on nonnegative matrices is essential for the development 
of our result. We state this theorem with respect to d defined in (15). 

Theorem 2.3 The nonnegative system (9), elh perlurktion ( I s )  is stable if and 
only if all the leading principal minors of I - A are positive, i.e. 

1r- 21. > 0 (16) 

where a E N IS Me oder of the principal minor. 
In a recent publication (211 we gave a crude aaalyais of real stability radius 

associated with the above system. Here, we provide a more compact treatment of it 
and summarize the results without proofs. Consider the nonnegative system whose 
stability radius is defined by 

rR(A,D,E)=inJ(l(AI( : A(A+DAE)flCs#O, A + D A E z O )  

Yote that the condition A + DAE 2 0 is needed in order to ensure nonnegativity 
of the entire set. Obviously, A has to be stable in order for the problem to be 
meaniugful (otherwise, r;(A,D,E) = 0), i.e. A 2 0, p(A) < 1. This will be 
assumed throughout. 

Theorem 2.4 Let A & C, stable, Then the mal stability mdiw of the nonnegolivc 
spstem con k chamctorired by 

r;(A,D.E) = tnfillAl[ : del(I- E(I  - A)-'DA) = 0) (17) 

Supgose that 11 11 is the 2 . norm , then from theorem 2.4, the following results can 
be derived. 

Comllnry 2.1 Let A k C, stable. Then the red stability mdii am given by the 
folbra'ng direct formulae depending on the associated chametarirakwn of A. 

: Rwl unatruclured A 

rk(A,D,E)= 
C ( E ( I -  A)-'D) 

m: A =  di09(6~.6~. ... 6,) 

When 
Q = {diag(a~,d,,. . .d.) : 8, = *13 i=  1,.  . ., n) 

(191 

2.4 

The syatem (10) is metzlerian if a,, < 0, a,, 2 0. Similar to theorem 2.3 we can 
state a theorem for the perturbed form of wntinuoua-time metzlerian system (10) 
as followr. 

Direct Formula for Stability Radium of Metzlerian S y s t e m  

Theorem 2.6 The metzlerian system (IO) -with perturbation (IS) is stable if and 
only if all the leading principal minors of -A are positive, i.e. 

I -A( .  > 0 (21) 

&re a E N is  the oder of the principal minor. 

The p m f  of theorem 2.5 follows immediately from theorem 2.3 or characterization 
of closely related M matrices. 

Ret 1 Any stable metzlerian matrix A can be split as A = -PI + R, where 
R t 0 . p  t PW. 
So, for metderian system d = A t  DAE, we can write 

A =  A t  D A E =  - P I +  R + D A E  

Furthermore, in order for A to remain metzlerian, it is necessary that R+ DAE 2 0. 
It follows from these observation that 

rR(A,D,E) = inf(llAll: det(-pI+ R + D A E ) = O }  
= iuf{llAll : det(1- AE(p1- R)- 'D)  = 01 

where we have used the fact that 

- p +  max. ReX,(R t DAE) max.ReX,(A) = 
= - p  t P ( R  t DAE) (since R + DAE 2 0) 

Remark Up to this point, the problem with metzlarian system has been transformed 
into one with nonnegative systems. So, the above formulae derived for nonnegative 
systems can be applied to the metderian systems directly with appropriate modifi- 
cations. To avoid thia conversion, one can simply replace I- A by -A in the derived 
formulae to obtain equivalent results for the metzlerian cxe. 

3 Stability Radius Optimhation 

Let us go back to the controlled perturbed system (1) with AA = DAE i.e. 

i = ( A  + DAE)z + BU (22) 

Our goal is to determine the supremum of the stability radii which cau be achieved 
by linear state feedback U = Fz: 

r;(A,D,E,B) = sup{rF(A+ B F , D , E ) :  F E  C"'".A(A t B F )  c C,) (23) 

If F = C, then the problem is called complex stability radius maximization. On the 
other hand, if F = R, then the problem ia called real stability radiua maximization. 
For the former clde, by definition 

(24) r;(A + B F , D , E . B )  = r>(A,D,E,B),  WA) C C, 

and the optimization problem (23) can be shown to be equivalent to the R, norm 
minimization problem 
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min IIGFII, subject to A(A + BF) c C, (25) 

where GF(d) = E(sI-A-BF)-'D and I l G ~ l l ~  = m G E R  IlGF(jw)ll. The problem 
of finding a stabilizing feedback controller such that the resulting d d - l o o p  transfer 
function h a  an H, norm strictly less than a given bonnd y, is known as the H,- 
optimal control problem. Many papers appeared in the p a t  on this subject and 
certainly the above equivalency establishes a link between two areas of complex 
stability radius optimization and H, optimal control problem. In snnmary, since 
it is possible to characterize the complex stability radius via an assodated Biccati 
equation, one can also characterize the supremal achievable complex stability radius 
for a controlled system (using linear state feedback) by a modified Riccati equation 
(see [19] for more details): 

( A + B F ) T P + P ( A t B F ) - P D D T P - p l E T E - r l F T F = O  (26) 

where f,p > 0. Starting with F = r-aBTPo one solves iteratively (26) to yield an in- 
creasing solution sequence Pb. The supremum solution P leads to ri. = l i q 4  p(r) .  
Corresponding to this modified Riccati equation one can also form a Hamiltonian 
matrix and its b a t e d  Hermitian Irequency function H , ( j u )  

H.(jw) = GD(JW)GD(jw). - r-*Ge(jw)G&u)' (27) 

where GD(d) = E(s1 - A)-'D and GB(d) = E(d1- A)-'B. Denoting A(€) = 
supwcR Amw(Hz(jw)) and Ac, = linq-4mu{A(c),O} we have the following result 

Theorem S.l Suppose that X(A) c C,. Then 

(i) r&(A,D,E ,B)S  A;* 

(ii) 6(A,D,E,B)= Sf 
where 6(A, D .  E,B) is the mmplez stabilizabdity mdiw of the system t = A t  + Bu 
defined by 

6(A,D,E,B)= inf{llAll, A E C"P,(A+ DAE,B) is  nonst&lizable) 

As a consequence of Theorem 3.1, we have a characterization of those systems whose 
complex stzbility radius can not be improved by static lineat state feedback. 

Fact 2 The complex stability radius of a stable system is optimal with respect 
to state feedback if and only if its stability radius is equal to its stahilizahility radius. 
Hence,ifr&(A,D,E,E)< 6(A,D,E,B)then theredoesnotexist afeedbackmatrix 
maximizing the stability radios. In other words, this gap causea high gain feedback. 

Obviously the above result is also valid for the dam of metderian system and no 
further discnssion is necessary. For the real stability radius maximization, there is 
no general result a d a b l e .  A recent result shows that the real stability radius can 
he computed by means of a two parameter optimization [24]. Consequently, due to 
its computational complexity, it is not yet apparent how to tackle its maximimtion 
problem. Also there is no counterpart of the real stability radius in A, theory and 
there is no obvious connection to any type of Riccati equation. This needs further 
investigation and is a subject of future d. 

Concentrating on the dass of metderian systems, the problem of real stability 
radius maximization can be formulated and solved effectively. This is due to fact 
that dosed form expression has bem derived for real stability radius of this drss of 
systems as we discussed in previous section. Let us formulate the problem formally. 

Problem Formulation: Given the system (22) find if possible a feedback 
control law U = Fz such that the d d - l o o p  system is metzlerian stable and the 
associated real stability radius 

is maximized. 

expressions derived in Section 2 for the case of metzlerian can be used as well. 

optimization pmblem has a solution 

Note that we considered only (28) for simplicity. However, all stability radii 

Theorem 3.2 The mairk F sdves the above pmbkm if and only ifihefollaping 

max r ( f )  subject to FE M ( r )  (29) 
where a ( F )  = { F  E R"'" : (A + BF).; < 0, (A + BF);j 2 0, ( - \A + BF)).  > 0) 
with (I denoting the order of the leading prineipl minor. 

The optimization problem (29) is termed stability radius optimization (SRO). 
It is clear that similar to LQG/LTR design methodology we may add an LTR ob- 
server structure to SRO (whenever an observer is necessary) in order to preserve the 
robustness properties. This leads to SRO/LTR design methodolog. which will he 
explored further in our illustrative example. Before doing this. let us consider an 
important special case, which makes (29) linear. 

The system (22) with single input control law U = Fz d i z i n g  
metzlerian stobilization, and mnk one priurbations 1 = q = 1 has 

Corollary 3.1 

where (A t BF), is a matriz constructed from A + BF by replacing ita 8th mw 
(column) m'ih the :Ut row (column) of the mtrk product DE. Furthermore, the 
associated optimizntion pmblem (29) becomes a linenr pmgmmmingpmblem p& 
that E, det(A + BF), is conatant. 

Note that one possiblity for this sum to be constant is B = D .  A reliable method 
for solving the general optimization problem (29) with various r(F) is currently 
under investigation. 

Consider the unstable continuous system specified by the triple Example: 
IA,B,C) 

A = [ :  12 1:2 -7 il] -5 .=[ ! I  C = [ l  0 01 

- .- - - __ . . . 
with perturbation structure D = [I 1 1IT and E = [ l  1 11. A satisfactory target 
f e e d b d  loop has been realized for the above system using LQR with Q = I, R = 1. 
The resulting feedback gain is given by F = [-4.9444 1.7871 0.59331 which yields 
the real stability radius r = 0.66189. Note that FB # 0 and exact LTR can not 
he achieved by full-order observer [2]. However, since the system is minimnm phase 
and C B  = 1. one can design a reduced-order observer to achieve exact LTR. 

Now we apply our SRO technique without requiring F B  = 0. To achieve met- 
zlerian stabilization with F = [fi f? f3] and maximizing the stability radius, the 
following optimization problem should be solved 

1 
m a r  = @(E(-A - EF)-ID)  

= -.3194 - .3472fi - .2917f2 - .3611fs 
subject to 

-11 < f 1 <  -7 
7 < f a < 1 2  
l < f s < 5  

-6fi - 4fa - 18 > 0 
-123 + %fi + Zlfa + 26fs) > 0 

The objective function and the constraints are dl linear and the solution to the 
linear programming occurs a t  the corner point feasible solution fi = -11, fa = 7, 
fs = 1 with r' = 1.0972. Note that tbe d u e n t s  of the objective function are all 
ronnded off. Hence, the valne of r(F) becoma 1.0968, which is slightly less than the 
optimal valne r.. In order to show the flexibility of SRO, we choose the suboptimal 
solution F = (-10.996 7.1 1.1) which &zed a aimilar feedback loop a8 the one in 
optimal LQR with equal phase margin of about 71'. The real stability radius is 
computed with the above F and is given by r. = 1.03056, which is larger than the 
one obtained from LQR. To recover this robustness property when ohauver is in 
the loop, we design the following reduced-order observer (see [2] and (31 for more 
details) 

i = k + G y  
t = M z + N y  

with 

Note that CP has also metzlerian structure with real stability radius r = 2.27275. To 
check the above result, one should compute the stability radius of the dosed-loop 
system matrix consisting of the feedback control law and the reduced order observer. 

Next we show that the condition FB = 0 can he incorporated in the linear 
pmgramming problem above to obtain the feedback control law and design a full- 
order observer in the LTR step. 

The solution to the linear programming problem with the additional constraint 
fl t fl t f3 = 0 yields the suboptimal solution F = [-10.99 9.98 1.011 with r = 
0.22097 and the phase margin of the target feedback loop equals to 45'. In this 
case the stability radius is reduced and it is smaller than the one obtained in LQR. 
However, it is still posaihle to design a full-order observer in the recovery stage. This 
full-order observer as expressed by equation (3) is realized by K = (1 0 I]=. The 
eigenvalues of A - KC are at -1, -5, -5 and the stability radius of the dosad-loop 
system matrix as defined by (4) is 0 2 0 9 7  which coniirms the robust noovery. _ _  
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