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Abstract

Roll damping and simultaneous course steering by rudder control is a challenging problem
where a key factor is roll damping performance in waves. Roll is a decisive factor for the
operation of ships, both due to comfort of crew and passengers and due to requirements from
cargo or on-board equipment. In the paper, roll damping and steering performance requirements
are described and the controller design problem is formulated in an H∞ framework. It is shown
how this design problem can be handled by using a multi objective H∞ approach. The design
results are compared with an existing LQ design.

1 Introduction

A ship’s rudder is primarily used to create torques to turn the ship - alter its course - but, at the
same time, roll torques are created. This second effect from the rudder can be utillized to obtain
damping of roll motion simultaneously with control of the ship course. When using the rudder for
both tasks, some physical obstacles need to be considered. When a ship goes into a turn it always
obtains a certain roll angle. If it is prevented to heel - the naval expression for steady roll angle -
turning of the ship could not be obtained either. However, in the initial phase of a turn, the force
from the rudder makes the ship roll opposite to the static state field. The nature of this problem is
hence single input-multi output and a non minimum phase relation exists in the rudder to roll angle
dynamics. Performance requirements to the control system includes that damping of roll is effective
in the frequency range of natural and wave induced roll, but the disturbance this makes to the ship
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heading must be limited. For these reasons, roll damping by rudder control is not a straightforward
control problem. Several design issues have been solved, and Rudder Roll Damping (RRD) systems
have become increasingly popular in recent years. Commercial reasons include the cost-effectiveness
of this approach compared with fin stabilizer solutions and the possibility of applying the RRD
concept on existing vessels.

RRD design issues have been discussed in a number of papers. The first experiments were re-
ported by [BWB83]. Theoretic LQ results were derived [vAvNLvdK87]. Systems were designed and
implemented [BHA89, KS89], H∞ controllers were investigated [KJG89], and robustness properties
of LQ based RRD were investigated [BC93].

Despite the progress, the effectiveness of RRD controls has been debated. Some results from
full scale evaluation on vessels indicate very satisfactory results showing 50-70 % roll reduction
[BHA89, KS89, Llo75]. Others indicate much less effectiveness in certain cases, and for some ships
the physical properties have been such that traditional RRD designs could not be used at all. This
has caused renewed research interest where robustness considerations and improvements in design
methods are key issues.

In this paper we investigate the design of H∞ controllers for the full single input-multi output
RRD control problem. It turns out that the two performance specifications are related to two
sensitivity transfer functions. This together with the fact that the model is marginal stable, make
it possible to apply a sensitivity multi objective H∞ design approach. A complete description of
this design approach can be found in [SN94]. The properties of the design are illustrated with
theoretical data for a multipurpose naval vessel and the performance is compared with that of an
existing LQ design.

The rest of this paper is organized as follows. In Section 2, the problem is formulated including
a description of the performance specifications. Further, the design problem is formulated in the
H∞ framework. The multi objective H∞ design approach is shortly reviewed in Section 3 and
the applied H∞ approach is given in Section 4. Section 5 include the design results followed by a
conclusion in section 6.

2 Problem Formulation

The mathematical model for the part of the system to be controlled is a 5th order state space
equation for xs(t) with waves considered as an output disturbance.

yship = Csxs + yw (1)

A linear model of the ship is given by, [BHA89, BC93]:

ẋs = Asxs + Bsus
ys = Csxs

(2)

where the state is xs = [ v r Ψ p ϕ ]T ( sway vel., turn rate, heading, roll rate, roll angle).
The three matrices in (2) are given in Appendix A.

2.1 Disturbance Modeling

Wave disturbances cannot be modeled as a state space disturbance as forces - moments in (2). The
reason is that wave forces act over the entire hull and the coefficients in a state space description



would be frequency dependent. Calculation of wave induced motions is instead done as response
functions from strip theory, or they may be measured. The result is that wave disturbances are
characterized in a vector yw = [v, r,Ψ, p, ϕ]w. The relation between wave height, ξw and hull
motions in yw are complex. They depend on wave length, λ, wave direction relative to the ship,
χ, and encounter frequency, ωe. To a first order approximation, wave motions are linear, and we
can therefore obtain the motion of the hull as a superposition of the wave induced motion and that
created by rudder activity.

The reduction ratio of a motion, i.e., the ratio between the uncontrolled and controlled response,
is a key indicator for control quality in waves. For RRD, and the reduction function for roll damping
is the crucial factor. The mean square of each component of the motion vector yship(t) is determined
by the powerspectrum of wave amplitude, Gζζ and the wave response operator, WROyiζi as

E
{
y2ship,i(t)

}
=

1
π

∫∞
0

∣∣∣[yship,i(ωe)
yw,i(ωe)

]
i

∣∣∣2 |WROyiζi(ω)|
2Gζζ(ω)dω; i = 1, 2, ..., 5

(3)

The reduction ratio for each of the motions is

|Tii(ωe)| =
[
yship(ωe)

yw(ωe)

]
i

; i = 1, 2, ..., 5 (4)

Efficient roll damping is obtained when |T55(ωe)| is well below 1 over the range of frequencies,
0.7 to 1.1 rad/sec, where natural roll and wave induced motions occur. Requirements to roll
damping performance are most convenient specified in terms of the shape of the |T55(ωe)| function
at different values of ship speed. A maximum value of wave height needs also to be specified to
check the linearity range for the rudder servo system.

Robust control is achieved if the required value of |T55(ωe)| is met regardless of changes in
ship speed, loading conditions, hydrodynamic parameters or other coefficients in the equations of
motion.

The basic performance problem is therefore, by nature, an H∞ problem. The wave motion is
an output disturbance and the roll reduction function is the sensitivity function of the closed loop
control problem. The inverse of the H∞ design weight function are shown as the dotted lines in
figures 3 - 4.

2.2 Steering Performance

While there is a quite concise performance requirement to roll damping, steering properties are
more vaguely expressed. There are two main requirements to steering performance. One is that
wave motions in r and Ψ should not cause rudder fluctuation at wave frequencies. The reason is
that noticeable propulsion losses occur if the rudder fluctuates too heavily and the rudder servo
mechanics gets worn. A second is that the ship heading should be maintained despite steady state
or low frequency disturbances, e.g., from wind. These performance requirements can be expressed
in a H∞ design weight function. The inverse of the selected weight function is shown as the dotted
line in figure 3.



2.3 The H∞ Design Setup

For the design of the robust controller, the design specifications for the roll angle and for the
heading are given above by four weight matrices Wrr, Wrh, Whr, and Whh.

In terms of these weight matrices the design specifications take the following form.

Problem 1 Consider the ship model (2). Let γ1 and γ2 be given positive numbers. Design, if
possible, a controller such that the closed loop system satisfies∥∥∥∥∥ WrrSrr

WrhTrh

∥∥∥∥∥
∞

< γ1 and

∥∥∥∥∥ WhrThr

WhhShh

∥∥∥∥∥
∞

< γ2 (5)

where Srr and Shh are the output sensitivities for the roll angle and the heading, respectively. Trh

is the transfer function from a disturbance placed at the roll angle measurement to the heading,
and Thr is the transfer function from a disturbance placed at the heading measurement to the roll
angle.

All weight functions are described in state space form:

ẋw = Awxw + Bwuw
yw = Cwxw + Dwuw

(6)

In H∞ control usually the weightings are introduced by lumping the physical model and the
weights into a new, fictitious system which takes the form of a standard design problem. However,
due to the fact, that our problem is formulated as a multi objective problem we shall instead need
two such standard problems: one for a roll angle disturbance and one for a heading disturbance.
Each system will take the form

ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

(7)

where the state vectors for the two systems are respectively

x =



 xs
xwrr

xwrh

 for a roll angle disturbance

 xs
xwhr

xwhh

 for a heading disturbance

(8)

We shall not give the tedious details for the two systems which is straightforward to write down.
They can also be generated automatically by software packages like Simulink in Matlabtm.

However, that it should be noted that in either case, the direct term D11 from w to z is not
zero as required in the following H∞ controller design. This is always the case when the design
specification is an output sensitivity function. The direct term can, though, be removed very easily
by using a loopshifting method from [Sto92]. The loopshifted system is given by:

ẋ = Alsx + Bls,1w + Bls,2u
z = Cls,1x + Dls,12u
y = Cls,2x + Dls,21w

(9)



where the new matrices are given by:

Als = A− γ−1B1D
T
11C1

Bls,1 = −B1(I − γ−2DT
11D11)

−1/2

Bls,2 = B2 − γ−2B1D
T
11D12

Cls,1 = γ−1(I − γ−2D11D
T
11)

−1/2C1

Cls,2 = C2 − γ−2D21D
T
11C1

Dls,12 = γ−1(I − γ−2D11D
T
11)

−1/2D12

Dls,21 = D21(I − γ−2DT
11D11)

−1/2

(10)

where γ is the selected H∞ norm for the closed loop system. The connection between the two
systems in (7) and (9) is given in the following lemma, based on [Sto92]:

Lemma 1 Let a transfer function K of appropriate dimensions be given. Then the following two
statements are equivalent

1. K is an internally stabilizing controller for the original system (7) which makes the closed
loop H∞ norm from w to z smaller than 1

2. K is an internally stabilizing controller for the loopshifted system (9) which makes the closed
loop H∞ norm from w to z smaller than 1

3 Multi Objective Sensitivity Control

In the following we shall study a multi output sensitivity problem formulated as a number of
coupled H∞ problems. The approach suggested can be applied to a huge number of variations
on the multi output sensitivity problem, the complementarity sensitivity problem, and the control
sensitivity problem, but for brevity we shall restrict attention to the output sensitivity problem in
this section. A complete description of the multi objective H∞ design approach can be found in
[SN94].

Throughout the sequel we shall consider a finite dimensional, linear, time invariant system with
a state space realization of the form

ẋ = Ax + Bu
y = Cx + Du

(11)

and with transfer function G(·). We shall assume the plant to be square, with k inputs and inputs.
For such a system, the multi objective sensitivity problem is depicted in Fig. 1.

The block diagram in Fig. 1 is described by the relations(
z
y

)
=

(
Gzw Gzu

Gyw Gyu

)(
w
u

)

=

(
I G
I G

)(
w
u

)
, u = Ky

(12)
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Figure 1: Multi Objective Sensitivity Problem

with

w =


w1

w2
...
wk

 , u =


u1
u2
...
uk

 , z =


z1
z2
...
zk

 , and y =


y1
y2
...
yk

 .

Writing the transfer function from w to z as a linear fractional transformation in K we get

Tzw =:


s11 t12 · · · t1k
t21 s22 · · · t2k
...

...
. . .

...
tk1 tk2 · · · skk


= Gzw +GzuK(I −GyuK)−1Gyw

= I +GK(I −GK)−1

where the functions sii, i = 1 . . . k, are the output sensitivities (Fig. 1). The functions tij , i =

1 . . . k, j = 1 . . . k, i ̸= j, are crossover terms which indicate how much the ith disturbance
influences the jth output.

Loopshaping one of the columns of Tzw by specifying upper bounds for the modulus of its entries
can formulated as a standard H∞ problem as follows.

Problem 2 The jth SIMO problem for the configuration in Fig. 1 is said to be solvable if and only
if there exists a controller K which internally stabilizes the plant and such that∥∥∥∥∥∥∥∥∥∥∥∥∥

W1jt1j
...

Wjjsjj
...

Wnjtnj

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

< 1



where
sjj(·) = 1 + gj(·)K(·)(I −G(·)K(·))−1ej

tij(·) = gi(·)K(·)(I −G(·)K(·))−1ej , i ̸= j

ej is the (constant) vector

ej =



0
...

1 ← jth position
...
0


and gi(s) is the row of transfer functions from u to yi.

In the sequel, we shall make extensive use of the following decoupling result for the above multi
objective H∞ problem for a stable plant, which in fact is extremely simple.

Theorem 2 Consider the system (11). Assume that A is a stability matrix. Then, the following
two statements are equivalent

1. There exists an internally stabilizing controller K such that

∥∥∥∥∥∥∥
W11s11

...
Wm1tm1

∥∥∥∥∥∥∥
∞

< 1 , . . . ,

∥∥∥∥∥∥∥∥∥∥∥∥∥

W1jt1j
...

Wjjsjj
...

Wmjtmj

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

< 1 , . . . ,

∥∥∥∥∥∥∥
W1mt1m

...
Wmmsmm

∥∥∥∥∥∥∥
∞

< 1

in the closed loop system simultaneously,

2. Each of the m SIMO problems from Problem 2 is solvable independently.

Remark 1 The significance of Theorem 2 is that just as much can be achieved by a single controller
which controls all the columns of Tzw simultaneously, as if the controller just had to control one of
them. In fact, as shall be evident from the proof below, it is possible to design such a multi objective
H∞ controller, by designing an H∞ controller for each of the SIMO problems from Problem 2.

Proof. Let the plant G be row partitioned as

G =


g1
g2
...
gk


Since G is stable, the YJBK-parametrization (Youla - Jabr - Bongiorno - Kuc̆era) of all stabilizing
controllers is given by

K = Q(I +GQ)−1, Q ∈ RH∞ (13)



where Q is given by
Q = K(I −GK)−1

the transfer function from w to z becomes

Tzw = I +GQ

=


1 + g1q1 g1q2 · · · g1qk
g2q1 1 + g2q2 · · · g2qk
...

...
. . .

...
gkq1 gkq2 · · · 1 + gkqk



=


s11 t12 · · · t1k
t21 s22 · · · t2k
...

...
. . .

...
tk1 tk2 · · · skk



(14)

where Q has the following column partition

Q =
(

q1 q2 · · · qk
)

Now, the crucial observation is that since

W1jt1j
...

Wjjsjj
...

Wmjtmj


=



0
...

Wjj
...
0


+



W1jg1
...

Wjjgj
...

Wmjgm


qj (15)

the jth SIMO problem depend on qj only. Since the qj ’s are free stable parameters, each optimiza-
tion can be done completely independently, where after K is determined by (13). From this simple
observation the claim becomes trivial. ⊓⊔

From the proof of Theorem 2 it is apparent that an H∞ controller K which satisfy the above
multi objective problem can be found by determining the qj ’s and then applying (13). Each of these
k transfer matrices (columns) can be found by solving a single input standard H∞ problem based
on (15). For example for the simple special case where the only nonzero weightings are for the
sensitivity functions, each of the k associated standard problems based on (15) which in transfer
function form is

∥wj(1 + gjqj)∥∞ < 1

has the following standard state space formulations

ẋ =

(
A 0
0 Awj

)
x +

(
0

Bwj

)
w +

(
B
0

)
u

z =
(

e′jC Cwj

)
x + Dwj w + e′jD u

y =
(

0 Cwj

)
x + Dwj w + 0 u

The multi objective H∞ approach applied on unstable systems is considered in [SN94].



4 The Singular H∞ Design Approach

In the previous section we derived a model of the form

ẋ = Ax + B1w + B2u
z = C1x + D12u
y = C2x + D21w

(16)

Unfortunately, the derived model does not satisfy the standard assumptions [DGKF89]. One
assumption which is violated for the model obtained in Section 2.3 in the approach of [DGKF89] are
the regularity assumptions, i.e. thatD12 andD21 must have full column and row ranks, respectively.
To overcome this problem we shall take off from the approach of [Sto92].

First, we need the following assumption:

Assumption 3 It is assumed that the systems (A, B1, C2, D21) and (A, B2, C1, D12) have no
invariant zeros at the imaginary axis.

We have then the following result, [Sto92]:

Theorem 4 Consider the system in 16 satisfying Assumption 3. Let γ > 0 be given. Then, there
exist a FDLTI compensator u = Q(s)y(s) for which the resulting closed loop system is internally
stable, and for which the transfer function from w to z has an H∞ norm smaller than γ, if and
only if there exist positive semidefinite matrices P and Q such that

1. Fγ(P ) :=

(
A′P + PA+ C ′

1C1 + γ−2PB1B
′
1P PB2 + C ′

1D12

B′
2P +D′

12C1 D′
12D12

)

=:

(
C ′
1P

D′
12P

)(
C1P D12P

)
≥ 0

2. Gγ(Q) :=

(
AQ+QA′ +B1B

′
1 + γ−2QC ′

1C1Q QC ′
2 +B1D

′
21

C2Q+D21B
′
1 D21D

′
21

)

=:

(
B1Q

D21Q

)(
B′

1Q D′
21Q

)
≥ 0

3. rank
(

C1P D12P

)
= rankR(s)

[
C1(sI −A)−1B2 +D12

]
4. rank

(
B1Q

D21Q

)
= rankR(s)

[
C2(sI −A)−1B1 +D21

]

5. rank

(
A+ γ−2B1B

′
1P − s0I B2

C1P D12P

)
= n+ rankR(s)

[
C1(sI −A)−1B2 +D12

]
, ∀s0 ∈ Cl +

6. rank

(
A+ γ−2QC ′

1C1 − s0I B1Q

C2 D21Q

)
= n+ rankR(s)

[
C2(sI −A)−1B1 +D21

]
, ∀s0 ∈ Cl +

7. ρ(PQ) < γ2



By the method in [DGKF89] an explicit controller formula can be given in terms of the two
Riccati solutions. This is not the case in our more general setting where the Riccati equations are
replaced by quadratic matrix inequalities. These can after a certain change of basis, however, be
solved in terms of two reduced order Riccati equations.

To compute a controller, we first take C1P and D12P as given by Theorem 4(1), and B1Q and
D21Q as given by Theorem 4(2). Moreover we define the matrices

APQ = T (A+QA′P + γ−2B1B
′
1P + γ−2QC ′

1C1)T

B2PQ = T (B2 + γ−2QC ′
1D12) , C2PQ = (C2 + γ−2D21B

′
1P )T

B1PQ = TB1Q , C1PQ = C1PT

T = (I − γ−2QP )−1/2

Now, one possible controller is given by the following result [Sto92]:

Lemma 5 Let APQ, B2PQ and C2PQ be as above. Let L be a state feedback, such that APQ+B2PQL
is stable, and such that:

∥(C2PQ +D12P )(sI −APQ −B2PQL)
−1∥∞ < γ/(3∥B1PQ∥)

Let M be an output injection, such that APQ +MC2PQ is stable and further:

∥(sI −APQ −MC2PQ)
−1(B1PQ +MD21Q)∥∞ < min(γ/(3∥D12PL∥), ∥B1PQ/∥B2PQL∥)

Then the controller:
u = −L(sI −APQ −B2PQL−MC2PQ)

−1My

makes the H∞ norm of the resulting closed loop transfer function from w to z smaller than γ

In short, the above results demonstrates that for a singular H∞ problem a controller can be
found by solving two reduced order Riccati equations, and two disturbance decoupling problems,
which for instance can be solved by pole placement methods, as was done in the design below.

5 Design Results

In both the LQ design and the H∞ design, we have used gain scheduling, so the controller is optimal
with respect to the ship speed.

5.1 An LQ Design

The results of a nominal design for a naval multirole vessel [BC93] are here used for comparing an
LQ design, similar to one in actual operation on a series of ships, with the H∞ approach described
here. The controller is not a genuine LQ design, because sway velocity could not be estimated
with sufficient accuracy. Instead, pole placement similar to that of LQ design was obtained using
available state estimates. The details of the design can be found in [BHA89].

The LQ controller uses feedback from filtered turn rate and heading, i.e. the states r and Ψ
not disturbed by wave motion, and measured roll rate and roll angle, i.e., p and Φ including wave



10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

 Waves to roll angle 

|T
_f

i/f
i_

w
|

Frequency [rad/sec]

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

Gain from roll error to rudder angle

Frequency [rad/sec]

|K
_d

/d
_f

i|

Figure 2: LQ like design - Reduction ratio |Tϕw| and controller gain characteristics.

motion. The LQ controller was speed scaled to obtain closed loop behaviour similar to that of the
open loop system. Details can be found in the reference.

The LQ controller was:

δsteering = (0,−lr
(
Udesign

Uactual

)
,−lΨ, 0, 0); (17)

δroll = (0, 0, 0,−lp
(
Udesign

Uactual

)2

,−lΦ
(
Udesign

Uactual

)2

) (18)

In a seaway, waves will generate roll motion, and assessment of total performance will require
the wave response operators for both p and Φ, and integration of the wave spectrum times the
response operator and output disturbance sensitivity function of the closed loop RRD control.
This requires fairly complex information about the ship and seaway. A simpler, yet sufficient
performance indicator for our purpose is the |rr5| function that shows roll damping over frequency.
The performance of the LQ controller is illustrated in figure 2. Roll damping is 0.5 as required
around 0.9 rad/sec. in the nominal design, but the interval where this is obtained is narrow.

5.2 The H∞ Controller

Based on the formulated standard problem in Section 2.3 and the H∞ results given in Section 4, we
are able to design an internally stabilizing H∞ controller which makes the H∞ norm of the closed



loop transfer function from w to z smaller than γ, where γ is a sufficiently large, positive number.
In the following, γ has been selected to 1.1 times the optimal value of γ.

In figures 3-5, the result of the H∞ design are shown for the ship speed u = 9.0 m/s. The
solid lines in the figures are the closed-loop amplitudes and the dotted lines are the inverse of the
respective weight function multiplied with γ. For satisfying the design specifications, the inverse of
the weight function must be over the closed-loop transfer functions for all frequencies.

It can be seen directly from the figures, that the hard bound to satisfy is the specification
for the roll angle. The reason is that the transfer function from control input to roll angle has a
nonminimum phase zero at z = 0.915. Hence, the corresponding output sensitivity S(·) will satisfy
a nontrivial Bode integral sensitivity bound. To obtain a reasonable design, the weight matrices
has to satisfy the Bode bound themselves. In respect to space limitations we cannot survey the
systematic procedures to take these interpolation constraints into account. Figures 3 to 5 show the
results of a design with the following design constraints:

• Roll disturbance sensitivity is below 0.5 in a band around the natural roll frequency

• Heading disturbance sensitivity is below 0.1 at low frequencies. The ideal would be zero
sensitivity at low frequencies. In the wave frequency range, the specification is chosen to one.

• Roll angle to heading crossover sensitivity is below one at all frequencies and goes towards
zero below 0.01 rad/sec

• Heading disturbance to roll crossover sensitivity is lower than one at all frequencies

Roll Damping
The plots show that the required roll damping can be achieved over a frequency range which

is somewhat broader than that obtained with the state feedback design. The controller gain used
to obtain this is about 8 deg rudder/deg roll angle around 0.8 rad/sec whereas the state feedback
design uses a gain of 2.7. The roll error gain goes towards zero at low frequencies. This is desired
and necessary to obtain adequate turning capabilities for a vessel. The high frequency gain of the
H∞ controller increase more than 40 dB per decade, whereas the rate feedback term in the state
feedback counterpart causes it to increase by 20 dB per decade. Such high frequency behavior is
undesired above the primary wave frequency region, and in practical systems, the controller gain
needs to be shaped and approach zero at high frequencies. Such shaping can be implemented such
that there are no significant penalty in roll damping performance.

Heading Control
Heading control is quite different for the two controllers. The state feedback controller of

equation 17 has turn rate and heading angle feedback. In the actual implementation [BHA89],
state feedback from turn rate and heading angle are taken from a Kalman filter that effectively
suppress every wave induced motion from the feedback signals. The reason is that rudder activity
due to wave motion in the lateral plane is undesired. Fluctuating rudder motion at these frequencies
have literally no effect on the ship’s heading, and significant propulsion losses may be generated.

Disregarding the filtering issue, the gain for the H∞ controller is in the same order of magnitude
as with the state feedback controller around natural roll frequency. At low frequencies, the H∞
has much reduced gain. This would not be acceptable for an actual application because wind
load would cause large deviations in the ship’s heading. In the state feedback design, integral
action is included by simple means. In the H∞ design, weight function specifications would need
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Figure 3: H∞ design - Sensitivity plots for roll |TΦw| and heading |TΨw|. Dotted lines are specifi-
cations, solid lines are the design results.

further refinement to give integral action. This is, as yet, an unsolved problem with the present
multi-objective approach and its implementation.

Controller complexity
The model order increase with the degree of the weight function specifications is one of the

practical obstacles with all H∞ designs. This is also the case here, where the controller order is 22
with the specifications used. Model reduction techniques can, however, fairly easily be applied to
give a 7th order model without any significant deviation from the specifications.

Model Uncertainties
Model uncertainty and rudder saturation in both slew rate and angle are major obstacles. The

present design has attempted to present the results of a multi-objective design, whereas inevitable
model uncertainty [BC93] and the nonlinear phenomena [BHA89] have not yet been included. These
are issues of continued research.

6 Conclusion

A design problem for robust control of rudder-roll damping has been discussed.
Since the problem specifications were posed in frequency domain, an H∞ design was a natural

selection. An H∞ controller was calculated by virtue of a new singular H∞ approach and compared
with a previous LQ like design.
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Figure 4: H∞ design - Crossover sensitivity plots for roll angle from heading disturbance and
heading from roll disturbance. Dotted lines are specifications, solid lines are the results of the
design.

As a design tool, the H∞ method was fast and very direct, since no additional fine tuning was
necessary on top of the weightings which were immediate from the specifications. It turned out that
the hard bound to satisfy was the specification for the roll angle. The specifications could easily
be met at the specified frequency range, but the transfer function need to blow up in some other
frequency ranges for satisfying the Bode integral sensitivity bound. This trade off is the only part
of the algorithm, where the designer might need to iterate a little to achieve the “nicest” results.
The roll angle amplification at very low frequencies is, e.g. not desired due to the large hill angle
created by low frequencies wind loads.

In short, a comparison between the H∞ and the LQ controller shows that the frequency fit
of the H∞ controller is significantly better at the cost of complexity. The LQ controller amplifies
waves in a low frequency range, whereas the H∞ controller (figure 3) rolls off to a very low level at
low frequencies. An unsolved issue is how integral action can be incorporated in the design.

A Ship Model

The matrices for the linear ship model in (2) are given by:

As = T−1E−1FT
Bs = T−1E−1G

(19)
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Figure 5: H∞ design - Controller gain from wave disturbance in heading angle (upper) and roll
angle (lower) to rudder angle.

where E, F and G are given by, [BHA89, BC93]:



E =


m− Yv̇ mxG − Yṙ −mzG − Yṗ 0 0

mxG −Nv̇ Izz −Nṙ −Nṗ 0 0
−mzG −Kv̇ −Kṙ Ixx −Kṗ 0 0

0 0 0 1 0
0 0 0 0 1



F =


0

F1 F2 F3 F4 0
0

0 0 1 0 0
0 1 0 0 0


[
F1 F2 F3

]
= UYuv U(−m+ Yur) Yp + UYup

UNuv U(Nur −mxG) Np + UNup

UKuv U(Kur +mzG) Kp + UKup



F4 =

 YΦ + U2YΦuu

NΦ + U2NΦuu

−gmGM + U2KΦuu

 , G =


U2Yδuu

lδxU
2Yδuu

−lδzU2Yδuu
0
0


Cs =

[
0 I

]

(20)

and T is given by

T =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 (21)

such that x = Txs The values of the constants in the matrices can be found in [BC93].
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