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SUMMARY 
In this paper we shall consider the H, control problem using static output feedback. The approach uses 
some recent results from linear algebra. The main result shows that the H, control problem is solvable 
by a static output feedback controller if and only if there exists a positive definite matrix satisfying two 
certain quadratic matrix inequalities. A parametrization of all static output feedback H, controllers is 
given. 
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1. INTRODUCTION 

Many linear controller design analysis problems can be reduced to certain matrix linear algebra 
problems of the type studied in the covariance control literature ([4-61 and references therein.) 
For further motivation see the linear matrix inequalities discussed in Reference 3. In fact, the 
parametrization of all stabilizing controllers (of order equal to or less than the order of the 
plant) for a large variety of situations (continuous and discrete systems, with or without 
measurement noise) all reduce to the solution of just two linear algebra problems. In this paper 
we shall apply these linear algebra results to solve the standard H, control problem for static 
output feedback control [7-101. Using the linear algebra results we obtain necessary and 
sufficient existence conditions and a parametrization of all stabilizing static H, controllers. 

P+ will in the following denote the Moore-Penrose inverse of a matrix P. Everywhere, as 
usual, Q > 0 shall be taken to mean that Q is a positive definite, symmetric matrix. SVD stands 
for the singular value decomposition. 

2. PRELIMINARIES 

In the sequel we shall consider the following system: 

~ = A x + B ~ w + B ~ u  
2 = c , x  + DIZU 
y = C t u  

for which we wish to consider static output feedback laws 

U = K Y  

where K is a matrix of appropriate dimensions. 
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The following results can be easily obtained using a linear algebra result found in 
Reference 5 .  A proof will be given for completeness. 

Theorem I 

following two statements are equivalent. 
Consider the system (1). Suppose D i a l 2  > 0 and let a scalar y > 0 be given. Then the 

(i) There exists a matrix KE R m x p ,  such that A + BdWz is asymptotically stable, and such 

(ii) There exists X > 0 and L € IR"' 
that ( 1  C1+ D d G ) ( s Z -  A - BXC2)-'B2 11- < y 

such that the following two are satisfied. 

A ' X +  XA + CiCl+ -y-2XBlBiX- (XB2 + Ci&)R-'(XB2 + CiD12)' + LL' < 0 (2)  

(Z-C~+C~)[(XB~+C~DIZ)R-'(XB~+ CiDn)' -LL'l(Z- CZ+C2)=0 ( 3 )  

where R := DiDi2 > 0. 

In this case, all such static output feedback gains K are given by 

K =  [LVR-'/2 - (XB2 + CiDi2)R-']'C; + Z ( Z -  C&), where Z is arbitrary 

Vh, r = rank [ ( Z -  C;C2)L],  UU' = Z arbitrary 
v =  q o  u) 

VA can be found by the following singular value decomposition 

( I -  CZC2)L = UACAVA 

Similarly, VB is given by the SVD 
( I -  C?Cz)(XB2 + C ~ D I ~ ) R - ' / ~  = UACAV~ 

(where UA and CA are as in (4)). 

Proof. We shall prove the case y = 1 without loss of generality. From the strict bounded real 
lemma (e.g. Reference 12), statement (i) is equivalent to the following statement. 

(i) There exist K, X >  0 and W >  0 such that 

( A  + BzKCz)'X+ X ( A  + BXC2) + XBiBIX+ (Ci + DizKCz)'(Ci + DizKC2) + W =  0 (6) 

Our strategy is the following: assuming that X > 0 and W > 0 are given, we shall solve the 
quadratic matrix equation (6) for K. In this case, solvability conditions are given in terms of 
X and W, which in turn characterize all matrix pairs (X, W) satisfying (6) for some K. The 
solution K will be given explicitly in terms of ( X ,  W). 

To this end, define 

T:= XBz + CiD12, R:= D i a l 2  
Q:= A ' X +  XA + XBiBiX+ CiCl- TR-'R' 

Then, after expanding the terms in (6), completing the square with respect to KC2 (6) becomes 

(KC2+R-'Tt)'R(KC2+R-'T')= -Q- W 
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Since the left-hand side is nonnegative definite with rank Qm, there exists L E R n X m  such that 

Q + LL‘ = - W < 0 
( K C ~  + R - ~ T ’ ) ’  R(KG + R - ~ T ’ )  = LL’ (7) 

Note that (7) is equivalent to the existence of an orthogonal matrix VE R m x m  such that 

( K C ~ + R - ~ T ’ ) ’ R ~ / ~ = L V  

or  equivalently cx’ = L V R - ~ / ~  - T R - ~  

The above linear equation is solvable for K if and only if 

( I -  CZ+Cz)(LV- TR-”’) = 0 

K ’ = C Z + ’ ( L V R - ~ / ~ -  T R - ~ ) + ( z - c ~ c ; ) z  

(8) 
and all such solutions are given by 

where Z E R p x m  is arbitrary. Using the result of Reference 5 ,  there exists V such that VV’ = Z 
and it satisfies (8) if and only if 

(z- C ; C ~ ) ( L L ‘  - TR-’T’ ) ( z -  c;c2) = o 
and all such orthogonal matrices V are given by 

*‘ Vh, r=rank[(Z- Ct’C2)L.l 
V =  VA(0 u) 

where U is an arbitrary orthogonal matrix, and VA and VB are given by the following SVDs; 

( I -  c ~ + c ~ ) L  = UACAVA, ( I -  c Z + C ~ ) T R - ~ / ~ =  u A c A v ~ ~  

This completes the proof. 0 

3. MAIN RESULTS 

The main result of this paper is the following. 

Theorem 2 

Consider the system (1). The following two statements are equivalent. 

(i) There exists a matrix K E  lRmxp, such that when applying the static output feedback law 
u = Ky, the resulting closed loop system is internally stable, and the H, norm from w 
to z is smaller than y. 

(ii) There exists a positive definite solution X to the following two inequalities. 

A ’ X + X A  + CiC1+ y-’XB1BiX- (XBz + CID12)R-’(XB2 + CiD12)’ < 0 (9) 
Vi(A‘X+ XA + CiCI + y-2XBIBIX) V2 < 0 (10) 

where R := 0 1 2 0 1 2  and 

Cz=(U1 u2)(0 O o) (VI VZ)’ 

is the singular value decomposition of C2. 
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Remark I .  Any matrix V2 satisfying Im V2 = Ker C2 will work in (10). The explicit 
expression (1 1) is merely one possibility. 

Proof. First, to  prove necessity assume that there exists a matrix K satisfying (i). Applying 
Theorem 1 we immediately infer (9). Observing that (I- CJC2) = V2Vd we get from (2) and 
(3) that 

Vi(A'X+ X A  + CiCI + y-2XBlBiX) vz c 0 

proving necessity of (10). 
To prove sufficiency, assume that X > 0 exists satisfying (9) and (10). We shall show the 

existence of L satisfying (2) and (3) constructively. Since R > 0 and rank(R) = m, it is possible 
to choose T E  Rr as any matrix such that 

TT' = Vi(XB2 + CiD12)R-'(XB* + CiDI2)' v2 (12) 

c o (13) 

Then with 

n : = A ' X + X A  + cicl + y - 2 ~ ~ l ~ i ~ -  ( X B ~  + C D ~ ~ ) R - ~ ( X B ~  + 
we have that 

vinvz + TT' = Vi(A'X+ XA + CiCl+ y-2XBIBiX) vz < 0 (14) 

Introducing 

Q:=  V n V ,  ( Q =  VQV') 

or 

(Qii Qn) ._ .- (Wvi WJ'..) 
Q21 Q22 vinv, vinvz 

Q c 0 and Q22 + TT' c 0 
we get from (13) and (14) that 

(15) 

Applying Lemma 1 from Appendix A to (15) we obtain (constructively) the existence of 
A E R ( " - r ) X m  such that 

Q +  c ) ( A '  T ' )  < 0 

Finally, defining 

L : =  v t )  
we have 

Q + L L ' < O  

which is the inequality (2). The equality (3) follows directly from (12). This concludes the proof 
of Theorem 2. 0 

To emphasize the constructiveness of the proof presented above we can apply Theorem 1 
to obtain the following parametrization of all static H, controllers. 
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Corollary I 

Consider the system (1). Suppose there exists a static output feedback internally stabilizing 
controller u = Ky such that the H m  norm of the transfer matrix from w to z is smaller than 
y. Then all such controllers can be found by the following algorithm 

1. 
2. 
3. 

4. 

5 .  

6. 

7. 

8. 

9. 

Choose X satisfying (9) and (10) 
Choose ZE R m x p  arbitrary 
Choose NE R ( R - r ) X m  satisfying 

11 S-1/2NI( < 1, S= - Q I I  + Q I z Q T ~ Q ~ z  
where 

and V1 and VZ are given by the SVD of C2 (11) 
Compute T by 

TT' = Vi(XB2 + CiD12)R-'(XB2 + CiDi2)' V2, TE R r X m  

Compute Q22 and P by 

Q22=Q22+ TT' ,  P = Z -  T'QT2T 

Compute L by 

Compute the singular value decompositions 

UACA Vh -1/2 = 

(note that the first two matrices on the right-hand sides are identical) 
Choose arbitrary U such that UU' = Z and compute V by 

( I -  C2+C2)L = UACAV., ( I -  C$Cz)(XBz + CID1z)R 

Vfi, r =  rank[(Z- C$C2)Ll 
V =  VA(0 u) 

Compute the static H m  controller K by 

Note that the freedom in Corollary 1 is given explicitly in terms of the parameters Z, N, 

Applying Theorem 2 and Theorem 1 we can get the state feedback result as a special case. 
U and the Riccati solution X. 

Setting CZ = I we obtain the system 
i=  A x + B I w +  B ~ u  
z =  ClX + DL2U 
y =  x 

with R := DW12 > 0, for which we have the following immediate result. 
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Corollary 2 
There exists a state feedback u = Fx such that the above closed-loop system is internally 

stable and has H, norm from w to z smaller than 1 if and only if there exists an X > 0 such 
that 

- @ : = ( A  -B2R-'DizCi) 'X+X(A -B2R-'DizCi)+CI(Z-Di2R-1Di~)C1 
+X(BiBI-B2R-'Bi)X< 0 

or equivalently if and only if there exists a Y > 0 such that 

(A-BzR-'DfzCi)'  A-B2R-'DizCi 0 Y 0 
0 

+ (BIB: - y-' Bi -1 0) < o  

where SS' = Ci(1-  DizR-'Diz)Ci Z 0.  
Moreover, all possible state feedback gains are given by 

F =  -R-'(D12Cl + B i X )  + R-'/2M@1/2 

where M is an arbitrary matrix such that 11 M 11 < 1. 

4. CONCLUSIONS 

The existence of a static output feedback H, controller is equivalent to the existence of a 
positive solution to two quadratic matrix inequalities. All static output feedback H, controllers 
are parametrized explicitly (in closed form) in terms of this positive matrix and an additional 
free parameter. 

The approach suggested in this paper is based on simultaneous solutions of two quadratic 
matrix inequalities. The first and the second inequalities in Theorem 2 define convex sets with 
respect to X-' and X, respectively, but the set of all matrices X satisfying both inequalities 
simultaneously is not convex. Computational issues will be addressed for this nonconvex 
problem in subsequent papers. For convex problems (such as state feedback with convex sets 
of additional performance constraints specified by Y in Corollary 2), standard methods (e.g. 
References 11, 1 and 2 1) can be applied. 

APPENDIX A: A MATRIX LEMMA 

In this appendix we shall prove the following matrix result. 

Lemma I 

Let Td Rrx'" and 

be given matrices with Q c 0, and assume that Q z z  := QZZ + TT' c 0. Then there exists a matrix 
such that A R ( m - r )  Xi i i  

(9 Q + L L ' < O ,  L:= 
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and all such matrices A are given by 

A = Q12QT2TP-I + NP-‘” 

where N E  R ( n - r ) x ” ’  is any matrix such that 

1 1  S-1/2N11 < 1 

and 

P:= I -  T‘QF.T, S:= - Q I I  + Q12QG’Qiz 

Proof. Lemma 1 will be shown constructively. First note that 

Q + L L ’ =  (zi2+ I I + M ‘  TA,  Q‘2;2fT’)  < 0 

is equivalent to 

Q I I  + M’ - (Qlz + AT’)Qi?(Q12 + AT’)’ < 0 (21) 
since Q 2 2  < 0 by assumption. Noting that P defined by (20) is positive definite, we can complete the 
square with respect to A, then (21) becomes 

(A - Q&T?TP-’)P(A - QizQF2’TP-’)‘ < S (22) 
where S > 0 is defined in (20). Now, for any A satisfying (22), define 

N : =  (A - Q ~ Z Q T ~ T P - ’ ) P ’ / ~  (23) 

NN‘ < S (24) 

Then, from (22) N must satisfy 

or equivalently, (19). Finally, solving (23) for A yields (18). Existence of A can be verified by choosing 
13 N = 0. This completes the proof. 

1. 

2. 

3. 

4. 
5.  

6. 

7. 

8. 

9. 

10. 

11. 

12. 
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