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Abstract- In this paper, we define a new matrix corresponding to the trans- 
mission zeros of a linear time invariant system and design an LTR controller 
based on a functional observer having the same order as the number of 
transmission zeros. It is shown that under certain conditions ELTR can be 
achieved by a single functional observer eventhough C B  is not full rank. 

1 Introduction 
To design an LTR controller C(s) for the system E: { A ,  B ,  C }  having the 
transfer function G(s) ,  we first determine the desired target feedback loop 
with the transfer function 

LTFL(S)  = F(sI - A)-'B (1) 

The loss of robustness in observer-based systems is due to the path from 
the control signal U to the observer via the control distribution matrix B (or 
H in the reduced order observer case). Based on this observation Chen et al. 
[Z], [3] removed this path at the outset of controller design. This technique 
leads to a new compensator design philosophy which is outside the realm of 
observer theory and, hence, the separation principle. Consequently, one must 
prove that closed-loop stability and LTR are simultaneously achieved. Chen 
et al. [Z], [3] and Saberi et al. [lZ] established necessary and sufficient con- 
ditions for the existence of a recoverable target loop for observer-based and 
general compensator structures. These authors showed that, correspond- 
ing to full-order and reduced-order observers, one can design full-order and 
reduced-order compensators of orders n and n - p ;  respectively, to achieve 
either ELTR or ALTR. 

where F represents the state feedback gain. Next the LTR step is performed 
in which we attempt to recover the target design Over a range of frequencies 
by a dynamic Compensator c(5). Assuming that c ( S )  is implemented via 
an observer-based controller, the resulting loop transfer function C(s)G(s), 
in general, is not the same as the target loop transfer function LTFL(S) .  We 

In spite of the deep studies of the observer and LTR theories [ll], [lZ], 
there are still several unresolved issues, which should be investigated. This 
paper deals with one important issue, namely, LTR controllers with low 
dimensions. 

define the loop transfer recovery error as 

EL(s) = LTFL(S)  - C(s)G(s) 
2 Main Results 

(2) 

and say that exact loop transfer recovery a t  the input point (ELTRI) is 
achieved if the closed-loop system comprised of C(s) and G(s) is asymptot- 
ically stable and EL(s)  = 0. To define asymptotic LTR at the input point 
(ALTRI), we parametrize the family of controllers as C(s, q) ,  where q is a 
positive scalar, and say that ALTRI is achieved if the closed-loop system is 
asymptotically stable and C(s,q)G(s)  + LTFL(S) pointwise in s as q + 00, 

i.e., E ~ ( s , q )  + 0 pointwise in s as q -+ 00. 

As an equivalent measure of the quality of the recovery, we usually define 
the so-called recovery matrix M,(s), which can be related to EL(s) .  This 
matix is constructed according to the defined observer structure [8]. 

Consider the full-order P observer based controller having the transfer 
function 

where F and K are the regulator and observer gains, respectively. Then 
ELTRI is achieved if and only if EL(s)  = 0 or equivalently M I ( s )  = 0 where 

c ( ~ )  = ~ ( ~ 1  - A - KC - BF)-' K 

M ~ ( S )  = F (SI - A  - KC)-' B .  

(3) 

(4) 
In practice, the condition Ml(s) = 0 can not always be satisfied exactly. 
Consequently, the size of M I ( s )  should be made small in some sense. 

Let the controller be parametrized in terms of the observer gain by K(q) .  
Then to obtain ALTRI we seek a K ( q )  such that 

M,(s) = F ( 8 1  - A - K(q)C)-' B -+ 0 as q -+ CO. (5) 

The literature reports several methods for ELTR and ALTR [l], [la, 
[lZ]. These references also explore the trade-off between robust stability 
and performance, and the level of recovery which is related to the singular 
values of MI(&). Consequently, recent results [l3], [9], [lS], consider LTR 
design methods which use 31, control theory. However, a major concern in 
'H , /LTR design is the high dimensionality of the controller. It has been 
recognized that the order of such a controller can be higher than the system 
order, usually T = Zn, and one should perform frequency weighted model 
reduction to obtain an n-th order controller. 

Other approaches consider observer-based controllers having structural 
changes so that either ELTR or ALTR is achieved without large filter or 
regulator gains [14], [15]. However, the disadvantage of high order LTR 
controller occurs also when we use PI observers [15] to achieve time and 
frequency recovery. In this case, r = n + p ,  where p is the number of out- 
puts. Similarily, Okada el al. [lo] faced with several conflicting goals in their 
optimization techniaue and noticed that improving robust recovery level by 

The above discussion motivates one to look into the possibilities of designing 
low order LTR controllers. Unlike [Z], we remain within the framework of 
observer theory, and attempt to define alternative observers of order r < 
n - p  to achieve ELTR or ALTR. In particular, we concentrate on functional 
observers, which are capable of realizing this requirement and purposely 
define the order exactly the same as the number of transmission zeros. 

Let us assume that the stahilizible and detectable system 

x = A x + B u  
y = Cx C :  [ 

has an equal number of inputs and outputs (i.e., m = p ) .  Recall [ll] that a 
reduced-order functional observer-based controller for C has the form 

under the following constraints: 

Re[X(@)]  < 0 (8) 
T A - @ T  = GC (9) 

H = T B  (10) 
M T + N C  = F (11) 

where z is an r vector and tu is an m vector, which estimates the control law 
U = F z .  Various methods exist in the literature to design minimal order 
functional observers [4], [SI, [5], [ll]. However, we should emphasize that the 
main idea here is not the minimal order, rather, to establish a relationship 
between functional observer of a particular order and the LTR theory. This 
order is dictated by the number of transmission zeros. 

Theorem 1: Let the system C be left invertible, minimum phase and 
have all of its infinite zeros of order one (Le., let C B  have full rank). 
Then the reduced.order functional observer-based controller CRFC achieves 
both asymptotic sta6ility of the closed-loop system and ELTRI if and only 
af M,(s) = M(sI - @)-'H = 0 or equivalently H = T B  = 0.  Further- 
more, CRPC achieves both asymptotic stability of the closed-loop system and 
ALTRI iff the system C is left invertible and minimum phase. 

The above exact recovery condition implies that the reduced-order func- 
tional observer-based controller transfer function 

- -  
C(s) = M ( s 1 -  @)-'G + N (12) using a precompensation or extended perfect model following methods leads 

to high order controllers. One immediate solution to this problem is to apply 
model reduction techniques. However, the degree of approximation manifest 
itself a degradation in the recovery performance. 

has r poles identical to LTR observer poles, which are the r transmission 
zeros of the system C. For reduced-order P observer-based controller C R P C ,  
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T = n - m, w becomes 6 ,  U = Fi and F in the constraint equation (11) is 
replaced by I .  Also, Comparing C R ~ C  with a full-order P observer-based 
controller C p c  yields i z ,  U = Fb,  A + ICC = @, -K = G, B = H ,  and 
T = I. Under the assumptions of the above theorem, it can be shown that 
ELTR with C p c  is possible if and only if F B  = 0. 

In this paper we concentrate on single-input single-output system and 
without loss of generality assume that (6) is in observable cannonical form 
i.e. 

A =  (I " '  0 '8: 1 ,  E =  [ :: 1 ,  C=[O 0 ... 0 1](13) 

Note that the system has the transfer function G(s)  = #, where n(s)  = 
bn-1sn-l t . . t bl s + bo and d(s)  = s" t an-ls"-l + . . . + a0 is the charac- 
teristic polynomial of A.  In this case, writing the T x n matrix T in terms of 
its columns T = [ t l  

0 0 . . .  0 -a0 bo 
1 0 ... 0 

. .  . .  
0 0 ... 1 -an-l bn-1 

t 2  . . . t n ]  and substituting { A , C , T }  in (9) yields 

t . - @ j - ' t I ,  3 -  f o r  j = ~ ,  ..., n (14) 

Thus T has the general form of 

and we make use of the following result [5], which has not been tied to LTR 
theory before. 

@I '  in (11) has 
full rank r + 1. Then (11) has a sohtzon for  the parr { M ,  N )  i f  and only zf 

Lemma 1: Suppose for some r and t l  the matnx [T' 

I'F' = 0 (17) 

where r as the ( n  - r - 1) x n matna defined b y  

0 0 0 1  r70 71 72 ... %-I 1 0 .. '  

0 0 I (18) 
0 70 71 " '  77-2 7,-1 1 . ' '  0 

r = l .  . .  . .  . . .  . .  
L 0 0 0 ". 70 71 7.2 " '  Yv-1 1 O J  

for r = 1,2, .  . . , n - 2, where ~ ( s )  = s' t 7r-1sr-1 + . . . + yl + yo i s  ihe 
Characteristic polynomial of @. Also, for r = 0 and r = n - 1 ihe matrix r 
becomes [In-l 

So, the search for an observer has been reduced to finding the pair { @ , t l }  
such that (11) has a solution for the pair { M ,  N } .  It turns out that the 
controllable pair 

01 and [O], respectively. 

guarantees the existence of the solution to (11). 

Now, we are taking an L T R  approach based on the above observer, which 
assumes r to be equal to the number of transmission zeros. The correspond- 
ing L T R  controller constructed by this observer is called an r-th order ap- 
proximate transmission zero L T R  controller. To achieve E L T R  when the 
system is minimum phase, 7;s are replaced by b;s and we call r the trans- 
mission zero matrix. The corresponding controller is called an r-th order 
exacf transmission zero L T R  confroller. 

The forgoing results leads us to the following theorems. 
Theorem 2: Assume that the single-input single-output system is con- 

trollable, observable and not necessarily minimum phase. Then there exists 
an r-th order approximate fransmission zero L T R  controller for  the system 
(6) with the control law U = Ft i f  and only if the following optimization 
problem 

M i n  11 M l ( s )  11 subject t o  rF' = 0 (20) 

has a stable solution y(s), where M I ( s )  = M ( s l  - @)-'H and 11 , 11 i s  Q 

suitable norm. 
In view of Theorem 1, it is easy to see that the objective function can be 

replaced by min 11 T B  11. 

Theorem 3 Assume that the single-input single-output system ( 6 )  is 
controllable, observable and minimum phase, and let r be the transmission 
zero malriz. Then t h e z  exists an r-th order exact transmission zero L T R  
controller, which achieves E L T R  if and only if rF' = 0 has a stable solution 
F .  

We developed two algorithms corresponding to the above theorems. The 
first algorithm assumes that the target feedback loop is prescribed in terms 
of the state feedback gain F, as it is usually assumed in the standard LTR 
theory. In this case, the functional observer poles are reflected in the matrix 
r and they will get close to the stable transmission zeros of the system such 
that I'F' = 0. Note that for nonminimum phase systems, the mirror image 
of nonminimum phase zeros should be encountered. We called this algorithm 
"approximate zero assignment LTR algorithm", which basically solves the 
optimization problem (20) or equivalently min 11 T B  11 subject to rF' = 0. 

The second algorithm considers the possibility of designing a functional 
observer to achieve ELTR by defining the matrix I' as the transmission zero 
matrix. In this case, one is seeking an F' E null(I') such that a satisfactory 
target feedback loop is realized. Note that the feedback gain, which satisfies 
(17) and guarantees the asymptotic stability of the closed-loop system, is 
constructed in a different fashion as compared to the first step of the con- 
ventional L Q G I L T R  approach. In L Q G I L T R  the designer is tweaking the 
quadratic weights to provide a satisfoctory target feedback loop. Here, one 
computes the singular value decomposition of transmission zero matrix and 
tweaks certain parameters such that the desired target feedback loop is re- 
alized. 

3 Examples 
The following two examples illustrate the interesting case of ELTR achiev- 
able by an r-th order functional observer. 

Example 1: Consider the following system 

with its associated transfer function G(s) = ,* which has a trans- 
mission zero at  -1. 

The transmission zero matrix is constructed as I' = [ 1 1 01 and the 
target feedback loop is realized by F = [ 1 

Note that the feedback gain satisfies the condition F B  = 0. However, 
since CB is not full rank, neither a full-order nor a reduced-order observer 
can achieve E L T R .  Using the procedure outlined in this paper, the first 
order observer with the following parameters achieves E L T R .  

-1 21. 

T = [ l  -1 11, @=-1, G=-2 ,  M = l ,  N = l  

The transfer function of this L T R  controller is C(s) = f$ + 1, which satis- 
fies G(s)C(s) = F ( s 1 -  A)- 'B;  and the closed loop system Gl(s) = 
is stable with characteristic polynomial At(s )  = s3 + 5s' + 7s + 7. 

Example 2: Consider the following unstable system 

, C=[O 0 0 0 11 
0 0 1 0 - 9  
0 0 0 1 - 5  

with its associated transfer function G(s)  = s 1 + 5 s 4 ~ ~ ~ ~ ~ ~ - 8 s - 1 0  which has 
two transmission zeros at  -1 and -2. 

The transmission zero matrix is constructed as 
2 3 1 0 0  

r = [ o  2 3 1 03 

and the target feedback loop is realized by 

F = [ -0.0716 0.0713 -0.0706 0.0693 -6.OOOll 

Note that the feedback gain satisfies the condition F B  = 0. However, since 
CB = 0, neither afull-order nor a reduced-order observer can achieve E L T R .  
Applying the proposed method, the pair { @ , t l }  i s  constructed as 
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and {T, G) are obtained by T = [I, 0 0’ O3 a4] t l  and G = - d ( 0 ) t l  
as 

1 0 -2 6 -14 
. = [ o  1 -3 7 - 1 5 ] 1  . = [ f 2 ]  

and M = [ -0.0716 0.07131, N = -5.9334. The transfer function of this 
LTR controller is 

-5.933s’ - 18.0860s - 12.4402 
s2 + 3s + 2 C(S)  = . 

which satisfies G(s)C(s) = F ( s I - A ) - ’ B  and the closed loop system Gt(s )  = 
G S  

I - o ~ ~ & s )  is stable. 

To conclude this section, we provide a third example to illustrate the 
recovery procedure for nonminimum phase systems. 

Example 3: Consider the system G(s )  = s3+1,9:;~faa+0,2 which has a 
transmission zero at 0.2. By applying the factored plant model approach we 
decompose the plant G(s) into all-pass and minimum phase factors G,, = 
s-0 .2  - and G,, = a9+1,9:;~&6-0,2 with the following state space realizations 

A,, = [-0.21, B,, = [-0.41, Cap = [l], Dap = [l] 

A , =  [; :q, Bmp= [‘:I, c,,=[o o 11 
0 1 -1.9 

The target feedback loop is realized by F = [ 10 -2 1 101. The 
transmission zero matrix for minimum phase system is constructed as r = 
[0.2 01. Note that FmpBmp = 0 but CmpBmp is not full rank, so neither 
a full-order nor a reduced-order observer can achieve ELTR for the minimum 
phase part of the system. However, with a functional observer of order one 
we can achieve ELTR for G,. Using transmission zero matrix algorithm, 
we obtain 

1 

T =  [ l  -0.2 0.041, 0 = -0.2, G =  0.492, M = 10, N = 0.6 

The open loop transfer function of the compensated system has the transfer 
function [I - F,,(sI - A,p)-lB,]-’[M(sI- (P)-’G+ N]G(s) = C(s)G(s). 
Thus, the transfer function of the controller is C(s)  = “.“,“,‘,5:,““ and the 
closed loop system is stable with characteristic polynomial A,(s) = s4 + 
6 . 1 ~ ~  + 9.18s’ + 2.44s + 0.168. 

4 Conclusions 
This paper considered the problem of loop transfer recovery based on func- 
tional observer. It was shown that one can design LTR controller of order 
equal to the number of transmission zeros and achieve exact recovery. An 
interesting connection of this result and the parametrization reported in [18] 
is currently under investigation. This will be particularly important for the 
discrete-time systems. 
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