
Prousding8 of th 
Amorlun Control Confonnn 

SeaHle, Wuhln@on June 1985 

Sensitivity Synthesis for MIMO Systems: A Multi 
Objective Nm Approach' 

Jakob Stoustrup2 

Abs t r ac t  

A series of multi objective 31, design problems are con- 
sidered in this paper. The problems are formulated 
as a number of coupled '?fm design problems. These 
31, problems can be formulated as sensitivity prob- 
lems, complementary sensitivity problems, or control 
sensitivity problems for every output (or input) in the 
system. It turns out that these multi objective E ,  de- 
sign problems, based on a number of different types of 
sensitivity problems, can be exactly decoupled into k 
31, sensitivity problems for stable systems, where k is 
the number of outputs (for unstable systems, indepen- 
dent stabilization is required). 

1. Introduct ion 

The area of robust control has received tremendous at- 
tention in the control literature recently. Especially, 
31, theory has been in the focus since its breakthroughs 
during the 1980's. 
In the main, 31, control is motivated by the following 
two applications. First, if the modeling errors are as- 
sumed to be bounded in 31, norm by a known bound, 
bounding a transfer function determined by the plant 
and the controller in 31, norm guarantees robust sta- 
bility. Second, formulating optimality conditions as fre- 
quency domain bounds for a number of transfer func- 
tions, 31, theory can be applied as a loopshaping tool. 
In some cases, robust stability suffices, but in most ap- 
plications it is required to satisfy some memure of op- 
timality, and hence some kind of loopshaping technique 
has to be employed. 
In the mainstream literature, it is suggested to use 31, 
theory for such purposes by stacking control objectives 
as, e.g., in the so called mixed sensitivity approach, 
where a design criterion of the form 

is considered, where S ( . )  and T( . )  are the closed loop 
serisitivity and complementary sensitivity, and Ws (.) 
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and WT (.) are appropriate weightings. The motivation 
for the mixed sensitivity approach is that a controller 
satisfying (1) also satisfy that each entry of the matrices 
Ws(.)S( . )  and WT(.)T( . )  is bounded by y as well, which 
is usually the original goal. 
The problem, however, which we shall address in this 
paper, is that an approach based on a criterion like (1) 
can be rather conservative since all possible cross- 
couplings are considered, which might not be motivated 
from physics. In effect it might not be possible to  meet 
the performance specifications, although an admissible 
controller does exist, which bounds sufficiently each in- 
dividual sensitivity. 
In this paper we shall address design problems, which 
are based on criteria for individual entries in sensitivity 
functions, rather than criteria which equalize all direc- 
tions. 

2. Multiobjective Sensit ivity Control 

In the following we shall study a multi output sensi- 
tivity problem formulated as a number of coupled 3-1, 
problems. The approach suggested can be applied to a 
huge number of variations on the multi output sensitiv- 
ity problem, the complementarity sensitivity problem, 
and the control sensitivity problem, but first we shall 
restrict attention to these three problems. 
Throughout the sequel we shall consider a finite dimen- 
sional, linear, time invariant system with a state space 
realization of the form 

( 2 )  
2 = As + Bu 
y = Cx + Du 

and with transfer function G(.). We shall assume the 
plant to be square, with k inputs and k outputs. 
For such a system, the multi objective sensitivity 
problem, the multi objective complementary sensitivity 
problem, and the control sensitivity problem is depicted 
in Figure 1, Figure 2 ,  and Figure 3, respectively. 
The block diagrams in Figure 1, 2 ,  and 3 can all be 
described by the relations 
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Figure 1: Multi Objective Sensitivity Problem 

Figure 2: Multi Objective Complementary Sensitivity 
Problem 

( ) for Figure 1 

O G  ( I ) for Figure 2 

( A ) for Figure 3 

Writing the transfer function from w to  z as a linear 
fractional transformation in K we get 

T,, =: ( ::: I; \j: :\: 1 
tkl tk2 " '  S k k  

= 

= {  K ( I  - GK)-l  

G,, + GzuK( I  - GyuK)-lGyw 

I + G K ( I  - GK)-l  
GK( I  - GK)-l  

for Figure 1 
for Figure 2 
for Figure 3 

where the functions s,i, i = 1 . . . k ,  are the output sensi- 
tivities (Fig. 1), complementary sensitivities (Fig. 2), or 
control sensitivities (Fig. 3 ) ,  respectively. The functions 
t . .  23 i = 1 . .  . k, j = 1. .  . k ,  i # j ,  are crossover terms 

Figure 3: Multi Objective Control Sensitivity Problem 

which indicate how much the ith disturbance influences 
the jth output. 
Loopshaping just one of the sensitivities si i  by speci- 
fying (the inverse of) an upper bound for the modulus 
of sii can be formulated as a standard Rm problem as 
follows. 

Problem 1 The ith SISO problem for anv of the con- 
figurations in Figure 1, Figure 2, or Figure 3 is said 
to be solvable if and only i f  there exists a controller K 
which internally stabilizes the plant and such that 

IlWisiiII, < 1 

where sii for Figure 1, 2 and 3 are given by 

1 + gi(.)K(.)(I  - G(.)K(.))- 'ei  
gi( .)K(.)(I  - G(.)K(.))-lei  

e:Il( .)  ( I  - G ( - )  K (.))-l  ei 

ei is the (constant) vector 

and g;(s) is the row of transfer functions from U to zi, 
or  equivalently, if there exists an internally stabilizing 
controller K for the system 

for Figure I or 
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for Figure 2 or 

for  Fagure 3 such that when applyang the control law 
U = Ky, the resiiltang X, norm f r o m  w to z as less 
than 1. Here, W, as assumed to have the followang state 
space realzxataon: 

t = Aw,t + Bw,u, 
yz = c w , t  + DW,% 

In the sequel, we shall give a number of decoupling re- 
sults for the above multi objective x, problems. First 
we shall give the results for a stable plant, which is ex- 
tremely simple. 

Theorem 1 Consider the system (2). Assume that A 
is a stability matrix. Then, the following two statements 
are equivalent 

1. There exists a n  internally stabilizing controller K 
such that for  each sii, 

2. For each s,, there exists an  internally stabilizing 
controller K such that 

Remark 1 The significance of Theorem 1 is that just 
as much can be achieved by a single controller which 
controls all the s,,'s, as if the controller just had to 
control one of the s,,'s. In fact, as shall be evident from 
the proof below, it is possible to design such a multi 
objective Xm controller, by designing an 'U, controller 
for each s,,. 

Proof. Let the plant G be row partitioned as 

G I = (  g; g; . . '  g(, ) 

Since G is stable, the YJBK-parametrization of all sta- 
bilizing controllers [YJB71] is simply given by 

K = Q ( I  + GQ)-l, Q E RX, ( 3 )  

where Q is given by 

Q = K ( I  - GK)-' 

the transfer function from w to z becomes 

I + GQ for Figure 1 
GQ for Figure 2 

for Figure 3 
T z u  = 

where Q has the following column partitioning 

Q =  ( 41 q2 q k  ) 
Now, the crucial observation is that since 

1 + g2q2 for Figure 1 

e',q2 for Figure 3 
for Figure 2 (4) 

each si, depend only on qi. Since the qi's are free stable 
parameters, the optimization of the s;i's can be done 
completely independently, where after K is determined 
by ( 3 ) .  From this simple observation the claim becomes 
obvious. 0 

An important observation, which can be made from the 
proof of Theorem 1, is that sensitivities, complemen- 
tary sensitivities, and control sensitivities can be mixed 
arbitrarily. Pairs of corresponding w,'s and 2,'s can be 
chosen for Ym specifications from each of the above con- 
figurations in such a way that no pairs with the same 
numbering are chosen from any configuration. 
For a stable plant, it is trivial that selecting II = 0 sat- 
isfies the problems in Figs. 2&3. Hence, the correspond- 
ing optimization problems make sense only in combina- 
tions with sensitivity specifications following Fig. 1. 
In the next section, we shall provide a more general re- 
sult, which incorporates all three types of specifications. 
From the proof of Theorem 1 it is apparent that an 
'fl, controller K which satisfy any of the above multi 
objective problems can be found by determining the qz's 
and then applying ( 3 ) .  Each of these IC transfer matrices 
(columns) can be found by solving a scalar standard 31, 
problem based on (4). For example for a sensitivity 
problem, each of the k associated standard problems 
based on (4) which in transfer function form is 

has the following standard state space formulations 
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3. Multi Objective Control with Simultaneous 
Specifications for every Transfer Function 

In the previous section, we were concerned with the 
problem of shaping just the diagonal entries in the (com- 
plementary/control) sensitivities. However, in a series 
of control problems, it is reasonable to include 

1. simultaineous specifications for sensitivities, com- 
plementary sensitivities, and control sensitivities 

2. specifications for both diagonal and off-diagonal 
terms 

In a disturbance rejection problem, for instance, consid- 
ering the diagonal terms only indicates that any of the 
disturbances i s  assumed to influence one output only (in 
open or closed loop). This is not very realistic in most 
cases, and hence we have to specify the off-diagonal 
terms as well, which can be interpreted as the influence 
on one output from an output disturbance on another. 
Moreover, if sensitivities are considered isolated, distur- 
bance rejection is achieved at the cost of robustness. 
The approach taken below will use a technique similar 
to mixed sensitivity 3t, design, where the design crite- 
ria are stacked. In similarity with mixed sensitivity we 
can avoid conservatism only by selecting weight matri- 
ces in a clever way. This conservatism, however, will be 
the only one introduced. 
Loopshaping one of the columns of T,, by specifying 
upper bounds for the modulus of its entries can be for- 
mulated as a standard X, problem as follows. 

Problem 2 The jth SIMO problem for the configura- 
tion in Fig. 1 is said to be solvable i f  and only i f  there 
exists a controller K which internally stabilizes the plant 
and such that 

IlWjII, = (5) 

where 

s i j ( . )  = e: ( I  + G(. )K( . ) ( I  - G ( . ) K ( . ) ) - ~ )  ej  

tij(.) = e:G(.)K(.)(I  - G(.)K(.))-lej  
c ; j ( . )  = eiK(.)(I  - G(.)K(*))- 'e j  

and gi(s) is the row of transfer functions from U to yi. 
W& (.), WZj (.), and W$ (.) are the weighting matrices 
for the i j  'th entry of the sensitivity, the complementary 
sensitivity, and the control sensitivity, respectively. 

Remark 2 The three problems discussed in Section 2 
can be obtained as special cases of Problem 2 by se- 
lecting the weights properly. For instance, by choosing 
W A ( . )  as weights for the sensitivities, W&(.) 0 ,  i # j ,  
and W&(.) WG(.) 0, the sensitivity problem from 
Section 2 is re-obtained. 

Remark 3 Note, that W$ = Wzj, i # j .  Hence, there 
As some redundancy in the setup, which should be re- 
moved in implementations. 

As a generalization of Theorem 1 the multi variable 
multi objective problem will be solved by solving a series 
of SIMO problems, as demonstrated by the following re- 
sult. 

Theorem 2 Consider the system (2). Assume that A 
is  a stability matrix. Then, the following two statements 
are equivalent 

There exists an internally stabilizing controller K 
such that 

IIWlllo0 < 1 > II";II, < 1 1 II%II, < 1 (6 )  

in the closed loop system simultaneously, 

Each of the m SIMO problems from Problem 2 is 
solvable independently. 

where W j  is defined in (5). 

Proof. Following the line of proof of Theorem 1. 0 

The main significance of Theorem 2 is described in 
terms of the ffollowing corollary. 

Corollary 3 Let K be given, satisfying (6). Then 

Remark 4 Corollary 3 shows that each transfer func- 
tion is optimized entrywise. This entrywke optimiza- 
tion is without introduction of conservatism, except 
that originating from stacking which can be avoided by 
cleverly, possibly iteratively, selecting the weights. 

Proof. The corollary is immediate from the theorem, 
upon noting that the Xm norm of a column of transfer 
functions beiing smaller than y implies that each of its 
entries is smaller than y. 0 

'The design is done by finding an appropriate q j  for each 
SIMO proble:m, and then combining them all by (3). 

4. Multi Objective Control of Unstable Plants 

In general, the multi objective control problem is much 
harder for an unstable plant than for a stable one. Pro- 
vided, however, that one output is available for sta- 
bilization only, the results from above can be applied 
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directly for unstable plants also. To exemplify the pro- 
cedure, let us consider a system described by 

(7 )  

where we apply the control law 

Now, we have the following straightforward result. 

Lemma 4 Consider the system (7). Assume that Ka 
stabilizes the plant, i.e., such that 

G = G1(I - K2G2)-l 

is  stable. Moreover, assume that &I E RU, satisfies 

Then one controller, satisfying 

is given b y  

K = ( Q1 ( I  - G1(I - K2G2)-IQ1)-l K2 ) 
Proof. The lemma follows by elementary algebra, and 
by applying Theorem 1. 0 

Obviously, the principle from Lemma 4 can be extended 
to any number of outputs or inputs, applying the results 
regarding stable systems. Although all results previ- 
ously given in the paper applies in this manner, we shall 
not give the results explcitly due to space limitations, 
since they are straightforward. It should be pointed out, 
however, that there is some restriction in the fact, that 
one of the outputs is used for stabilization only, and it 
is not trivial to pose any specifications simultaneously. 
In practice, it might not be reasonable to introduce an 
additional sensor or actuator just for this purpose. 

5 .  Conclusion 

A series of multi objective 7-1, design problems have 
been considered in this paper. It has been shown how 
it is possible to  exactly decouple a number of 'U, design 
problems based on weighted output sensitivity func- 
tions, complementary sensitivity functions, and control 
sensitivity functions. Further, the derived design ap- 
proach works equally well for continuous or discrete 
time systems and has also been extended to handle 
sampled-data systems, see [SN95]. At last, the multi 
objective 7-1, design approach has been applied for roll 
damping of a ship by rudder control, [SNB95], 
As shown in section 4, the derived design approach can 
also in some cases handle unstable systems. In this 
case we need to  use one or more outputs to stabilize 

the system. As a consequence of this, the number of 
allowable R, design requirements is reduced. 
Only sensitivity functions at the outputs have been con- 
sidered in this paper. However, by duality, all methods 
given can be used also for input sensitivities without 
any modifications. 
The coupled U, design problems need not be based on 
different types of weighted sensitivity functions only. I t  
is possible to make a minor generalization of the above 
R, approach to handle non sensitivity problems, e.g. 
to handle explicitly actuator and sensor dynamics. This 
induces, however, certain rank and minimum phase con- 
ditions on some of the transfer functions in the resulting 
four block problem. 
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