
0 

The Filtered 3c, State Feedback Problem' 

Jakob Stoustrup2 

Abstract  

The filtered U ,  state feedback problem is considered 
in this paper. It turns out that it is possible to solve 
the filtered U ,  state feedback problem by using a dy- 
namic controller, which only requires a solution of one 
algebraic Riccati equation. The controller is given in 
an explicit state space form. Moreover, the order of the 
controller is equal to the order of the weight function 
only for the 31, state feedback problem. 

1. Introduction 

It is a known fact that if we have full state information 
in an '?-l, standard problem, we only need to use a 
static state feedback controller for satisfying the X, 
norm condition, [DGKF89]. 
However, an important fact which is not always empha- 
sized is that although complete physical state informa- 
tion might be available, we might still have to introduce 
dynamics in the controller if we wish to incorporate dis- 
turbance models, noise models, or modeling errors. Also 
if the design criterion is a frequency weighted function 
of states and inputs, a dynamic controller is required. 
In the U ,  literature [DGKF89], the design of dynamic 
controllers requires two Riccati equations together with 
a coupling conditions, whereas the original unweighted 
31, state feedback problem only requires one Ric- 
cati equation. So including weight matrices in a pure 
31, state feedback design problem, which is normally 
needed, result directly in a more complicated controller 
design. Moreover, the order of controllers obtained in 
this fashion will be the sum of the order of the plant 
itself and the order of the weightings. This is not very 
tractable in view that the plant states are available al- 
ready. Hence, model order reduction, or special ob- 
server based controllers [SSC94] must be applied. The 
key result in this paper is to give a dynamic controller 
of low order in an explicit form, which involves solv- 
ing one Riccati equation only (and hence no coupling 
condition). 
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2. Problem Formulation 

Let us consider the following two continuous-time sys- 
tems described by: 

X = AX + Blw + B ~ u  

y = I x  
D12U (1) 

and 

(2) 
= Awxw f BwJ 
= Cwxw f DwJ 

W ( s )  : { X; 

where x E R", x ,  E Rnw, U E R P ,  w E R', J E Rq and 
z E R". Further, (A,&) is assumed to be stabilizable 
and (A ,  B2, C1, D12) is assumed to have no invariant 
zeros on the imaginary axis. 
The system G(s )  in (1) describes the real system to 
be controlled and W ( s )  in (2) is the associated weight 
matrix for the 73, design problem given by: 

Problem 1 Consider the system given in (1) and the 
weight function in (2). Let y > 0 be given. Design an 
internally stabilizing dynamic controller F ( s ) ,  if such 
ex&, such that 

II W(sP=l ( G ( s ) , F ( s ) )  llw< Y 
This problem can be solved by using standard ?tw tech- 
niques [DGKF89], which involve solving two Riccati 
equations together with a coupling condition. The or- 
der of such a controller will be that of the plant itself 
plus the order of the weighting matrix. 

3. Main Result 

The state space realization of the system in (1) together 
with the weight function in (2) is given by: 

h = Az + B1w + B2u 
2 = c,z + 
y = 623 

& ? U .  (3) 

where = ( 3i", ) and the six matrices are as follows: 

(4) 
At first, we need the following lemma: 
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Lemma 1 Assume that neither of the two systems in 
(1) and (2) have any invariant zeros on the imaginary 
axis, and D, has full column rank. Then also the sys- 
tem given in (3) has no invariant zeros on the imaginary 
axis. 

Piroof of Lemma 1. The proof follows directly by 
calculating the rank of the Rosenbrock matrix of the 
system (3). 0 

Based on this state space realization of the filtered 31, 
state feedback problem, we are now able to give the 
main result. 

Theorem 2 Consider the system in (3). Assume that 
0112 is injective. Then the following statements are 
equivalent: 

1. There exists a dynamic internally stabilizing con- 
troller F(s )  such that when applying the feedback 
law U = F(s )y ,  the resulting closed loop transfer 
function from w to z has an 31, norm smaller 
than y. 

2. There exist a positive semidefinite solution P to 
the algebraic Riccati equation: 

0 = ATP + P A  + y-2PB1BTP - 

Moreover, one such dynamic controller F ( s )  is 
then given by: 

where F = [ Fl F2 ] is given by: 

The proof of Theorem 2 is based upon the fact, that 
nothing more can be achieved for an 31, problem than 
what can be achieved by a static state feedback con- 
troliler using all (real or fictitious) states as stated in 
the following well known fact. 

Lemma 3 Assume that there exists an internally sta- 
bilizing control law U = K y  for the system 

X = AX + Blw + B ~ u  
z = ClX + D i 2 ~  (7) 
y = c z x  

making the closed loop 31, norm from w to z smaller 
than y. 
Then there exists a n  internally stabilizing static state 
feedback controller U = Fy = F x  for the system 

X = AX + B ~ w  + BZU 

y =  x 
z = ClX + D12u (8 )  

which makes the closed loop 3c, norm from w to z 
smaller than y. 

To establish the proof of Theorem 2 it can be verified 
that for the system (3) the reverse of Lemma 3 holds, 
i.e., that the existence of a static state feedback con- 
troller obtaining a certain 31, norm y implies the ex- 
istence of a dynamic measurement based controller ob- 
taining the same 31, norm. 

4. Conclusion 

A design method for a low order dynamic controller 
which satisfies the filtered 'Uw state feedback problem 
has been derived in this paper. Only one Riccati equa- 
tion is required for this controller design. Moreover, in 
Theorem 2 it was assumed that DwD12 has full column 
rank. Hence, if DwDla is singular, F can be found by 
means of singular 31, theory, see e.g. [Sto92]. The con- 
troller expression ( 5 )  derived above still holds for such 
F .  
The controller order is minimal in the sense that for 
near optimal solutions to a 31., problem of the type de- 
scribed in this paper with generic data, the number of 
states required in any strictly proper controller solving 
the problem will be no less than for the one given above. 
Obviously, however, introducing direct terms satisfying 
well-posedness might reduce the controller order some- 
what. Moreover, for design problems which are not near 
optimal, model reduction might be applied for the con- 
troller. 

References 
[DGKF89] J. Doyle, K. Glover, P. Khargonekar, and 
B.A. Francis. State-space solutions to standard 31.2 and 
31, control problems. IEEE Transactions on Automatic 
Control, AC-342331-847, 1989. 

[SSC94] A.A. Stoorvogel, A. Saberi, and B.M. Chen. A 
reduced order observer based controller design for 31,- 
optimization. IEEE Transactions on Automatic Con- 
trol, 39:355-360, 1994. 
[St0921 Anton Stoorvogel. The 31., Control Problem: 
A State Space Approach. Prentice Hall, 1992. 

4395 


