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Robust 7& Almost Disturbance Decoupling* 

J.L. Stoustrupt H. Niemannt A. Saberis 

Abstract 
The robust 3-1, almost disturbance decoupling prob- 
lem, i.e. an 3-1, almost disturbance decoupling prob- 
lem along with an additional 3-1, side constraint, is 
considered. Necessary and sufficient conditions for 
solvability of this problem are given in terms of solv- 
ability of an algebraic equation and an E ,  con- 
strained problem. Explicit controller design a l p  
rithms are derived, utilizing the necessary and suf- 
ficient conditions. 

1 Introduction 
One of the most well known control problems is the 
problem of disturbance decoupling or disturbance at- 
tenuation. In most cases, as e.g. in the case of an 
output disturbance, disturbances can not be exactly 
decoupled but only asymptotically or “almost”. The 
solution to almost disturbance decoupling problems 
lead to the design of high gain feedback control. How- 
ever, introducing large gains in a control loop poten- 
tially implies severe robustness problems, as they re- 
quire very good confidence in the model. 

Therefore there is a need for a consistent way to 
introduce a notion of robustness in solving almost 
disturbance decoupling problems. 

One possibility which we shall discuss in this paper 
is to introduce an ‘Hm constraint in the almost distur- 
bance decoupling problem taking care of the inhence 
of modeling errors. 

The above design problem cannot directly be 
solved by using a standard 3-1, technique. The de- 
sign problem turns out to be a multi objective design 
problem which cannot be handled by standard E- 
techniques without introducing conservatism. The 
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conservatism appears from the off diagonal elements 
in the design setup. Scaling of the external in- 
put and/or output signals cannot reduce this conser- 
vatism. Instead we introduce an ‘H, constraint in the 
almost disturbance decoupling problem. The design 
procedure for this design problem given in this paper 
is based on that we first parameterize all controllers 
which solve a disturbance decoupling problem. Based 
on this parameterization, the 31, constraint can then 
directly be formulated as a standard Xm design prob- 
lem. 

The rest of this paper is organized as follows. A 
problem formulation is given in Section 2. Section 3 
include the main result for the case where the system 
is open loop stable. The general case is described in 
Section 4 followed by a design procedure in section 5. 
An example is given in Section 6 and a conclusion in 
Section 7. 

2 Problem Formulation 
In Figure 1 a robust almost disturbance decoupling 
problem is depicted. 

Figure 1: A Robust Almost Disturbance Decoupling 
Problem 

The problem illustrated in Figure 1 is to find a 
sequence of controllers K, which make the Em norm 
of the transfer function from d to z tend to zero, 
while maintaining robust stability with respect to the 
uncertainty A. 
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To be more specific we introduce a state space 
model of the system shown in Figure 1 which has 
the form: 

X = AX + Blw + B2d + B ~ u  
z = C ~ X  + Diiw + D12d + Di3u 
p = CZX + Dzlw + Dzzd + D23u 
y = C3x + D3iw + D3zd + D33u 

(1) 
Then the robust almost disturbance decoupling 

problem is defined in the following way. 

Problem 1 Let a positive number y be given. The 
robust 'H, almost disturbance decoupling problem 
('H,/ADDP) is said to be solvable for the system (1) 
i f  there exists a sequence of internally stabilizing con- 
trollers I<, such that for any S > 0 there exists EO > 0 
such that the 'H, norms of the closed loop transfer 
functions from w to  p and from d to z are smaller 
than y and S, respectively, for all E < E O .  

In terms of the systems parameters, each controller 
in the sequence I<, , E < EO , has to satisfy 

(2) 
llsi + SzKe(1-  G33-K)-1S311w < Y 
llTi + Tz&(l-  G331i;)-1T311, < 6 

where 

Si 
S2 

= Cz(s1 - A)-lB1+ D21 

= Cz(s1 - A)-lB3 + 0 2 3  

S3 = C 3 ( ~ 1 -  A)-lB1+ D31 

Ti = Cl(s1- A)-lBz + 0 1 2  (3) 
T2 
T3 

= Cl(S1- A)-lB3 + 0 1 3  

= C 3 ( ~ 1 -  A)-lB2 + D32 

G33 = C 3 ( ~ 1 -  A)-lB3 + 0 3 3  

3 Main Results 
The results in this paper is based mainly on two re- 
sults. 

The first result from [Wi182, WW89] establishes 
equivalence between solvability of an 7-1, almost dis- 
turbance decoupling problem and the solvability of a 
certain rational matrix equation. 

Lemma 1 Assume that T I ,  T2, T3 E R'H,. The in- 
equality 

has a proper, stable, rational solution Q, for all S > 0 
zf a n d  only zf the equation 

llTi + TzQ~T311, < 

Ti + TzQT3 = 0 (4) 

has a stable, rational solution Q (not necessarily 
proper). 

In terms of disturbance decoupling this means that 
the almost disturbance decoupling problem is solv- 
able by a usual proper controller if and only if the 
disturbance decoupling problem can be solved exactly 
by allowing differentiating controllers. 

The second result to which we shall appeal is from 
[SchSO, SLS951 and establishes that suboptimal 'H, 
control problems can be solved by rational controllers 
if and only if they can be solved by proper rational 
controllers. 

Lemma 2 Assume that Tl,Tz,T3 E R'H,. Con- 
sider the suboptimal 'H, model matching problem 

llTi + TzQT311, < Y (5) 

Then there exists a stable, rational Q(s)  such that 
TI + TzQT3 E R'H, satisfying (5), if and only if 
there exists a proper stable rational Q(s) such that 
TI + TzQT3 E RX, satisfying (5). 

The following is the main result of the paper. 

Theorem 3 Consider the system (1) and assume 
that A is stable. Then the following two statements 
are equivalent 

1. 

2. 

There exists a sequence of controllers K,  solv- 
ing the robust 'H, almost disturbance decoupling 
problem 

There exists a stable, rational solution Q t o  the 
equation 

such that 

Ti + T2QT3 = 0 (6) 

( a )  SI + S2QS3 E R'H, 
(b)  llsi + SzQS311, 5 Y 

Proof. (1) e (2). Assume a stable, rational Q ( s )  
satisfies the conditions of Theorem 3(2). Now, using 
the YJBK-parameterization [YJB71] of all stabilizing 
controllers, from the proofs of Lemma 1 and Lemma 2 
it follows that the series of controllers given by 

KE(s) = Q E ( s )  (1 + G ~ ~ ( s ) Q E ( s ) ) - ~  where 

are (strictly) proper and solve the robust 'H, almost 
disturbance decoupling problem. 
(1) +- (2). The details of this part are omitted, but 
the main ideas are the following. Assume that there 
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exist such a sequence of controllers K,(sf .  Then it where the six transfer functions are given by: . .  
can be shown that there exists also a solution, i.e. a 
sequence &(s), with the additional property that T I  T 2  

= [ a  0 1  
AF -B3F 
0 AL 

0 
C2,F -D23F 

s1 s 2  I C 3  = I  53 0 

Q E ( s )  = &(s) (I - G 3 3 ( ~ ) 2 ~ ( ~ ) ) - ~  

tends to a (possibly) nonproper Q(s )  as E + 0 in 
the topology of pointwise convergence, where Q(s)  S = 
satisfies ( 6 ) .  Now, from r AF -B3F 

AL 
SI + S2QhS3 E RE, and IlS1+ SzQ,S3ll, < 7 = 1 c i , F  - 2 : F  

Theorem3(2a) and Theorem3(2b) follows immedi- 
ately because of the convergence, since otherwise for with 

1 - G ~ ~ ( ~ W O ) ~ ~ ( ~ U O ) ) - ~ ~ ~  > 7 

for E sufficiently small. U 

4 General Case 

B1 B3 1 
B1lL D21 0 2 3  O I 

Based on this transformed system, the unstable sit- 
uation can be dealt with in completely the same way 
as the stable situation. 

Until now, it has been assumed that A is stable. Bow- 
ever, if A is not stable, it is still possible to apply the 5 
X,/ADDP design approach. This can be done by 
using the Q-parameterization via an observer based In this section we shall describe controller design al- 
controller. Let's assume that ( A ,  B3) is stabilizable gorithms based On Theorem 3. In the most genera' 
(c3, A)  is detectable and the direct term D33 = o. case, the design algorithms are complicated optimiza- 

Further, let tion based procedures, but with some reasonable ad- 

based controller for the system (1) is given by: in fact, very simple. 
First of all, we shall describe the algorithm only 

for stable A .  For unstable A, one just substitutes 
the matrices from Section 4. Second, we assume ei- 
ther left invertibility of T!(s)  or (dually) right invert- 
ibility of T3(s). We shall give the algorithm in the 
left invertible case only. The right invertible case is 
straightforward from this. 

Algorithm 1 

Design Procedures 

and be selected such that A + B3F 
and A + Lc3  are stable. Then a stabilizing observer ditional assumptions, the design procedures become, 

(7) 

Based on this controller, all stabilizing controllers for 
the system is then given by Fi(J, Q )  where Q E RX, 
is free and 

(8)  Indata: The 7 transfer matrices in (3) and 7 

J =  [m] Outdata: A series of controllers ICE(s) 

1. Find all (including nonproper) stable rational so- 
With this parameterization of all stabilizing con- 

trollers for the system in (l), the design conditions 
lutions Q(s) to the equation 

given by (2) take then the following form: Tl(s) + TZ(S)Q(S)T3(s) = 0 

and parameterize &(s) as 

&(SI = Q O ( S )  + Q(s)L(s)  (9) 
llsi +%QEs3llw < 7 
[\pi + TzQET311, < 6 
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2. 

3. 

4. 

5. 

6. 

where &o(s) is an arbitrary stable solution, Q(s) 
is a free stable parameter, and L(s )  satisfies 
L(s )T3(s )  = 0. (This step involves solving lin- 
ear (polynomial) equations.) 

Choose a stable invertible minimum phase ma- 
trix R(s)  (not necessarily proper) such that 

3 3 ( 4  = R ( s ) L ( s ) S 3 ( s )  

is proper. (This step is trivial.) 

Determine a stable rational matrix Qo(s)  such 
that 

5 1  = s 1  + SZ&Os3 + sZQ033 

becomes proper. (This step involves solving lin- 
ear (polynomial) equations.) 

Determine a proper stable rational matrix Q, 
such that 

By the same reasoning, according to Theorem 3, 
Qo(s) as in Step 3 can be found. 

Now, since the 'H, problem in Step 4 involves only 
proper matrices, we know from [SchSO, SLS951 that 
existence of a stable rational solution is equivalent to 
existence of a proper stable rational solution. 

In Step 5 the number of poles a t  infinity which 
have to be approximated by large poles in the proper 
controllers are determined. (In an 'H, almost distur- 
bance decoupling problem, this approximation can be 
done basically in an arbitrary way.) 

Finally, applying the YJBK-parameterization, the 
controller given in Step 6 solves the robust 'H, al- 
most disturbance decoupling problem according to 
Theorem 3 (and its proof), since the matrix &(s) = 
Qo(s)+ (Qo(s )  + Qm(s)) L(s)  satisfies the necessary 
and sufficient conditions. 0 

llsi + SzQ,S,II 03 < Y 6 Example 
(This step involves solving two algebraic Riccati 
equations.) 

Determine that largest zero excess le of &o(s )  + 

We consider a system of the form 1 given by: 

0 
A = [ - !  -2 :] 

t&(s)L(s). (This step is trivial.) 0 -3 

where 

Proposition 4 Assume that A is stable, and that 
the system described b y  the quadruple of matrices 
( A ,  B3, C1,.&3) is left invertible. Then &(s )  com- 
puted from Algorithm 1 solves the robust 'H, almost 
disturbance decoupling problem. 

Proof. The parameterization in Step 1 follows from 
left invertibility of T2, since for the corresponding ho- 
mogenous equation: 

Tz(s)&(s)T3(~) = 0 =+- & ( ~ ) 5 7 3 ( ~ )  = 0 

Since R(s)  in Step 2 is invertible and minimum 
phase, we have 

1 {.!?I + SzQLS3 : Q is stable and rational 

= ( 3 1  + SzQ33 : Q is stable and rational 

The system is open loop stable, so there is no need 
for a preliminary stabilizing controller. The system 
has equally many outputs and actuators, but more 
sensors than disturbances. Hence, we can apply Al- 
gorithm l directly. 

1. One (nonproper) solution Qo(s) to  (6) is: 

- 2. s 4  - 17 9'-53 a'-71 s -33 
Q0(') = [ 6s3+43s2+94s+65 ] 

A left annihilator L(s)  for T3(s)  is given by: 
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2. By these choices of Qo(s) and L(s ) ,  the ma- 
trices 33 = L(s)S3(s) and SI = SI + SZQOS~ 
are already proper, so we might make the trivial 
choices R(s) = I ,  and 

3. Qo(s) = 0. 

4. The three matrices defining the 31, model 
matching problem are given by: 

I 8 s4 + 80 s3 + 266s' + 376 s + 194 
s l ( s )  = 6s4 + 55s3 + 1 8 0 ~ ~  + 253s + 130 

-4s' - 16s -  14 
s2(s) = s3 + 6 s2 + 11 s + 6 

-2 + 4 s + 9 
33(s) = 

3s' + 1lsS 10 
Note, that this is a singular 7f, problem, so we 
have to use singular methods such as described 
in [St0921 or, alternatively, cheap control meth- 
ods with the two Riccati equation approach to 
compute a controller. 

The function &(s)  contains a non-minimum 
phase zero. The corresponding interpolation 
constraint gives rise to a nonzero infimal 7 of 
1.4310. Since we are introducing large gains any- 
way, we might as well look for a near optimal 
solution, and hence, we choose 7 = 1.44. 

One possible suboptimal 7f, controller is: 

where 

33429.75792 ~1 = 314144.1466 
1205573.783 a3 = 2469599.975 
2888871.335 a5 = 1830627.131 
486496.3764 
22815.96423 bl  = 709703.1454 
6145793.974 63 = 23766988.0 
46269726.20 b5 = 44366787.72 
16667651.22 

5. The zero excess is 1. 

6. Computing K E ( s )  from: 

where 

& E ( s )  = - ES:l (Qo(s) + Q ~ ( s ) L ( s ) )  

for E = {O.l, 0.01,0.001,0.0001} results in the 
two sets of curves shown in Fig 2 and Fig 3. 

Figure 2: Closed loop transfer function from w to p 

Figure 3: Closed loop transfer function from d to z 
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7 Conclusions 

A robust X, almost disturbance decoupling prob- 
lem has been considered in this paper. Necessary 
and sufficient conditions for solvability of this prob- 
lem are given in terms of solvability af an algebraic 
equation and an 'Ha constrainted problem. Further, 
an explicit controller design algorithm is derived. The 
algorithm is based on solving linear matrix equations 
together with a standard 'Hm design problem. 

The design algorithm is based on that either T~(s) 
is left invertible or T ~ ( s )  is right invertible. This is 
equivalent to require that the number of actuatores 
must be greater than the number of outputs (i.e. dim. 
U > dim. z )  or that the number of measurements 
must be greater than the number of disturbance in- 
puts (i.e. dim. y > dim. tu) is satisfied. A more 
complicated design algorithm is needed if both T~(s) 
and T~(s) is not invertible. 
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