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Abstract

This paper applies the proportional-integral (PI) observer
in connection with LQG and LQG/LTR design for dis-
crete time systems. Both the prediction and the filtering
versions of the PI observer are considered. We show that
a PI observer makes it possible to obtain time recovery,
i.e., exact recovery for t → ∞, under mild conditions. It
is shown that LQG/LTR design is a special case of the
cheap estimation problem. An analysis of the cheap es-
timation problem is derived. Based on these results, a
systematic LTR design method for PI-observers, based
on an extension of the LQG/LTR method for full-order,
proportional (P) observers, is derived. Explicit expres-
sions for the recovery error, when exact recovery is not
achievable for all frequencies, are also given.

1 Introduction

Since the appearence of the papers by Doyle and Stein
[2], [3] dealing with loop transfer recovery (LTR), many
papers have been written on this topic for both contin-
uous and discrete time systems. The most notable ones
for continuous time systems are [1], [7], [8], [14], [9], [10].

Although there are certain similarities between the
LTR of continuous and discrete time systems, there ex-
ist also fundamental differences. Without going into the
details, it is well-known that an arbitrarily specified tar-
get loop transfer function is recoverable if the continuous
time system is minimum phase and left invertible. How-
ever, this is not true for discrete time systems as discussed
in [4], [5].

For discrete time systems there are two main types of
observers; namely, prediction and filtering (current type)
observers. They are used when computation time is ei-
ther significant or negligible, respectively. The status
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of the reported results in discrete time LTR indicates
that the recovery of any arbitrarily specified target loop
transfer function using filtering observer is possible for
the strictly proper square minimum phase systems hav-
ing only infinite zero of order one. On the other hand,
it is impossible to have either exact or asymptotic LTR
when the plant is nonminimum phase or prediction-type
observer is used with a free target design. The fundamen-
tal difficulties are due to the facts that sampling usually
introduces nonminimum phase zeros, that computation
time is sometimes not negligible, and that practical sys-
tems contain time delays, and they are often non-strictly
proper. Consequently, recent results [9], [15] were de-
voted to understand the behavior of LTR under these
conditions.

If the applied system is non-minimum phase, it is not
possible to achieve asymptotic recovery for a free target
design. However, it is possible to overcome these prob-
lems by including an integral term in the full-order ob-
server. By using this PI-observer in connection with LTR
design, it is possible to obtain time recovery, i.e. recovery
as t → ∞, without using high gains. The continuous time
case has been thoroughly investigated in [6], where it has
been shown that it is also possible to obtain time recov-
ery for non-minimim phase systems. In this paper we
show explicitly that it is also possible to obtain time re-
covery in the discrete time case by using a PI-observer for
both minimum phase as well as for non-minimum phase
systems.

An alternative way to obtain good recovery at low fre-
quencies, is to augment integrators to the plant before the
target design is performed [1, 14]. By doing this, the tar-
get design is changed such it is easy to recover the target
loop at low frequencies. However, this implies that in this
approach, the target loop is no longer entirely free, be-
cause an integral effect needs to be included in the target
loop. In contrast, when the PI-observer approach is used,
the integral effect is included in the observer. Therefore,
the target design is completely free.

The main goal of this paper is to give a complete de-
scription of discrete time PI-observers used in connection
with LTR design.



2 Discrete Time PI Observer

Consider a finite dimensional, linear, time-invariant dis-
crete system described by a minimal state-space realiza-
tion (A,B,C):

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where x ∈ Rn, u ∈ Rr, and y ∈ Rm with m ≥ r, n > m,
(A,B) stabilizable, (C,A) detectable and C,B full rank.

Let the plant be controlled by an observer-based con-
troller having the state feedback

u(t) = F ẑ(t) + r(t) = w(t) + r(t) (2)

where F is the state feedback gain, ẑ, the state estimate
and r(t) is external input. The states are estimated by
using a proportional-integral (PI) observer. Analogous
to the case of P-observers, it is possible to derive two
versions of the PI observer for discrete time systems: a
prediction PI observer and a filtering PI observer. The
discrete time, prediction PI observer is equivalent to the
continuous time version, [6]. Therefore, we can directly
formulate a prediction PI observer as follows:

ẑ(t+ 1) = Aẑ(t) +KP (Cẑ(t)− y(t)) +Bu(t) +Bv(t)
v(t+ 1) = v(t) +KI (Cẑ(t)− y(t))

(3)
where KP is the P observer gain and KI is the I observer
gain.

To derive a systematic design method, we let the
PI observer-based controller be represented by an aug-
mented state system given by

z(t+ 1) = Axz(t) +Kx (Cxz(t)− y(t)) +Bxu(t)
u(t) = Fxz(t)

(4)
where

Ax =

[
A B
0 I

]
, Bx =

[
B
0

]
,

Cx =
[
C 0

]
, Kx =

[
KP

KI

]
,

(5)

and
Fx =

[
F 0

]
. (6)

The feedback signal u(t) in a prediction observer is
based on measurements up to time t − 1; on the other
hand, in a filtering observer u(t) is based on measure-
ments up to time t. The time delay due to calculation of
the feedback signal u(t), therefore, must be negligible.

A filtering PI observer can be derived from the full-
order, filtering P observer by including an integral term.
The resulting state-space description is equivalent to (3);
however, the feedback signal is given by u(t) = FfAẑ(t)+
FfKP (Cẑ(t)− y(t)) where F = FfA (it is assumed that
A is invertible).

The compact form of the filtering PI observer-based
controller is equivalent to (4), (5) with the matrix Fx

given by
Fx =

[
Ff (A+KPC) 0

]
. (7)

2.1 LTR with P and PI Observers

To design a controller for the system (A,B,C) by the
LTR design methodology, we first determine a static
state feedback, the target design, which satisfies our de-
sign specifications. The design specifications, such as ro-
bust stability and nominal performance conditions, are
assumed to be reflected at the plant input point [13].
Based on the target (full-state feedback) design gain F

for the system, the target sensitivity function is given by

STFL(z) = (I − LTFL(z))
−1

. (8)

where LTFL(z) = F (zI − A)−1B represents the target
(full-state feedback) loop transfer function. Next the
LTR step is performed in which we attempt to recover
the target design over a range of frequencies by a dynamic
compensator C(z). This step gives a full-loop sensitivity
transfer function of the form

SI(z) = (I − C(z)G(z))
−1

(9)

where G(z) represents the plant transfer function.
Assuming that C(z) is implemented via an observer (or

Kalman filter) based controller, the resulting loop trans-
fer function C(z)G(z), in general, is not the same as the
target loop transfer function LTFL(z). In the LTR step
the required observer is designed so as to recover either
exactly (perfectly) or as good as possible the target loop
transfer function.
For a more careful analysis, we define the loop transfer

recovery error as

ES(z) = STFL(z)− SI(z) (10)

and say that exact loop transfer recovery at the input
point (ELTRI) is achieved if the closed-loop system com-
prised of C(z) and G(z) is asymptotically stable and
ES(z) = 0. It is here important to note that it is only
possible to design LTR controllers in discrete time which
result in exact recovery or non exact recovery. The ap-
proximate or asymptotic LTR, known for continuous time
does not exist in discrete time LTR design due to the fact
that poles are assigned in a compact set in discrete time
observers [5], [15].
Let the applied controller C(z) be a prediction or a

filtering PI observer-based controller as described above.
We then have the following result.

Lemma 2.1 Let the recovery matrix MI(z) be given by

MI(z) = Fx (zI −Ax −KxCx)
−1

Bx (11)

where Ax, Bx, Cx, and Kx are given by (5) and Fx by
(6) or (7). Then

ES(z) = −STFL(z)MI(z). (12)



Proof: The proof is analogous to the proof of the con-
tinuous time case, see e.g. [7], [6].

Based on the discrete time LTR formulation, we now
give necessary and sufficient conditions for both exact
and time recovery.

Lemma 2.2 Let the sensitivity recovery error be given
by (10). ELTRI is obtained if and only if one of the
following equivalent conditions holds:

ES(z) = 0, (13)

MI(z) = 0. (14)

Proof: By virtue of lemma 2.1 and similar steps as
applied for the proof of the continuous time case [7] the
above conditions follow immediately.

In some cases the step responce of the recovery error
ES tends to zero as t → ∞ which happens exactly when
limz→ES(z) = 0. We can then define time recovery for
discrete time PI observer-based systems as follows.

Definition 2.1 Let MI(z) be the recovery matrix. Time
recovery is obtained if and only if

MI(1) = 0. (15)

Analogous to the continuous time case, the condition
for achieving time recovery with a PI observer can now
be derived for the discrete time case. With respect to the
prediction PI observer we have the following result.

Theorem 2.1 Time recovery is obtained with a pre-
diction PI observer if and only if the largest invari-
ant subspace of the matrix (I − A − KPC)−1BKIC
contained in the controllable subspace of the pair(
(I −A−KPC)−1, (I −A−KPC)−1B

)
corresponding

to the eigenvalue z = 1 is itself contained in the unobserv-
able subspace of the pair

(
F, (I −A−KPC)−1BKIC

)
.

Proof: See [6].
In connection to Theorem 2.1, the following corollary

gives a simple matrix condition which can be checked to
determine whether or not time recovery is obtained. We
state this result without its straightforward, but lengthy
proof.

Corollary 2.1 Let the Jordan normal form of the matrix
(I −A−KPC)−1BKIC be given by

T−1
(
(I −A−KC)−1BKIC

)
T =

[
J0 0
0 J̄

]
(16)

where J0 contains all the Jordan blocks associated with
the eigenvalue z = 1 according to the partitionings

T =
[
T1 T2

]
, T−1 =

[
S1

S2

]
. (17)

Then time recovery is obtained if and only if

FT1

(
I, J0, . . . , J

n−1
0

)
S1 (I −A−KPC)

−1
B = 0.

With respect to the filtering PI observer, the only dif-
ference is that the target design gain F in Theorem 2.1
and Corollary 2.1 is replaced by Ff (A+KPC).
Again, the condition onKI for time recovery will gener-

ically be satisfied if KIC has full row rank. As in the
continuous time case, however, this condition is neither
necessary nor sufficient.

3 LQG/LTR Design of PI Observers

Derivation of an LQG/LTR design method for discrete
time systems parallels the derivation for continuous time
systems given in [6] with the exception that a design can
be obtained with zero weighting on the measurement sig-
nals, i.e., the cheap estimation in the discrete time case.
First, we need some preliminary results from LQG de-

sign.

3.1 LQG Design

Consider the extended state form of a PI observer-based
controller, given by (4). An LQG design for the system
(A,B,C) can be done as follows. Select weighting matri-
ces Γ and Σ which satisfy

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
=

[
L1

L2

] [
LT
1 LT

2

]
≥ 0(18)

Σ ≥ 0, (19)

respectively. Solve the algebraic Riccati equation

P = AxPAT
x −AxPCT

x

(
Σ+ CxPCT

x

)−1
CxPAT

x + Γ
(20)

where

P =

[
P11 P12

PT
12 P22

]
. (21)

Then compute Kx by

Kx = −AxPCT
x

(
Σ+ CxPCT

x

)−1
(22)

=

[
−AP11C

TD−1 −BPT
12C

TD−1

−PT
12C

TD−1

]
(23)

where D = Σ+CP11C
T. The I observer gain KI has full

rank if and only if CP12 has full rank. Rewriting the Ric-
cati equation (20) as four (effectively three) simultaneous
equations leads to

0 = −P11 +AP11A
T +BPT

12A
T +AP12B

T

+BP22B
T −AP11C

TD−1CP11A
T

−AP11C
TD−1CP12B

T −BPT
12C

TD−1CP11A
T

−BPT
12C

TD−1CP12B
T + Γ11, (24)

0 = −P12 +AP12 +BP22 −AP11C
TD−1CP12

−BPT
12C

TD−1CP12 + Γ12, (25)

0 = −PT
12C

TD−1CP12 + Γ22. (26)



From (26) we see that CP12 has full rank if and only if
Γ22 = L2L

T
2 is positive definite. Moreover, Γ22 is the only

submatrix of Γ which, via P12, influences KI . Therefore,
LQG design of a PI observer generically yields time re-
covery.

From Shaked, [12], we have the following result for the
cheap estimation case:

Lemma 3.1 Assume that the system (A,L,C) satisfies:

CAiL = 0, i = 1, ..., l − 2 (27)

det[CAl−1L] ̸= 0 (28)

The singular stationary Riccati equation (Σ = 0) for the
system (A,L,C) is given by:

P = APAT + Γ−APCT
(
CPCT

)−1
CPAT. (29)

With Γ = LLT the observer gain K is given by

K = −AlL̂(CAl−1L̂)−1 (30)

where the system (A, L̂, C) is minimum phase, (it is the
minimum phase projection of (A,L,C)). For minimum
phase systems L̂ = L.

Proof: This lemma has been proved in [12] for the case
when (A,L,C) is asymptotic stable and without poles
or zeros at origin. In [15] it has been shown how these
conditions can be removed in the dual case.

With this lemma, we have the observer gain given in
an explicit form in the cheap estimation case. Using this
observer gain in the recovery matrix for the full-order
prediction observer given by, [7]:

MI,PO(z) = F (zI −A−KpC)−1B (31)

we have the following result:

Theorem 3.1 Let the full-order prediction observer gain
K be given by (30). Then the recovery matrix MI,PO(z)
is given by:

MI,PO(z) = F (zI −A)−1[B − z−lAlL̂

×(C(zI −A)−1L̂)−1C(zI −A)−1B]
(32)

Proof: See [11].

3.2 LQG/LTR Design

LQG/LTR design of a full-order P observer can be done
by using Γ = BBT and Σ = 0, [5], [15]. Similarly if we
let Γ = BxB

T
x and Σ = 0 in the PI observer design, we

obtain via (20) through (23) the following solution for the
observer gain:

Kx =

[
−AB(CB)−1

0

]
(33)

with the assumption that the system (A,B,C) is min-
imum phase and CB has full rank. As in the contin-
uous time case, therefore, the integral effect of the PI
observer vanishes when using a traditional LQG/LTR de-
sign method. Now by using the result from section 3.2,
it is possible to derive an LQG/LTR design method for
PI-observers which will give time recovery. Let’s consider
the non minimum phase case. The minimum phase case
can be derived out from the non minimum phase case.

First, it is assumed that CB has maximal rank, which
result in the following optimal LQG/LTR gain for the
P-observer:

K = −AB̂(CB̂)−1 (34)

where (A, B̂, C) is the minimum phase image of (A,B,C).
An algorithm for calculating (A, B̂, C) can be found in
[15]. The connection between these two systems is:

G(z) = Gm(z)Ba(z) = C(zI −A)−1B̂Ba(z) (35)

where Ba is stable, has zeros coinciding with the non min-
imum phase zeros ofG(z), and satisfies Ba(z

−1)TBa(z) =
I. The transfer function Gm(z) is minimum phase and is
termed the minimum phase counterpart of G(z).

If CB does not have full rank and instead satisfies the
conditions given in Lemma 3.1, we obtain the expressions
for the recovery matrices given in Theorem 3.1:

Lemma 3.2 Let the system (A,B,C) be non-minimum
phase and let the optimal LQG/LTR gain be given by:

K = −AlB̂(CAl−1B̂)−1 (36)

Then the recovery matrices for the prediction and the fil-
tering observer are given by:

MI,PO(z) = F (zI −A)−1(B − z−lAlB̂Ba) (37)

MI,FO(z) = F (zI −A)−1(B − z1−lAl−1B̂Ba)(38)

Proof: Lemma 3.2 follows directly from Theorem 3.1
by using L̂ = B̂.

When the PI-observer is applied, we get L̂ directly from
the minimum phase condition on (Ax, L̂, Cx) as

L̂ =

[
B̂l

L2

]
. (39)

By using (39) in (30), the following PI-observer gain is
derived for the non-minimum phase case:

Kx = −Al
xL̂

(
CxA

l−1L̂
)−1

(40)

=

[
−AlB̂l −Al−1BL2 − ...−BL2

−L2

]
×(CAl−1B̂l)

−1. (41)

It is now reasonable to state the following result:



Theorem 3.2 The recovery matrix MI,P (z) for the pre-
diction PI-observer take the following form when the op-
timal LQG/LTR gain in (41) is used:

MI,P (z) = F (zI −A)−1[B − z−l(AlB̂l +Al−1BL2

+...+BL2 + (zI − I)−1BL2)(zI − I)

×(zI − I + L2)
−1Ba(z)] (42)

Moreover, the recovery matrix for the filtering PI-obser-
ver take the following form:

MI,F (z) = F (zI −A)−1[B − z1−l(Al−1B̂l

+Al−2BL2 + ...+BL2 + (zI − I)−1BL2)

×(zI − I)(zI − I + L2)
−1Ba(z)] (43)

Proof: See [11].

Lemma 3.3 Let the recovery matrices for the prediction
and the filtering PI-observer be given as in Theorem 3.2
where | I−L2 |< 1. Then for z = 1, the recovery matrices
satisfies

MI,P (1) = MI,F (1) = 0 (44)

Proof: Lemma 3.3 follows directly from Theorem 3.2
by setting z = 1.

4 Examples

An example is considered in this section. We will con-
sider a SISO system given by the following state space
realization:

A =

 1.1036 1 0
−0.4060 0 1
0.0498 0 0

 , B =

 0.0803
0.1544
0.0179


C =

[
1 0 0

]
, D = 0

(45)

The discrete time system is nonminimum phase with
one zero at z = −1.7989 and one at −0.1239. Note also
that CB ̸= 0. When the system is nonminimum phase,
exact recovery cannot be obtained with a free target de-
sign. As target design we use [9]:

F =
[
7.1222 7.5293 2.7373

]
(46)

Applying the optimal LQG/LTR gains for the four
types of observers considered in the above section result
in the recovery matrices and sensitivity functions shown
in Figs. 1 - 4. The PI-observers have been calculated for
different values of the gain L2. As expected, the filtering
observers are quite better than the equivalent predici-
tion versions. Furthermore, it turns out very clearly that

the PI-observers result in time recovery, i.e. the recovery
matrix has small gain at low frequencies. It is also im-
portant to point out that one can shape the gain of the
recovery matrix for the PI-observers at low frequencies
by the selection of L2.
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5 Conclusion

This paper presented two versions of the discrete time PI
observer, a prediction and a filtering PI-observer. Both
LQG and LQG/LTR design methods were derived for
each observer type with special attention to the time re-
covery effect of the PI observer. Necessary and sufficient
conditions for achieving LTR and time recovery in PI
observer-based systems are given.
Moreover, explicit expressions have been derived for

the recovery matrices for both the P and the PI-observer
in light of optimal LQG/LTR design. To this part, we
have given the general explicit solution of the singular
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discrete time Riccati equation. These explicit forms are
derived for both minimum phase as well as for non min-
imum phase systems. As a direct consequence of these
explicit forms for the recovery matrix, it turns out that it
is in general always possible to obtain time recovery when
PI-observers are applied. Furthermore, the LQG/LTR
design method does not have to be employed for achiev-
ing time recovery.
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