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Abstract

In this paper a new approach for design of µ-optimal
controllers is presented. The methodology, denoted µ-
K iteration, can be applied for complex as well as mixed
complex and real perturbation sets. It is thus more gen-
eral than the well-known D-K iteration procedure that
applies only for complex perturbation sets. The de-
sign methodology has been successfully applied to the
double integrator example in [9] and to a laboratory
centrifugal pump/induction motor configuration resem-
bling a small domestic water supply system.

1 Introduction

Design of controllers with guarantied closed loop sta-
bility and performance for uncertain plants has been
the focus of active research for almost 2 decades now.
Most of the research on robust control has focused on
H∞ like problems. However it turns out that many
practical problems do not readily fit the standard H∞
problem setup since the involved model uncertainty is
structured rather than unstructured. This causes any
H∞ controller design to be potentially conservative and
thus limits the obtainable performance of the closed
loop system. In [6] it is furthermore shown that es-
timated frequency domain model uncertainty ellipses
cannot be represented accurately using an unstructured
perturbation set.

Fortunately theory exists that non-conservatively han-
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dles these problems, namely the structural singular
value or µ theory. In many practical applications µ
theory is more appropriate for system analysis and con-
troller synthesis. µ theory has not been as widely recog-
nized as H∞ theory, probably due to the small amount
of literature on µ and to the computational difficul-
ties associated with µ. Recently however algorithms
for computing µ∗ have become commercially available
through the MatLab† µ-Analysis and Synthesis Tool-
box [1]. Furthermore controller synthesis for structured
complex perturbation sets can also be accomplished
with the aid of the toolbox.

Unfortunately many practical application problem calls
for the use of mixed real and complex perturbation sets.
E.g. analysis of plant parameter variations which is
an often encountered problem rely on the use of mixed
or even purely real perturbation sets. Until recently
controller synthesis under mixed perturbation sets was
an unsolved problem. A solution to this problem has
been given by Young [7, 8]. Unfortunately the synthesis
procedure proposed by Young is quite involved. Even
though it relies on the same principles it is certainly
more mathematically complex than the procedure used
for complex perturbation sets.

The main purpose of this paper is to present an al-
ternative µ synthesis procedure for mixed perturbation
sets. The presented approach is computationally much
simpler than the procedure proposed by Young. The
usefulness of the approach is illuminated by two exam-
ples. The rest of the paper is organized as follows. In
Section 2 a short introduction to the basics of µ theory
is given. In Section 3 existing approaches to µ con-
troller synthesis are discussed and in Section 4 the new
µ-K approach is presented. Section 5 is devoted to ex-
amples and finally a short discussion of the presented
results is given in Section 6.

∗More accurately upper and lower bounds on µ.
†MatLab is a registered trademark of The MathWorks, Inc.



2 Robust Stability and Performance

A general framework for robustness analysis of linear
systems is illustrated in Figure 1. Any linear intercon-
nection of control inputs u, measured outputs y, distur-
bances d′, controlled outputs (error signals) e′, pertur-
bations w = ∆z and a controller K can be expressed
within this framework. The robust control problem
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Figure 1: The general framework with emphasis on
analysis and synthesis.

can then be loosely formulated as to design a controller
K such that the perturbed closed loop system is stable
and such that the error signal e′ is kept “small” in the
presence of disturbances d′ and perturbations w.

Within the general framework analysis and synthesis
constitutes two special cases as illustrated in Figure 1.
Conventionally scalings and weights are absorbed into
the transfer function N in order to normalize d′, e′ and
∆ to norm 1. For robust analysis the transfer function
Fu from d′ to e′ may be partitioned as a linear fractional
transformation:

e′ = Fu(M,∆)d′

=
[
M22 +M21∆(I −M11∆)

−1
M12

]
d′ (1)

Here ∆ is a member of the bounded subset:

B∆ = {∆ ∈ ∆ |σ̄(∆) < 1} (2)

where σ̄ denotes largest singular value and ∆ is defined
by:

∆ =
{
diag

(
δr1Ir1 , · · · , δrmr

Irmr
, δc1Irmr+1 , · · · ,

δcmc
Irmr+mc

,∆1, · · · ,∆n

)
|δri ∈ R, δci ∈ C,

∆j ∈ Crmr+mc+j×rmr+mc+j
}

(3)

Define also the corresponding complex perturbation set

∆c as:

∆c =
{
diag

(
δc1Ir1 , · · · , δcmr+mc

Irmr+mc
,∆1, · · · ,∆n

)∣∣δci ∈ C,∆j ∈ Crmr+mc+j×rmr+mc+j
}

(4)

The positive real-valued function µ is then defined by:

µ∆(M)
△
=

1

min {σ̄(∆) : ∆ ∈ ∆,det(I −M∆) = 0}
(5)

unless no ∆ ∈ ∆ makes I−M∆ singular, in which case
µ∆(M) = 0.

Unfortunately Equation (5) is not suitable for comput-
ing µ since the implied optimization problem may have
multiple local maxima [2, 3]. However upper and lower
bounds for µmay be effectively computed for both com-
plex and mixed perturbations sets. Algorithms for com-
puting these bounds have been documented in several
papers, see e.g. [2, 10]. In this paper the algorithms pro-
vided in the MatLab µ-Analysis and Synthesis Tool-
box [1] were used for computing µ-bounds.

The following two Theorems may now be used for as-
sessing robust stability and robust performance [2, 5]:

Theorem 2.1: The controlled system is stable for all
∆ ∈ B∆ iff:

∥µ∆ (M11)∥∞ ≤ 1 (6)

where:

∥µ∆ (M11)∥∞
△
= sup

ω
µ (M11(jω)) (7)

Theorem 2.2: Let an H∞ performance specification
be given on the transfer function from d′ to e′ —
typically a weighted sensitivity specification — of
the form:

∥Fu(M,∆)∥∞ = sup
ω

σ̄ (Fu(M,∆)) < 1 (8)

Then Fu(M,∆) is stable and ∥Fu(M,∆)∥∞ <
1 ∀∆ ∈ B∆ iff ∥∥µ∆̃(M)

∥∥
∞ ≤ 1 (9)

where the perturbation set is augmented with a full
complex performance block:

∆̃ =
{
diag (∆,∆p)

∣∣∆ ∈ ∆,∆p ∈ Ck×k,

σ̄ (∆p) < 1} (10)

Theorem 2.2 is the real payoff for measuring perfor-
mance in terms of the ∞-norm and bounding model
uncertainty in the same manner. Using µ it is then
possible to test for both robust stability and robust per-
formance in a nonconservative manner. Indeed, if the
uncertainty is modeled exactly by ∆ — i.e., if all plants
in the norm-bounded set can really occur in practice,
then the µ condition for robust performance is necessary
and sufficient.



3 µ Design - The Existing Approach

For robust synthesis the transfer function Fl from
[w d′]T to [z e′]T may be partioned as the linear frac-
tional transformation:[

z
e′

]
= Fl(N,K)

[
w
d′

]
=

[
N11 +N12K (I −N22K)

−1
N21

] [ w
d′

]
(11)

Noticing that Fl(N,K) = M and using Theorem 2.2 a
stabilizing controller K achieves robust performance if
and only if for each frequency ω ∈ [0,∞], the structured
singular value satisfies:

µ∆̃ (Fl(N,K)(jω)) < 1 (12)

Consequently our control problem becomes one of syn-
thesizing a controller K that minimizes µ∆̃ (Fl(N,K))
across frequency:

inf
Ks(jω)

sup
ω

{
µ∆̃ (Fl(N(jω),K(jω)))

}
(13)

whereKs(s) denotes a stabilizing controllerK(s). Since
the above problem is not tractable (µ can not be directly
computed), one may pose a direct upper bound problem
instead:

inf
Ks(jω)

sup
ω

inf
D(ω)∈D,G(ω)∈G

inf
β(ω)∈R+

{β(ω) |Γ ≤ 1} (14)

where

Γ = σ̄

((
D(ω)Fl(N(jω),K(jω))D−1(ω)

β(ω)
− jG(ω)

)
·(

I +G2(ω)
)− 1

2

)
(15)

By the notation direct we emphasize that the problem
is posed directly in line with the way the upper bound
is computed. In fact for fixed K the problem of finding
D(ω), jG(ω) and β(ω) is just the mixed µ upper bound
problem. Having found these scalings for a set of fre-
quencies we may fit transfer function matrices D(s),
G(s) and β(s) to them in such a way that the inter-
connection is stable. For given D(s), G(s) and β(s)
the problem of finding the controller K(s) will be re-
duced to a standard H∞ problem. The general upper
bound problem is significantly reduced in complexity
for purely complex perturbation sets in which case the
problem can be stated as:

inf
Ks(jω)

sup
ω

inf
D(ω)∈D

{σ̄ (D(ω)·

Fl (N(jω),K(jω))D−1(ω)
)}

(16)

Here we may impose the extra constraint that D(s)
should be minimum phase (so that D−1(s) is stable too)

since any phase in D(jω) is absorbed into the complex
perturbations. It can be shown, see [7], that this ap-
plies for the diagonal elements of D(ω) in the general
case (14) also. However for any off-diagonal elements,
we must fit both in magnitude and phase. This applies
also for the off-diagonal elements of jG(ω). For the di-
agonal purely imaginary elements of jG(ω) we unfortu-
nately also must fit both in magnitude and phase since
the phase is not absorbed into the (real) perturbations.
We must consequently require the phase of the diagonal
elements of G(jω) to be 90◦ for all frequencies ω. The
fitting of these purely imaginary diagonal elements is
probably the Achilles’ heel of the general upper bound
problem. This can only be obtained using high order all
pass structures causing the controller order to explode.

The procedure of iteratively solving Equation (14) is
usually referred to as D-K iteration in the case of purely
complex perturbations and D,G-K iteration for mixed
perturbations.

4 µ Design - A New Approach

In this section a different approach denoted µ-K itera-
tion for mixed µ synthesis will be presented. The au-
thors acknowledge that the term µ-K iteration has been
used elsewhere [4] for different purposes. However it
applies well here and will be used throughout this pa-
per. Whereas the procedure by Young is a direct upper
bound minimization we instead propose to use an indi-
rect upper bound minimization. By indirect we mean
that an augmented system matrix P (s) is constructed
which does not directly reflect the structure of the µ
upper bound.

The main idea of the proposed µ-K iteration scheme is
to perform a series of scaled D-K iterations where the
difference between mixed and complex µ is taken into
account through an additional scaling matrix Γ(s). The
iteration is performed as follows:

Procedure 4.1 (µ-K Iteration)
1. Given the augmented system N(s), let γ0(s) = 1,
P0(s) = Γ0(s)N(s) where

Γ0(s) =

[
γ0(s)Inwd

0
0 Inu

]
. (17)

nwd = dim {[w; d′]} denotes the number of external in-
puts and nu = dim {u} denotes the number of controlled
inputs. Let i = 1.
2. Compute the optimal µ controller for the correspond-
ing complex problem using D-K-iteration:

Ki,j = inf
K stab.

sup
ω

{
σ̄
(
Fl(Di,j−1PiD

−1
i,j−1,K)

)}
(18)

D∗
i,j = inf

D∈D
σ̄
(
Fl(DND−1,Ki,j)

)
, ∀ω ≥ 0. (19)



Here Di,j(s) are stable minimum phase transfer func-
tion estimates of D∗

i,j(ω). The iteration is repeated un-
til Ki,j = Ki,j−1 = Ki, Di,j = Di,j−1 = Di and the
complex µ upper bound µ̄∆̃c

(Fl(N,Ki)) is flat across
frequency.
3. Compute the mixed µ upper bound µ̄∆̃ (Fl(N,Ki)) at
each frequency ω.
4. Choose some constant αi satisfying αi ∈ [0, 1] and
compute at each frequency ω the scalar

γ∗
i = (1 − αi)|γi−1| + αi

µ̄∆̃ (Fl(N,Ki))

µ̄∆̃c
(Fl(N,Ki))

(20)

Fit, in magnitude, a stable minimum phase SISO trans-
fer function γi(s) to γ∗

i (ω) across frequency ω.
5. Compute the optimal complex µ controller for the
system Pi(s) = Γi(s)N(s) using D-K-iteration as in 2.
6. Compute the mixed and corresponding com-
plex µ upper bounds µ̄∆̃ (Fl(N(s),Ki+1(s))) and
µ̄∆̃c

(Fl(N(s),Ki+1(s))) and check whether∥∥µ̄∆̃ (Fl(N(s),Ki+1(s)))
∥∥
∞ ≤∥∥µ̄∆̃c

(Fl(Γi(s)N(s),Ki+1(s)))
∥∥
∞ (21)

∥∥µ̄∆̃ (Fl(N(s),Ki+1(s)))
∥∥
∞ ≤∥∥µ̄∆̃ (Fl(N(s),Ki(s)))

∥∥
∞ (22)

If both Equation (21) and (22) are fulfilled, let i = i+1.
If any of the inequalities are not fulfilled, return to 4 and
reduce αi.
7. Repeat from 4 until no further reduction in∥∥µ̄∆̃ (Fl(N(s),Ki+1(s)))

∥∥
∞ can be achieved.

We now have the following lemma:

Lemma 4.1: The µ-K iteration procedure de-
scribed above is monotonically non-increasing
in ∥µ̄∆̃ (Fl (N(s),K(s))) ∥∞ given perfect realiza-
tions of the D(s) and γ(s) scalings.

Notice that Lemma 4.1 does not necessarily imply con-
vergence to a local minimum for µ̄∆̃ (Fl (N(s),K(s))).
However this is an inherent difficulty in complex D-K it-
eration also and the numerical evidence presented later
proves in favor of the algorithm.

Proof of Lemma 4.1 Given the complex µ opti-
mal controller Ki(s) and perfect realizations of the γ-
scalings it is clear from (21) that:∥∥µ̄∆̃ (Fl(N(s),Ki(s)))

∥∥
∞ ≤∥∥γi−1(s)µ̄∆̃c
(Fl(N(s),Ki(s)))

∥∥
∞ (23)

From (23) it can be shown that∥∥γi(s)µ̄∆̃c
(Fl(N(s),Ki+1(s)))

∥∥
∞ ≤∥∥γi−1(s)µ̄∆̃c

(Fl(N(s),Ki(s)))
∥∥
∞ (24)

Furthermore

αi → 0 ⇒
µ̄∆̃ (Fl(N,Ki+1)) → µ̄∆̃ (Fl(N,Ki))

µ̄∆̃c
(Fl(ΓiN,Ki+1)) → µ̄∆̃c

(Fl(Γi−1N,Ki))

(25)

Then due to continuity of mixed and complex µ in K(s)
there exists an αi ≥ 0 such that the following 2 inequal-
ities are both fulfilled∥∥µ̄∆̃ (Fl(N(s),Ki+1(s)))

∥∥
∞ ≤∥∥µ̄∆̃c

(Fl(Γi(s)N(s),Ki+1(s)))
∥∥
∞ (26)

∥∥µ̄∆̃ (Fl(N(jω),Ki+1(jω)))
∥∥
∞ ≤∥∥µ̄∆̃ (Fl(N(jω),Ki(jω)))

∥∥
∞ (27)

If αi > 0 can be chosen, the mixed µ upper bound
will be reduced during the i’th iteration. From (24) it
is seen that

∥∥µ̄∆̃c
(Fl(Γi(s)N(s),Ki+1(s)))

∥∥
∞ is mono-

tonically non-increasing. Furthermore when

|γi(jω)| →
µ̄∆̃ (Fl(N(jω),Ki(jω)))

µ̄∆̃c
(Fl(N(jω),Ki(jω)))

(28)

it is clear that

µ̄∆̃c
(Fl(Γi(jω)N(jω),Ki+1(jω))) →

µ̄∆̃ (Fl(N(jω),Ki+1(jω))) . (29)

Through the constraint (26) it is then assured that∥∥µ̄∆̃c
(Fl(Γi(s)N(s),Ki+1(s)))

∥∥
∞ does not decay below

the global (local) infimum for µ̄∆̃ (Fl(N(s),K(s))) in
which case the algorithm would not converge. Numeri-
cal experience has shown that the lengthy D-K iteration
in step 5 of µ-K iteration may be replaced by a single
H∞ optimization like in (18) and complex µ-analysis
like in (19) provided α is chosen properly.

The main advantage of µ-K iteration compared with
D,G-K iteration is that one need only fitting D(s) and
γ(s) in magnitude, whereas in D,G-K iteration you have
to fit jG both in magnitude and phase. Hence, like
in D-K iteration, the extra constraint may be imposed
that the transfer function estimates must be minimum
phase. Notice furthermore that the standard D-K iter-
ation for complex perturbations is just a special case of
the proposed scheme since then γ∗

i (ω) = 1, ∀ω, i ≥ 0.



10
−3

10
−2

10
−1

10
0

10
1

10
2

0

1

2

3

4

Frequency [rad/sec]

M
ag

ni
tu

de

No. 1

No. 2

No. 3

No. 9

Figure 2: Upper µ bound for step 1 (the optimal H∞
controller), 2, 3 and 9 in the µ-K iteration for the double
integrator example.

5 Two Illustrative Examples

In this section two design examples will be given. First
a comparison between D,G-K and µ-K iteration will
be given for the uncertain double integrator system in-
troduced in [9]. Secondly it will be shown how esti-
mated frequency domain uncertainty ellipses have been
expressed in the general µ-framework using a mixed per-
turbation set and how a optimal µ controller has been
designed using µ-K iteration.

5.1 The Double Integrator

The first example is a double integrator from the pa-
per [9] by Young and Åström. The plant is given by:

P (s) =
kp
s2

(30)

where the plant gain kp is assumed uncertain, but con-
fined to the interval:

0.1 ≤ kp ≤ 10 (31)

The plant is augmented with weighting matrices on
sensitivity and complementary sensitivity. Please con-
sult [9] for details. In [9] D,G-K iteration was performed
on the augmented plant. The reported result with a
9th order controller was a peak value of µ̄∆̃ (Fl(N,K))
equal to 1.25. µ-K iteration with α = 0.5 was per-
formed on the exact same system with the results given
in Table 1 and illustrated in Figure 2.

As seen in Table 1 an upper µ bound peak of 1.04 was
achieved for the full order (24 states) µ controller. It

Controller
∥∥µ̄∆̃ (Fl(N,K))

∥∥
∞

H∞ 3.67
1st µ 2.14
2nd µ 1.25
3rd µ 1.10
4th µ 1.08
5th µ 1.06
6th µ 1.05
7th µ 1.04
9th order reduced µ 1.05
9th order D,G-K [9] 1.25

Table 1: Upper bound on mixed µ for each step in the
µ-K iteration and for the D,G-K controller in [3].
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Figure 3: Upper µ bound for step 1 (the optimal H∞
controller), 2, 3 and 5 in the µ-K iteration for the pump
system example.

was possible to reduce the order of the controller to 9
with very little performance degradation, see Table 1.
Consequently the upper bound on µ was reduced with
more than 15% in comparison with the results presented
in [9]. Furthermore notice from Figure 2 that the mixed
µ upper bound is flattened completely out indicating
that we have reach a (local) minimum. For this partic-
ular example µ-K iteration consequently seems to per-
form better than D,G-K iteration. We believe that this
is probably due to difficulties in fitting the scalings ac-
curately.

5.2 Control of a Domestic Water Supply Unit

The µ-K iteration procedure has also been used in con-
trol of a laboratory centrifugal pump/induction motor
configuration resembling a small domestic water sup-
ply system. In this example the discrete time coun-
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Figure 4: Results from applying µ-K iteration on the
water supply system.

terpart of the µ-K iteration was used. Frequency do-
main uncertainty ellipses around a nominal Nyquist
curve were estimated using the stochastic embedding
approach. A mixed perturbation set was then used to
approximate the uncertainty ellipses, for details please
consult [6]. An upper bound on the closed loop sen-
sitivity was given as performance specification and the
µ-K synthesis procedure was used to find a controller
K. This time α could be chosen as one. This example
is documented in more details in [6]. In Figure 3 the
mixed µ upper bound for each iteration is displayed.
As seen, the algorithm again flattens out µ to achieve
a local minimum. The final controller had 52 states,
but was reduced to 6 states with virtually no increase
in ∥µ∥∞. The reduced order controller was then imple-
mented on the true system with the results illustrated
in Figure 4. In the upper plot the nominal sensitivity
(solid) with error bounds (dashed) is shown. The er-
ror bounds on the sensitivity were found by computing
the smallest distance from the open loop uncertainty
ellipses to the Nyquist point (-1,0). Also shown are the
performance specification (dashed-dotted) and discrete
sensitivity points (∗) measured on the system in closed
loop by applying pure sinusoids on the reference. No-
tice how smoothly the uncertain system stays below the
performance specification and how the sensitivity mea-
surements falls nicely within the estimated uncertainty
limits. In the lower plot the pressure response (solid) of
the closed loop system towards sudden changes in water
consumption (dashed) is shown.

6 Discussion

A new method for designing µ optimal controllers for
both complex and mixed perturbation sets was pro-
posed. The method denoted µ-K iteration has the ad-
vantage that it is computational much more simple than
the D,G-K iteration proposed by Young. Furthermore
it was shown that µ-K iteration for a given example pro-
duced superior results. We believe that this is due to
difficulties in D,G-K iteration when fitting pure imag-
inary scalings with stable transfer functions. This is
avoided in µ-K iteration where the necessary scalings
only have to be fitted in magnitude. Hence the addi-
tional constraint that the stable transfer function esti-
mates shall be minimum phase could be enforced.
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