
A MULTI OBJECTIVE H∞ SOLUTION TO THE

RUDDER ROLL DAMPING PROBLEM ∗

J. Stoustrup†, H.H. Niemann‡ and M. Blanke∗

†Mathematical Institute, Technical University of Denmark, DK-2800, Lyngby, Denmark,
E-mail: jakob@mat.dtu.dk
‡ Institute of Automation, Technical University of Denmark, DK-2800 Lyngby, Denmark,
E-mail: hhn@iau.dtu.dk
∗ Department of Control Engineering, Aalborg University, DK-9220 Aalborg Ø, Den-
mark, E-mail: blanke@control.auc.dk

Abstract. Roll damping and simultaneous course steering by rudder control is a
challenging problem where a key factor is roll damping performance in waves. Roll is a
decisive factor for the operation of ships, both due to comfort of crew and passengers
and due to requirements from cargo or on-board equipment. In the paper, roll damping
and steering performance requirements are described and the controller design problem is
formulated in an H∞ framework. It is shown how this design problem can be handled by
using a multi objective H∞ approach. The design results are compared with an existing
LQ design.
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1 INTRODUCTION

A ship’s rudder is primarily used to create torques
to turn the ship - alter its course - but, at the same
time, roll torques are created. This second effect
from the rudder can be utillized to obtain damp-
ing of roll motion simultaneously with control of
the ship course. When using the rudder for both
tasks, some physical obstacles need to be consid-
ered. When a ship goes into a turn it always obtains
a certain roll angle. If it is prevented to heel - the
naval expression for steady roll angle - turning of
the ship could not be obtained either. However, in
the initial phase of a turn, the force from the rud-
der makes the ship roll opposite to the static state
field. The nature of this problem is hence single
input-multi output and a non minimum phase re-
lation exists in the rudder to roll angle dynamics.
Performance requirements to the control system in-
cludes that damping of roll is effective in the fre-
quency range of natural and wave induced roll, but
the disturbance this makes to the ship heading must
be limited. For these reasons, roll damping by rud-
der control is not a straightforward control problem.
Several design issues have been solved, and Rudder
Roll Damping (RRD) systems have become increas-
ingly popular in recent years. Commercial reasons
include the cost-effectiveness of this approach com-
pared with fin stabilizer solutions and the possibility
of applying the RRD concept on existing vessels.
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RRD design issues have been discussed in a num-
ber of papers. The first experiments were reported
by Baitis et.al. Theoretic LQ results were derived
(van Amerongen et.al.). Systems were designed and
implemented (Blanke et.al. 1989, Källström and
Schultz), H∞ controllers were investigated (Katebi
et.al.), and robustness properties of LQ based RRD
were investigated (Blanke and Christensen).

Despite the progress, the effectiveness of RRD con-
trols has been debated. Some results from full scale
evaluation on vessels indicate very satisfactory re-
sults showing 50-70 % roll reduction Blanke et.al.
Others indicate much less effectiveness in certain
cases, and for some ships the physical properties
have been such that traditional RRD designs could
not be used at all. This has caused renewed re-
search interest where robustness considerations and
improvements in design methods are key issues.

In this paper we investigate the design of H∞ con-
trollers for the full single input-multi output RRD
control problem. It turns out that the two perfor-
mance specifications are related to two sensitivity
transfer functions. This together with the fact that
the model is marginal stable, make it possible to
apply a sensitivity multi objective H∞ design ap-
proach. A complete description of this design ap-
proach can be found in (Stoustrup and Niemann).
The properties of the design are illustrated with the-
oretical data for a multipurpose naval vessel and the
performance is compared with that of an existing LQ
design.



The rest of this paper is organized as follows. In
Section 2, the problem is formulated including a de-
scription of the performance specifications. Further,
the design problem is formulated in the H∞ frame-
work. The multi objective H∞ design approach is
shortly reviewed in Section 3 and the applied H∞

approach is given in Section 4. Section 5 include the
design results followed by a conclusion in section 6.

2 PROBLEM FORMULATION

The mathematical model for the part of the system
to be controlled is a 5th order state space equation
for xs(t) with waves considered as an output distur-
bance.

yship = Csxs + yw (2.1)

A linear model of the ship is given by, (Blanke et.al.,
Blanke and Christensen):

ẋs = Asxs + Bsus

ys = Csxs
(2.2)

or

Gs(s) =

(

As Bs

Cs 0

)

where the state vector is xs = [ v r Ψ p φ ]T

( sway vel., turn rate, heading, roll rate, roll angle).
The three matrices in (2.2) are given in Appendix
A.

2.1 Disturbance Modeling

Wave disturbances cannot be modeled as a state
space disturbance as forces - moments in (2.2). The
reason is that wave forces act over the entire hull and
the coefficients in a state space description would be
frequency dependent. Calculation of wave induced
motions is instead done as response functions from
strip theory, or they may be measured. The result
is that wave disturbances are characterized in a vec-
tor yw = [v, r,Ψ, p, φ]w. The relation between wave
height, ξw and hull motions in yw are complex. They
depend on wave length, λ, wave direction relative to
the ship, χ, and encounter frequency, ωe. To a first
order approximation, wave motions are linear, and
we can therefore obtain the motion of the hull as a
superposition of the wave induced motion and that
created by rudder activity.

The reduction ratio of a motion, i.e., the ratio be-
tween the uncontrolled and controlled response, is
a key indicator for control quality in waves. For
RRD, and the reduction function for roll damping
is the crucial factor. The mean square of each com-
ponent of the motion vector yship(t) is determined

by the powerspectrum of wave amplitude, Gζζ and
the wave response operator, WROyiζi

as

E
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y2
ship,i(t)

}
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Gζζ(ω)dω; i = 1, 2, ..., 5

(2.3)

The reduction ratio for each of the motions is

|Tii(ωe)| =

[

yship(ωe)

yw(ωe)

]

i

; i = 1, 2, ..., 5 (2.4)

Efficient roll damping is obtained when |T55(ωe)| is
well below 1 over the range of frequencies, 0.7 to 1.1
rad/sec, where natural roll and wave induced mo-
tions occur. Requirements to roll damping perfor-
mance are most convenient specified in terms of the
shape of the |T55(ωe)| function at different values of
ship speed. A maximum value of wave height needs
also to be specified to check the linearity range for
the rudder servo system.

Robust control is achieved if the required value
of |T55(ωe)| is met regardless of changes in ship
speed, loading conditions, hydrodynamic parame-
ters or other coefficients in the equations of motion.

The basic performance problem is therefore, by na-
ture, anH∞ problem. The wave motion is an output
disturbance and the roll reduction function is the
sensitivity function of the closed loop control prob-
lem. The inverse of the H∞ design weight function
are shown as the dotted lines in figures 3 - 4.

2.2 Steering Performance

While there is a quite concise performance require-
ment to roll damping, steering properties are more
vaguely expressed. There are two main requirements
to steering performance. One is that wave motions
in r and Ψ should not cause rudder fluctuation at
wave frequencies. The reason is that noticeable
propulsion losses occur if the rudder fluctuates too
heavily and the rudder servo mechanics gets worn. A
second is that the ship heading should be maintained
despite steady state or low frequency disturbances,
e.g., from wind. These performance requirements
can be expressed in an H∞ design weight function.
The inverse of the selected weight function is shown
as the dotted line in figure 3.

2.3 The H∞ Design Setup

For the design of the robust controller, the design
specifications for the roll angle and for the heading
are given above by four weight matrices Wrr, Wrh,
Whr, and Whh.

In terms of these weight matrices the design speci-
fications take the following form.



Problem 1: Consider the ship model (2.2). Let γ1

and γ2 be given positive numbers. Design, if pos-
sible, a controller such that the closed loop system
satisfies

∥

∥

∥

∥

WrrSrr

WhrThr

∥

∥

∥

∥

∞

< γ1,

∥

∥

∥

∥

WrhTrh

WhhShh

∥

∥

∥

∥

∞

< γ2(2.5)

where Srr and Shh are the output sensitivities for
the roll angle and the heading, respectively. Thr is
the transfer function from a disturbance placed at
the roll angle measurement to the heading, and Trh

is the transfer function from a disturbance placed at
the heading measurement to the roll angle.

All weight functions are described in state space
form:

Gw(s) =

(

Aw Bw

Cw Dw

)

(2.6)

In H∞ control usually the weightings are introduced
by lumping the physical model and the weights into
a new, fictitious system which takes the form of a
standard design problem. However, due to the fact,
that our problem is formulated as a multi objective
problem we shall instead need two such standard
problems: one for a roll angle disturbance and one
for a heading disturbance. Each system will take
the form

G(s) =





A B1 B2

C1 D11 D12

C2 D21 D22



 (2.7)

where the state vectors for the two systems are re-
spectively

x =































[

xs

xwrr

xwrh

]

for a roll angle dist.

[

xs

xwhr

xwhh

]

for a heading dist.

(2.8)

We shall not give the tedious details for the two sys-
tems which is straightforward to write down. They
can also be generated automatically by software

packages like Simulink in Matlab
TM.

However, that it should be noted that in either case,
the direct term D11 from w to z is not zero as re-
quired in the following H∞ controller design. This
is always the case when the design specification is
an output sensitivity function. The direct term can,
though, be removed very easily by using a loopshift-
ing method from (Stoorvogel). The loopshifted sys-

tem is given by:

Gls(s) =





Als Bls,1 Bls,2

Cls,1 0 Dls,12

Cls,2 Dls,21 0



 (2.9)

where the new matrices are given by:

Als = A− γ−1B1D
T
11C1

Bls,1 = −B1(I − γ−2DT
11D11)

−1/2

Bls,2 = B2 − γ−2B1D
T
11D12

Cls,1 = γ−1(I − γ−2D11D
T
11)

−1/2C1

Cls,2 = C2 − γ−2D21D
T
11C1

Dls,12 = γ−1(I − γ−2D11D
T
11)

−1/2D12

Dls,21 = D21(I − γ−2DT
11D11)

−1/2

where γ is the selected H∞ norm for the closed loop
system. The connection between the two systems
in (2.7) and (2.9) is given in the following lemma,
based on (Stoorvogel):

Lemma 1: Assume ‖D11‖∞ < γ. Let a trans-
fer function K of appropriate dimensions be given.
Then the following two statements are equivalent

1. K is an internally stabilizing controller for the
original system (2.7) which makes the closed
loop H∞ norm from w to z smaller than γ

2. K is an internally stabilizing controller for the
loopshifted system (2.9) which makes the closed
loop H∞ norm from w to z smaller than γ

3 MULTI OBJECTIVE SENSITIVITY CON-
TROL

In the following we shall study a multi output sen-
sitivity problem formulated as a number of cou-
pled H∞ problems. The approach suggested can
be applied to a huge number of variations on the
multi output sensitivity problem, the complemen-
tarity sensitivity problem, and the control sensitiv-
ity problem, but for brevity we shall restrict atten-
tion to the output sensitivity problem in this sec-
tion. A complete description of the multi objective
H∞ design approach can be found in (Stoustrup and
Niemann).

Throughout the sequel we shall consider a finite di-
mensional, linear, time invariant system with a state
space realization of the form

G(s) =

(

A B

C D

)

(3.10)

and with transfer function G(·). We shall assume
the plant to be square, with k inputs and outputs.
For such a system, the multi objective sensitivity
problem is depicted in Fig. 1.
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Fig. 1. Multi Objective Sensitivity Problem

The block diagram in Fig. 1 is described by the re-
lations

(
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y
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=
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)

u = Ky

with

w =
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...
wk









, u =
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u2

...
uk









,

z =









z1

z2

...
zk









, y =









y1

y2

...
yk









.

Writing the transfer function from w to z as a linear
fractional transformation in K we get

Tzw =:









s11 t12 · · · t1k

t21 s22 · · · t2k

...
...

. . .
...

tk1 tk2 · · · skk









= Gzw + GzuK(I −GyuK)−1Gyw

= I + GK(I −GK)−1

where the functions sii, i = 1 . . . k, are the output
sensitivities (Fig. 1). The functions tij , i = 1 . . . k,
j = 1 . . . k, i 6= j, are crossover terms which in-

dicate how much the ith disturbance influences the
jth output.

Loopshaping one of the columns of Tzw by specify-
ing upper bounds for the modulus of its entries can
formulated as a standard H∞ problem as follows.

Problem 2: The jth SIMO problem for the configu-
ration in Fig. 1 is said to be solvable if and only if

there exists a controller K which internally stabilizes
the plant and such that

∥
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where

sjj(·) = 1 + gj(·)K(·)(I −G(·)K(·))−1ej

tij(·) = gi(·)K(·)(I −G(·)K(·))−1ej , i 6= j

ej is the (constant) vector

ej =

















0
...

1 ← jth position
...
0

















and gi(s) is the row of transfer functions from u to
yi.

In the sequel, we shall make extensive use of the
following decoupling result for the above multi ob-
jective H∞ problem for a stable plant, which in fact
is extremely simple.

Theorem 1: Consider the system (3.10). Assume
that A is a stability matrix. Then, the following two
statements are equivalent

1. There exists an internally stabilizing controller
K such that
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in the closed loop system simultaneously,

2. Each of the m SIMO problems from Problem 2
is solvable independently.

Remark 1: The significance of Theorem 1 is that
just as much can be achieved by a single controller
which controls all the columns of Tzw simultane-
ously, as if the controller just had to control one



of them. In fact, as shall be evident from the proof
below, it is possible to design such a multi objective
H∞ controller, by designing an H∞ controller for
each of the SIMO problems from Problem 2.

Proof: Let the plant G be row partitioned as

G =









g1

g2

...
gk









Since G is stable, the YJBK-parametrization (Youla
- Jabr - Bongiorno - Kuc̆era) of all stabilizing con-
trollers is given by

K = Q(I + GQ)−1, Q ∈ RH∞ (3.11)

where Q is given by

Q = K(I −GK)−1

the transfer function from w to z becomes

Tzw = I + GQ

=









s11 t12 · · · t1k

t21 s22 · · · t2k

...
...

. . .
...

tk1 tk2 · · · skk









where sii = 1 + giqi, tij = gigj and Q has the fol-
lowing column partition

Q =
(

q1 q2 · · · qk

)

Now, the crucial observation is that since
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W1jg1

...
Wjjgj

...
Wmjgm















qj

(3.12)

the jth SIMO problem depend on qj only. Since
the qj ’s are free stable parameters, each optimiza-
tion can be done completely independently, where
after K is determined by (3.11). From this simple
observation the claim becomes trivial.

⊓⊔

From the proof of Theorem 1 it is apparent that an
H∞ controller K which satisfy the above multi ob-
jective problem can be found by determining the qj ’s

and then applying (3.11). Each of these k transfer
matrices (columns) can be found by solving a single
input standard H∞ problem based on (3.12). For
instance for the simple special case where the only
nonzero weightings are for the sensitivity functions,
each of the k associated standard problems based
on (3.12) which in transfer function form is

‖wj(1 + gjqj)‖∞ < 1

has the following standard state space formulations

wjsjj(s) =







A 0
0 Awj

0
Bwj

B
0

e′jC Cwj Dwj e′jD
0 Cwj Dwj 0







The multi objective H∞ approach applied on un-
stable systems is considered in (Stoustrup and Nie-
mann).

4 THE SINGULAR H∞ DESIGN APPROACH

In the previous section we derived a model of the
form

G(s) =





A B1 B2

C1 0 D12

C2 D21 0



 (4.13)

Unfortunately, the derived model does not satisfy
the standard assumptions (Doyle et.al.). One as-
sumption which is violated for the model obtained
in Section 2.3 in the approach of (Doyle et.al.) are
the regularity assumptions, i.e. that D12 and D21

must have full column and row ranks, respectively.
To overcome this problem we shall take off from the
approach of (Stoorvogel).

First, we need the following assumption:

Assumption 1: It is assumed that the systems
(A, B1, C2, D21) and (A, B2, C1, D12) have no
invariant zeros at the imaginary axis.

We have then the following result, (Stoorvogel):

Theorem 2: Consider the system in (4.13) satisfy-
ing Assumption 1. Let γ > 0 be given. Then, there
exist a FDLTI compensator u = Q(s)y(s) for which
the resulting closed loop system is internally stable,
and for which the transfer function from w to z has
an H∞ norm smaller than γ, if and only if there
exist positive semidefinite matrices P and Q such
that

1. Fγ(P ) :=

(

AP C′
P

CP DP

)

=:

(

C′
1P

D′
12P

)

(

C1P D12P

)

≥ 0



2. Gγ(Q) :=

(

AQ BQ

B′
Q DQ

)

=:

(

B1Q

D21Q

)

(

B′
1Q D′

21Q

)

≥ 0

3. rank
(

C1P D12P

)

=

rankR(s)

[

C1(sI − A)−1B2 + D12

]

4. rank

(

B1Q

D21Q

)

=

rankR(s)

[

C2(sI − A)−1B1 + D21

]

5. rank

(

A + γ−2B1B
′
1P − s0I B2

C1P D12P

)

= n+

rankR(s)

[

C1(sI − A)−1B2 + D12

]

, ∀s0 ∈ Cl
+

6. rank

(

A + γ−2QC′
1C1 − s0I B1Q

C2 D21Q

)

= n +

rankR(s)

[

C2(sI − A)−1B1 + D21

]

, ∀s0 ∈ Cl
+

7. ρ(PQ) < γ2

where

AP = A′P + PA + C′
1C1 + γ−2PB1B

′
1P

CP = PB2 + C′
1D12

DP = D′
12D12

AQ = AQ + QA′ + B1B
′
1 + γ−2QC′

1C1Q
BQ = QC′

2 + B1D
′
21

DQ = D21D
′
21

By the method in (Doyle et.al.) an explicit con-
troller formula can be given in terms of the two Ric-
cati solutions. This is not the case in our more gen-
eral setting where the Riccati equations are replaced
by quadratic matrix inequalities. These can after a
certain change of basis, however, be solved in terms
of two reduced order Riccati equations.

To compute a controller, we first take C1P and D12P

as given by Theorem 2(1), and B1Q and D21Q as
given by Theorem 2(2). Moreover we define the ma-
trices

APQ = T (A + QA′P + γ−2B1B′
1P + γ−2QC′

1C1)T
B2PQ = T (B2 + γ−2QC′

1D12)
C2PQ = (C2 + γ−2D21B′

1P )T
B1PQ = TB1Q

C1PQ = C1P T

T = (I − γ−2QP )−1/2

Now, one possible controller is given by the follow-
ing result (Stoorvogel):

Lemma 2: Let APQ, B2PQ and C2PQ be as above.
Let L be a state feedback, such that APQ + B2PQL
is stable, and such that:

‖(C2PQ + D12P )(sI − APQ −B2PQL)−1‖∞ <
γ/(3‖B1PQ‖)

Let M be an output injection, such that APQ +
MC2PQ is stable and further:

‖(sI −APQ −MC2PQ)−1(B1PQ + MD21Q)‖∞ <
min(γ/(3‖D12P L‖), ‖B1PQ‖/‖B2PQL‖)

Then the controller:

u = −L(sI − APQ −B2PQL−MC2PQ)−1My

makes the H∞ norm of the resulting closed loop
transfer function from w to z smaller than γ

In short, the above results demonstrates that for
a singular H∞ problem a controller can be found
by solving two reduced order Riccati equations, and
two disturbance decoupling problems, which for in-
stance can be solved by pole placement methods, as
was done in the design below.

5 DESIGN RESULTS

In both the LQ design and the H∞ design, we have
used gain scheduling, so the controller is optimal
with respect to the ship speed.

5.1 An LQ Design

The results of a nominal design for a naval multi-
role vessel Blanke and Christensen are here used for
comparing an LQ design, with the H∞ approach de-
scribed here. The controller is not a genuine LQ de-
sign, because sway velocity could not be estimated
with sufficient accuracy. Instead, pole placement
similar to that of LQ design was obtained using
available state estimates. The details of the design
can be found in Blanke et.al.

The LQ controller uses feedback from filtered turn
rate and heading, i.e. the states r and Ψ not dis-
turbed by wave motion, and measured roll rate and
roll angle, i.e., p and Φ including wave motion. The
LQ controller was speed scaled to obtain closed loop
behaviour similar to that of the open loop system.
Details can be found in the reference.

The LQ controller was:

δsteering = (0,−lrU,−lΨ, 0, 0); (5.14)

δroll = (0, 0, 0,−lpU2,−lΦU2) (5.15)

where U = Udesign/Uactual.

In a seaway, waves will generate roll motion, and as-
sessment of total performance will require the wave
response operators for both p and Φ, and integra-
tion of the wave spectrum times the response oper-
ator and output disturbance sensitivity function of
the closed loop RRD control. This requires fairly
complex information about the ship and seaway. A
simpler, yet sufficient performance indicator for our
purpose is the |rr5| function that shows roll damp-
ing over frequency. The performance of the LQ con-
troller is illustrated in figure 2. Roll damping is
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Fig. 2. LQ like design - Reduction ratio |Tφw| and
controller gain characteristics.

0.5 as required around 0.9 rad/sec. in the nomi-
nal design, but the interval where this is obtained
is narrow. It is noted that (5.14) and (5.15) are
approximations to a controller, used on a series of
ships. The low frequency amplification does not ex-
ist in the real design. The actual design has also
integral heading control.

5.2 The H∞ Controller

Based on the formulated standard problem in Sec-
tion 2.3 and the H∞ results given in Section 4, we
are able to design an internally stabilizing H∞ con-
troller which makes the H∞ norm of the closed loop
transfer function from w to z smaller than γ, where
γ is a sufficiently large, positive number. In the fol-
lowing, γ has been selected to 1.1 times the optimal
value of γ.

In figures 3-5, the result of the H∞ design are shown
for the ship speed u = 9.0 m/s. The solid lines in
the figures are the closed-loop amplitudes and the
dotted lines are the inverse of the respective weight
function multiplied with γ. For satisfying the de-
sign specifications, the inverse of the weight function
must be over the closed-loop transfer functions for
all frequencies.

It can be seen directly from the figures, that the
hard bound to satisfy is the specification for the roll
angle. The reason is that the transfer function from
control input to roll angle has a nonminimum phase
zero at z = 0.915. Hence, the corresponding output
sensitivity S(·) will satisfy a nontrivial Bode integral
sensitivity bound. To obtain a reasonable design,
the weight matrices has to satisfy the Bode bound
themselves. In respect to space limitations we can-
not survey the systematic procedures to take these
interpolation constraints into account. Figures 3 to
5 show the results of a design with the following
design constraints:

• Roll disturbance sensitivity is below 0.5 in a
band around the natural roll frequency.

• Heading disturbance sensitivity is below 1.0 at
all frequencies and goes towards zero below 0.1
rad/sec.

• Roll angle to heading crossover sensitivity is be-
low 1.1 at all frequencies.

• Heading disturbance to roll crossover sensitivity
is lower than one at all frequencies.

Roll Damping

The plots show that the required roll damping can
be achieved over a frequency range which is some-
what broader than that obtained with the state feed-
back design. The controller gain used to obtain
this is about 8 deg rudder/deg roll angle around
0.8 rad/sec whereas the state feedback design uses
a gain of 2.7. The roll error gain is well below 1.0
at low frequencies. This is desired and necessary
to obtain adequate turning capabilities for a ves-
sel. The high frequency gain of the H∞ controller
increase more than 40 dB per decade, whereas the
rate feedback term in the state feedback counterpart
causes it to increase by 20 dB per decade. Such high
frequency behavior is undesired above the primary
wave frequency region, and in practical systems, the
controller gain would need to be shaped and ap-
proach zero at high frequencies. Shaping can be im-
plemented such that there are no significant penalty
in roll damping performance.

Heading Control

Heading control is quite different for the two con-
trollers. The state feedback controller of equation
(5.14) has turn rate and heading angle feedback. In
the actual implementation Blanke et.al., state feed-
back from turn rate and heading angle are taken
from a Kalman filter that effectively suppress ev-
ery wave induced motion from the feedback signals.
The reason is that rudder activity due to wave mo-
tion in the lateral plane is undesired. Fluctuating
rudder motion at these frequencies have literally no
effect on the ship’s heading, and significant propul-
sion losses may be generated.

Disregarding the filtering issue, the gain for the
H∞ controller is in the same order of magnitude
as with the state feedback controller around natu-
ral roll frequency. At low frequencies, integral ac-
tion in the H∞ is achieved by shaping the heading
weighting function. This is needed because wind
load would otherwise cause large deviations in the
ship’s heading. Integral action is thus obtained by
simple means.

Controller complexity

The model order increase with the degree of the
weight function specifications is one of the practi-
cal obstacles with H∞ designs. This is also the case
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Fig. 3. H∞ design - Sensitivity plots for roll |TΦw |
and heading |TΨw|. Dotted lines are
specifications, solid lines are the design
results.

here, where the controller order is 22 with the spec-
ifications used. Model reduction techniques can,
however, fairly easily be applied, and a 7th order
model can be used without any significant deviation
from the specifications.

Model Uncertainties

Model uncertainty and rudder saturation in both
slew rate and angle are (practical) major obstacles.
The present design has attempted to present the re-
sults of a multi-objective design, whereas inevitable
model uncertainty (Blanke and Christensen) and the
nonlinear phenomena Blanke et.al. have not yet
been included. These are issues of continued re-
search.

6 CONCLUSION

A design problem for robust control of rudder-roll
damping has been discussed.

Since the problem specifications were posed in fre-
quency domain, an H∞ design was a natural selec-
tion. An H∞ controller was calculated by virtue of
a new singular H∞ approach and compared with a
previous LQ like design.

As a design tool, the H∞ method was fast and very
direct, since no additional fine tuning was neces-
sary on top of the weightings which were immediate
from the specifications. It turned out that the hard
bound to satisfy was the specification for the roll
angle. The specifications could easily be met at the
specified frequency range, but the transfer function
need to blow up in some other frequency ranges for
satisfying the Bode integral sensitivity bound. This
trade off is the only part of the algorithm, where the
designer might need some iterations.
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Fig. 4. H∞ design - Crossover sensitivity plots for
roll angle from heading disturbance and
heading from roll disturbance. Dotted lines
are specifications, solid lines are the results
of the design.

In short, a comparison between the H∞ and the
LQ controller shows that the frequency fit of the
H∞ controller is significantly better, at the cost of
complexity. The LQ controller amplifies some roll
disturbances in the low frequency range, whereas
the H∞ controller does not.

A SHIP MODEL

The matrices for the linear ship model in (2.2) are
given by:

As = T−1E−1FT
Bs = T−1E−1G

where E, F and G are given by, (Blanke et.al.,
Blanke and Christensen):

E =











0 0
Ē1 Ē2 Ē3 0 0

0 0
0 0 0 1 0
0 0 0 0 1











Ē1 =

[

m− Yv̇

mxG −Nv̇

−mzG −Kv̇

]

Ē2 =

[

mxG − Yṙ

Izz −Nṙ

−Kṙ

]

Ē3 =

[

−mzG − Yṗ

−Nṗ

Ixx −Kṗ

]

F =











0
F1 F2 F3 F4 0

0
0 0 1 0 0
0 1 0 0 0
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Fig. 5. H∞ design - Controller gain from wave
disturbance in heading angle (upper) and
roll angle (lower) to rudder angle.

[

F1 F2

]

=

[

UYuv U(−m + Yur)
UNuv U(Nur −mxG)
UKuv U(Kur + mzG)

]

[

F3 F4

]

=

[

Yp + UYup YΦ + U2YΦuu

Np + UNup NΦ + U2NΦuu

Kp + UKup −gmGM + U2KΦuu

]

G =











U2Yδuu

lδxU2Yδuu

−lδzU
2Yδuu

0
0











, Cs =
[

0 I
]

and T is given by

T =











1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0











such that x = Txs The values of the constants in the
matrices can be found in (Blanke and Christensen).
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