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Abstract 
The problems of robust stability and robust 3-12 per- 
formance for uncertain discrete time systems with 
nonlinear parametric uncertainties are addressed. 
Two fairly general families of state space models de- 
pending nonlinearly on one or two uncertain parame- 
ters are considered. For these two families explicit ex- 
pressions for the Schur stability radius and for the '& 
robust performance radius in the case of uncertain- 
ties with a single parameter are obtained, and a line 
search algorithm for the two problems in case of two 
parameters is provided. For both problems explicit 
necessary and sufficient conditions are derived. An 
illustrative example demonstrates the algorithms. 

1 Introduction 
In the dawn of robust control theory, most attention 
was paid to systems with unstructed uncertainty de- 
scriptions. It was soon realized, however, that in most 
applications the real uncertainties are better captured 
by structured uncertainty descriptions. This is defi- 
nitely the case when the model applied is based on 
physical insight of the plant, such that the uncer- 
tainties are basically just imperfect determination of 
physically meaningful parameters. But even in the 
case, where the nominal model and the uncertainty 
are obtained entirely by identification methods, this 
still results in parametric uncertainty descriptions. 
The reason for this is that statistical methods always 
will have different preferences for different directions 
in s-plane, thus providing phase information. And 
uncertain phase information is only representable by 

structured uncertainty models. 
Moreover, robust control theory has had far most 

emphasis on the nominal perfonnance/robust stabil- 
ity paradigm, rather than the robust performance 
paradigm, which of course is the problem of ultimate 
importance. This is not because the significance of 
robust performance problems have been overlooked, 
but simply because the research has had little success 
in this field so far. One reason is that some of these 
problems are NP-hard. 

A vast amount of papers have been devoted to the 
topic of robust stability bounds under structured per- 
turbations. Let us mention a few which also have 
comprehensive lists of references: [l, 2, 15, 7, 8, 51. 

For the jY, norm, robust performance bounds can 
be obtained by p optimization, see [lo] for a survey 
or [11] for an exposition in the line of this paper. A 
convex optimization approach for robust Z, analysis 
and synthesis for systems with parametric uncertain- 
ties is given in [14]. 

For linear time-invariant systems, the ?f2 perfor- 
mance metric arises naturally in a number of different 
physically meaningful situations, see [S, 41. The 3-12 

performance of a linear time-invariant system is mea- 
sured via the ?d2 norm of its transfer matrix. As long 
as this 3-12 norm is less than a given upper bound, 
we can stop, and need not seek the minimal one due 
to robustness consideration. Suppose the 3 2  norm of 
a nominal (stable) system is less than a given upper 
bound. Is it still less than this upper bound after suf- 
fering parameter perturbation? or, how to find the 
"maximal domain" for perturbation parameters un- 
der stability and 3-12 norm constraints? This paper 
will consider this problem, and calculate the maximal 
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(nonlinear) perturbation interval or radius in pertur- 
bation parameter space. The obtained results are not 
only sufficient, but also necessary. The paper is differ- 
ent from most of published papers which deal with a 
fixed parameter domain and affinely linear perturba- 
tions. For recent advances on robust 7-12 performance 
analysis for uncertain control systems, see the papers 
[6, 91 and references therein. 

This paper deals with discrete time uncertain sys- 
tems. The corresponding problems in continuous 
time has been addressed in [13]. The stability results 
are based on the paper [12]. 

Let cs: 
Rmxn -+ Rmn be the column stacking operator on a 
matrix, @: E t n x n  x RmXm -+ Rmnxmn the standard 
matrix Kronecker product (see [3]), and let &(.) be 
the lcth eigenvalue of a square matrix. 

We denote the real number set by R. 

2 Problem formulation 

Consider a linear time-invariant discrete-time system 
described by 

where A(q) ,  B(q) ,  and C(q) with dimensions n x n, 
n x m, p x n, p x m, respectively, are continuous 
matrix functions of a perturbation parameter vector 
q = [ql , q 2 , .  . . , ql]' E R'. A square constant matrix 
is called (Schur) stable if all of its eigenvalues lie in 
{ z  : IzI < l}. We say G(z ,q)  is (Schur) stable for a 
given q if A(q) is stable. The 7-12 norm is defined by 

(2) 
where G*(z,q) = G'(z-',q) and (-)' denotes trans- 
pose. 

Suppose for q = 0, the nominal system of (1) sat- 
isfies 
AS1. A(0) is stable, 

where is a known positive constant which reflects 
the tolerance of the system 7-12 performance (for in- 
stance, an acceptable output variance of (1) to a 
white noise signal). Our goal is to find "the maxi- 
mal domain" in Rz so that IlG(z, q)11; < y for every q 
in it. A prerequisite for this is that A(q)  is stable for 
every q in this domain. This problem will be solved 
in the two cases E = 1 and 1 = 2. 

AS2- llG(., O)ll? < 7, 

2.1 Single parameter case 
Define 

rs- inf{r < 0 : A(q) is stableb'q E (r, 0)}, 
rd A sup{r > 0 :  A(q) isstableb'q E (O,r ) } ,  
r2 = inf{r < 0 : A(q) is stable and 

rz 1 sup{r > 0 : A(q) is stable and 

A 

- 

IlG(z, q)IE < Y b'q E (r, O)}, 

llG(z,q)lIZ < Yb'q E (07r)) 

Then (r;, r$) is the maximal perturbation interval 
of q while keeping the stability of A(q);  and (r,, r l )  
the maximal perturbation interval of q while keeping 
IIG(z7 d/I; < Y. 

Problem 1 Suppose that system (1) satisfies A S l ,  
ASZ, and 

A(q) = A0 + q A l + .  .. + qm'Aml, 
B(q) -Bo+qBi + . . . + Q  m2Bm,, 
C(4) -co+qC1+...+qm3Cm,, 

where all of A k ,  B k ,  and C k  are given constant ma- 
trices. 

(a). Find r ;  and r t .  

(b). Fznd r; and r$. 

Remark 1 Obviously, (r;, r z )  c (r; , r$ )  

2.2 Two parameter case 
Denote by U(r) and aU(r)  the circular disk { q  = 
[qI,q2]' : d m  < r , }  c R2 and its boundary 
circle, respectively. Define 

r, = sup{r : A(q) is stableVq E U(r)}, 
r2 = sup{r : A(q) is stable and 

IlGk, 4)11; < YtJq E U(r)}. 

Then U(rg) is the maximal perturbation circular disk 
for q while keeping the stability of A(q); and U(r2) 
is the maximal perturbation circular disk for q while 
keeping IlG(z, d11; < Y. 
Problem 2 Suppose that system (1) satisfies A S l ,  
AS2, and 

A(q) = Aoo + qiAio + q2A01 + qfA20 + qiq2A11 + qzAoz 

B(q) B o o  + qiBio + ~2Boi + q?Bzo + qiqaB11 + dBoz 
+ . ' . + Cl+3=ml QldzAw 9 

+ ' ' .  + ddBZJ, 
C(q) = c o o  + q1C10 + q2c01 + q:czo + qlqscll + qzc02  

+ ' .  ' + c,+,=,, ddG,, , 
where Aa,J,  BT,j ,  and Ca9J are given constant matrices 
for  all i , j .  
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(a). Find r,. 

(b). Find r2. 

Remark 2 Obviously, 0 < T Z  5 r,. 

Remark 3 The polynomial perturbation sets in 
Problems 1 and 2 are very general in the sense, that 
any nonlinear perturbation set that depends continu- 
ously on the parameters, defined on a compact set of 
parameters, can be approximated arbitrarily well by 
these types of uncertainties. The cost of a good ap- 
proximation is that the computational requirements 
will be extensive, since the computational time in- 
volved with the solutions presented below, grows 
rapidly with increasing polynomial order. 

3 Preliminaries 
By doing simple operations on a matrix and its de- 
terminant (see [12]), we can get the maximal pertur- 
bation bounds for nonsingularity of matrices. 

Lemma 4 Let M ( r )  = M ~ + T M ~ + .  - .+rmMm where 
all of Mk are n x n constant matrices, and lMol # 0 
(I . I denotes the determinant). Define 

T -  = SUP{T < 0 : IM(r)l = 0}, (3) 
T +  = inf{r > o : I M ( T ) ~  = 0). (4) 

Then 

where M is an mn th  order square matrix given by 

M =  
0 
0 

. . .  --I 0 
0 - I  ... 

. .  
0 0 ... -1 

M~-'M,,, Mc'M, , , -1  Mc'Mm-2 ... 
- (  f : 

M =  
0 
0 

. . .  --I 0 
0 - I  ... 

. .  
0 0 ... -1 

M~-'M,,, Mc'M, , , -1  Mc'Mm-2 ... 
- (  f : 

where 0, and I are the nth order zero matrix and 
identity matrix, respectively, and A,,,(.) stands for 
the minimal value of the negative real eigenvalues (let 
A,,,(.) = 0- i f  there exist no negative real eigenval- 
ues), and Aka,(-) the maximal value of the positive 
real eigenvalues (let AkaZ ( e )  = Of i f  no positive real 
eigenvalues), respectively. 

The following lemma helps us to transform Prob- 
lem la and 2a into that of the maximal perturbation 
bounds for nonsingularity of matrices. 

~ 
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Lemma 5 Suppose that 
(i) Q is a single connected domain in R', and 0 E Q ,  
(ai) A(0) is stable. 
Then A(q) are stable for all q E Q i f  and only i f  
IA(q) €3 A(q) - I €3 11 # 0 for all q E Q, where I is the 
nth-order identity matrix. 

Proof: The result is immediate if we recall the con- 
tinuity of A(q) in q,  that the eigenvalues of a matrix 
are continuous functions of its entries, and that 

By using Lemma 5 we can show that 

r,- = sup{q < 0 : IA(q) 8 A(q) - I €3 I1 = 0x6) 
r,' = inf{q > 0 : IA(q) 8 A(q) - I 8 11 = 0) (7) 
rs = inf{r : IA(q) 8 A(q) - I 8  I) = 0 

for some q E aU(r)} .  (8) 

Instead of (2) in the frequency domain, we here use 
the state space approach to compute 

where Q(q) = Q(q)' satisfies 

By using the column stacking operation we can give 
a more compact formula 

Going one step from (9), we get the following result 
which helps us to transform Problem I b  and 2b into 
that of the maximal perturbation bounds for nonsin- 
gularity of matrices. 

Lemma 6 Suppose that 
(i) Q is a single connected domain in It.', and 0 E Q, 
(ai) A(q) are Schur-stable Vq E Q ,  
(iii) llG(., O > l E  < 7. 
Then IlG(z,q)llE < Y Vq E Q if and only if IM7(q)l # 
0 for all q E Q, where 



(use equality lyI+ XYI  = lyI+ Y X I )  

e lT(A(q)  8 A(q) - I 8 I)-’ . M y ( q ) l  > 0 vq E Q 
(from (10)) 
e IM,(q)l # 0 €or all q E Q 
of A(q) ,  B(q), C(q)  to q, and Lemma 5 )  
The remaining part of the proof is obvious. 

(due to the continuity 

IJ 

By using Lemma 6 we obtain the following formu- 
lae which are suitable for calculations. 

In Section 2 we presented two types of problems. One 
is the maximal perturbation bounds for system sta- 
bility; the other is the maximal perturbation bounds 
for system performance. Lemmas 5 and 6 help us 
to transform both into the maximal perturbation 
bounds for nonsingularity of matrices. 

4 Main results 
In this section we shall combine the preliminary re- 
sults in order to provide answers to Problems 1 and 2. 

4.1 Single parameter case 
By using matrix multiplication and the expressions 
of A(q) ,  B(q),  C(q) in problem 1, then we have 

(AM @ A(q) - 163 1) 

cs[B(q)B’(q)] = bo + qbl + . . . + qZmzb2m2 
cs[C’(q)C(q)] = CO + qcl + . . . + qZm3c2m3 

(14) 
= A0 + q A 1  + . . . + qZm1Azml 

where 

CO = cs [CACO] , . . . , c, = cs ,‘”, 

C Z m s  = cs [CL, cm, J . 
Substituting the above expressions for A(q) ,  B(q), 
C(q)  in (lo), then it can be rewritten as 

My(q) = M o ~  + q M 1 y  + . . . + q m M m ,  ( 1 5 )  

where m = m a x { 2 m 1 , 2 ( m z  + m s ) } ,  and 

1 
MO, = ( AO 63 AO - I @  I )  + - cs [BOB;] .CS [CA CO]’, ( 1 6 )  

Y 
and all of other Mky depend on Ai, bj, and ck (the 
detailed expressions are omitted here). 

By recalling Lemma 4, and using (6), (7)  and (14), 
then we can formulate 

Theorem 7 (Max.  pert. bounds for Prob. la) 
Splitting A(q) 8 A(q) - I @ I as (14) gives us the  
coeficient matrices Ak, k = 0,  . . . , 2 m l .  Define the  
following 2 m l n t h  order square ma t r i x  

1 A = - (  0 I 0 0 . . .  I .  -1 

0 -1 0 . . .  0 
0 0 --I . . .  0 

. .  . .  

A;~A, A;~A,-, A;~A,-* . . .  A ; ~ A ~  

where 0, and I are the  nth order zero ma t r i x  and 
identity matrix ,  respectively. T h e n  

(17) 
- 1 1 

r ,  = ~ and r,’= 
X i i n  (A) ’ Akax (A) 

where Xi,,(.) stands f o r  the  minimal  value of the 
negative real eigenvalues (let Xi,,(.) = 0- i f  there 
exist no negative real eigenvalues), and A&ax(.) the  
maximal  value of t he  positive real eigenvalues (let 
AAax (.) = O+ i f  n o  positive real eigenvalues). 

From A S 2 ,  Lemma 6, and ( 1 6 ) ,  it can be shown 
that lMo,l # 0. By recalling Lemma 4, and using 
( l l ) ,  ( 1 2 )  and ( 1 5 ) ,  then we can formulate 

Theorem 8 ( M a x .  pert. bounds for Prob. lb) 
Splitting M7(q) as (15) gives us the coef- 
f ic ient  matrices Mk,, k = O , . .  . ,m where 
m = m a x { 2 m l ,  2 ( m 2  + m3)}. Define the following 
2mn-order square ma t r i x  

--I 0 . . .  
0 -1 . . .  

where 0, and I are n-order zero ma t r i x  and identity 
matrix,  respectively. T h e n  

where Xi,,(.) stands f o r  the  minimal  value of the 
negative real eigenvalues (let A,,,(.) = 0- if there 
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exist no negative real eigenvalues), and A&az( . )  the Remark 10 Solving Problem 2 involves a one di- 
maximal value of the positive real eigenvalues (let mensional search in contrast to Problem 1 which can 
AA,, (.) = Of if no positive real eigenvalues), respec- be solved noniteratively. 
tively. 

Remark 9 The algorithms corresponding to Theo- 
rem 7 and 8 do not need any iteration. Ref. [l] 5 Example 
first gives the maximal perturbation bounds for Prob- 
lem l a  in the simplest case (affinely linear perturba- 
tion of a single parameter). An example with a single perturbation parameter is 

cited below. Let 

0.1 1 0 1  0 0  4.2 Two parameter case 

polar coordinates, namely, q1 = r cos 8, q2 = r cos 8, 
thus 

In order to solve Problem 2, we need to introduce A ( q ) = [  0 o . , ] + q [ o  0 ] + q 2 [ 1  0 1  

B ( d =  [ 0 1 0  1 ] + v [ ;  ; ] m = l l l I  A(q) = A(r, 8) = A0 + rA1 (8) + . . * + rmlAml (e) 
B(q) = B(r, e) = Bo + rB1 (e) + . . . + rmzBmz (e) 
C(q) = C(r, 8) = CO + rC1 (e) + . - + rmsCm3 (e) 

It is easy to show that 
where 

0.1 1 [ 0 0 .51  
Ak(8) = Ci+j,k(cos8)i(sinB)jAij, k = 1 7 . - . 7 m l  
&(e) = Ci+j=k(cos8)i(sin8)jBij, k = l , . - . , m 2  
Ck(8)  = Ci+j=k(~~~8)i(sin8)jCij, k = l , - - . , m 3  

Obviously, for a fixed 8, Problem 2 is fully trans- 
is Schur stable, and 

formed into Problem 1. But now we need a grid for 
the interval [0,2n), finally 

r,  = inf{r$(O),O E [0,27r)}, 
r2 = inf{r,+(8),e E [0,27r)}. 

The algorithms corresponding to  Problem 2a and 2b 
are briefly listed below 

A(q) Q9 A(q) - IQ9 I = 

I -0.9900 0.1000 0.1000 1.000 
0 -0.9500 0 0.5000 

0 -0.9500 0.5000 
0 0 -0.7500 

1 0 0.1000 0.1000 2.0000 
0 0.5000 0 0  
0 0.5000 

Algorithm 1 (Max. stab. rad. for Prob. 2a) 0 o J  r o  0 0 1.0000 1 
Step 1. Select a large natural number p ,  and let 8, = 

Step 2. Let Ak = A k ( O j ) ,  repeatedly recall Theo- 

+q2 1 o.iooo o i.oooo 8 J 
2j7r/p7j = O , l , . - - , p -  1; 0.1000 1.0000 0 

0 0.5000 0.5000 0 
0 0 0 0  0 0 0 0  

rem 7 to get r s ,  j = 0, I,  . . - , p - 1; 
+ q 3 [ :  : : :I7 

Step 3. Findr, =min{rA7j =O, l , . . . ,p - l ) ,  then 0 0 0 0  1 0 0 0  
output it. 

after calculating A and all its eigenvalues, we get 
(r;,rt) = (-1.6711,0.7683). In this example Algorithm 2 (Max. stab. rad. for Prob. 2b) 
. 1  - .  

Step 1. Select a large natural number p ,  and let 8j = 

Step 2. Let Ak = Ak(8+),  Bk = C k ( O i ) ,  and Ak = 

we can show G(z ,  0 )  = [& -19 and 
llG(z7 0)llg M 2.0162. Now we select the upper bound 
of 3c2 performance as y = 2.1. 

2 j 7 r / p 7 j = O , 1 , . . . , p - l ;  

Ck(ej), repeatedly recall Theorem"8 to get r&, 

Step 3. Findrz = m i n { ~ & , j  =O,l,-.-,p-l},then 

j = O , l , * . . , p - l ;  

output it. 
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and cs[C’(q)C(q)]’ = [I 1 111, furthermore, References 

M7(4) = 
(A(q )  €3 A(d - 1 8  1) + $cs[B(dB’(q)l . cs[(C’(q)C(q)l’ I I 

1 

-0.5138 0.5762 0.5762 1.4762 

= [  : 0 -0.9500 0.5000 

0.4762 0.4762 0.4762 1.4762 
0.5762 0.4762 1.4762 0.4762 

+q 
+!I2 ~ 0.5762 1.4762 0.4762 0.4762 

2.3810 2.8810 2.8810 2.3810 

-0.9500 0 0.5000 

0.4762 0.4762 0.4762 -0.2738 
0.9624 1.0524 1.0524 2.9524 
0.4762 0.4762 0.4762 0.9762 
0.4762 0.4762 0.4762 0.9762 
1.9048 1.9048 1.9048 1.9048 

y o  o o 0 1  y o  o o 0 1  
0 0 1 0  0 0 0 0  

0 0 0 0  
+ q 3 i 0  0 J + q 4 ~ 0  1 0 0 0  o ]  

After calculating M ,  and all its eigenvalues, finally 
we get (r,,~,’) = (-1.6711,0.0433). 

Conclusion 

In this paper we have investigated stability robust- 
ness and 312 performance robustness of discrete time 
systems with nonlinear parametric uncertainties. 

We restricted ourselves to the class of polynomial 
uncertainty descriptions, since this class is dense in 
the set of continuous matrix valued functions defined 
on compact sets of parameters equipped with the 
topology of pointwise convergence. 

For this class we obtained explicit formulae both for 
the stability robustness perturbation radius and for 
the 312 performance robustness perturbation radius 
in the case of a single parameter. 

In the two parameter cases, we described line 
search algorithms as the natural extensions of the ex- 
plicit formulae for the one parameter cases. More pa- 
rameters could easily be included in the framework, 
but the computational cost involved would be quite 
considerable. 

Further research could address 31, performance 
robustness, and possibly mixed 312/31, problems un- 
der structured perturbations. 
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