
Proceedings of the 35th FP17 4:iO 
Conference on Decision and Control 
Kobe, Japan December 1996 

An L M I  Approach to Fixed Order LTR Controller 

B. Shafai and V. Uddin 
Northeastern University, Boston MA 02115. 

shafaiQneu.edu and vali2@cdsp.neu.edu 

H. H. Niemann and J. Stoustrup 
Technical University of Denmark, Lyngby, Denmark. 

hhn@iau.dtu.dk and jakob@mat.dtu.dk 

Abstract 

In this paper the problem of optimal 31, norm approx- 
imation of an L T R  controller with specified poles is 
considered. A structurally predefined fixed order L T R  
controller is introduced which has the same dimension 
as the number of transmission zeros. It is shown that 
the design problcm can bc reduced into an equivalent 
convex optimization problem involving L M I  which can 
be so'ived efficiently. We demonstrate the performance 
of this L T R  controller by comparing it to a functional 
observer-based L T R  controller of the same dimension. 

1 Introduction 

The problem of loop transfer recovery ( L T R )  of linear 
systems has been a well studied subject. The literature 
reports several methods for exact loop transfer recovery 
(ELTR) and asymptotic loop transfer recovery (ALTR) 
(see [I] and references therein). To improve the recov- 
ery performance, recent results [2], [3] consider LTR 
design methods which use '& control theory. How- 
ever, a. major concern in H,/LTR design is the high 
dimensionality of the controller. It has been recognized 
that the order of such a controller can be higher than 
the system order. One immediate solution to this prob- 
lem is to apply modtl reduction techniques. However, 
the degree of approximation manifest itself a degrada- 
tion in the recovery performance. 

This paper deals with one important issue, namely, 
LTR controllers with low dimensions. An initial at- 
tempt on this issue was performed in [4] based on func- 
tional observer theory. Here we further investigate the 
problem by using E, theory and balanced model re- 
duction technique. More specifically, we design a struc- 
turally predefined fixed order L T R  controller based on 
L M I  and compare its performance to that achieved by 
a direct functional observer-based L T R  controller of 
order T ,  where T is the number of transmission zeros. 
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2 Problem Formulation 

To design an L T R  controller C(s )  for the system E: 
{ A ,  B ,  C }  having the transfer function G(s),  we first 
determine the desired target feedback loop with the 
transfer function 

L ~ ~ ~ ( s )  = F ( S I  - A ) - ~ B  (1) 
and say that exact loop transfer recovery at the in- 
put point ( E L T R I )  is achieved if the closed-loop sys- 
tem is asymptotically stable and EL(s )  = LTFL -- 
C(s)G(s) = 0. To define asymptotic L T R  at the input 
point ( A L T R I ) ,  we parameterize the family of con- 
trollers as C(s ,q) ,  and say that A L T R I  is achieved 
if the closed-loop system is asymptotically stable and 
C(s, q)G(s)  4 L T F L ( ~ )  pointwise in s as q co, i.e., 
E~(s,q) --f O pointwise in s as q --+ 00. 

An equivalent measure of the recovery, is the so-called 
recovery matrix Mr(s ) ,  which can be related to EL(s) .  
This matrix is constructed according to the defined ob- 
server structure. For example, consider the full-order 
observer-based controller having the transfer function 

qS) = F (SI - A + I ~ C  - BF)-' K (2) 
where F and K are the regulator and observer gains, 
respectively. Then 

Mr(s )  = F (SI - A + KC)-' B .  (3) 

(4) 

Re[A(@)] < 0 (5) 
TA-@T = GC (6) 

H = T B  (7) 
M T + N C  = F (8) 

And for a functional observer-based controller 
= @z+Gy+Hu 
= M z + N y  C F :  {I 

under the following constraints: 

we have 

CF(S)  = [ I  - M ( s I -  O ) - l H ] - l [ M ( ~ I  - @)-'G + NI (9) 

M ~ ( s )  = M ( s I  - @)-'H (10) 
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Problem 1 Given a functional observer-based L T R  
controller with transfer function CF(S)  of order r and 
the L T R  controller CR(S)  obtained b y  model reduction 
of high order L T R  controller C(s) with minimal re- 

alization CR(S) = [*]. Compare the perfor- 

mance of CF(S)  and CR(S)  with EL(s) = L T F L ( S )  - 
C(s)G(s) where L T F L ( S )  is given b y  (1) and C repre- 
sents either C F ( S )  or CR(S) .  

Note that there is a distinct difference between CR(S)  
defined in each of the above two problems. While the 
poles in problem 1 are not specified, the ones for prob- 
lem 2 are given by the predefined structure of the ma- 
trix A,.. This fact shows a direct correlation between 
two types of reduced order controllers considered here 
and the functional observer with free and fixed poles 
known in observer theory. 

3 Preliminaries 

The interested readers should review [4] before contin- 
uing this section. Here we review the basic concepts 
of L M I  and X, norm approximation, which are well 
documented in [5] - [7]. 

One of the standard L M I  based convex optimization 
problem is the following prototype problem, which plays 
an important role in the solution of problem2. 

subject to 

Definition 1 The transfer function CR(S) E RX, 
with r stable poles is called an rth order Xm norm up- 
proximation of a given transfer function C(s)  E R X ,  
with n stable poles, if 11 C(s) - C R ( S ) ~ ~ ,  is minimized 

Definition 2 A n  ( n  x n)  transfer function C(s) is 
called 7 - allpass if C'(s)C(s)  = C(s)Cl(s) = y21, 
where Cl(,) = CT(- s ) .  

Theorem 1 An ( n  x n) transferfunction C(s) with a 

minimal realizataon C(s) = [w] is y- all-pass 

if and only if 

A,L,+L,AT+B,BT = o (14) 
A ~ L ~ + L ~ A , + c , T c ,  = o (15) 

L,Lo = 721 (16) 
D,B:+c,L, = o (17) 
DZCc+BTLo  = 0 (18) 

D ~ D ~  = D ~ D ~  (19) 
= y2I (20) 

Lemma 1 Let C(s) = [w] E Mw be a min- 

imal realization such that (14 - 16) are all satisfied. 
Assume that rank(B,) = runE(C,) = n, where n is the 
number of rows of the square matrix C(s). Then the 
unique Do that satisfies the equations (17-20) is given 

Do = -CcL,(BT)t = -(CT)+L,B, (21) 
b y  

where (B,)t = l im , ,o (~~I  + B,B, ) T -1BT , . 

The above lemma pertains to the case where B ,  and 
C, have full ranks. If rank(B,) = runk(C,) = nl < n,  
then certain modifications are required to obtain Do. 

The Following theorem gives the characterization of the 
optimal solution for the zeroth order X, norm approx- 
imation problem (see definition 1 when r = 0). 

Theorem 2 Given C(s) of order n with minimal re- 

alization C(s) = [*], then there exist a Do 

such that )I C - Do ll,= y, where y is the minimum 
achievable error, if and only i f  there exist Bo,Co such 
that 

A ,P+PAT+B,BT+B,BT  = O (22) 

A:Q + QA, + c,Tc, + C:C, = o (23) 

are satisfied, with 

PQ = QP = y 2 ~  (24) 

It can be seen that the above problem can easily be con- 
verted into the prototype problem, where CY = fi and 
Q = y2P-l .  The above theorem provides a way of ob- 
taining an optimal solution of zeroth order optimal 31, 
model reduction problem, but does not give an explicit 
scheme to compute the solution. An explicit computa- 
tional scheme will be provided in the next section, in 
connection to the design of the structurally predefined 
L T R  controller. 
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4 Structurally Predefined LTR Controller 

In this section, we outline a procedure to solve the prob- 
lem of finding the best B, and D, in E(s )  := C(s) - 

such that 11 E (Icc) is minimum. Results of the last 
section shows that the minimum achievable approxima- 
tion is solely determined by A, , B, and C, and then 
zeroth order approximation Do is calculated. So, in 
this case, the minimum achievable error depends solely 
on B,. After the optimal B, is obtained, the problem 
of finding optimal D, is the standard zeroth order ap- 
proximation problem. The following theorem is based 
on this observation. 

Theorem 3 Given an LTR controller C(s) E RZ, 
with a minimal realization C(s) = [*I. Let 

CR(S)  = [q] be an optimal approximation of 

C(s) with prescribed A,. and Cr. Then B, and D, are 
determined from the following steps. 

Cr Dr 

Solve the following L M I  eigenvalue problem 

subject t o  

The minimum achievable norm is y = fi. 
Take Q = y2P-' a n d  calculate Bo, CO from 

BOB: = -(A,P + PAT + B,BT) (28) 

c,'c0 = - ( A ~ Q  i- QA, + C,Tce) (29) 

Form He(s )  

H,(s) = [w] (30) 

Use Lemma1 to compute D H ,  the optimal zeroth 
order approximation of He( s ) .  

Partation DH as DH = (::: E::) such that 

Dll as n x n. 

Finally D, is given as D, = D11 and CR(S)  is 
fully determined. 

Example: Consider the following 
system G(s) = 83+5:;tf488+6 which has a transmission 
zero at -4. Let the target feedback loop be realized by 

Application of the Transmission Zero Matrix Algorithm 
[4] yields the following parameters for first order func- 
tional observer-based LTR controller CF(S) .  

F = [ l  -4 21. 

@ = [-41, G = [lo], M = [l], N = [-141, H = [O] 

Since H = 0, the controller CF(S)  achieves ELTR. 
Now the full order observer-based controller C(s) with 
Ii' = [ O  3 13' is designed. Applying the proposed 
L M I  based Z, model reduction, the structurally pre- 
defined fixed order controller becomes 

A, = 1-41, B, = [-1.25941, C, = [l], D, = [-1.94531 

Figure below shows that the structurally predefined 
LTR controller achieves better recovery than the full 
order observer based LTR controller and both obvi- 
ously cannot outperform the functional observer based 
LTR controller ( F O I L T R ) .  

Several other examples have been constructed for the 
case of ALTR. We observed comparable performances 
between two approaches. These examples will be illus- 
trated in the conference. 
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