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Abstract

A design method is presented which integrates control action and fault detection and isolation.
Control systems operating under potentially faulty conditions are considered, and it is demon-
strated how to design a single unit which handle both the required control action, as well as
identifying faults occuring in actuators and sensors. This unit is able to: (1) follow references
and reject disturbances robustly, (2) control the system such that undetected failures do not
have disastrous effects, (3) reduce the number of false alarms, and (4) identify which faults have
occured. The method uses a type of separation principle which makes the design process very
transparent, and a polynomial H∞ formulation which makes weight selection straightforward. As
a consequence of the separation between control and diagnosis, we shall prove that the controller
needs not be detuned in order to get good diagnosis results, in contrast to common beliefs.

1 Introduction

In the control of industrial systems, it is rare that a control system functions continuously throughout
the scheduled life cycle of the plant and controller hardware. Due to wear of mechanical and/or
electrical components both actuators and sensors can fail in more or less critical ways. For safety
critical processes it is of paramount importance to detect when failures are likely to happen, and
to identify as fast as possible which failures have taken place. To meet such industrial needs, a
number of schemes for Fault Detection and Isolation (FDI) have been put forward in the literature
on automatic control. In this paper the advantages of combining the control algorithm and the
FDI filter in a single module will be discussed, and a relatively simple methodology to design such
combined modules will be described.

A useful survey on early work on FDI can be found in [Fra90] and in [PFC89]. Many of these
techniques are observer based, such as e.g. [MM91]. These methods have since been refined and
extended. A more recent reference in this line of research is [FD94]. The original idea of utilizing the
information already available in the ’observer’ part of a controller for diagnostic purposes was given
in [NJM88].

Early papers on FDI suffered from problems due to modeling uncertainties. In some cases false
alarms were likely, due to imperfect modeling. This motivated incorporation of robustness issues
into the FDI design algorithm. Specific robustness considerations to FDI problems were discussed
in [PC91, MAVV95, QG93, BK94, WW93]. All these methods use frequency domain techniques in
contrast to [AK93] which uses `∞ techniques.
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2 Problem Formulation

We consider a control problem given in standard configuration (see e.g. [ZDG96] for an introduction
to the standard configuration paradigm).
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)(
wd

uc
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(1)

Here, wd can be thought of as a collection of undesired signals (disturbances) entering the system
G(s) or as setpoints. The signals yc are the measurements used by the controller K(s) generating
the control signals uc in order to make the outputs zc sufficiently small.

For the standard problem (1) a controller K(s) making the H∞ norm of the transfer function from
wd to zc smaller than 1 can, if it exists, be found by standard H∞ optimization tools. Usually,
the model G(s) will contain the plant model itself, but it will also contain models of disturbances,
measurement noises, time variations, nonlinearities, and unmodelled dynamics. Hence, making the
H∞ norm from wd to zc small ensures a number of performance and robustness properties.

The everyday operation of such a feedback system depends, needless to say, on reliable actuators and
sensors. However, in most industrial environments both actuators and sensors can fail. One way to
model this is to introduce perturbed measurement and control signals, i.e., the measurements used
by the controller are y = yc +fs rather than yc and the controls acting on the plant are uc +fa rather
than uc. For example yc + fs ≡ 0 or uc + fa ≡ 0 could be the results of completely defective sensors
or actuators, respectively.

For safety critical processes in particular, faulty situations must be identified, and action taken. Two
main paths of action can be taken: either the control design algorithm can be modified to tolerate
minor errors, or using an estimator the faulty signal can be identified and action can be taken by the
operator or by a supervisory system. In most applications the latter will be preferable.

A method will now be described, which allows for either or both approaches to be incorporated in a
single design step which also comprises the controller design. This is achieved using a single module
which generates both the control action and the fault estimates.

To succesfully identify individual faults, it is of paramount importance to have good fault models.
One way to describe the fault models is to introduce frequency weightings on the fault signals:

fa = Wa(s)wa and fs = Ws(s)ws

where wa and ws are signals that are anticipated to have flat power spectra. These are fictitious
signals with the sole purpose of generating the frequency coloured signals fa and fs.

The module to be designed should, in addition to the control signal uc, also generate a signal con-
taining estimates of potential faults:

uf =

(
f̂a

f̂s

)

The final step is to define a fault estimation error zf as:

zf =

(
fa

fs

)
− uf

Using these signals a new augmented standard problem can be established as shown in Figure 2.
Defining:

ξ =


 x
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 , w =
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 , u =
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)
, z =
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zf

)
, y = yc + fs (2)
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Figure 1: Control system with faults and diagnostics
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Figure 2: Standard model for integrated control and FDI

the standard problem depicted in Figure 2 takes the form (detailed formulae are given further below):
(

z
y

)
= G̃(s)

(
w
u

)
=

(
G̃11(s) G̃12(s)
G̃21(s) G̃22(s)

)(
w
u

)
(3)

Using H∞ optimization, a generalized controller u = K(s)y for Figure 2 can now be computed, which
will then be able to generate both control signals and failure estimates.

3 Main Results

Using the partition (1), the following expressions for the standard problem (3), depicted in Figures 2,
can be derived.
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Introducing the control law u = K(s)y the following closed loop formula can be obtained:

(
zc

zf

)
= Tzw(s)


 wd

wa

ws


 , where Tzw(s) = G̃11(s) + G̃12(s)K(s)

(
I − G̃22(s)K(s)

)−1
G̃21(s)



We shall now introduce a substitution, which for an open loop stable system would be simply the
YJBK parameterization [YJB71] of all stabilizing controllers:

Q(s) = K(s)
(
I − G̃22(s)K(s)

)−1
, K(s) = Q(s)

(
I + G̃22(s)Q(s)

)−1
, Q(s) =

(
Q1(s)
Q2(s)

)

by which the following expression is obtained

Tzw(s) =

(
G11(s) + G12(s)Q1(s)G21(s) G12(s) (I + Q1(s)G22(s))Wa(s) G12(s)Q1(s)Ws(s)

−Q2(s)G21(s) (I −Q2(s)G22(s))Wa(s) −Q2(s)Ws(s)

)

Now, the crucial observation in this expression is that the each of the two rows of the block partitioned
matrix depends on only one of the Qi’s, i ∈ {1, 2}. This has the following two consequences:

1. Making the closed loop transfer function associated with the control objectives small and mak-
ing the closed loop transfer function associated with the FDI objectives small can be achieved
independently

2. Doing the optimizations independently eliminates some of the conservatism usually introduced
in H∞ optimization

This possibility for separation shall explicitly be exploited in the design procedure below. A separa-
tion principle similar in spirit to this is described in [SN96].

Without loss of generality, it can be assume that all weightings have been chosen in order to normalize
the H∞ standard problem. This means that after separating the optimizations for zc and zf , we are
faced with the following H∞ optimization constraints:∥∥∥( G11(s) + G12(s)Q1(s)G21(s) G12(s) (I + Q1(s)G22(s))Wa(s) G12(s)Q1(s)Ws(s)

)∥∥∥∞ < 1
(4)

and ∥∥∥( −Q2(s)G21(s) (I −Q2(s)G22(s))Wa(s) −Q2(s)Ws(s)
)∥∥∥∞ < 1 (5)

The H∞ problems corresponding to (4) and (5) are both model matching problems, which are simpler
special cases of the general 4-block H∞ problem, and can be solved as Nehari problems.

The standard problem formulation corresponding to (4) is:
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 (6)

For (5) the associated standard problem is:
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 (7)

Given Q1 and Q2, the solution to the standard problem (3):

K(s) =

(
K1(s)
K2(s)

)

where K1(s) and K2(s) are the feedback control part and the FDI part, respectively, can be computed
by the formulae:

K1(s) = Q1(s) (I + G22(s)Q1(s))
−1 , K2(s) = Q2(s) (I + G22(s)Q1(s))

−1 (8)



Remark 1 It is important to note that the expression (8) for K1 does not depend on Q2 but only
on Q1 which is found by an optimization which does also not depend on Q2. This means that the
control action does not depend on the fault filtering dynamics.

The final step in devising the combined control and FDI device is to solve the two model matching
problems (6) and (7). Using the separation idea above and polynomial H∞ theory (see [Kwa93]) we
can establish our main result.

Theorem 1 Consider the setup depicted in Figure 1 where K(s) is a combined controller and FDI
module. Introduce the following two J-spectral factorizations:
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where Zi(s), i ∈ {1, 2}, are square matrices which are invertible as elements of RH∞, and Ji,
i ∈ {1, 2}, are constant matrices of the form

Ji =

(
I 0
0 −I

)

with a suitable number of 1’s and −1’s. Ji, i ∈ {1, 2}, are called the signature matrices of Πi,
i ∈ {1, 2}. Moreover, define the following two transfer functions

Qi(s) =
(

0 I
)

Z−1
i (s)

(
I
0

)((
I 0

)
Z−1

i (s)

(
I
0

))−1

(9)

Then, the following two statements are equivalent:

1. There exists a transfer matrix K(s) making the transfer function from disturbances to controlled
outputs smaller than 1, and making the transfer function from actuator and sensor faults to
the fault estimation error smaller than 1.

2. The controllers Q1(s) and Q2(s) given by (9) stabilize the standard problems given by (6)
and (7), respectively.

Moreover, in case these conditions are satisfied, a possible choice of K(s) =

(
K1

K2

)
is given by (8)

where Q1(s) and Q2(s) are given by (9).

Using Theorem 1 for solving the H∞ problem depicted in Figure 2 actually implies making six
transfer functions small due to the definitions (2) of w and z. In fact, the essential instrument for
creating a well functioning module for control action and fault detection and isolation is to apply an
optimization which makes these transfer functions small, and trades off the individual functions by
careful weight selection.

Making each of the six transfer functions small has its own (important) interpretation:

• making ‖Tzcwd
‖∞ small implies good disturbance rejection and robustness, i.e. the original

control objectives are achieved



• making ‖Tzcwa‖∞ and ‖Tzcws‖∞ small implies that undetected failures do not cause disastrous
effects

• making
∥∥∥Tzfwd

∥∥∥∞ small implies that disturbances are not readily interpreted as faults, i.e. the
risk of false alarms is reduced

• making
∥∥∥Tzf wa

∥∥∥∞ and
∥∥∥Tzfws

∥∥∥∞ small implies that uf becomes a good estimate of potential
actuator and sensor faults

In order not to complicate the exhibition in this paper the control weights related to control perfor-
mance and control robustness have not been explicitly included, but they are of course present in
terms of the original standard problem formulation (1). Needless to say, the choice of the internal
weightings of the original system, are very significant to the overall performance of the combined
control and FDI module. First of all, in order for the optimization in Theorem 1 to give a useful re-
sult, it is of great importance to choose the weightings associated with the original standard problem,
the weightings associated with actuator failures and the weightings associated with sensor failures,
such that all these weightings are separated in frequency. Choosing large weights for the disturbance
models means that the design algorithm is encouraging disturbance rejection, control robustness and
reducing the number of false alarms. Choosing large weights for the actuator and sensor failure
models means that the design algorithm is putting emphasis on the quality of the failure estimates,
making sure that very few faults are undetected, and also making the control design tolerant to minor
undiscovered errors.

4 Conclusions

In this paper an algorithm has been provided for designing a single module which comprises feedback
control action and fault diagnosis and isolation.

The design method is very flexible. Manipulating weights, the following four objectives can be traded
off explicitly:

• following references and rejecting disturbances robustly

• controlling the system such that undetected failures do not have disastrous effects

• reducing the number of false alarms

• identifying which faults have occured

The algorithm was based on a type of separation principle which facilitates transparency in the design
proces with respect to the fundamental trade-offs related to diagnosing and controlling a system.

Not only the processes of designing a filter and a controller have been separated, but also the design
criteria. This shows that the controller does not need to be detuned in order to implement a good
fault detection mechanism. Moreover, this statement holds for any choice of norm based design
criteria formulated as one condition for the controller and another for the filter.
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