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Abstract. This paper shows the possibility of including weighting functions in
H∞/LTR design to improve the recovery in specific frequency ranges. It turns out
that it is still possible to derive a solution by solving only one Riccati equation in
both cases. The observer gain is given in explicit form. The weighted LTR design
method can be applied to both minimum phase systems as well as to non-minimum
phase systems.
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1. INTRODUCTION

The motivation for this paper is the fact that Loop
Transfer Recovery (LTR) design methods normally min-
imizes a suitable norm of the recovery matrix, Niemann
et al. (1991), Niemann et al. (1993), Saberi et al. (1993).
Only in few cases, the recovery error is minimized di-
rectly, Moore and Tay (1989), Stoustrup and Niemann
(1993). However, by minimizing the recovery error di-
rectly, the controller order will be 2n or more. Another
possibility is to apply alternative observer structures in-
stead of the standard full-order observer for obtaining
special recovery properties. By using a PI-observer, it is
possible to obtain good recovery at low frequencies, i.e.
obtaining time recovery, Niemann et al. (1995), Shafai
et al. (1994).

The key result in this paper is to show that it is pos-
sible to minimize a suitable norm of the weighted re-
covery matrix by solving only one Riccati equation or
a Quadratic Matrix Inequality. The advantage of multi-
plying the recovery matrix by a weight matrix, is that
it is possible to obtain good recovery in a specific fre-
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quency range without using high observer gains for both
minimum and nonminimum phase systems. The rest of
the paper is organized as follows. In section 2, the LTR
design methodology is briefly described. In section 3,
the solution of the H∞/LTR design problem is given
followed by section 4 where the weighted H∞/LTR de-
sign problem is considered. A solution is given in explicit
forms. A non-minimum phase LTR design example is in-
cluded in section 5 followed by a conclusion in section
6.

2. LTR DESIGN

Consider a finite dimensional, linear, time-invariant sys-
tem described by a state-space realization (A,B,C,D):

ẋ = Ax+Bu
y = Cx+Du

(1)

where x ∈ Rn, u ∈ Rr, and y ∈ Rm, (A,B) stabilizable,
(C,A) detectable, and where C and B has full rank. In
the following, there is no condition on the direct term D
to have full rank, although it does sometimes simplify
the solution, as we shall see below.
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Let the plant be controlled by an observer based con-
troller having the state feedback

u = Fx̂+ r = w + r (2)

where F is the state feedback gain and x̂, the state es-
timate and r is the reference input. F is required to be
stabilizing, i.e. A + BF having eigenvalues in the left
half plane and otherwise free. The states are estimated
by a Luenberger observer given by Luenberger (1971):

ż = Ez +Gy +Hu
x̂ = Mz +Ny

(3)

with the following constraints:

Re [λ(E)]< 0, (4)

TA− ET =GC, (5)

H = TB −GD, (6)

MT +NC = F, (7)

ND= 0 (8)

where the matrix T relates the observer and the system
through z = Tx+e, which in turn is related to the state
reconstruction error by x̃ = x̂− x = M(z − Tx).

In the following, we need the transfer function for the
Luenberger observer C(s) and the transfer function of
the recovery matrix MI,L(s), Niemann et al. (1993),
Stoustrup and Niemann (1993) given by:

C(s) = M(sI − E −HM)−1(G−HN) +N
MI,L(s) = M(sI − E)−1H

To design a controller for the system (1) by the LTR
design methodology, we first determine a static state
feedback, the target design, which satisfies our design
specifications. The design specifications, such as robust
stability and nominal performance conditions, are as-
sumed to be reflected at the plant input point, Stein
and Athans (1987).

Based on the target (full-state feedback) design gain F
for the system (1), the target sensitivity function is given
by

STFL(s) =
(
I − F (sI −A)−1B

)−1
. (9)

Next the LTR step is performed in which we attempt to
recover the target design over a range of frequencies by a
dynamic compensator C(s). This step gives a full-loop,
sensitivity transfer function of the form

SI(s) = (I − C(s)G(s))
−1

(10)

where G(s) represents the plant transfer function.

Assuming that C(s) is implemented via an observer (or
Kalman filter) based controller, the resulting loop trans-
fer function C(s)G(s), in general, is not the same as the
target loop transfer function STFL(s). In the LTR step
the required observer is designed so as to recover either
exactly (perfectly) or asymptotically (approximately)
the target loop transfer function.

For a more careful analysis, we define the sensitivity
loop transfer recovery error as

ES(s) = SI(s)− STFL(s) (11)

and say that exact loop transfer recovery at the input
point (ELTRI) is achieved if the closed-loop system com-
prised of C(s) and G(s) is asymptotically stable and
ES(s) = 0. To define approximate or asymptotic LTR
at the input point (ALTRI), see Doyle and Stein (1981),
Stein and Athans (1987), we parameterize the family of
controllers as C(s, q), where q is a positive scalar, and
say that ALTRI is achieved if the closed-loop system is
asymptotically stable and SI(s) → STFL(s) pointwise
in s as q → ∞, i.e., ES(s, q) → 0 pointwise in s as
q → ∞.

The sensitivity recovery error is related to the so-called
recovery matrix MI,L(s) given in Niemann et al. (1991)
by the equation

ES(s) = STFL(s)MI,L(s) . (12)

With this background we are ready to discuss the LTR
of full-order observers.

Consider the full-order observer-based controller having
the transfer function

C(s) = −F (sI − (A+KC)−BF )
−1

K (13)

where F and K are the regulator and observer gains, re-
spectively. Then ELTRI is achieved if and only if ES(s) =
0 or equivalently MI,fo(s) = 0 where MI,fo is the recov-
ery matrix for the full order observer based controller
given by

MI,fo(s) = F (sI −A−KC)
−1

B. (14)

In practice, the condition MI,fo(s) = 0 can not always
be satisfied exactly. Consequently, the size of MI,fo(s)
should be made small in some sense.

Let the controller be parameterized in terms of the ob-
server gain by K(q). Then to obtain ALTRI we seek a
K(q) such that for all ω

MI,fo(iω) = F (iωI −A−K(q)C)
−1

B

→ 0 as q → ∞.
(15)



In general, this is possible only if the system is minimum
phase, or if F is selected carefully. The literature reports
several methods, Doyle and Stein (1979), Athans (1986),
Stein and Athans (1987), to obtain such a K(q). Hence,
good recovery can be achieved only in the limit as q →
∞ which implies that ∥K(q)∥ → ∞, in case that exact
recovery is not possible.

3. H∞/LTR DESIGN

Based on the above section, an LTR design method us-
ing H∞ optimization will shortly be presented in this
section. The basic idea of the H∞/LTR design method
is to make the H∞ norm of the recovery matrix smaller
than a specified level γ. A more detailed description
can be found in Niemann et al. (1991), Niemann et al.
(1993), Saberi et al. (1993).

Let the recovery matrix for the full-order observer have
the following state space description:

MI,fo(s) =

A B I
F 0 0
C D 0

 (16)

with the controller

u(s) = Ky(s) (17)

where K is the full-order observer gain.

For designing an observer gain K such that the transfer
function from w to z, i.e. the recovery matrix MI,fo,
has an H∞ norm smaller than γ, we have the following
result from Stoorvogel (1992)

Theorem 1. It is assumed that the system (A,B,C,D)
has no invariant zeros on the imaginary axis. Then the
following two statements are equivalent.

(1) There exists an observer gain K such that A+KC
is stable and such that

∥F (sI −A−KC)−1(B +KD)∥∞ < γ

(2) There exists Q ≥ 0 such that the following three
hold

• Gγ(Q) :=

(
X Y ′

Y Z

)
=:

(
BQ

DQ

)(
B′

Q D′
Q

)
≥ 0

• rank

(
BQ

DQ

)
=

rankR(s)

[
F (sI −A)−1B +D

]
, ∀s ∈ Cl +

• rank

(
A+ γ−2QC ′C − sI BQ

F DQ

)
=

n+ rankR(s)

[
F (sI −A)−1B +D

]
, ∀s ∈ Cl +

where X = AQ + QA′ + BB′ + γ−2QF ′FQ, Y =
CQ+DB′ and Z = DD′.

Whenever Q ≥ 0 exists satisfying the three conditions in
item (2) of Theorem 1 such Q can be found by solving
a reduced order Riccati equation. Moreover, it can be
shown that Q is unique (see Stoorvogel (1992)). When
the direct term D has full rank, we get directly the
DGKF Riccati equation given by:

0 = AQ+QA′ +BB′ + γ−2QF ′FQ

−(QC ′ +BD′)(DD′)−1(CQ+DB′)
(18)

Based on the solution Q to the Quadratic Matrix In-
equality in Theorem 1 or the Riccati equation in (18),
we can define the following transformed system GQ(s):

GQ(s) =

AQ BQ I
F 0 0
C DQ 0

 (19)

where BQ and DQ are defined in Theorem 1 and AQ is
given by:

AQ = A+ γ−2QC ′C (20)

The relation between the original system G(s) and the
transformed systemGQ(s) is given by the following lemma
from Stoorvogel (1992):

Lemma 2. The following two statements are equivalent:

(1) There exists an observer gain K such that A+KC
is stable and

∥F (sI −A−KC)−1(B +KD)∥∞ < γ

(2) There exists an observer gainK such that AQ+KC
is stable and

∥F (sI −AQ −KC)−1(BQ +KDQ)∥∞ < γ

The significance of Lemma 2 is that the problem of find-
ing an observer gain for the original problem can be re-
duced in finding a controller for the transformed prob-
lem. This is much easier, since this problem does not
have zeros in the closed right half plane. The problem
of designing the observer gain has been transformed to
an Almost Disturbance Decoupling Problem (ADDP).
Based on this fact, the observer gain has to be designed
such that AQ +KC is stable and

∥F (sI −AQ −KC)−1(BQ +KDQ)∥∞ < γ (21)

This problem can always be solved, due to the fact that
the transformed system is minimum phase. In the reg-



ular case, the above ADDP can be solved exactly (al-
though this is not required). When D (and DQ) has
full row rank, the observer gain which solves the ADDP
exactly is given by:

K = −BQD
†
Q (22)

By using the equations for the transformation of the
original system, the above observer gain can be rewrit-
ten into:

K = −(QC ′ +BD′)(DD′)−1 (23)

4. WEIGHTED H∞/LTR DESIGN

The H∞/LTR result given in the above section is based
on an optimization of the H∞ norm of the recovery ma-
trix. In Stoustrup and Niemann (1993) the H∞ design
method has been applied to the H∞ norm optimiza-
tion of the sensitivity recovery error given by (11) or
(12). However, it turns out that it require solving two
Quadratic Matrix Inequalities (or two Riccati equations)
for solving this problem. Moreover, the final controller
will be of order 2n.

In this paper, we will look at a related LTR problem,
which can be solved by using only one Quadratic Ma-
trix Inequality or one Riccati equation. Our weighted
H∞/LTR design problem is as follows.

Problem 1. Consider the recovery matrix for the full-
order observer given by (14) and a weight function W(s)
given by:

ẋW = AWxW +BW ξ
yW = CWxW +DW ξ

(24)

Let γ > 0 be given. Design an internally stabilizing dy-
namic controller K(s), if such exist, such that

∥F (sI −A−K(s)C)−1(B +K(s)D)W (s)∥∞ < γ

Again, using standard H∞ techniques, this problem can
be solved by using two Quadratic Matrix Inequalities (or
two Riccati equations in the regular case) together with
the coupling condition. However, instead of using the
standard H∞ technique, the problem can be solved by
using only one Quadratic Matrix Inequality (or one Ric-
cati equation in the regular case) without the coupling
condition. To that end, let us consider a state space de-
scription of the recovery matrix together with the weight
function (24) is given by:

˙̄x = Āx̄ + B̄1w + B̄2u
z = C̄1x̄
y = C̄2x̄ + D̄21w

(25)

where x̄ =

(
x
xW

)
and the six matrices are as follows:

Ā =

(
A BCW

0 AW

)
, B̄1 =

(
BDW

BW

)
B̄2 =

(
I
0

)
C̄1 =

(
F 0

)
C̄2 =

(
C DCW

)
, D̄21 = DDW

(26)

The controller is given by

u(s) = K(s)y(s)

Furthermore, we need the following lemma.

Lemma 3. Assume that neither of the two systems in
(1) and (24) have any invariant zeros on the imaginary
axis, and DW has full row rank. Then the system given
in (25) has no invariant zeros on the imaginary axis.

Proof of Lemma 3. The proof follows directly by calcu-
lating the rank of the Rosenbrock matrix of the system
(25). ⊓⊔

Based on this state space realization of the weighted
LTR problem and Lemma 3, we are now able to give
the main result for the H∞/LTR design problem.

Theorem 4. Consider the system in (25). Then the fol-
lowing statements are equivalent:

(1) There exists a dynamic internally stabilizing con-
troller K(s) such that when applying the feedback
law u = K(s)y, the resulting closed loop transfer
function from w to z has an H∞ norm smaller than
γ.

(2) There exists Q̄ ≥ 0 such that the following three
hold

• Ḡγ(Q̄) :=

(
X̄ Ȳ ′

Ȳ Z̄

)
=:

(
B̄1,Q

D̄21,Q

)(
B̄′

1,Q D̄′
21,Q

)
≥ 0

• rank

(
B̄1,Q

D̄21,Q

)
= rankR(s) Ḡ(s) , ∀s ∈ Cl +

• rank

(
Ā+ γ−2Q̄C̄ ′

2C̄ − sI B̄1,Q

C̄1 D̄21,Q

)
= n+ nW + rankR(s) Ḡ(s) , ∀s ∈ Cl +

where X̄ = ĀQ̄ + Q̄Ā′ + B̄1B̄
′
1 + γ−2Q̄C̄ ′

1C̄1Q̄,
Ȳ = C̄2Q̄ + D̄21B̄

′
1, Z = D̄21D̄

′
21 and Ḡ(s) =

C̄1(sI−Ā)−1B̄1+D̄21. Moreover, one such dynamic
controller K(s) is then given by:



K(s) =

(
AW +K2DCW K2

(K1D +B)CW K1

)
=

(
AK BK

CK DK

) (27)

where K̄ =

[
K1

K2

]
satisfies the norm inequality:

∥C̄1(sI − ĀQ − K̄C̄2)
−1(B̄1,Q + K̄D̄21,Q)∥∞ < γ

where ĀQ is given by:

ĀQ = Ā+ γ−2Q̄C̄ ′
2C̄2

Again, in the regular case, the Quadratic matrix In-
equality can be replaced by a Riccati equation given
by:

0 = ĀQ̄+ Q̄Ā′ + B̄1B̄
′
1 + γ−2Q̄C̄ ′

1C̄1Q̄

−(Q̄C̄ ′
2 + B̄1D̄

′
21)(D̄21D̄

′
21)

−1(C̄1Q̄+ D̄21B̄
′
1)

(28)

and the observer gain K̄ is given by:

K̄ = −(Q̄C̄ ′
2 + B̄1D̄

′
21)(D̄21D̄

′
21)

−1 (29)

The proof of Theorem 4 is based upon the fact, that
nothing more can be achieved for an H∞ problem than
what can be achieved by a static observer gain using all
(real or fictitious) inputs as stated in the following well
known fact.

Lemma 5. Assume that there exists an internally stabi-
lizing control law u = Hy for the system

ẋ = Ax + B1w + B2u
z = C1x
y = C2x + D21w

(30)

making the closed loop H∞ norm from w to z smaller
than γ.

Then there exists an internally stabilizing static output
injection controller u = Ky for the system

ẋ = Ax + B1w + Iu
z = C1x
y = C2x + D21w

(31)

which makes the closed loop H∞ norm from w to z
smaller than γ.

Proof of Theorem 4. To establish the proof of Theo-
rem 4 we shall verify that for the system (25) the reverse
of Lemma 5 holds, i.e., that the existence of a static out-
put injection controller obtaining a certain H∞ norm γ

implies the existence of a dynamic measurement based
controller obtaining the same H∞ norm. In fact, it can
be proved the stronger result, that the same closed loop
transfer function can be obtained. This derivation will
not be given in this paper. ⊓⊔

Finally, let us write up the overall controller structure.
When using the controller

K(s) =

(
AK BK

CK DK

)
derived above, along with a full order observer we get
the following controller:

C(s) =

A+DKC +BF CK −DK

BKC AK −BK

F 0 0


which is of order n+ nW .

5. EXAMPLE

Let us consider a simple nonminimum phase system de-
scribed by the following state space model

ẋ =

(
0 1
−3 −4

)
x +

(
0
1

)
u

y =
(

−2 1
)
x

This system has a nonminimum phase zero at z = 2.
Given the target design

F =
(
−50 −10

)
the problem is to design a dynamic compensator, such
that the recovery (in terms of the recovery matrix) is
better than −20 dB at frequencies smaller than 10−2

and better than 20 dB for all frequencies. This is achieved
by selecting a first order weight with a zero at −10−2,
and a pole two decades further. γ can be selected as
20 dB if small gains are essential, or it can be found by
iteration for the quadratic matrix inequality in Theo-
rem 4 if worst case recovery is in focus.

Figure 1 shows such a design following the above steps,
where γ has been found by iteration. For comparison is
shown a traditional LQG/LTR design. The LQG/LTR
design has much poorer performance for low frequencies,
which is natural since this requirement was not built
into the design. The bandwidth of the suggested design
is slightly poorer than that of the LQG/LTR. This is
due to a near-optimal choice of γ. If γ was chosen even
closer to the optimum, the bandwidth would deterio-
rate accordingly. And vice versa: if γ would be increased
to the value of the LQG/LTR design, the bandwidths
would be comparable.
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Fig. 1. Nonminimum Phase Example. Solid line: im-
proved design. Dotted line: reciprocal of weighting.
Dash-dotted line: LQG/LTR design

If desired, a bandwidth constraint could be built into
the design directly by selecting a second order weight
instead of a first order one.

6. CONCLUSION

A new method for LTR design of observer based con-
trollers has been proposed in this paper. The method is
based on multiplying the recovery matrix by a weight
function for obtaining good recovery in specified fre-
quency ranges. It turns out that the LTR design prob-
lem can be solved by using only one Quadratic Matrix
Inequality or one Riccati equation. The controller can
be given in explicit form. In this paper, the LTR design
problem has been considered at the input loop breaking
point, but the dual result for the output loop breaking
point can also be derived without any further conditions.

It is important to point out that there is no requirement
on the system to be minimum phase for achieving good
recovery in a specified frequency range, except that the
frequency range should not include non minimum phase
zeros. In contrast, in standard LTR design methods, it
is in general possible to obtain good recovery only if the
non minimum phase zeros are outside the bandwidth for
the target loop.
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