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Abstract. This paper considers the design of loop transfer recovery (LTR) controller
for sampled-data systems. The LTR design problem is formulated by using the 2 x
2 setup formulation. Following the standard LTR theory, the difference between the
target loop and the full-loop is defined as the recovery error, which is equal to the
target loop multiplied by the recovery matrix. The minimization of the recovery error
is derived by using H2 and H∞ designs.
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1. INTRODUCTION

The problem of Loop Transfer Recovery (LTR) was orig-
inally introduced in Doyle and Stein (1979), Doyle and
Stein (1981), and since then many papers have been
published in this area. The majority of these papers have
been cited in the reference list of Saberi et al. (1993).
All these papers deal either with continuous-time sys-
tems or with discrete-time systems. However, the LTR
design of sampled-data systems has not been tackled in
the literature except one paper Shi et al. (1994). The ap-
proach taken in Shi et al. (1994) is based on the result
in Sun et al. (1991), which is distinctly different from
the lifting approach proposed in Bamieh et al. (1991),
Bamieh and Pearson (1992b). In the former case, the
controller turns out to be linear time-varying and it gen-
erates continuously varying input signals rather than a
piecewise constant input signal. On the other hand, in
the latter case, the controller is assumed to be a finite
dimensional shift invariant system which is interfaced
with the continuous-time plant using a zero-order hold
and an ideal sampler. After certain transformation steps,
the controller is designed for the lifted system.

Our solution to LTR problem for sampled-data systems
is based on the lifting approach of Bamieh and Pearson
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(1992b). The disadvantage of this approach is that it
is slightly more difficult to formulate than the purely
continuous-time or discrete-time cases. However, as it
will be shown in this paper, the LTR design of sampled-
data systems can directly be tied to the conventional
discrete-time LTR design methods.

2. AN OVERVIEW OF LTR DESIGN

Let us consider the following system:

ẋ = Ax + B1w + B2u

z = C1x + D11w + D12u

y = C2x + D21w

or in a short description form by

G(s) =

 A B1 B2

C1 D11 D12

C2 D21 0


where x ∈ Rn is the state, u ∈ Rr, is the control input,
w ∈ Rk is the external input or disturbance, z ∈ Rl is
the controlled output and y ∈ Rm is the measurement
output. It is assumed that (A,B2) is stabilizable and
(C2, A) is detectable. Suppose the LTR design method-
ology is applied at the input loop breaking point. We
first design a target feedback loop with the static state
feedback gain F , for the system described by:
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GSF (s) =

 A B1 B2

C1 D11 D12

I 0 0


such that the design specifications are satisfied. It is
assumed that the state feedback loop is asymptotically
stable, i.e. all the eigenvalues of AF = A + B2F lie in
the left half plane. The target loop transfer function is
then given by:

Tzw,T (s) = (C1 +D12F )(sI −AF )
−1B1 +D11

which satisfies the closed-loop design specifications for
the transfer function from w to z. Now, let the plant be
controlled by a full-order observer based controller given
by:

C(s) = −F (sI −A−B2F −KC2)
−1K

where K is the observer gain. Then, the resulting closed
loop transfer function, in general, is not the same as
the target loop transfer function Tzw,T (s). In the LTR
step the observer based controller is designed so as to
recover either exactly (perfectly) or asymptotically (ap-
proximately) the target loop transfer function.

For a more careful analysis, we define the closed loop
transfer recovery error as

Ecl(s) = Tzw(s)− Tzw,T (s)

where Tzw is the closed-loop transfer function from w to
z when a full order observer is applied. The closed-loop
recovery error is related to the so-called recovery matrix
MI(s) given in Niemann et al. (1991) by the equation

Ecl(s) = Tzu,T (s)MI(s) .

where Tzu,T (s) is the closed-loop transfer function from
u to z under the target design given by:

Tzu,T (s) = (C1 +D12F )(sI −A−B2F )−1B2 +D12

and the recovery matrix MI is given by

MI(s) = F (sI −A−KC2)
−1(B1 +KD21)

We will say that exact loop transfer recovery at the in-
put point (ELTRI) is achieved if the closed-loop system
comprised of C(s) and G(s) is asymptotically stable and
Ecl(s) = 0 or MI(s) = 0 when Tzu,T is left invertible,
(they are equivalent in this case). For obtaining asymp-
totic LTR at the input point (ALTRI), Doyle and Stein
(1981), Stein and Athans (1987), we parameterize a fam-
ily of controllers with a positive scalar q, and say that
ALTRI is achieved if the closed-loop system is asymp-
totically stable and Ecl(s, q) → 0 pointwise in s as q →
∞.

3. SAMPLED-DATA SYSTEMS

In the following, the sampled-data system setup is shortly
introduced together with the lifting technique.

3.1 System Setup

Let us consider the sampled-data system described by:

GSD =

 A B1 B2

C1 D11 D12

C2 0 0

 (1)

Note that D21 and D22 are not present, however, they
can be incorporated by adding filters at the measure-
ment outputs if necessary, see Bamieh and Pearson (1992b).
The discrete time controller C is described by:

C(z) =

(
Ad Bd

Cd Dd

)
Furthermore, Sτ and Hτ represent the sampler and the
hold device, where τ is the sampling period.

The design of a sampled-data controller for the system
given by (1) can be derived by including the sampler
and the hold in the general system as shown in, see Ya-
mamoto (1990), Bamieh et al. (1991), Bamieh and Pear-
son (1992b) for the description of the lifting technique.

Using the lifting technique, we have the following de-
scription of G̃:

G̃ =

[
Ĝ11 Ĝ12Ĥτ

Ŝτ Ĝ21 Ŝτ Ĝ22Ĥτ

]
which has the following realization, Bamieh and Pearson
(1992b):

ĜSD(z) =

 Â B̂1 B̃2

Ĉ1 D̂11 D̃12

C̃2 0 0

 (2)

where the calculation of the operators in (2) can be
found in Bamieh and Pearson (1992b).

Note that G̃22 is the simply discretized transfer function
of G22(s).

The lifted system (2) satisfies the following:

(1) HτCSτ internally stabilizes G if C internally sta-
bilizes G̃

(2) ∥F(G,HτCSτ )∥ = ∥F(G̃, C)∥

3.2 H2 and H∞ Controller Design

The lifted sampled-data system described by (2) can
not be applied directly for an H2 or an H∞ controller
design, because the operators B̂1, Ĉ1, D̂11 and D̂12 are
infinite-dimensional. However, by using operator theory,
it is possible to derive an equivalent discrete-time finite
dimensional system Ḡ such that the following two state-
ments are equivalent for H2 optimization (see Bamieh
and Pearson (1992a) for result and notation):



(1) F(G̃, C) is internally stable and F(Ḡ, C) is inter-
nally stable

(2) ∥F(G̃, C)∥2H2
HS

= 1
τ (∥D̂11∥2HS2 + ∥F(Ḡ, C)∥2H2)

In this case, it is required that D̂11 = 0 for making the
closed-loop strictly causal.

The equivalent finite dimensional discrete-time system
Ḡ is given by:

Ḡ(z) =

 Ā B̄1 B̄2

C̄1 0 D̄12

C̄2 0 0


Ḡ can be calculated by using the equations given in
Bamieh and Pearson (1992a). Now, the H2 design fol-
lows standard discrete-time H2 controller design.

However, if we are interested to apply an H∞design in-
stead, we need to consider another finite dimensional
discrete-time system Ǧ. This system can be derived by
using the equations given in Bamieh and Pearson (1992b).
The relation between the lifted system G̃ and the equiv-
alent finite dimensional system Ǧ is given by:

(1) F(G̃, C) is internally stable and ∥F(G̃, C)∥∞ < 1
(2) F(Ǧ, C) is internally stable and ∥F(Ǧ, C)∥∞ < 1

Now, the H∞ design follows standard discrete-time H∞
controller design, see e.g. Stoorvogel (1992).

4. LTR DESIGN FOR SAMPLED-DATA SYSTEMS

Based on section 3, the LTR design problem for sampled-
data systems can be solved by using the equivalent di-
screte-time system. In the following, we shall describe
the discrete-time LTR problem and suggest H2/LTR
andH∞/LTR design methods for discrete-time systems.

4.1 The LTR Design Problem for Sampled-Data Systems

To apply the LTR design methodology on sampled-data
systems, we consider the following sampled-data system
for state feedback design:

GSD,SF =

 A B1 B2

C1 D11 D12

I 0 0


Let the target design be a state feedback controller given
by:

uk = Fyk = Fxk

with the resulting target closed-loop transfer operator
given by:

Gzw,T = F(GSD,SF ,HτFSτ ).

It is assumed that the target closed loop is internally
stable and it satisfies the design specifications.

As in the continuous-time case, the target controller can
not be implemented, so we need to recover the target
operator by using a dynamic controller C(z). With the
sampled-data system given by:

GSD =

 A B1 B2

C1 D11 D12

C2 0 0


the closed-loop operator with the controller C(z) is then
given by:

Gzw = F(GSD,HτCSτ ).

Based on these two closed-loop operators, we can define
the recovery operator by:

ESD,I = Gzw − Gzw,T (3)

From the recovery error operator in (3), we can now de-
fine the LTR design problem for sampled-data systems.

Problem 1. Let the target loop operator, the full loop
operator and the recovery operator be given by Gzw,T , Gzw

and ESD,I respectively. The LTR design problem is then
to design a dynamic controller C(z) that internally sta-
bilize the sampled-data system and make a suitable norm
of the recovery operator small in some sense.

It is not possible to minimize a suitable norm of the re-
covery operator directly. Instead, by using lifting of the
sampled-data system, the design problem can be trans-
formed into an equivalent discrete-time design problem
as described in the previous section. In order to apply
the lifting technique to the recovery error operator given
by (3), we need to make a joint state space description
before the system is lifted. If the system is lifted directly,
we will not get the right equivalent discrete-time system
to work with. A state space description of the recovery
error is given by:

GEI ,SD =

 AE BE,1 BE,2

CE,1 0 DE,12

CE,2 0 0



=


A 0 B1 B2 0
0 A B1 0 B2

−C1 C1 0 −D12 D12

I 0 0 0 0
0 C2 0 0 0


(4)

with the controller given by

uk = CE(z)yk = diag(F,C(z))yk (5)

The recovery error described by (4) is now given in the
standard description, which makes it possible to find
an equivalent finite dimensional discrete time system by



using the lifting technique. Performing this task, the fol-
lowing equivalent discrete time system for the recovery
error is obtained:

ḠEI
=

 ĀE B̄E,1 B̄E,2

C̄E,1 0 D̄E,12

C̄E,2 0 0



=


Ā 0 B̄1 B̄2 0
0 Ā B̄1 0 B̄2

−C̄1 C̄1 0 −D̄12 D̄12

I 0 0 0 0
0 C̄2 0 0 0


It is important to note that the equivalent discrete-time
state space description for the recovery error has ex-
actly the same structure as the sampled-data descrip-
tion. This structure allows to rewrite the recovery error
as a target loop transfer function multiplied by a recov-
ery matrix as described in section 2. Using the controller
CE(z) given by (5), we can express the recovery error

ĒI(z) = F(ḠE(z), CE(z))

in the standard form as:

ĒI(z) = F(Ḡ(z), C(z))−F(ḠT (z), F )

where

Ḡ(z) =

 Ā B̄1 B̄2

C̄1 0 D̄12

C̄2 0 0

 , ḠT =

 Ā B̄1 B̄2

C̄1 0 D̄12

I 0 0


The lifting guarantees that the norm (in consideration)
of the recovery error is preserved, i.e.

∥ESD,I∥ = ∥ĒI∥

First, consider a full-order prediction observer based
controllers given by:

C(z) = −F (zI − Ā− B̄2F −KC̄2)
−1K

Based on the above description of the recovery error ĒI ,
and the result from section 2, we get directly

ĒI(z) = Tzu,T (z)M̄I(z) . (6)

where Tzu,T (z) is the closed-loop transfer function from
u to z under the target design given by:

Tzu,T (z) = (C̄1 + D̄12F )(zI − Ā− B̄2F )−1B̄2 + D̄12

and M̄I is the recovery matrix given by

M̄I(z) = F (zI − Ā−KC̄2)
−1B̄1 (7)

It is important to note that the design of the target
gain F is free. It can be derived by e.g. an optimization
method.

4.2 Recovery Conditions

Based on the recovery error (6), it is possible to give con-
ditions for obtaining exact recovery. As in the continuous-
time case, exact recovery is obtained if ĒI(z) = 0. Thus,
we have the following result, Niemann et al. (1991),
Saberi et al. (1993)

Lemma 1. Let Tzw,T (z) be an admissible closed-loop
target transfer function and let Tzu,T (z) be left invert-
ible. Exact LTR, i.e. ĒI(z) = 0, can be obtained if and
only if M̄I(z) = 0.

Proof of Lemma 1. It follows directly from (6). ⊓⊔

In the rest of this paper we will concentrate on the
H2/LTR and H∞/LTR design methods. It is possible
to minimize the H2 or the H∞ norm of the recovery
error directly or indirectly by minimization of the re-
covery matrix M̄I(z), Niemann et al. (1991), Niemann
et al. (1993), Stoustrup and Niemann (1993). This is
equivalent to the standard LQG/LTR design, Niemann
et al. (1991), Niemann et al. (1995). Here, we only con-
sider the case of minimizing the H2 or the H∞ norm of
the recovery matrix. The minimization of the H2 or H∞
norm of the recovery matrix is based on the following
norm inequality:

∥ĒI∥ = ∥Tzu,T M̄I∥ ≤ ∥Tzu,T ∥ × ∥M̄I∥
As a direct concequence of the above norm inequality,
the norm of the recovery matrix should satisfy:

∥M̄I∥ ≤ ∥ĒI∥/∥Tzu,T ∥
when the norm of the recovery error is specified.

4.3 H2/LTR Design

Let the equivalent discrete-time state space description
of the recovery matrix be given by (7). Then, theH2/LTR
design problem is formulated as follows.

Problem 2. Let the recovery matrix, M̄I(z), for the ob-
server design be given by (7). Find an observer gain K
such that Ā+KC̄2 is stable and the H2 norm of M̄I(z)
is minimized.

To calculate the H2/LTR observer gain, we consider the
recovery matrix with the following state space realiza-
tion:

M̄I(z) =

 Ā B̄1 I
F 0 0
C̄2 0 0

 (8)

This design of observer gain uk = K2yk can be ob-
tained by using the discrete-time H2 design method



of Trentelman and Stoorvogel (1993). From Trentelman
and Stoorvogel (1993) we have the following result.

Lemma 2. Consider the system given by (8). It is as-
sumed that (C̄2, Ā) is detectable. The there exist an ob-
server uk = K2yk which stabilize the system (8) and
minimize the H2 norm of the closed loop transfer func-
tion M̄I if and only if there exist a symmetric matrix
positive semidefinte Q2 such that

Q2 = ĀQ2Ā
T + B̄1B̄

T
1 − ĀQ2C̄

T
2 (C̄2Q2C̄

T
2 )

−1C̄2Q2Ā
T

Moreover, the observer gain K2 is given by:

K2 = −ĀQ2C̄
T
2 (C̄2Q2C̄

T
2 )

−1.

It is important to note that it is in general required that
D11 = 0 for the original system due to the condition on
strict causality. However, this is not a condition in con-
nection with the H2/LTR design method, because the
D11 term does not appear in the recovery error equation.

Lemma 2 gives necessary and sufficient conditions for
the existence of an observer gain K2 such that internal
stability is obtained and the H2 norm of the recovery
matrix is minimized.

4.4 H∞/LTR Design

Now, let us use an H∞ optimization method instead. In
this case, it is assumed that the equivalent discrete-time
system (8) preserves the H∞ norm. Then, we have the
following H∞/LTR design problem.

Problem 3. Let γ > 0 be given. Design, if possible, an
observer u = K∞yk which internally stabilize the system
(8) and makes the H∞ norm of the closed loop transfer
function M̄I smaller than γ.

This design can be performed by using the approach
in Stoorvogel (1992), Stoorvogel et al. (1994). Thus, we
have the following result from Stoorvogel (1992):

Lemma 3. Consider the system given by (8). Assume
that (Ā, B̄1, C̄2, 0) is left invertible and has no invariant
zeros on the unit circle. Then, there exist an observer
u = K∞yk which stabilizes the system (8) and makes
the H∞ norm of the closed loop transfer function from
w to z less than γ, if and only if there exist a symmetric
matrix Q ≥ 0 such that:

R = γ2I − FQFT > 0

Q = ĀQĀT + B̄1B̄
T
1

−
(
C̄2QĀT

FQĀT

)T

G(Q)†
(
C̄2QĀT

FQĀT

)

where

G(Q) =

(
C̄2QC̄T

2 C̄2QFT

FQC̄T
2 FQFT − γ2I

)
and the eigenvalues of Ācl, where

Ācl = Ā−
(
ĀQC̄T

2 ĀQFT
)
GT (Q)−1

(
C̄2

−F

)
are inside the unit circle.

Moreover, an observer gain K∞ is given by:

K∞ = −(ĀQC̄T
2 + ĀQFTR−1FQC̄T

2 )H
−1

where H = C̄2QC̄T
2 + C̄2QFTR−1FQC̄T

2 .

Lemma 3 gives necessary and sufficient conditions for
the existence of an observer gain K∞ such that the sta-
bility and the H∞ norm conditions are satisfied.

5. EXAMPLE

A LTR design example for sampled-data systems is given
in this section. The H∞/LTR design method is applied
for both a traditional discrete-time LTR design and for
a sampled-data LTR design. The sampled-data system
is given by:

GSD =

 A B1 B2

C1 0 0
C2 0 0



=


−1000 0 39.478 0 0 1

0 −.62832 −39.478 0 1 0
0 1 0 0 0 0
0 0 39.478 −100 1 1

1000 0 0 0 0 0
0 0 0 0 0 0


The sample period is 0.1 sec. The target design is given
by F =

[
0.00 −3.5495 −32.2333 0

]
. The target loop

Tzw,T has an H∞ norm of 3.61.

When we apply the H∞/LTR design method on the
discretized system of the continuous-time system, we get
the following controller:

KD(z) =

(
AD BD

CD 0

)

=


0 0 0 −.041112 −.00041112
0 .75596 −3.5795 −4.4684 −.044684
0 .09067 .81293 −1.0459 −.010459
0 −.0028312 .01149 −.39358 −.0039362
0 3.5495 32.233 0 0


By using this controller to recover the target loop re-
sult in that the H∞ norm of the sampled-data recovery
error is 5.48 and that the final closed loop from w to
z has a sampled-data H∞ norm of 5.49. If we instead



apply the H∞/LTR design method on the an equiva-
lent discrete-time system based on lifting, we get the
following sampled-data LTR controller given by:

KSD(z) =

(
ASD BSD

CSD 0

)

=


0 0 0 −.098694 −.00098694
0 .75596 −3.5795 4.0535 .040535
0 .09067 .81293 −2.496 −.02496
0 −.0028312 .01149 −.99748 −.0099753
0 3.5495 32.233 0 0


When we apply this sampled-data LTR controller, the
H∞ norm of the sampled-data recovery error is reduced
to 2.18 and the sampled-data H∞ norm of the closed
loop from w to z is reduced to 4.51 compared with the
discrete-time designed LTR controller. In this example
it is possible to reduce the H∞ norm of the closed loop
operator by 18% by using the lifting technique.

6. CONCLUSION

The LTR design concept from continuous-time and di-
screte-time systems has been extended in a straight-
forward way to handle the sampled-data case. It turns
out that the sampled-data LTR design problem can be
transformed into an equivalent finite dimensional discre-
te-time LTR design problem by using lifting technique.
The calculation of the equivalent discrete-time systems
from the sampled-data systems depend on the applied
optimization method as e.g. H2 or H∞ optimization.

Using the equivalence between a sample-data system
and a discrete-time system, the conditions for obtain-
ing exact recovery are given with respect to the equiva-
lent discrete-time system. Due to the fact that sampling
normally introduce non-minimum phase zeros, exact re-
covery is in general impossible.

It can be shown that there does not exist a straight-
forward duality between the input loop breaking point
and the output loop breaking point forH∞/LTR design.
It turns out that it is not possible to make a standard
recovery design for the output loop breaking point by
using a standard full order observer based controller as
it is possible for the input loop breaking point. Instead,
controllers of order 2n need to be applied for the output
loop breaking point.
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