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are taken as pa = [0.5 
matrix as 

O.5lT and the model-switching probability 

(65)  
0.83 0.15 b:: ;it] = [0.30 0.701. 

A Monte Carlo simulation with 500 experiments was executed, 
and the results are presented in Fig. 3. In each experiment, the 
measurement model in effect at each point of time was randomly 
chosen according to (65). In Fig. 3(a), the root-mean-square-error 
(RMSE) in the state estimate versus time is presented. Averaging the 
RMSE’s over the time interval gives an average error of 10.75 for the 
IMM filter, 9.32 for the smoother of Method 1, and 9.42 for Method 
2. Fig. 3(b) presents the probability of error in the system-stmcture 
detection versus time (i.e., the probability of choosing the incorrect 
measurement model at each point of time). Averaging the probabil- 
ities over the time interval gives an average probability of error of 
0.19 for the IMM filter, 0.15 for Method 1, and 0.16 for Method 2. 
The two smoothers provided noticeably better performances than the 
IMM filter, while the smoother of Method 1 provided slightly better 
performance than Method 2. The smoother of Method 1 provided the 
best overall performance because it considered the most hypotheses. 

A simulation example comparing the performances of these al- 
gorithms in reconstructing the trajectory of a maneuvering target 
has also been performed. Detailed results are not presented because 
of space limitations. Both smoothers provided significantly better 
performance than the IMM filter in estimating the system state. 
However, unlike the system-structure simulation results above, the 
Method 1 smoother provided significantly better mode estimates than 
the Method 2 smoother. The mode estimates from the Method 2 
smoother and the IMM filter were comparable. 

V. SUMMARY 

Suboptimal approaches to the one-step fixed-lag smoothing prob- 
lem for Markovian switching systems were examined in this paper. 
Two algorithms for generating one-step fixed-lag smoothed estimates 
were presented. In the first algorithm, the models over the two most 
recent sampling periods were considered. For n models, there are n2 
possible ways of conditioning on models in two sampling periods, 
and this algorithm evaluated the n2 hypotheses using n2 parallel 
one-step smoothers. In the second algorithm, only the models in the 
most recent sampling period were considered, and it evaluated 72 

hypotheses using n parallel one-step smoothers. A simulation of a 
system-structure detection problem was used to compare the perfor- 
mances of the two smoothers and an IMM filter. The results show 
that the smoother of Method 1 provided the best overall performance. 
Variants of these one-step smoothing algorithms have been used in 
conjunction with IMM filtering algorithms to develop techniques 
for the alignment of asynchronous sensors [ 6 ] .  Finally, approaches 
similar to the ones presented in this paper have been applied to the 
fixed-interval smoothing problem for Markovian switching systems 
~71. 
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LTR Design of Discrete-Time 
Proportional-Integral Observers 

B. Shafai, S. Beale, H. H. Niemann, and J. L. Stoustrup 

Abstract-This paper applies the proportional-integral (PI) observer 
in connection with loop-transfer recovery (LTR) design for discrete-time 
systems. Both the prediction and the filtering versions of the PI observer 
are considered. We show that a PI observer makes it possible to obtain 
time recovery, i.e., exact recovery for t + 00. under mild conditions. Two 
systematic LTR design methods, one based on an extension of the linear 
quadratic Gaussian loop-transfer recovery (LQGILTR) and the other 
based on linear matrix inequality (LMI), are derived for the discrete- 
time PI observer case. Explicit expressions for the recovery error when 
exact recovery is not achievable for all frequencies are also given. 

I. INTRODUCTION 
Since the appearance of the papers by Doyle and Stein [2], [3] 

dealing with loop-transfer recovery (LTR), many papers have been 
written on this topic for both continuous and discrete-time systems. 
The most notable ones for continuous-time systems are [l], [15], 
[IO], 1111, U81, VI, [121, and U31. 

Although there are certain similarities between the LTR of con- 
tinuous and discrete-time systems, there exist also fundamental dif- 
ferences. Without going into the details, it is well known that an 
arbitrarily specified target loop-transfer function is recoverable if 
the continuous-time system is minimum phase and left invertible. 
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However, this is not true for discrete-time systems as discussed in 

For discrete-time systems there are two main types of observers, 
namely, prediction and filtering (current type) observers. They are 
used when computation time is either significant or negligible, 
respectively. The status of the reported results in a discrete-time LTR 
indicates that the recovery of any arbitrarily specified target loop- 
transfer function using a filtering observer is possible for the strictly 
proper square minimum phase systems having only infinite zero of 
order one. On the other hand, it is impossible in general to have either 
exact or asymptotic LTR when the plant is a nonminimum phase or 
a prediction-type observer is used. The fundamental difficulties are 
due to the fact that sampling usually introduces nonminimum phase 
zeros, that computation time is sometimes not negligible, and that 
practical systems contain time delays, and they are often nonstrictly 
proper. Consequently, recent results [8], [19], [13] were devoted to 
understanding the behavior of LTR under these conditions. 

As pointed out above, it is in general not possible to achieve 
asymptotic (or exact) recovery for a free target design. However, 
it is possible to overcome some of these problems by including an 
integral term in the full-order observer. By using this proportional- 
integral (PI)-observer in connection with LTR design, it is possible to 
obtain time recovery, i.e., recovery as t + 3c'. The continuous-time 
case has been thoroughly investigated in [9], where it has been shown 
that it is possible to obtain time recovery for nonminimum phase 
systems. In this paper we show explicitly that it is also possible to 
obtain time recovery in the discrete-time case by using a PI-observer 
for both minimum phase as well as for nonminimum phase systems. 

An alternative way to obtain good recovery at low frequencies is to 
augment integrators to the plant before the target design is performed 
[l], [18]. This implies that the target loop is no longer entirely free. 
In contrast, when the PI-observer approach is used, the integral effect 
is dictated by the observer structure. Consequently, the target design 
is completely free. 

[4l, [61, and [SI. 

11 DISCRFTF-TIME PI ORSFRVER 

Consider a finite dimensional, linear, time-invariant discrete system 
described by a state-space realization ( A ,  B. C) 

.f ( t  + 1) = 4s( t )  + Bu( t )  

y ( t )  = CJ ( t )  (1) 

where c E R". U E Rn', and y E Rnl with i i  > i i i , ( - 4 ,  B )  
stabilizable, (C. 4 )  detectable and C. B full rank It is further 
assumed that the system (-4 B.  C) has no poles or zeros at the origin 

Let the plant be controlled by an observer-based controller having 
the state feedback 

u( t )  = F i ( t )  + r ( t )  = w ( t )  + r ( t )  (2)  

where F is the state feedback gain, i is the state estimate, and T 

the reference input. The states are estimated by using a proportional- 
integral (PI) observer. Analogous to the case of P-observers, it is 
possible to derive two versions of the PI observer for the discrete-time 
system (1): a prediction PI observer and a filtering PI observer. The 
discrete-time, prediction PI observer is equivalent to the continuous- 
time version 191. Therefore, we can directly formulate a prediction 
PI observer as follows: 

i ( t  + 1) = .4i(t) + ICp(Ci( t )  - ! / ( t ) )  + Bu( t )  + Br:(t) 
v ( t  + 1) = ~ ( t )  + Kr(CS( t )  - .y(t)) (3 )  

where I<p and I<I are proportional and integral gains, respectively. 

To derive a systematic design method, we let the PI observer-based 
controller be represented by an augmented state system given by 

where 

I<p 
IC, = [Iir 1 .  F, = [ F  

f]. c, = [C U] 

In a prediction observer the feedback signal u ( t )  is based on 
measurements up to time t - 1; on the other hand, in a filtering 
observer ~ ( t )  is based on measurements up to time t .  The time 
delay due to calculation of the feedback signal u( t )  therefore must 
be negligible. A filtering PI observer can be derived from the full- 
order, filtering P observer by including an integral term. The resulting 
state-space description is equivalent to (3); however, the feedback 
signal is given by ~ ( t )  = F f A i ( t )  + F f I i I J ( C i ( t )  - .y(t)) where 
F = F f A  The calculation of FJ requires that A is invertible or that 
F is a linear-quadratic (LQ) gain. The compact form of the filtering 
PI observer-based controller is equivalent to (4) and ( 5 )  with the 
matrix F,. given by 

In LTR design, the sensitivity recovery error is defined as 

(7) 

where 

S T I L ( Z )  = ( I  - F(ZI  - -4)-'B)-' 

S r ( z )  = ( I  - C ( Z ) G ( Z ) ) ~ ' .  (8) 

Let the applied controller C ( i )  be a prediction or a filtering PI 
observer-based controller as described above. We then have the 
following results which can be proven analogous to the continuous- 
time case [9]. 

Lemma 2. I :  Let the recovery matrix M p ~ ( z )  be given by 

where -A,. D,, C,. IC,. and F ,  are given by ( 5 )  or F, by ( 6 )  for the 
filtering observer. Then 

Based on the discrete-time LTR formulation, we now give neces- 
sary and sufficient conditions for both exact and time recovery. 

Lemma 2.2; Let the sensitivity recovery error be given by (7). 
Exact LTR is obtained if and only if one of the following equivalent 
conditions holds: 
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In some cases the step response of the recovery error Es tends to 
zero as t + 00 which happens exactly when lirnz41 E s ( z )  = 0, 
We can then define time recovery for discrete-time PI observer-based 
systems as follows. 

Dejinition 2. I :  Let M p ~ ( z )  be the recovery matrix. Time recovery 
is obtained if and only if 

M p r ( 1 )  = 0. (13) 

Analogous to the continuous-time case, the condition for achieving 
time recovery with a PI observer can now be derived for the discrete- 
time case. With respect to the prediction PI observer we have the 
following result. 

Theorem 2.1: Time recovery is obtained with a prediction PI 
observer if and only if the largest invariant subspace of ( I  - 
A - IipC)-lBIC~C contained in the controllable subspace of 
( ( I  - -4 - IipC)-', ( I  - A - I ipC)- 'B)  corresponding to z = 1 
is itself contained in the unobservable subspace of (P.  ( I  - -4 - 
I i p C ) - ' B I i I C ) .  

In connection to Theorem 2.1, the following corollary gives a 
simple matrix condition which can be checked to determine whether 
or not time recovery i s  achievable. 

Corollary 2.1: Let the Jordan normal form of the matrix ( I  - -4 - 
I<ir.C)-LBIiiC be given by 

where .J, contains all the Jordan blocks associated with the eigenvalue 
z = 1 according to the partitionings 

Then time recovery is obtained if and only if 

FTl(S1(I - A - KpC)- 'B ,  JoS1(I - -4 - I<pC)-'B 

(16) 

" .  , J; - l s l ( I  - A - I<-pC)-lB) = 0. (17) 

With respect to the filtering PI observer, the only difference is 
that the target design gain F in Theorem 2.1 and Corollary 2.1 is 
replaced by F f  (A + IipC). 

Again, the condition on IiI for time recovery will generically be 
satisfied if IilC has full row rank. As in the continuous-time case, 
however, this condition is neither necessary nor sufficient. 

111. LQGLTR DESIGN OF DISCRETE-TIME PI OBSERVERS 

In the following subsections we extend the LQG and LQGLTR 
design methods of full-order observers for the case of PI-observers. 

A.  LQC Design 

Consider the extended state form of a PI observer-based controller 
given by (4). To proceed with an LQG design for (l), select weighting 
matrices r and C which satisfy 

respectively. Solve the algebraic Riccati equation 

where 

Then compute ICz by 

The integral gain Iii has full rank if and only if CP12 has full rank. 
Rewriting (19) as four (effectively three) simultaneous equations 
leads to 

From (25) we see that CP12 has full rank if and only if 1722 = 
L2L; i s  positive definite. Moreover, r22 is the only submatrix 
of r which, via P12. influences ICI. As in the continuous time 
case therefore, LQG design of a PI observer generically yields time 
recovery. 

B. LQG/LTR Design of Full-Order Observers 

Derivation of an LQGLTR design method for discrete-time sys- 
tems parallels the derivation for continuous-time systems given in [9] 
with the exception that a design can be obtained with zero weighting 
on the measurement signals, i.e., C = 0. The solution to the Riccati 
equation with S : 0 has been given in an explicit form in [14]. 

Lemma 3.1: Assume that the system ( A ,  B, C) satisfies 

C-4'B = O ,  i = 1;...1 - 2 (26) 

clet [ C A - ~ B I  # 0. (27) 

Then the singular stationary Riccati equation (C = 0) for the system 
(-4. B. C) is given by 

P = A P A ~  + r - A P C ~ ( C P C ~ ) - ~ C P A ~  (28) 

and with r = BBT the observer gain Ii is given by 

A- r -.4"(CA-Ij)-' (29) 

where the system (4. L?, C) is minimum phase [it is the minimum 
phase projection of (-4, B. C)]. 

The connection between the minimum phase system (A,  B ,  C) and 
the nonminimum phase system ( A ,  B,  C )  is given by 

G ( z )  = G ( z ) B , ( z )  = C ( z 1 -  A)- 'gga( z )  (30) 

where B a ( z )  is stable, has zeros coinciding with the nonminimum 
phase zeros of G ( z ) ,  and satisfies 6a(z-1)TB,(z) = I .  The transfer 
function G ( z )  is minimum phase and is termed the minimum phase 
counterpart of G ( z ) .  One method for calculating G ( z )  and B a ( z )  
can be found in [19]. 

Now, using the recovery matrix for the full-order prediction 
observer 

M p ( z )  = F ( z I  - A - IC*pC)-'B (31) 

and the gain given in Lemma 3.1 with r = LLT and C = 0, we 
have the following result. 
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Theorem 3.1: Let the full-order prediction observer gain I< be 

/i = - - ~ ' L ( C A - % - ' .  

Then the recovery matrix Mp(2) is given by 

C. LQG/LTR Design qf PI Observers 

The LQGLTR design of a full-order P observer can be realized 
by using r = BBT and C = 0 ,  as shown in the above section. 
Similarly, if we let r = B,Bz and C = 0 in the PI observer design, 
we have l i r  = 0 due to the fact that Tan = 0. Instead, let us use a 
modified matrix r = L,LF, where LT = [BT L:]. It is assumed 
that L.L is selected such that 1 - LZ has the eigenvalues inside the 
unit circle. This is a technical assumption which will simplify the 
equations for the recovery matrices. However, there is no need to 

jVIp(z) = F ( z 1 -  -A)-'[l? - z - 'A ' i (C(a l  - A)-'i)-' 
. C(z I  - .4)-'B] 

where (=L. i. C) i? the minimum phase projection of (A. L. C ) .  
Pro($ Rewriting the recovery matrix as 

Now, using C@(zjA4L = z C @ ( z ) i  the recovery matrix becomes 

introduce nonminimum phase zeros into the system by the selection 
of the free parameter Ls .  With this choice of r. we will get a norizero 
IC1 in general for a nonzero L2. 

Let i, satisfy the minimum phase condition on (AT.  i,. C,) with 
iz = [hif 

rank 

LT],  whereby it is also required that 

21-- .A  -B 
=rank  [ 0 z l - I  :] ' IpAL 

C 0 0 
= n + 2 1 n .  Yz:p(zj 2 1. (35) 

Then one can compute i,), by applying the method proposed in [19]. 
Using L ,  and (29), the following PI-observer gain is derived for 

the nonminimum phase case: 

Ii, = -A: i ( C,  A" i, ) -' 

It is now reasonable to state the following result. 
Theorem 3.2: Let the matrix Lz be selected such that I - Lz has 

the eigenvalues inside the unit circle. The recovery matrix J Q r (  2 )  

for the prediction PI-observer take the following form when the 
optimal LQGLTR gain in (37) is used: 

M p r ( z )  = F ( z I  - 4)-'[B - z-"(A'B1 + A2-'BL2 + ' .  . 
+ BL2 + ( 2 1  - I )  - I B Lz )& ( z j (;I  - I) 
. (d - I + L 2 ) - ' ]  (38) M p ( z )  = F @ ( z ) [ I -  - ~ / i ( z ' c @ ( ~ ) i j - l C @ ( z ) ] B  

where 8, ( z )  satisfies 
= F @ ( Z ) [ B  - ,~-'4"(C@(z)i)-'C~~(%)B] 

C,@,L, = C,@.,L,B,(z). 

When a filtering observer is applied instead, the recovery matrix 
Proof Substitution of -4,. B,. C,. F,; and L ,  in the general which completes the proof of Theorem 3.1. 

is given by 
recovery matrix of Theorem 3,1 yields 

--1 -1 " A r l r i ( 2 )  = F,@.,(z)[B, - 2 A,L,(C,@., ( z ) i , ) - l  

iIlr) '(z) = F f ( A  + I i p C ) ( a / -  A - /ipC)-lB (32) ' C,@.,(z)B,]. 

Moreover, the different terms in the above equation can be expressed 
by the following results: and with the observer gain given in Lemma 3.1, we have directly 

M F ( I )  = F ( z 1 -  A - 1 [ l ?  - z - l + l A - l  FL@,(Z) = [ F @ ( z )  ( z I  - 1)-9+€+)B] 

' i ( C ( z I -  A - ' i ) - ' C ( z / -  4)-1B]. (33) F,@,(z)B, = P B ( z ) B  

C,@.,(z)B, = C@(Z)B 
~ --4lBl - -4" BL2 - . . . - B L  [ - L2 

It is now very easy to derive explicit expressions for the recovery 
matrices for the P-observer. When C B  does not have full rank but 
satisfies the conditions given in Lemma 3. I ,  we obtain the expressions 

Lemmu 3.2: Let the system (A.  B.  C )  be nonminimum phase, and 

-ALL = 

--z r , @ , ( z ) A : L  
for the recovery matrices given in the following lemma. 

let the optimal LQGILTR gain be given by (29). Then the recovery 
matrices for the full order observers are given by 

- 1  

= z-"@(z)[il"1 + A"IBL2 + .  . . + BL2 
+ ( 2 1  - 1)-1BL2] 

Prooj: Lemma 3.2 follows directly from Theorem 3.1 by using = 8,(z)JC@.B + (zl- I ) - ' C @ B L L ) - l c @ B  
L = B. 0 = B , ( z ) ( z I -  1)(21 - I +  L 2 ) - ' .  0 
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Recovery Transfer Functlon 

L2 - .5 
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1 1 a-' 1 OD 10' 
Frequency (radlsec) 

Fig. 1. The recovery matrix for the filtering P and PI observer. 

Note that the assumption on Lz has been used in connection with 
the calculation of the last equation. Thus, using these equations, the 
recovery matrices M,pi(z) ,  M p ( z )  can be derived directly. Note that 
we get the recovery matrices for the P-observer from Theorem 3.2 by 
using Lz = 0. As a direct consequence of Theorem 3.2, we achieve 
time recovery. This is reflected in the following result. 

Theorem 3.3: Let the recovery matrix for the prediction PI- 
observer be given as in Theorem 3.2. Then for z = 1. the recovery 
matrix satisfies 

M p I ( 1 )  = 0. 

In the minimum phase case, we have B , ( z )  = I and Bi = B. 
Thus, the equations for the recovery matnces take the following 
forms 

I f p r ( z )  = F ( z I -  A)-'[B - z- '(A'B + AlP1BL2 + . . .  
+ BLL + (ZI- I ) -1BLz)(ZI  - I )  
' (ZI - I + L z ) - ] ]  

+ " + B L z + ( Z I - I ) - 1 B L 2 ) ( Z I - I )  
' (ZI - f + Lz)- l ] .  

(40) 
U p 1  ~ ( z )  = F ( z I -  A)- '[B - zl-'(A'-'B + A'-'BLz 

(41) 

D. LMI-Based Solutions for LQG/LTR Design 
The above Riccati equation in Lemma 3.1 has also been considered 

in [17]. The result derived in [17] is based on an LMI (linear matrix 
inequality) formulation of the Riccati equation. Let us consider a 
linear matrix function G ( Q )  

Proof: Since the recovery matrix M p i ( z )  can be expressed by 

- z-'"'Bl + -A'-lBLz + ' ' ' + B L 2  fM1'r(z) = F ( z l  - 

+ (zI - I)-IBL2)(C,~.,i,)-'C,~,B,] 
(42) 

= F ( z 1 -  .A)-l[B - z-1(41B1 + A - l B L 2  + ' " + BL* AQ24T - Q + BBT AQCT 
G(Q)= [ CQAT + ( z f  - I ) - l B L 2 ) ( % I -  I ) ( ( Z I -  I )C@B'  

we simply evaluate it at z = 1 and the result follows, i.e., 

Equivalently, we can calculate the recovery matrix for the filtering 
PI observer which is given by 

Here, it is also possible to get time recovery 

Let Q be the largest real symmetric solution of the LMI 

G ( Q )  2 0. (43) 

It can be shown that whenever (G, -4) is detectable, the largest real 
symmetric solution Q to (43) exists and is unique. Moreover, the 
solution Q to (43) is the solution to the Riccati equation in Lemma 
3.1. Knowing the solution Q to (43), we define the following relation 
between G ( Q )  and B Q ,  DQ:  

G ( Q )  = [::I X [B; D Q ]  (44) 

where the system characterized by the quadruple (A, BQ,  C ,  D Q )  
is the minimum phase projection of (A, B, C), including also the 
infinite zero structure. The direct matrix DQ is nonsingular, so the 
system (A, BQ,  C ,  D Q )  has no infinite zeros at all. Furthermore, the 
observer gain can be expressed in terms of the matrices BQ and DQ 
as 

Ii = - B ~ D ~ ' .  (45) 
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Sensitlvltv Transfer Functlon 

1061 

lo-' 1 oo 
Frequency (radbec) 

Fig. 2. The sensitivity transfer for the target loop and the full loop. 

Based on the above LMI result for the Riccati equation, we can 
derive the following factorization of the system (A: B: C): 

G ( Z )  = ~ , , , g ( z ) B , , Q ( z )  

= ( c ( Z I  - 4)-'BQ + D Q ) k a , Q ( Z )  (46) 

where B,  ,Q (2) is its all pass factor. Note that this factorization takes 
the infinite zero structure into account. 

By using the two equations for the Kalman filter gain, we get 
directly the connection between the matrices in (30) and (46) 

B y  = .a'k, D y  = Cd"'k', ~ , , Q ( Z )  = Z- '& , (Z) .  (47) 

The connection between the two all-pass factors follows directly by 
the observation that the system (A. B. C) has 1 zeros at infinity. 

If we use the Kalman gain (45) in the recovery matrix for the 
prediction observer, we obtain directly 

~ p ( z )  = F ( Z I  - A)-'(B - B Q B , , Q ( Z ) ) .  (48) 

Now, let us consider the LMI solution for the PI-observer by 
considering the extended system (Az. L,, C,) given by 

where 

is the largest real symmetric solution of (49). Knowing the solution 
Q. we get the following relation between G(&) and LQ. DQ:  

G(Q) = [::I x [LG 061. (51) 

The PI-observer gain is then given by 

Using this gain in the recovery matrix M P I ( z ) ,  we have the 
following result. 

10' 

Theorem 3.4: Let the matrix Lz be selected such that I - Lz has 
the eigenvalues inside the unit circle. The recovery matrix M I > I ( z )  
for the prediction PI-observer takes the following form when the 
gain in (52) is used: 

h f l > ~ ( ~ )  = F ( z I -  A)- '[B - (BQ + (zI - I)-'BLZ) 

' B a , Q ( Z ) ( Z I - I ) ( Z I - / +  L2)-'] (53)  

where &,,Q ( z )  satisfies 

Cz@,Lz = (DQ + cz@zLQ)ka ,Q(%) .  

Proof: See the proof of Theorem 3.2. 
Note that the equation for the recovery matrix based on the LMI 

solution has the same structure as the recovery matrix given in 
Theorem 3.2. Therefore, time recovery is still obtained. 

1V. EXAMPLE 
Consider a nonminimum phase single-input-single output (SISO) 

system represented by [ 1.1036 1 0 1 %  [".0803] 

0.0498 0 0 0.0179 
A = -0.4060 0 1 B = 0.1544 

C = [ l  0 01, D = 0 .  

The discrete-time system is nonminimum phase with two zeros at 
-1.7989 and -0.1239. Note also that C B  has full rank. As target 
design we use [I31 

F = [7.1222 '7.5293 2.73731. 

Applying the optimal LQGLTR gains for the P and PI observers 
considered in the above section results in the recovery matrices 
shown in Fig. 1 .  The PI-observer has been designed for different 
values of the gain Lz. As expected, the PI observer achieves time 
recovery, i.e., the recovery matrix has small gain at low frequencies. 
It is also important to point out that one can shape the gain of the 
recovery matrix at low frequencies by the selection of Lz. In Fig. 2, 
the associated sensitivity transfer functions are shown. Again, the 
controller based on the PI observer recovers the target sensitivity 
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Fig. 3. The step responses for the closed-loop systems 

function at low frequencies. In Fig. 3, the step responses are shown 
for the target closed loop and the observer-based closed-loop transfer 
functions. The advantage of the PI observer, as compared to P 
observer, is clearly shown in this plot as well. Moreover, the step 
response corresponding to PI observer-based implementation reaches 
the steady-state value very fast. 

V. CONCLUSION 
This paper presented two versions of the discrete-time PI observer: 

a prediction and a filtering PI-observer. Both LQG and LQGLTR 
design methods were derived for each observer type with special 
attention to the time recovery effect of the PI observer. Necessary 
and sufficient conditions for achieving LTR and time recovery in PI 
observer-based systems are given. 

Moreover, explicit expressions have been derived for the recovery 
matrices for both the P and the PI-observer in light of optimal 
LQGLTR design. These explicit forms are derived for both minimum 
phase as well as for nonminimum phase systems. As a direct conse- 
quence of these derivations, we established that it is always possible 
to obtain time recovery when PI-observer is applied. Furthermore, the 
LQGLTR design method does not have to be employed for achieving 
time recovery 
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