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Near Optimal Decentralized 3c, Control: 
Bounded vs. Unbounded Controller Orders 

J. Stoustrup* 

Abstract 

It is shown that for a class of decentralized control 
problems there does not exist a sequence of controllers 
of bounded order which obtains near optimal control. 
Neither does there exist an infinite dimensional opti- 
mal controller. Using the insight of the line of proof of 
these results, a heuristic design algorithm is proposed 
for designing near optimal controllers of increasing or- 
ders. 

1 Introduction 

In a range of industrial environments, implementing a 
full multivariable controller which combines all mea- 
surements and all control signals, is not possible, prac- 
tical, or desirable. For a distributed plant, installing a 
full multivariable controller could mean that a com- 
plex communication network had to be hardwared. 
Moreover, in terms of reliability, a full multivariable 
controller could have the effect that a breakdown in a 
single unit, no matter how minor to the system, could 
have plant-wide consequences. Examples of applica- 
tion areas, where full multivariable controllers are un- 
acceptable are: distributed power systems (where the 
controllers for each station should be independent), 
steel milling (where the controllers for each stand 
should not interfere), and large scale space systems 
(where the modules should be autonomous). 

To formalize such requirements, known as decentral- 
ized control specifications, we consider a state space 
plant model of the form: 

where U and y is partitioned as 

U =  ( :l ) 7 Y =  ( y; ) (2) 
uk Y k  
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where each pair (ui,yi) are vectors of local actuator 
and sensor signals, respectively, corresponding to the 
i’th subsystem of the plant. 

Now, the problem is to design IC controllers: 

u . - K .  2 - Z Y Z ,  . i = l ,  . . . ,  k (3) 

such that the resulting transfer function from w to z 
meets the specifications. In this paper we shall as- 
sume that the specifications are posed in terms of an 
X, norm constraint of the transfer function from w 
to z .  However, this choice is not crucial, and the ar- 
gument found below would hold for many other types 
of performance specifications. 

Rewriting (3) using (2), we get 

K1 0 . . .  0 

u = K y ,  K = (  1 ::I 0 ) 
0 . . .  KI, 

This decentralized control problem is depicted in Fig- 
ure 1. Note, that each controller Ki(s) connects the 
measurement signal yi and the control signal ui, only. 

Y2 

Y k  - 

Figure 1: Decentralized control 

The theory of decentralized control has been widely 
studied in the literature. The classical theory which 
especially addresses the issue of decentralized stabi- 
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lization is surveyed in [Dav84]. Two excellent text- 
books dealing with decentralized control are [Vid85] 
and [094]. 

More recently, issues as 31, decentralized control has 
been introduced [Paz93], and robust and reliable de- 
centralized control has been studied, see e.g. [VMP92]. 

Most published results on decentralized control are 
based on sufficient conditions only. In contrast, [SM95] 
suggests an optimization based approach. The method 
in that paper uses a parameterization which enables 
an infinite dimensional optimization problem to be ap- 
proximated by a finite dimensional one. In the exam- 
ple studies, controller orders grow rapidly, as the opti- 
mization reaches the optimum. The authors of [SM95] 
blame their method rather than the decentralized con- 
trol problem itself. It is a common conjecture that 
decentralized control problems can be solved by fixed 
order controllers. 

In this paper, we shall prove to the contrary that for 
decentralized control problems all controllers can have 
dynamic orders that tend to infinity as the optimum 
is approached. 

2 Main Results 

The main result of this paper is that near optimal 
decentralized fl, control problems can require con- 
trollers of arbitrarily large orders as the optimum is 
approached. To state this in more precise terms, we 
introduce the following two sets of controllers: 

{ K = ( 7 0 : K is internally 
. . .  Kk 

1 stabilizing, and llFi(G, K)ll, < y 

IC,N(G) = 
{ K = diag {Ki}  E IC,(G) : K; is 

of dynamical order 5 N} 

Theorem 1 There exists a nonempty class of systems 
9" such that for each G E G" the inequality 

inf {y : IC,(G) # 0) < inf {y : ICY(G) # 0) 
holds f o r  any N .  

The interpretation of Theorem 1 is that there exists 
systems for which no sequence of fixed order decen- 
tralized controllers approach the optimal value. 

Remark 1 It is tempting, yet incorrect to conclude 
from Theorem 1 that this implies the existence of an 
optimal infinite dimensional decentralized controller. 

~ 
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We shall prove that in general there does not ex- 
ist optimal decentralized controllers that give closed 
loop systems that are analytical in the open right half 
plane, which establishes the nonexistence of such con- 
trollers. 

Before embarking the proof of Theorem 1, we shall 
need the following result from functional analysis 

Corollary 2 Let D denote a closed subset of the com- 
plex plane. Consider f (.z) E W ,  f analytic in V, and 
assume f ( t )  = 0 on a :;et of positive measure on the 
boundary of D. Then f E 0.  

This observation is evident from the following result, 
which can be found in [Jen99]. (This paper illustrates 
how use of the word "new" in the title can be mislead- 
&) 

Theorem 3 Let D denote the unit disc or C+. 
f (z )  E 3cp(D), f $ 0  then 

If 

This theorem states that 'only the zero function is iden- 
tically zero on a (part of a) closed contour in the com- 
plex plane. 

Finally, we shall use the following technical result. 

Lemma4 Let 

be an  irreducible N 'th order proper rational function, 
and let (w1 , .  . . , W2N+1} be a set of distinct real values 
for which A(iwi)  # 0,  i == 1,. . . ,2N + 1. Define the 
numbers 

. ,  
Then there exists a neighborhood of (71,. . . , y 2 ~ + 1 )  
such that the map F : C2N+1 -+ C2N+1 which 
maps the 2N + 1 complex numbers (71,. . . ,72N+1) 
to the 2N + 1 (possibly complex) parameters 
( ( ~ 1 , .  . . , a N ,  Po,.  . . ,,ON) of a rational function in the 
form (4), is  a continuous bijection. 

Proof. Let US first estiLblish uniqueness of F at 
( 7 1 , .  . . , y 2 ~ + 1 ) .  To that end assume that the param- 
eters ( t i l , .  . . , t i N ,  B o , .  . . , B N )  satisfy (4), i.e. 

However, from (4) and (5) we infer 

A(iwi)B(iwi) - A( iw i )B( i~ i )  = 0 ,  , i = 1,. . . ,2N + 1 



The only polynomium of degree less than or equal to 
2N having 2N+l zeros is the zero polynomium, hence: 

A(s)B(s)  - A(s)B(s)  E 0 (6) 

Since A(s)  and B ( s )  were assumed to be coprime, the 
only solutions of order less than or equal to N to (6) 
are 

where IC is a unit in the ring of polynomials, i.e. a con- 
stant. Finally, since the coefficients of highest order in 
A and A are fixed to  1, we conclude k = 1. 

From this argument it follows that the map 
F : ~ 2 N + l  -$ ~2N+1  

F :  ( y i , . . . , y z ~ + i )  (ai,...,aiv,Po,...,P~) 

is well defined in any neighborhood of (71, . . . , T::!N+~) 
where the corresponding transfer function remains ir- 
reducible. Such a neighborhood exists due to the con- 
tinuity of the roots of a polynomium as functions of 
the coefficients, and due to the fact that the coeffi- 
cients are computable by solving linear equations that 
depend continuously on the yz’s. This also establishes 
continuity. Obviously, the inverse map is injective, due 
to the definition of the 7%’~. 0 

A = I c . A , B = I ~ . B  

, 

We.are now able to  prove our main result. 

Proof of Theorem 1. To establish nonemptyness of 
Gm we shall study the decentralized control problem 
in Fig. 2 .  The system is a series connection of two 
’model matching problems’, which can be thought of 
as a prototype of decentralized production line control. 
In this interpretation w is an impurity of the product 
eliminated in part by the controller &I which is then 
transferred downstream, where the product is further 
refined by Q 2  before it is fully processed as z .  The 
notation &; rather than Ki is introduced because we 
think of the Qi’s as Youla parameters ([YJB71]) rather 
than controllers. 

Figure 2: Decentralized control for series connected 
model matching problems 

Specifically, we shall choose: 

Note, that internal stability is equivalent to stability 
of Q1 and Q Z  since the Gi’s are stable (though non- 
minimum phase.) 

For this system we shall prove that any sequence of 
fixed order controllers stays boundedly away from the 
optimal value of y which for this example is 0 (see 
below). 

To that end, let N be fixed and assume to the con- 
trary that we have a sequence of controllers &? = 

( (f l; ) with &T being N’th order transfer func- 

tions which satisfies [[TTw(.)l[OO < y for all y, where 
“,‘,(e) is the closed loop transfer function from w to 
2: 

For any S > 0 we can perturb GI(.) and G2(.) by two 
irreducible N’th order stable proper rational functions 
GI(.) and Gz(.): 

G l = G i + G i ,  G::!=Gz+Gz (7) 

such that GI and G::! are N’th order stable non-strictly 
proper rational functions which have zeros in the right 
half plane and satisfy: 

Obviously, ~~~~w~~ < y + 6 implies that for each fre- 
quency w either 

00 

Now, choose 4N + 2 arbitrary, but different frequen- 
cies. Then for each y either 112?~(iui)Il < Jr?-s or 

T Y ( i w . )  < -will be satisfied for at least 2Nf l  
of the chosen frequencies. Since there is only finitely 
many ways to  choose 2N+ 1 frequencies among 4N +2 
frequencies, there exists a subsequence {Q?} of {Q?} 
for which one of the Q:(-)’s, which can be taken to be 
QT(.) without loss of generality, satisfy 

1 1 2  I l l  

for 2N + 1 fixed frequencies, ( ~ 1 , .  . . ,WZN+I}. 

Hence, for these 2N + 1 frequencies 

?-to lim &?(iwi) E B(-GT1(Zui),6) (8 )  

where B(c, T )  denotes the complex ball of radius T cen- 
tered in c. 

Let us consider a transfer function1 representation of 
QT: 

DosN + P1sN-l f . . . f / ? N  

&?(’) = SN + alSN-l + . . .+  a N  

Now, since GF1 is irreducible, we can apply 
Lemma 4. Indeed, by selecting 6 sufficiently small 

‘The controller is allowed to be a complex transfer function 
in this argument. Thereby we prove a slightly stronger result. 
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B(-G;'(iwi), S) will be contained in some neighbor- 
hood of -G;'(Zwi) in which the operator F mentioned 
in Lemma 4 is continuous. 

Finally, by the continuity of the roots of a polynomial, 
the denominator of QT(s) will have roots in the open 
right half plane for ;V and 6 sufficiently small, since the 
denominator of -GT1(s) has. That is a contradiction, 
since Qr(s)  was assumed to be stable. 

Hence, no fixed order sequence of controllers achieve 
the infimal value of y. 

To establish the nonexistence of an infinite dimen- 
sional optimal decentralized controller as mentioned 
in Remark 1 we assume to the contrary the existence 

( Q t  0 )  0 Q a  ' of an optimal analytical function Q* = 

i.e. a function, which is analytical in the open right 
half plane, and which makes the closed loop transfer 
function from w to z equal to 0: 

From continuity of the transfer function I+&;(.)G2(.), 
the transfer function I + Q;(.)G1(.) has to be iden- 
tically equal to zero in a neighborhood of s = 2 2 .  

Applying Corollary 2 for a set 2) contained in the 
(nonempty) intersection between this neighborhood 
and the open right half plane, it follows from Corol- 
lary 2 that I + Qr(.)G1(.) 5 0. This implies that 
QT(.) = -G1(.)-l  which is a contradition, since 

is not analytic in the right half plane. 

On the other hand, there does exist a sequence of con- 
trollers of increasing orders that makes T,, tend to  
zero in X, norm topology. 

Such a sequence is relatively easy to design. The main 
idea is to design I +  &:(.)GI (.) to have low pass char- 
acteristics and I + Q;(.)G2 (.) to  have high pass char- 
acteristics. Then the overall R,  norm is determined 
only at frequencies between z1 and 2 2  by the the roll 
off rates of these two transfer functions. 

To achieve this, we introduce Pzw ( s ,  W B W )  to denote 
the N'th order Butterworth polynomial with charac- 
teristic frequency W B W .  In terms of these polynomi- 
als, we can give explicit expressions for a possible con- 
troller sequence: 

Note, that QY and Q," are stable, considered as ra- 
tional functions, since the two unstable denominator 
factors are cancelled by the numerators. 

Now, it can be verified using a symbolic manipula- 
tion package that the maximal value of IT,,(iw)l ap- 
pears for w = m, and that this maximal value 
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tends to zero as N tends to infinity. The resulting 
design for N = 5 can be seen in Fig. 3. The dotted 
lines are the magnituldes of the two transfer functions 
I+&y( i~ )G1( iw)  and. I + Q F ( ~ w ) G ~ ( ~ w ) ,  and the solid 
line is magnitude of their product, Tzw(iw). The ver- 
tical lines indicate the two non-minimum phase zeros 
21 and 2 2 .  

Figure 3: 5'th order Butterworth design 

0 

Remark 2 It is not easy to determine the exact con- 
tents of the class Gm. Theorem 1 shows that the class 
is nonempty. Indeed, from the line of proof, it could 
be anticipated that a majority of non-minimum phase 
systems would be in the class. On the other hand, if 
GI or Gz would be minimum phase in the configura- 
tion in Fig. 2, there would exist a fixed dimensional 
sequence of controllers, so the class does not comprise 
all decentralized control problems. 

3 Near Optimal Design of De- 
centralized Controllers 

In the literature, few algorithms can be found for near 
optimal decentralized control for arbitrary plants. The 
reason for this is likely to be found in the result above, 
which eliminates the possibility of Riccati-type neces- 
sary and sufficient conditions for near optimal prob- 
lems. 

One result that facilitaties design for near optimal con- 
trol can be found in [SM95]. This method, however, is 
based on a complex optimization procedure, and might 
be numerically infeasible for large scale systems. 

Based on the line of prooF above, however, a heuristic 
algorithm can be devised, which works for systems, 
where individual subsystems have only a limited num- 
ber of non-minimum phase zeros, and where subsys- 
tems are only lightly coupled. 



First, without loss of generality we will rewrite (1) in 
k subsystems of the form: 

The intuition of this form is that each controller “looks 
into” a subsystem with two kinds of disturbances: the 
original exogenous signals w and the artificial set of 
disturbances: 

which determine how the subsystems influence one an- 
other. 

Expanding the idea of the proof of Theorem 1 we ob- 
tain the following algorithm: 

It is interesting to observe that e.g. for systems with 
three subsystems with each just one non-minimum 
phase zero it might be the case that (LP,LP,HP) and 
(LP,HP,HP) are both admissible sets of attributes, 
leading to the same optimum. In fact, for a series con- 
nection, if it is possible to  design two loops to  have dis- 
joint LP and HP characteristics, the remaining loops 
are completely free. Needless to  say, the correspond- 
ing controllers will then be rather different. This type 
of non-uniqueness does not exist always in a full mul- 
tivariable near optimal design. 

4 Conclusions 

We have shown that for a class of systems, the con- 
troller order of a decentralized %, controller will not 
remain bounded as the 31, optimization tends to  the 
optimum. 

In such cases, no sequence of controllers will converge, 
not even to  an infinite dimensional controller. The 
’optimal’ controller will be non-causal. 

We believe that the proof of the main result in this 
paper provides insight which can guide the design of 
decentralized controllers. In particular, a heuristic de- 
sign algorithm has been devised, which works for sys- 
tems which are not too strongly coupled, or have too 
many non-minimum phase zeros. 

Algorithm 1 
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