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Starting up Unstable Multivariable Coiitrollers Safely* 

Jakob Stoustrupt Henrik Niemannf 

Abs t r act 

The problem of superimposing a multivariable con- 
troller on a running Plant is considered. A simple but 
effective controller architecture is suggested which al- even the system 
lows the transition from a conventional controller to a 

, optimality (in a mixed sensitivity sense) 

stabilize the system 
0 for some plants, no stable controller will robustly 

0 for some plants, rio stable controller will stabilize 

full multivariable controller to take place in a contin- 
uous way. This architecture allows for unstable con- 
trollers to be handled in a reliable way. Moreover, 
bandwidth properties can be tuned separately. This 
architecture can be extended to a tool for implement- 
ing gain scheduled controllers in the same fashion. 
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1 Introduction 

In several industrial environments as e.g. power 
plants, installing a full multivariable controller is dif- 
ficult due to safety requirements. Often the starting 
point is a plant which is already controlled by sev- 
eral single loop controllers, for instance of PI or PID 
type. The new controller is then introduced in paral- 
lel, varying the control signal continuously by a tuning 
procedure. 

Usually, this is implemented simply by applying a con- 
troller of the form aK(s)  where Q: E [O; 11 and K(s)  
is the new multivariable controller. To start up the 
multivariable compensator, the parameter a is varied 
slowly from 0 to 1, while the closed loop behavior is be- 
ing monitored, manually or automatically. For Q: = 0, 
only the inner loops are active, but as Q: approaches 1, 
the multivariable compensator is taking over control 
of the plant. 

This procedure works well in many applications, but 
it has some pitfalls as well, the most significant being 
that the procedure requires the controller to be stable. 
This is obvious since control signal from an unstable 
controller will always diverge when a is small. 

In part due to this limitation, the industrial use of 
unstable controllers have been limited. This is unfor- 
tunate, considering that 

0 for some plants, no stable controller will achieve 

The requirement of the controller to be open-loop sta- 
ble is usually known a s  strong stabilization. Recently, 
it has been shown that the order of a strongly stabi- 
lizing "I, controller can become unbounded as poles 
and zeros approach [8S86]. Some bounds on perfor- 
mance for strongly stabilizing controllers can be found 
from [OMK91]. 

In this paper we will suggest a general architecture 
for starting up a multivariable compensator, which is 
not required to be stable. Nevertheless, stability is 
guaranteed throughout the tuning procedure. 

2 A General1 Architecture for 
Startup Procedures 

A simple but effective way to overcome the difficulties 
in the traditional approach to multivariable controller 
startup is depicted in Figure 1. Here, P(s)  is the phys- 
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Figure 1: General architecture with tuning 
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ical plant including i:nner control loops, K(s )  is the 
(potentially unstable) controller, and p(s> is a model 
of the physical plant. To preserve simplicity in this 
presentation, we shall assume that i ) (s)  P(s)  be- 
low, although it should be emphasized that robustness 
considerations are readily introduced in the suggested 
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architecture. Finally Z is a square ’tunable’ block, 
which will play the role played by a in the classical 
tuning approach. 

We can now formulate the main properties of the sug- 
gested tuning architecture. The proof is omitted due 
to space limitation. 

Theorem 1 Consider the system in Figure 1. As-  
sume that P(s )  = P(s) is  a stable transfer matrix, 
and that K ( s )  is  an  internally stabilizing controller 
f o r  P(s) .  T h e n  the following properties hold. 

1. The system is  internally stable f o r  any choice of 
Z as a stable transfer matrix 

2. For 2 = 0,  the (new) controller is  disabled 

3. For E = I ,  the overall control structure is  equiv- 
alent to  the desired multivariable controller K ( s )  

4. The  overall controller structure is  a linear frac- 
tional transformation KE = Fl(G, SI, where 

0 ( K(I-PK)-’  - G(s) = 

From a n  input-output point of view, the overall 
controller is equivalent t o  a multivariable con- 
troller with the following transfer function: 

S ( I  - K P ( I  - S))-’ K 

3 Tuning the Bandwidth 

The simplest possible choice of E is of course 

Z = aI 

where a is a scalar that is varied slowly from 0 to 1. 

However, for plants with potential robustness prob- 
lems related to unknown high frequency behavior, a 
better approach is to choose 

I - 1 
’-=(s) = a- 

1 + ST 
where a is a scalar that is varied slowly from 0 to 1, 
and T is a scalar that is varied slowly from 03 to 0. 

The authors recommend the following tuning proce- 
dure: 

1. choose T = TO where (0; $) is a “trusted” fre- 
quency range 

2. increase a slowly from 0 to 1 

3. decrease T slowly from TO to 0. 

The intuition behind this procedure is that if insta- 
bility is encountered] this is much more likely at high 
frequencies. Hence the quality of the control is im- 
proved somewhat by selecting both a large value of a 
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and r. At this point the control signal is low pass fil- 
tered. The subsequent tuning of r can then continue 
until a reasonable bandwidth is achieved. Throughout 
this process it is possible to evaluate the quality of the 
model continuously. 

Even if K ( s )  does not stabilize P(s ) ,  the existence of 
a suitable TO is guaranteed if the plant behavior is well 
known at low frequencies. Using a homotopy argu- 
ment, this can be formalized in the following result 
which we state without proof. 

Proposition 2 Assume that P and are both linear, 
time-invariant finite-dimensional, stable systems, and 
that P(0) = P ( 0 ) .  Then f o r  any E > 0,  there exists a 
r O ( E )  such that every Ks with E as in ( I )  satisfying 

E (0; 1 - E )  , 7- E (To(€ ) ;  O3) 

internally stabilizes the closed loop system depicted in 
Figure 1. 

4 Conclusion 

Introducing a multivariable controller in an outer loop 
with the requirement of a continuous transition from 
the classical controller to the multivariable controller 
does not necessarily imply that the multivariable con- 
troller needs to be stable. 

In this paper we have provided a general architecture 
for tuning controllers which are allowed to be open- 
loop unstable. This can be advantageous both in terms 
of performance and (robust) stability, for a number of 
applications. 

The method can also be applied to a range of similar 
problems which arise for gain scheduled controllers. 
This is achievable by introduction of a model for each 
operational mode. 

The suggested approach has only few disadvantages. 
One, admittedly, of some significance is the high con- 
troller order, which is implied from having a model of 
the plant included (in addition to what might already 
be represented in K if K is model based) in the con- 
troller. However, it is believed that the methodology 
can still be useful even for high order systems with the 
use of model order reduction techniques. The stabi- 
lizing effect can in many cases be achieved by a very 
simplified model of the plant. 
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