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Abstract

The fault detection and isolation (FDI) problem
in connection with Proportional Integral (PI) Ob-
servers is considered in this paper. A compact for-
mulation of the FDI design problem using PI ob-
servers is given. An analysis of the FDI design prob-
lem is derived with respect to the time domain prop-
erties. A method for design of PI observers applied
to FDI is given.

Keywords: Fault detection and isolation, Propor-
tional Integral observers, Loop transfer recovery,
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1 Introduction

A major part of the methods in FDI are based on
different types of observers/filters as e.g. full order
and minimal order observers, Luenberger observers
etc., just to mention a few. For a more detailed de-
scription of these types, see [6] and the references
herein. The applied design methods for the FDI fil-
ters are spread out over a large number of methods,
see e.g. again [6] and the references herein. Some of
the applied methods are standard methods, as e.g.
H∞ filter design methods, [1], [9]. Other methods
are based on modifications of existing methods as
e.g. the eigenstructure assignment method of Pat-
ton et.al. [7], [8].

The key issue of this paper is to introduce a new
observer type in connection with FDI, give a stan-
dard formulation of the design problem, and at last
apply a standard method for the design. The new
observer type is a PI observer, known from Loop
Transfer Recovery (LTR) design, [5], [10]. The mo-
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tivation for the introduction of a PI observer in con-
nection with FDI is a combination of both the time
domain properties for the PI observer [5], and the
result in [2] where the FDI and LTR designs are
connected. The results in [2] show that it is possi-
ble to design observers for FDI by using the LTR
concept.

The rest of this paper is organized as follows. In
Section 2, the FDI filter design problem is formu-
lated followed by a short introduction to the PI ob-
server in Section 3. An analysis of the FDI problem
with PI observers is given in Section 4. The design
of PI observers for FDI is considered in Section 5.
An example is given in Section 6, where the PI ob-
server is applied, followed by a conclusion in Section
7.

2 FDI Design Setup

The FDI design setup will be given in the following.
Consider the following system G given by:

ẋ = Ax + Bww + Bff
y = Cyx + Dyww + Dyff

(1)

or as transfer functions:

y = (Cy(sI −A)−1Bw +Dyw)w
+(Cy(sI −A)−1Bf +Dyf )f

= Gyw(s)w +Gyf (s)f

(We shall throughout the paper assume ’compatible’
dimensions of vectors and matrices to avoid tedious
listing of dimensions.)

w is a disturbance signal vector and f is a fault
signal vector. The general system formulation given
in (1) will be used throughout this paper. By the se-
lection of Bf and Dyf , actuator, sensor and internal
faults can be handled in this setup, see e.g. [4].

For obtaining a good estimation of the individ-
ual faults, fault models need to be included in the
system as frequency weightings on the fault signals:

f = Vf (s)v (2)

where v is a signal that is anticipated to have a flat
power spectrum.
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A filter is now applied to estimate the fault signal
vector f out from the measurement signal vector y.
Let the filter be given by F (s), i.e. the estimate of
the fault signal vector is given by:

f̂ = F (s)y

The estimation error is then given by:

e = f−f̂ = Vf (s)v−F (s) (Gyw(s)w +Gyf (s)Vf (s)v)
(3)

The system (1) together with the equation for the
estimation error (3) makes it possible to setup the
filter design problem in the standard formulation by
using the external output z as the estimation error
f − f̂ . The generalized system is then given by:

(
z
y

)
= Ḡ(s)

 w
v
u

 (4)

with

Ḡ(s) =

(
0 Vf −I

Gyw GyfVf 0

)
or in a state space realization with Vf =
(Av, Bv, Cv):

˙̄x = Āx̄ + B̄ww + B̄vv + 0u
z = C̄zx̄ − Iu
y = C̄yx̄ + Dyww

(5)

where

Ā =

(
A BfCv

0 Av

)
, B̄w =

(
Bw

0

)

B̄v =

(
0
Bv

)
C̄z =

(
0 Cv

)
C̄y =

(
Cy DyfCv

)
Note that there is no direct term in the weight

matrix Vf (s). A direct term can be included without
problems, but from a practical point of view, this
will in general not be necessary.

3 PI Observer

The PI observer has been described in e.g. [5] for
the continuous time case and in [10] for the discrete
time case. In both papers, the PI observers has been
applied in connection with Loop Transfer Recovery
(LTR) to obtain time recovery, i.e. good recovery
at low frequencies. The PI observer will shortly be
introduced in the following.

Let a dynamic system be given by:

ẋ = Ax + Bu
y = Cx

(6)

A PI observer for the system in (6) is given by,
[5]:

˙̂x= Ax̂+KP (Cx̂− y) +Bu+Bζ

ζ̇ = KI(Cx̂− y)
u=−Fx̂

(7)

where KP is the proportional observer gain, KI is
the integral observer gain and F is the state feed-
back gain. Note that when KI = 0, we have a con-
ventional full order (P) observer.

The stability condition for the PI observer re-
quires that the eigenvalues of R given by:

R =

[
A+KPC B

KIC 0

]

have negative real parts.

For derivation of systematic design methods, the
PI observer based controller can be represented in
the following compact form:

ẋPI = APIxPI +KPI(CPIxPI − y) +BPIu
u =−FPIxPI

(8)

where

API =

[
A B
0 0

]
, BPI =

[
B
0

]

CPI =
[
C 0

]
, KPI =

[
KP

KI

]
FPI =

[
F 0

]
By using this compact form of the PI observer, the

PI observer has exactly the same form as a standard
full order observer based controller. Now methods
such as LQG, eigenstructure assignment etc. can
be applied as ordinary observer design methods to
determine the observer gain KPI .

4 PI Observers for FDI

To derive the design conditions for the FDI problem
given in Section 2 when a PI observer is applied, we
need to calculate the estimation error in (3). The
transfer function for the PI observer is given by:

LPI(s) = −FPI(sI −API −KPICPI)
−1KPI (9)



The estimation error e is given by:

e = C̄z(sI − Ā)−1
(

B̄w B̄v

)( w
v

)
−LPI(s)[C̄y(sI − Ā)−1

(
B̄w B̄v

)
+
(

Dyw 0
)
]

(
w
v

)

= Te(s)

(
w
v

)

The transfer function for the estimation error
Te(s) can now be rewritten by using simple ma-

trix manipulations. Using FPI =
(

C̄z 0
)

and

the equations for the estimation error from [2] when
a Luenberger observer has been applied, we get the
following equation for Te(s):

Te(s) = C̃z(sI−API −KPICPI)
−1(BPI −KPID̃yw)

(10)
where

API =

(
Ā B̄
0 0

)
, BPI =

(
B̄
0

)
CPI =

(
C̄y 0

)
C̃z =

(
C̄z 0

)
, D̃yw =

(
Dyw 0

)
B̄ =

(
B̄w B̄v

)
The design condition is to minimize a suitable

norm of the transfer function from
(

wT vT
)T

to

e, Te(s), to obtain a good estimate of the fault signal
v.

It will in the rest of this paper be assumed that
there is no direct term, i.e. Dyw = 0. It is impossible
to obtain the time domain properties (time recovery
in LTR design) when the transfer function Te include
D̃yw. Other methods need to be applied which will
not be considered here.

Based on Te in (10) with D̃yw = 0, Te can be
rewritten into:

Te(s) =
sC̄z(s

2I − s(Ā+KP )− B̄KIC̄y))
−1B̄

(11)

Further, let us define time fault detection and iso-
lation, TFDI, in the following way:

Definition 1 Let Te(s) be the error transfer func-
tion. TFDI is obtained if and only if

Te(0) = 0

TFDI means that we obtain exact detection in the
steady state (t → ∞) even if there are faults with
nonzero DC components. It is in general difficult to
obtain TFDI with an arbitrary observer type. How-
ever, the PI observer architecture facilitates TFDI
under mild conditions. These conditions are given
in the following theorem.

Theorem 2 TFDI is obtained if and only if the
largest invariant subspace of the matrix Ā−1

K B̄KIC̄y

where ĀK = Ā + KP C̄y, contained in the con-
trollable subspace of the pair (Ā−1

K B̄KIC̄y, Ā
−1
K B̄)

corresponding to the eigenvalue s = 0 is itself
contained in the unobservable subspace of the pair
(C̄z, Ā

−1
K B̄KIC̄y).

Proof: A proof can be found in [5].

A further discussion of the above conditions are
given in [5].

5 Design of PI Observers for FDI

The applied design method is based on LQG design
of a full order observer.

First, consider standard LQG/LTR design of a
full order observer. Consider a system given by
S(A,B,C). The LQG/LTR observer gain K is ob-
tained by solving the following Riccati equation:

AP + PAT + Γ− PCTΣ−1CP = 0 (12)

where Γ and Σ is selected as

Γ = Γ0 + q2BBT ,Γ0 ≥ 0, 0 ≤ q < ∞
Σ = Σ0,Σ0 > 0

(13)

The gain is given by

K = −PCTΣ−1 (14)

As q approaches ∞ we will get

F (sI −A−BF −KC)−1KG(s) → F (sI −A)−1B

(pointwise convergence) or

F (sI −A−KC)−1B → 0 (15)

when S(A,B,C) is minimum phase, see [3] for fur-
ther details.

The properties of (15) is exactly what we need to
apply in connection with FDI.

Now consider the design of the PI observer for
the FDI problem. First, note from (11) that TFDI



is almost always obtained for KI ̸= 0. This can be
seen by rewritten (11) into:

Te(s) = sC̄z(sI − Ā−KP C̄y)
−1B̄

(sI −KIC̄y(sI − Ā−KP C̄y)
−1B̄)

(16)

When the conditions in Theorem 2 is satisfied, we
get directly:

Te(s) → 0 as s → 0

This mean that we get an estimation error equal to
zero in the steady state under very weak conditions.

However, we do not only want FDI at steady state,
we will also have FDI in a low frequency range. For
making such a design, we can apply the LQG/LTR
design method from the full order observer on the
PI observer. By using the LQG/LTR design method
directly, the integral effect vanished, i.e. KI → 0 as
q → ∞, we will just obtain a standard full observer,
[5]. Therefore, the LQG/LTR design method must
be modified before it is applied for the design of PI
observers. This can be done by including an addi-
tional parameter in the weight matrix Γ. Now let Γ
in (13) instead be given as:

Γ = Γ0 + q2BαB
T
α ,Γ0 ≥ 0, 0 ≤ q < ∞ (17)

where

Bα =

(
B̄
αI

)
, α ≥ 0

The α parameter is related to the time domain
properties whereas the q parameter is related to the
frequency domain properties.

By proper selection of the two parameters (α, q),
it is possible to obtain quite reasonable FDI filters
with good fault detections properties. It is here
important to mention that it is possible to obtain
TFDI also if the design problem is non minimum
phase. We can derive an explicit equation for Te(s)
as q → ∞. For doing this, we need to consider the
full order case first. Consider the system S(A,B,C)
and the minimum phase system S(A,Z,C). Fur-
ther, the estimation error transfer function is given
by:

Te(s) = C̄z(sI − Ā−KC̄y)
−1B̄ (18)

Now, let the observer gain satisfies:

K

q
→ ZW, det(W ) ̸= 0 as q → ∞ (19)

(obtained by using Γ = Γ0 + q2ZZT )

The limit value of Te is then given by:

Te(s) = C̄z(sI − Ā)−1

(B̄ − Z(C̄y(sI − Ā)−1Z)−1

C̄y(sI − Ā)−1B̄)
(20)

Based on (20), we can calculate the equivalent
equation for the PI observer. This can be done by
using Ā = API , B̄ = BPI , C̄y = CPI , C̄z = C̃z and

Z =

(
B̄m

αI

)
satisfies:

CPI(sI −API)
−1Bα = CPI(sI −API)

−1ZBz(s)
(21)

where S(API , Z, CPI) is the minimum phase image
of S(API , Bα, CPI) and Bz(s) is an all-pass factor,
in (20). After some simple manipulations, we get
the following equation for the estimation error for
PI observers:

Te(s) = C̄zΦ(s)[
B̄ − ( sαB̄m + B̄)( sα C̄yΦ(s)B̄m

+C̄yΦ(s)B̄)−1C̄yΦ(s)B̄
] (22)

where Φ(s) = (sI − Ā)−1.

It is now easy to see that

Te(0) = 0

which indicate that we will obtain an exact FDI and
disturbance rejection in the steady state.

6 Design Example

An example of design of FDI filters for the FDI prob-
lem from [7] will be considered in this section. The
LQG/LTR design methodology will be applied for
designing a PI observer as well as a standard full
order observer for the FDI problem.

The system is a reduced order model of a jet en-
gine. A reduced order model of order 5 has been
given in [7]. The model has 1 disturbance input, 2
control inputs and all 5 states are measured.

The fault detection case that will be considered
here is where faults can appear in the two actuators.
This correspond to Bf = Bu in this case.

For the FDI design, first order weights are applied
to model the two fault signals. The two weights are
given by:

f =

(
1

1+τ1s
0

0 1
1+τ2s

)
v

where τ1 =
1
50 and τ2 =

1
55 .
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Figure 1: The transfer functions from the distur-
bance input signal w to the 2 fault estimation error
signals e for the full order observer (solid lines) and
for the PI observer (dashed lines)

The design condition for the two FDI observers
are as follows:

Design objectives: All six transfer functions from
the three external input (disturbance and two fault
signals) to the two fault estimation error signals
must be smaller than 0.1 for ω ≤ 25 rad/sec.

The results of the design of is shown in Figure 1
- 3 for q = 104 and α = 500. The matrix norm for
the observer gains is 1.65 × 107 and 1.72 × 107 for
the full-order observer and for the PI observer resp.

As it can be seen from the 3 figures, the PI ob-
server satisfies the design conditions, i.e. the six
transfer functions, from the external inputs to the
two estimation error signals, have a gain less than
0.1 for ω ≤ 25 rad/sec. From Figure 3, we can see
that the full order observer does not satisfy the de-
sign conditions for the selected q. However, it is
possible to design a full order observer such that the
design conditions are satisfied. By increasing q to
7.0×105, the design condition will be satisfied. The
matrix norm for this observer gain is 1.17× 109.

In general, it turns out from Figure 3 that the
estimation of fault on actuator 2 is the most difficult
part in the design of both observers. The design
conditions for the disturbance reduction (Figure 1)
and the estimation of fault on actuator 1 (Figure 2)
are more than satisfied for both observers.
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Figure 2: The transfer functions from the fault input
signal f on actuator 1 to the two fault estimation
error signals e for the full order observer (solid lines)
and for the PI observer (dashed lines)
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Figure 3: The transfer functions from the fault input
signal f on actuator 2 to the two fault estimation
error signals e for the full order observer (solid lines)
and for the PI observer (dashed lines)



7 Conclusion

The FDI problem has been considered in this paper
and a filter based on a PI observer has been intro-
duced in connection with FDI. Using results from
LTR design, it is possible to apply PI observers in
connection with FDI and obtain time FDI, i.e. no
estimation error in the steady state. Conditions for
obtaining TFDI has been given in this paper.

Further, a modified LQG/LTR design method for
FDI filters based on PI observers has been given.
The TFDI has been shown both by analysis of the
estimation error transfer function in Section 5 and
in connection with an example in Section 6.
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