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Abstract

Semi-global set-stabilizing H1 control is local H1 con-
trol within some given compact set 
 such that all state
trajectories are bounded inside 
, and are approaching an
open loop invariant set S � 
 as t!1. Su�cient condi-
tions for the existence of a continuous state feedback law
are given, based on a new theorem.

1 Introduction

The standard formulation of local state feedback H1 con-
trol is mainly based on the theory of dissipative systems
�rst introduced by Willems [Wil72]. In this paper we will
approach the problem by the theory of di�erential games
as outlined in the papers by Isidori [Isi92], and Isidori and
Astol� [IA92b, IA92a], but we allow for non-zero initial
conditions following van der Schaft [vdS92b]. Recently,
the local nonlinear state feedback H1 control problem
has been solved for general nonlinear plants by Isidori and
Kang [IK95], and Ball, Helton, and Walker [BHW93]. The
standard nonlinear H1 control theory is brie
y summa-
rized in Section 3.1.

From an applicational point of view the theory of lo-
cal H1 control has a severe drawback: It does not give
a bound on the state trajectories, but merely states that
it is valid for bounded trajectories. In fact, a linear con-
troller based on the linearization in an equilibrium point
might even do better in practice than a local nonlinearH1
controller. Moreover, it can be argued that the real mo-
tivation for nonlinear control theory is applications where
the plant is operating in a signi�cant range of operating
points. Otherwise, linear control theory will work in most
cases.

On the other hand, to compute a global nonlinear H1
control is not realistic in most practical cases since it basi-
cally requires �nding an analytical expression for a global

solution to a Hamilton-Jacobi equation or inequality.

This is the main motivation for the present paper which
presents a method to design H1 controllers constraining
state trajectories to a region of the state space rather than
operating with local results without knowledge of bound-
edness of the state. The regions are speci�ed in terms of
invariant sets, and the results are generalizations of local
H1 results. Moreover, the computational methods that
apply to local H1 control extend directly to the obtained
semi-global H1 results. This constitutes a much more
practical theory for nonlinear control systems where also
oscillating and other non-stationary modes of operation
can be dealt with.

It is described in Section 3.2 how semi-global stability
has been obtained for autonomous systems. The main idea
of this paper is based on the proof of La Salle's invariance
principle [SL61], here restated in Theorem 3.2.

The new contribution to the theory of semi-global sta-
bility and set stability byH1 control is found in Section 4.
In order to prove the boundedness of state trajectories
we have to restrict to a certain class of disturbances de-
noted W�. Given some solution V to the standard H1
Hamilton-Jacobi inequality, a new lemma shows how to
compute the region of boundedness 
, and the region of
allowed initial conditions 
�. A new theorem, based on
La Salle's invariance principle, is the cornerstone of semi-
global stability and set stability by H1 control provided
that a certain detectability property is satis�ed.

2 Problem formulation

Let IR+ denote the real positive closed time-axis [0;1[.
We consider the smooth, continuous time system

_x = X(x; u; w) ; z = Z(x; u) (1)

where x(�) : IR+ 7! IR
n is called the state, u(�) : IR+ 7! IR

m

the input, w(�) : IR+ 7! IR
l the exogenous input, also called

disturbance, and z(�) : IR+ 7! IR
p the performance, or to-

be-controlled signal.



The open loop system

_x = Xopen(x) � X(x; 0; w) (2)

with constant disturbance w(�) = 0 is autonomous, and
its dynamic is therefore naturally assumed to have at least
one connected, non-empty invariant set such as a closed
periodic orbit or an equilibrium point.
The static state feedback used here is some vector val-

ued function a : IRn 7! IR
m

u = a(x) ; (3)

thus the closed loop system is given by the equations

_x = Xa(x;w) � X(x; a(x); w)

z = Za(x) � Z(x; a(x)) :
(4)

Whenever convenient, we use the notation x(�) for the
unique signal x(�; t0; x0; u(�); w(�)) generated by the inputs
u(�); w(�), where the initial condition at time t0 is x0. It is
assumed that all signals are Lloc2 , and that the state exist
uniquely for all inputs, and is a C1 signal except on a set
of measure zero.
De�ne the L2 norm for any locally square integrable

signal y(�) : IR+ 7! IR
p for all T 2 IR

+ by



y

2
T
�

Z T

0

��y(t)��2 dt ; (5)

where
����� is the usual Euclidean vector norm. By de�ni-

tion, the open or closed loop system (2) or (4) has local
L2 gain less than or equal to 
 � 0 if there exists a neigh-
bourhood 
 � IR

n around the origin, and a nonnegative
and bounded function Va : IRn 7! [0;1[, called available
storage, depending only on the initial condition x0, such
that



z

2
T
� 
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w

2
T
+ Va(x0) (6)

for all T 2 IR
+, all initial conditions x0 2 
, and all

w(�); z(�) 2 Lloc2 such that the state trajectories never leave

 [vdS92b, IA92a].
To allow for oscillatory or other non-stationary modes of

operation we adopt the notion of set stability introduced
in [Lin92], more precisely, we are interested in asymptoti-
cally stabilization of some open loop invariant set S such
that the motions on S are unaltered by feedback.

2.1 Problem Formulation Given a plant (1) whose

open loop dynamics (2) subject to w(�) = 0 has a

nonempty invariant set M (e.g. a collection of closed or-

bits and equilibria), pick a to be stabilized union S of

some components ofM, and a 
 > 0. Find, if possible, a
nonempty compact set 
 containing S, and a state feed-

back law (3) such that the closed loop L2 gain (6) is less

than or equal to 
, and such that the closed loop sys-

tem (4) subject to w(�) = 0 asymptotically stabilizes the

open loop invariant set S.

Find also a class of disturbances W� such that the state

trajectories never leave 
 if started inside some 
� � 
,
and such that all trajectories generated by w(�) 2 W� are

approaching the closed loop positive invariant set S.

In other words: we want to solve a local H1 control
problem in such a way that all trajectories are bounded
inside some compact 
, and that 
 is a basin of attraction
for the to-be-stabilized, hence closed loop positive invari-
ant set S.

3 Background

3.1 Local H1 state feedback

The aim of standard local nonlinear H1 control is to de-
sign a controller (3), and to �nd a su�cient small 
 � 0
such that the L2 gain (6) is satis�ed locally on a neigh-
bourhood 
 � IR

n around the origin. In this subsection
the equilibrium condition X(0; 0; 0) = 0 is assumed to
hold.
It is known [vdS92b, vdS92a] that the local L2 gain con-

dition is implied by (equivalence is given subject a reach-
ability condition [Wil72]) the existence of a non-negative,
bounded storage function V : 
 7! [0;1[ satisfying the
dissipation inequality

V (xT ) � V (x0) �

Z T

0

(
2
��w(t)��2 � ��z(t)��2) dt

= 
2


w

2

T
�


z

2

T
;

V (0) = 0 ;

(7)

where xT = x(T ). Whenever convenient we denote in the
following the value of V along a given path x(�) by the
abuse of notation V (�) = V (x(�; t0; x0; u(�); w(�))).
In case that V is continuously di�erentiable almost ev-

erywhere, it satis�es the closed loop di�erential inequality

H
(u;w) �
d
dt
V � (
2

��w��2 � ��z��2)
= @V

@x
X(x; u; w)

� 
2
��w��2 + ��Z(x; u)��2 � 0

(8)

for all t 2 IR
+, where the Hamiltonian function H
 is de-

�ned by equation (8). Assuming that Z(x; u) is such that
@Z
@u

(0; 0) has rank m, it is known [IK95] that H
 has a

unique saddle point (wmax; umin) for all x and all @V
@x

near

zero, and the extremal functions umin(x;
@V
@x

), wmax(x;
@V
@x

)
are characterized by the equations

@H


@u
(umin; wmax) = 0

@H


@w
(umin; wmax) = 0

(9)

umin(0; 0) = 0

wmax(0; 0) = 0 :
(10)



Clearly, a(x) = umin(x) � umin(x;
@V
@x

(x)) is the best pos-

sible state feedback law, and wmax(x) � wmax(x;
@V
@x

(x)) is
the worst possible disturbance. Note that umin and wmax

vanish at the origin, hence the autonomous closed loop
systems

_x = Xmin(x) � X(x; umin(x); 0) and

_x = X
min
max(x) � X(x; umin(x); wmax(x))

(11)

do preserve the equilibrium point 0.
Thus, we seek a su�cient small 
 � 0, and a C1 storage

function V de�ned on a su�ciently large neighbourhood 

around the origin satisfying the Hamilton-Jacobi inequal-
ity [IK95]

H

min
max

 (x; @V

@x
)

= @V
@x
X(x; umin(x;

@V
@x

); wmax(x;
@V
@x

))

� 
2
��wmax(x;

@V
@x

)
��2 + ��Z(x; umin(x;

@V
@x

)
��2

� 0 for all x 2 
 :

(12)

In case that the locally linearized problem is solvable, it
can easily be seen that any 
 > 
� can be used, where

� is some sub-optimal gain of the linearized H1 control
problem. See van der Schaft [vdS91, vdS92a] for further
information.
The existence of a C1 storage function satisfying (12) lo-

cally guarantees that the closed loop system is dissipative
in the sense of (7), and the input-output map of the closed
loop system has L2 gain less than or equal to 
 as de�ned
in equation (6) if and only if every closed loop state tra-

jectory is bounded inside 
. Unfortunately, local theory
does not give any a priori estimates on the boundedness
of the state.

3.2 Set stability

The basic idea of this paper is that the storage function V
satisfying (12) shall serve as a Lyapunov function to deter-
mine the stability properties of the closed loop trajectories
x(�) not only locally, but semi-globally.
For this purpose it is bene�cial to recall boundedness

and invariance properties of smooth autonomous systems
of the form

_x = X(x) : (13)

We assume that the integral curves of (13) are uniquely
given on some suitable set, and we denote them x(�) =
x(�; t0; x0).

3.1 De�nition A set M� IR
m is called invariant if all

trajectories starting inM are de�ned in the future and in

the past, and evolve entirely inside M.

The set is called positive invariant if all trajectories

starting in M are de�ned in the future and never leave

M as time increases.

Note that invariance is a stronger property of a set than
positive invariance.
It is our purpose to use a formal solution to the

Hamilton-Jacobi inequality as a Lyapunov function in or-
der to establish semi-global stability properties of the H1
state feedback problem. Our theorem in the next section
will be based on a result published in the early sixties by
La Salle and Lefschetz [SL61].

3.2 Theorem (La Salle and Lefschetz)

Let V : IR
n 7! IR be a C1 function and let 
 denote

a connected component of the pre-image V �1(] �1; c]),
c 2 IR. Assume that 
 is bounded, and that

@
@t
V � 0 (14)

within 
 along any trajectory of the autonomous sys-

tem (13). Let R � 
 be the largest set where @
@t
V = 0,

and let M be the largest invariant set contained in R.

Then 
 is positive invariant and every solution in 

tends to M as t!1.

In other words: 
 is a basin of attraction for the stable
invariant set M. This is in fact a semi-global stability
property of the type we want to establish for the H1
state feedback problem. Note that the original proof of
Theorem 3.2 shows that any such C1 function V satisfy-
ing @

@t
V � 0 is not assumed to be positive de�nite. Every

component of M is merely a local minimum of the func-
tion V (x).

4 Set stability in H1 control

This section contains the new contribution to the theory
of regional (semi-global) stability and set stability by H1
control. We want to modify Theorem 3.2 such that the
property of set stability can be used in H1 control. We
have to use condition (12) instead of (14), thereby ensur-
ing the L2 gain condition (6) to hold.
In order to prove the boundedness of state trajectories

we have to restrict ourselves to the class of disturbances

W� �
n
w(�) 2 L2(IR

+)


w

2

2
� �

o
: (15)

Given some solution V to the standard H1 Hamilton-
Jacobi inequality, the following new lemma will help us
to construct some appropriate region of boundedness, de-
noted 
, and the region of allowed initial conditions 
�

(see �gure 1).
Given a formal C1 solution V of the Hamilton-Jacobi

inequality (12), pick some c 2 IR such that some connected
component of the pre-image V �1(]�1; c]), denoted 
, is
bounded. Since V is continuous it follows that 
 is closed,
hence compact. Moreover (12) implies that V satis�es
the dissipation inequality (7), therefore any trajectory x(�)
with initial condition x0 2 
 subject to w(�) = 0 ful�lls

V (xT ) � V (x0)�


z

2

T
� c



Ωε

Ω

Figure 1: Boundedness of trajectories

for all T 2 IR
+ (Note that then



z

2
T
� V (0) � c is

always true). Therefore x(T ) 2 
 for all T 2 IR
+, and the

trajectory can not leave 
.
Now consider components of the sets V �1(]�1; c� �])

with � > 0 which are subsets of 
. These are clearly closed
subsets of 
, hence compact. Let x(�) be any closed loop
trajectory with initial condition x0 2 
� � V �1(]�1; c�
�]), and assume w(�) 2 W�. Then we have

V (xT ) � V (x0)�


z

2

T
+ 
2



w

2
T
� c� �+ �

for all T 2 IR
+ (Note that in this case



z

2
T
� V (0)+� � c

is always true). We conclude that x(�) is bounded inside 
.
Formally we can restate our observations in the following
lemma:

4.1 Lemma Given a formal C1 solution V of the Hamil-

ton-Jacobi inequality (12), pick some c 2 IR such that

some component of V �1(]�1; c]), denoted 
, is connected
and bounded.

Then 
 is compact and closed loop positive invariant

by use of the state feedback law a(x) = umin(x) subject to
the condition w(�) = 0.
Pick some � > 0, then the appropriate subset 
� � 
 of

V �1(]�1; c� �]) is such that any closed loop trajectory

x(�) with initial condition x0 2 
� is bounded inside 
 if

driven by the state feedback law a(x) = umin(x), and by

any disturbance w(�) 2 W�.

Note that the formal solution V may be such that the
pre-image V �1(]�1; c]) never has a bounded component,
in which case the approach proposed here is not appli-
cable. Moreover, picking � � 0 too large may result in

� = �.
Having taken care of the boundedness of state trajecto-

ries, we proceed the discussion leading to the new theorem,
which will be the cornerstone of semi-global set stability
by H1 control.
Assume that the autonomous open loop system (2) sub-

ject to w(�) = 0 has an invariant set M� 
 consisting of
a collection of disjoint components (for example periodic
orbits and equilibrium points). If we wish to stabilize the
motions on an invariant set S � M consisting of some
components of M without change of the motions on S
(see �gure 2), we have to use a feedback law a(x) such
that

a(x)jx2S = 0 :

In case that we want to destroy the open loop motions on
M=S, we must have in addition that

a(x)jx2M=S 6= 0 :

Moreover, in order to be able to ful�ll the L2 gain (6)
for all desired motion of the open loop system (2), the
performance measure Z(x; u) must satisfy

Z(x; 0)jx2S = 0 :

Observability of the state trajectory on S, that is
Z(x; 0)jx2
=S 6= 0, may be too severe an assumption. In-
stead we will impose a weaker detectability assumption on
the system:

4.2 De�nition Given some invariant set S of the open

loop system (2) subject to w(�) = 0, the control sys-

tem (1) is called S-detectable if all bounded trajectories

x(�) = x(�; t0; x0; u(�); 0) (subject to w(�) = 0) generating
the zero-output z(�) = 0 are approaching S as t!1.

In case that S is the origin, we say the control system

is zero-detectable.

Assuming furthermore that @Z
@u

(x; 0) has rank m for all
x 2 
, a similar argumentation as in the paper [IK95]
shows that H
 de�ned in (8) has a unique saddle point
(wmax; umin) for all x in 
 and all @V

@x
near zero, and the

extremal functions umin(x;
@V
@x

), wmax(x;
@V
@x

) are charac-
terized by the equations (9) and

umin(x; 0)jx2S = 0

wmax(x; 0)jx2S = 0 :
(16)

Hence following the principal idea of the paper [IK95] as
outlined in Section 3.1, we conclude that any C1 function
V satisfying the Hamilton-Jacobi inequality (12) will also
satisfy the dissipation inequality (7), and therefore the
L2 gain (6) in case that the state is bounded inside 
.
We take advantage of Lemma 4.1 to state the following
theorem, and to follow the main idea of Theorem 3.2 to
prove it.

4.3 Theorem Assume that some C1 solution V : 
 7!
IR of the Hamilton-Jacobi inequality (12) is de�ned on a

bounded and connected component 
 of V �1(] �1; c]),
c 2 IR. Assume furthermore that @Z

@u
(x; 0) has rank m for

all x 2 
.
Then all closed loop trajectories x(�) subject to a(x) =

umin(x) with initial condition x0 2 
� do not leave 
 if

driven by some w(�) 2 W�, and consequently the system

has L2 gain less than or equal to 
.
Moreover, all such x(�) generated by w(�) 2 W� which

are identically zero for all times t > t�, t� 2 IR, approach

the biggest closed loop invariant set A contained in the

null set

N �
n
x 2 
 H

min

max


 (x; @V
@x

) = 0

o
:



Ω

S M
Ωε

Figure 2: Set stability

Assume furthermore that the control system (1) is S-
detectable, where S is a collection of components of the

maximal open loop autonomous invariant set M � 
,
then x(�) approaches S as t!1.

Proof. By Lemma 4.1 all state trajectories x(�) are
bounded inside 
. Therefore, as outlined in the discussion
before Theorem 4.3, the dissipation inequality (7) and the
L2 gain (6) are satis�ed for all trajectories.
We show now that all such x(�) generated by w(�) 2 W�

which are identically zero for all times t > t�, t� 2 IR,
approach the biggest closed loop invariant set A contained
in the null setN . By boundedness of state trajectories and
time invariance of the system, we can assume without loss
of generality that w(�) = 0 for all t 2 IR

+. Then the saddle
point property de�ned by (9) and (16) implies that the C1

solution V serves as a Lyapunov function for the closed
loop dynamics. More explicitly, we have

H
(umin; w) � H
 (umin; wmin) = H

min
max

 � 0

(17)

for all w(�) 2 W�. Choosing w(�) = 0 then gives with (8)

d
dt
V � 
2

��0��2 + ��z��2 � 0 (18)

for all such trajectories. Hence we have d
dt
V < 0 for all

motions evolving on 
=N . Trajectories on N are satisfy-

ing d
dt
V = 0 if and only if

��z��2 = ��Z(x; umin(x)
��2 = 0, and

d
dt
V < 0 else.
Now, observe that V (x) by assumption is continuous

and de�ned on the bounded set 
, hence V (x) is bounded
from below. Given some particular state trajectory x(�),
the storage function V (�) is decreasing and bounded from
below, hence approaches some minimal value, say c� 2 IR,
as t ! 1. By continuity we conclude that V (x) = c�
on the positive limit set �+, and consequently d

dt
V = 0

on �+. Rearranging the inequalities (17) and (18) then
shows that

0 �
��z��2 � H

min
max

 � 0 ; (19)

therefore we must conclude that �+ is a (non-empty by
boundedness of x(�)) subset of the null set N . But �+ is
an invariant set, hence contained in the maximal closed
loop invariant set A, and consequently any trajectory x(�)

satisfying the conditions of the theorem are approaching
A as t!1.

We show �nally that S-detectability implies that x(�)
approaches S as t ! 1. Clearly any trajectory evolving
entirely on �+ satis�es by inequality (19) that z(�) = 0,
hence by S-detectability S is approached. Finally, any
trajectory with the same limit set �+ is by continuity of
the closed loop dynamics forced to approach S as t!1.
Note, that in this case �+ � S, and that condition (16)

shows that closing the loop with the feedback a(x) = umin

does not change the dynamics on the open loop invariant
set S.
Note too, that in the case that S is not connected (it

may consist of several open loop positive limit sets for ex-
ample), the proof indicates that each component of S is
a local minimum of the function V (x), but the constant
value V (x) = c� will in general be di�erent from compo-
nent to component. In case that S = f0g we can always
assume without loss of generality that V (x) is positive
de�nite. 2

Following the proof of Theorem 4.3, it is clear that every
connected component of S is a local minimum of any so-
lution V of the Hamilton-Jacobi inequality (12), and that
@V
@x

_x = 0 along any trajectory evolving inside S.
In case that S = f0g, local solutions can be obtained

by use of an approximation scheme originally developed
by Lukes [Luk69] for quadratic cost functions. It has been
used to compute solutions of the Hamilton-Jacobi inequal-
ities associated with the local nonlinear state feedback H1
control problem [IK95]. An implementation in the sym-
bolic language MAPLE is available for a�ne control systems
[MP95], see [CMPP96] for a calculated example.

4.1 Extending the class of disturbances

From an engineering point of view, the theory so far de-
veloped is not yet entirely adequate for practical control
purposes: in real systems the disturbance w(�) is often
time persistent, and has therefore no �nite L2 norm. In
linear H1 theory standard transformation results auto-
matically translate the L2 induced norm results into power
seminorm induced or spectral seminorm induced equiva-
lent results. This kind of equivalence does of course not
hold for nonlinear systems.

In general the class of allowed disturbances W� is not
conservatively chosen as one might think. However, as-
suming that

��Z(x; umin(x)
�� is a function of class K1,

and using the principal ideas of the input-to-state sta-
bility property as outlined in [Lin92, Son95] together with
the improvements on H1 control mentioned here, it is
possible to allow for input and disturbance signals which
are time persistent, but bounded in L1 norm (essentially
peak bounded). The price to pay is that asymptotic stabil-
ity of the invariant set S only is obtained for w(�) = 0, but
L1 boundedness of w(�) implies then that the state trajec-
tories are bounded in a neighbourhood of S and x(�)! S



for w(�) ! 0. The proof of a similar theorem involves
decay estimates, and will be published later on.

5 Conclusion

In this paper it is shown that state feedback problems in-
volving the stabilization of open loop invariant sets can
successfully be recast as generalized formulations of non-
linear local state feedback H1 control problems. Given a
formal solution V to a certain Hamilton-Jacobi inequal-
ity, the generalized problem is solved regionally (semi-
globally) provided V is such that some connected com-
ponent of the pre-image V �1(] �1; c) for some c 2 IR is
bounded and includes the to-be-stabilized invariant set.
The plant is assumed to have a certain detectability prop-
erty (which is just the generalization of the standard zero-
detectability assumption) to prove asymptotic stability of
the obtained control law with respect to the invariant set
of concern. Sets of allowable initial conditions and distur-
bance classes are speci�ed.

Hence, the presented results constitute a natural ex-
tension of local H1 control theory which possess most of
the advantages of global nonlinear control. In particular,
performance is guaranteed in a range of operational con-
ditions, in contrast to local H1 control. Non-stationary
modes of operation such as stability of periodic orbits are
included in this new theory. Numerical methods which
apply to local H1 theory can without problem be applied
in a semi-global context.

References

[BHW93] Joseph A. Ball, J. William Helton, and Michael L.

Walker. H1 control for nonlinear systems with

output feedback. IEEE Transactions on Automatic

Control, 38(4):546{559, April 1993.

[CMPP96] Marc Cromme, Jens M�ller-Petersen, and Mar-

tin Pagh Petersen. Nonlinear H1 state feedback

controllers: Computation of valid region. Depart-

ment of Mathematics, Technical University of Den-

mark, MAT Report 1996-33, September 1996.

[IA92a] Alberto Isidori and Alessandro Astol�. Distur-

bance attenuation and H1 control via measure-
ment feedback in nonlinear systems. IEEE Trans-

actions on Automatic Control, 37(9):1283{1293,

September 1992.

[IA92b] Alberto Isidori and Alessandro Astol�. Nonlinear
H1 control via measurement feedback. Journal

of Mathematical Systems, Estimation, and Control,

2(1):31{44, 1992.

[IK95] Alberto Isidori and Wei Kang. H1 control via
measurement feedback for general nonlinear sys-

tems. IEEE Transactions on Automatic Control,

40(3):466{472, March 1995.

[Isi92] Alberto Isidori. Dissipation inequalities in nonlin-

ear H1 control. In Proceedings of the 31std Con-

ference on Decision and Control; Tucson, Arizona,

pages 3265{3270, December 1992.

[Lin92] Yuandan Lin. Lyapunov function techniques for

Stabilization. PhD thesis, The State University of

New Jersey, October 1992. Written under the di-
rection of Professor Eduardo D. Sontag.

[Luk69] D. L. Lukes. Optimal regulation of nonlinear dy-
namical systems. SIAM Journal of Control, 7:75{

100, February 1969.

[MP95] Jens M�ller-Pedersen and Martin Pagh Petersen.

Control of nonlinear plants: Volume I & II. Mas-

ter's thesis, Mathematical Institute, Technical Uni-
versity of Denmark, August 1995. Available at

http://www.mat.dtu.dk/eksproj.html.

[SL61] Joseph La Salle and Solomon Lefschetz. Stability by

Liapunov's direct method, chapter 2, pages 56{59.
Academic Press, New York & London, 1961.

[Son95] Eduardo D. Sontag. On the input-to-state stability
property. European Journal of Control, 1(1):24{36,

1995.

[vdS91] A. J. van der Schaft. Relations between H1 opti-

mal control of a nonlinear system and its lineariza-

tion. In Proceedings of the 30th Conference on

Decision and Control; Brighton, England., pages

1807{1808, December 1991.

[vdS92a] A. J. van der Schaft. L2-gain analysis of nonlin-

ear systems and nonlinear state feedback H1 con-

trol. IEEE Transactions on Automatic Control,
37(6):770{784, June 1992.

[vdS92b] A. J. van der Schaft. Nonlinear State Space

H1 Control Theory, chapter 6, pages 153{190.

Birkh�auser, 1992.

[Wil72] Jan C. Willems. Dissipative dynamical systems

part I: General theory. Arch. Rational Mech. Anal.,
45:321{351, 1972.


