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Abstract

In this paper algorithms for calculating the maximal per-

turbation bounds under H2 performance constraints for

systems with parametric uncertainties are presented. A

family of systems is considered, described by state space

models which depend nonlinearly on real uncertain param-

eters. The stability and performance robustness analysis

are based on the same matrix algebra results, and the cor-

responding algorithms therefore are very similar in style.

An example illustrates the algorithms and calculations.

1 Introduction

Robust performance analysis for uncertain control sys-

tems, which is now receiving a great deal of attention

(see [4, 9] and references therein), is a relatively new area

in comparison with robust stability analysis. For linear

time-invariant systems, the H2 performance metric arises

naturally in a number of di�erent physically meaningful

situations, see [4, 6, 3]. The H2 performance of a linear

time-invariant system is measured via the H2 norm of its

transfer matrix. As long as this H2 norm is less than a

given upper bound, the design can stop, and there is no

need to seek the minimal norm due to robustness consid-

erations. Suppose the H2 norm of a nominal (stable) sys-

tem is less than a given upper bound. Then the question is

whether this is still less than this upper bound after su�er-

ing the parameter perturbation? or alternatively, how to

�nd the "maximal domain" for perturbation parameters

under stability and H2 norm constraints? This paper will

consider the latter problem, and calculate the maximal

(nonlinear) perturbation interval or radius in perturba-

tion parameter space. The results obtained are not only

su�cient, but are also necessary. The paper is di�erent

from most of published papers which deal with a �xed

parameter domain and a�nely linear perturbations. One

of our motivations comes from [4] which computed the

supremum of the H2 norm in the case of an a�nely linear

perturbation with perturbation parameter q 2 [0; 1].

The notation used throughout the paper is as follows.

Denote the real number set by R, and the complex plane



(the complex open left half plane) by C (C�). Let cs:

Rm�n ! Rmn be the column stacking operator on a ma-

trix, 
: Rn�n �Rm�m ! Rmn�mn the standard matrix

Kronecker product, and �: Rn�n � Rm�m ! Rmn�mn

the standard matrix Kronecker sum de�ned in [2]. Finally,

let �k(�) be the kth eigenvalue of a square matrix.

2 Problem formulation

Consider a linear time-invariant system

_x(t) = A(q)x(t) +B(q)w(t);

z(t) = C(q)x(t);
(1)

where x 2 Rn, w 2 Rm, and z 2 Rp are state, distur-

bance, and performance vectors, respectively; A(q), B(q),

and C(q) are (of compatible dimension) continuous ma-

trix functions of the perturbation parameter vector q =

[q1; q2; � � � ; ql]
T 2 Rl. The transfer function matrix from w

to z can be expressed as T (s; q) = C(q)(sI�A(q))�1B(q).

A square constant matrix is called stable if all of its eigen-

values lie in C�. The corresponding transfer function

T (s; q) is said to be stable for a given q if A(q) is sta-

ble, its H2 norm is de�ned by:

kT (s; q)k2
:
=

n
1

2�

R
+1

�1

Trace[T (j!; q)T �(j!; q)]d!

o1=2
(2)

where T �(s; q)
:
= T 0(�s; q) and (�)0 denotes transpose.

Assume that the following two assumptions are satis�ed

for the nominal system (A(0); B(0); C(0))

AS1. A(0) is stable,

AS2. kT (s; 0)k22 < 
,

where 
 is a known positive constant which re
ects the

tolerance of the system as measured by the H2 perfor-

mance (for instance, an acceptable output variance of (1)

to a white noise signal w). The goal is to �nd "the max-

imal domain" in Rl so that kT (s; q)k22 < 
 for every q

in the domain. A prerequisite for doing this is that A(q)

must be stable for all q in this domain. This means that

the robust stability analysis must be completed �rst (see

relevant results in [1, 5, 7, 8]). The relevant problems

will be considered for two cases, i. e., l = 1 and l = 2,

respectively.

2.1 Single parameter case

De�ne

r�s
:
= inffr < 0 : A(q) is stable 8q 2 (r; 0)g;

r+s
:
= supfr > 0 : A(q) is stable 8q 2 (0; r)g;

r�2
:
= inffr < 0 : A(q) is stable and kT (s; q)k22 < 


8q 2 (r; 0)g;

r+2
:
= supfr > 0 : A(q) is stable and kT (s; q)k22 < 


8q 2 (0; r)g:

Then (r�s ; r
+
s ) is the maximal perturbation interval of

q while keeping the stability of A(q); and (r�2 ; r
+
2 ) is

the maximal perturbation interval of q while keeping

kT (s; q)k22 < 
.

Problem 1 Suppose that system (1) satis�es AS1, AS2,

and the system matrices may be parameterised as:

A(q)
:
= A0 + qA1 + � � �+ qm1Am1

;

B(q)
:
= B0 + qB1 + � � �+ qm2Bm2

;

C(q)
:
= C0 + qC1 + � � �+ qm3Cm3

;

where all of Ak, Bk, and Ck are given constant matrices.

(a). Find r�s and r+s .

(b). Find r�2 and r+2 .

Remark 1 Obviously, (r�2 ; r
+
2 ) � (r�s ; r

+
s ).

2.2 Two parameter cases

Denote by U(r) and @U(r) the disk fq = [q1; q2]
0 :p

q21 + q22 < r; g � R2 and its boundary circle, respec-

tively. De�ne

rs
:
= supfr : A(q) is stable 8q 2 U(r)g;

r2
:
= supfr : A(q) is stable and kT (s; q)k22 < 


8q 2 U(r)g:

Then U(rs) is the maximal perturbation disk for q while

keeping the stability of A(q); and U(r2) is the maximal

perturbation disk for q while keeping kT (s; q)k22 < 
.

Problem 2 Suppose that system (1) satis�es AS1, AS2,

and

A(q)
:
= A0 + q1A10 + q2A01 + q21A20 + q1q2A11

+q22A02 + � � �+
P

i+j=m1
qi1q

j
2Ai;j ;

B(q)
:
= B0 + q1B10 + q2B01 + q21B20 + q1q2B11

+q22B02 + � � �+
P

i+j=m2
qi1q

j
2Bi;j ;

C(q)
:
= C0 + q1C10 + q2C01 + q21C20 + q1q2C11

+q22C02 + � � �+
P

i+j=m3
qi1q

j
2Ci;j ;



where A0, B0, C0 and all of Ai;j , Bi;j , and Ci;j are given

constant matrices.

(a). Find rs.

(b). Find r2.

Remark 2 Obviously, 0 < r2 � rs.

3 Preliminaries

Let M(r) =M0+ rM1+ � � �+ rmMm where all of the Mk

are nxn constant matrices, and jM0j 6= 0 (j � j denotes the

determinant). Let,

r�
:
= supfr < 0 : jM(r)j = 0g; (3)

r+
:
= inffr > 0 : jM(r)j = 0g; (4)

be the maximal perturbation bounds for nonsingularity

of matrices. By simple operations on the matrix and its

determinant (see [8]), it can be shown that,

r� =
1

��min(M)
; (5)

r+ =
1

�+max(M)
; (6)

where M is an mn�mn matrix given by

M
:
=

�

0
BBBBBB@

O �I O � � � O

O O �I � � � O
.
.
.

.

.

.

.

.

.
.
.
.
.
.
.

O O O � � � �I

M�1

0
Mm M�1

0
Mm�1 M�1

0
Mm�2 � � � M�1

0
M1

1
CCCCCCA

(7)

and ��min(�) stands for the minimal value of the negative

real eigenvalues (let ��min(�) = 0� if there exist no negative

real eigenvalues), and �+max(�) the maximal value of the

positive real eigenvalues (let �+max(�) = 0+ if no positive

real eigenvalues), respectively.

Formulas (5) and (6) suggests the following algorithm:

Algorithm 1 (the max. perturbation bounds for

nonsingularity of matrices)

Step 1. Input Mk, k = 0; 1; � � � ;m where jM0j 6= 0;

Step 2. De�ne M as in (7);

Step 3. Calculate all the eigenvalues of M;

Step 4. Find r� and r+ based on (5) and (6), then out-

put.

The following lemma helps us to transform Problems 1a

and 2a into that of the maximal perturbation bounds for

the nonsingularity of matrices.

Lemma 3 Suppose that

(i). Q is a single connected domain in Rl, and 0 2 Q,

(ii). A(0) is stable.

Then A(q) are stable for all q 2 Q if and only if jA(q) �

A(q)j 6= 0 for all q 2 Q.

Proof: Recall the continuity of A(q), B(q), C(q) to q, and

�k(A(q) �A(q)) = �i(A(q)) + �j(A(q))

k = 1; � � � ; n2; i; j = 1; � � � ; n:

from this observation the lemma becomes obvious. ut

By using Lemma 3 it may be shown that

r�s = supfq < 0 : jA(q)�A(q)j = 0g; (8)

r+s = inffq > 0 : jA(q)�A(q)j = 0g; (9)

rs = inffr : jA(q) �A(q)j = 0

for some q 2 @U(r)g: (10)

Instead of (2) in the frequency domain, we use the state

space approach to compute :

kT (s; q)k22 = TracefC 0(q)C(q)Q(q)g

where Q(q) = Q(q)0 satis�es

A(q)Q(q) +Q(q)A(q)0 +B(q)B(q)0 = 0

It is easy to show the following compact formula (or

see [4])

kT (s; q)k22 = �cs[C 0(q)C(q)]0 � [A(q)�A(q)]�1

�cs[B(q)B0(q)]
(11)

Going one step from (11), the following result is obtained

which helps transform Problem 1b and 2b into that of

the maximal perturbation bounds for nonsingularity of

matrices.

Lemma 4 Suppose that

(i) Q is a single connected domain in Rl, and 0 2 Q,

(ii) A(q) are stable 8q 2 Q,

(iii) kT (s; 0)k22 < 
.



Then kT (s; q)k22 < 
 for all q 2 Q if and only if jM
(q)j 6=

0 for all q 2 Q, where

M
(q)
:
= A(q)�A(q) + 1



cs[B(q)B0(q)] � cs[(C 0(q)C(q)]0

(12)

Proof: kT (s; q)k22 < 
 for all q 2 Q

, 
 + cs[C 0(q)C(q)]0 � [A(q)�A(q)]�1 � cs[B(q)B0(q)] > 0

for all q 2 Q. (from (11))

, j
I + [A(q)�A(q)]�1 � cs[B(q)B0(q)]

� cs[C 0(q)C(q)]0j > 0 for all q 2 Q.

(use equality j
I +XY j = j
I + Y X j)

, j
[A(q)�A(q)]�1j�jM
(q)j > 0 for all q 2 Q (from (12))

, jM
(q)j 6= 0 for all q 2 Q (due to the continuity of

A(q); B(q); C(q) to q, and Lemma 3)

The rest of the proof is trival and omitted. ut

By using Lemma 4 we obtain the following formulas

being suited for calculating.

r�2 = supfq 2 (r�s ; 0) : jM
(q)j = 0g; (13)

r+2 = inffq 2 (0; r+s ) : jM
(q)j = 0g; (14)

r2 = inffr : r � rs and jM
(q)j = 0

for some q 2 @U(r)g: (15)

In Section 2 we presented two types of problems. One is

the maximal perturbation bounds for system stability; the

other is the maximal perturbation bounds for system per-

formance. Lemma 3 and 4 help us to transform these two

into the maximal perturbation bounds for nonsingularity

of matrices. This means that the resulting algorithms will

be similar in spirit.

4 The Main results

This section will describe the main formulas and algo-

rithms.

4.1 Single parameter case

By using matrix multiplication and the expressions of

A(q), B(q), C(q) in problem 1, then it can be seen that

A(q)�A(q) =A0 + qA1 + � � �+ qm1Am1
(16)

cs[B(q)B0(q)] = b0 + qb1 + � � �+ q2m2b2m2
(17)

cs[C 0(q)C(q)] = c0 + qc1 + � � �+ q2m3c2m3
(18)

where

Ak = Ak �Ak; k = 0; 1; � � � ;m1

b0 = cs[B0B
0

0]; b2m2
= cs[Bm2

B0

m2
];

c0 = cs[C 0

0C0]; c2m3
= cs[C 0

m3
Cm3

];

(the expressions for bk and ck are omitted due to space

limitations). Substituting the above expressions for A(q),

B(q), C(q) in (12), then it can be written as :

M
(q) =M0
 + qM1
 + � � �+ qmMm
 (19)

where m = maxfm1; 2(m2 +m3)g, and

M0
 = (A0 �A0) +
1



cs[B0B

0

0] � cs[C
0

0C0]
0; (20)

and all of otherMk
 (the detailed expressions are omitted)

depend on Ai, bj , and ck in a similar fashion.

By recalling Algorithm 1, and using (9), (10) and (17),

then the following is obtained:

Algorithm 2 (the max. perturbation bounds for

Problem 1a)

Step 1. Input Ak, k = 0; 1; � � � ;m where A0 must be sta-

ble;

Step 2. Calculate Ak, k = 0; 1; � � � ;m1;

Step 3. Let Mk = Ak, recall Algorithm 1, then compute

r� and r+;

Step 4. Let r�s = r� and r+s = r+, and output.

From AS2, Lemma 4, and (20), it can be shown that

jM0
 j 6= 0. By recalling Algorithm 1, and using (14), (15)

and (19), the following algorithm is obtained:

Algorithm 3 (the max. perturbation bounds for

Problem 1b)

Step 1. Input Ai, Bj , and Ck where we must have AS1

and AS2;

Step 2. Calculate Ai, bj and Ck, and also m;

Step 3. Calculate Mk
 ;

Step 4. LetMk =Mk
 , and recall Algorithm 1 to get r�

and r+;

Step 5. Output r�2 = maxfr�s ; r
�
g, and r+2 =

minfr+s ; r
+g.

Remark 5 Algorithms 2 and 3 do not need any iteration.

The maximal perturbation bounds for Problem 1a in

the simplest case (a�ne perturbations with a single pa-

rameter) were given in [5].



4.2 Two-parameter case

In order to solve Problem 2, introduce polar coordinates,

namely, q1 = r cos �, q2 = r cos �, thus

A(q) =A(r; �) = A0 + rA1(�) + � � �+ rm1Am1
(�);

B(q) =B(r; �) = B0 + rB1(�) + � � �+ rm2Bm2
(�);

C(q) =C(r; �) = C0 + rC1(�) + � � �+ rm3Cm3
(�);

where

Ak(�)
:
=
P

i+j=k(cos �)
i(sin �)jAij ; k = 1; � � � ;m1

Bk(�)
:
=
P

i+j=k(cos �)
i(sin �)jBij ; k = 1; � � � ; 2m2

Ck(�)
:
=
P

i+j=k(cos �)
i(sin �)jCij ; k = 1; � � � ; 2m3

Obviously, for a �xed �, Problem 2 is fully transformed

into Problem 1. A grid for the interval [0; 2�) is needed

and �nally

rs = inffr+s (�); � 2 [0; 2�)g;

r2 = inffr+2 (�); � 2 [0; 2�)g:

The algorithms corresponding to Problem 2a and 2b are

listed brie
y below:

Algorithm 4 (the maximal stab. radius for Pro-

blem 2a)

Step 1. Select a large natural number p, and let �j =

2j�=p, j = 0; 1; � � � ; p;

Step 2. Let Ak = Ak(�j), repeatedly recall Algorithm 2

to get r+sj , j = 0; 1; � � � ; p;

Step 3. Find rs = minfr+sj , j = 0; 1; � � � ; pg, then output

it.

Algorithm 5 (the maximal stab. radius for Pro-

blem 2b)

Step 1. Select a large natural number p, and let �j =

2j�=p, j = 0; 1; � � � ; p;

Step 2. Let Ak = Ak(�j), Bk = Ck(�j), and Ak =

Ck(�j), repeatedly recall Algorithm 3 to get r+2j ,

j = 0; 1; � � � ; p;

Step 3. Find r2 = minfr+2j , j = 0; 1; � � � ; pg, then output

it.

Remark 6 Solving Problem 2 needs iteration in one di-

mension.

5 Example

An example with a single perturbation parameter is cited

below. Let

A(q) =

"
�2 1

0 �1:5

#
+ q

"
0 1

0 0

#
+ q2

"
0 0

1 0

#

+q3

"
1 1

1 0

#

B(q) =

"
1 0

0 1

#
+ q

"
1 0

1 2

#
; C(q) = [1 1]

It is easy to show that A0 =

"
�2 1

0 �1:5

#
is stable, and

T (s; 0) = [ 1
s+2

s+3
(s+2)(s+1:5)

], and kT (s; 0)k22 � 0:8214 <

1 = 
. In this example it may be shown that

A(q)�A(q) =

2
6664
�4 1 1 0

0 �3:5 0 1

0 0 �3:5 1

0 0 0 �3

3
7775

+q

2
6664

0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

3
7775+ q2

2
6664

0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

3
7775

+q3

2
6664

2 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0

3
7775 ;

cs[B(q)B0(q)] =

2
6664

1

0

0

1

3
7775+ q

2
6664

2

1

1

4

3
7775+ q2

2
6664

1

1

1

5

3
7775 ;

and cs[C 0(q)C(q)]0 = [1 1 1 1], furthermore,

M
(q) =

2
6664
�3 2 2 1

0 �3:5 0 1

0 0 �3:5 1

1 1 1 �2

3
7775

+q

2
6664

3 3 3 2

1 1 1 2

1 1 1 2

4 4 4 4

3
7775+ q2

2
6664

1 1 1 1

2 1 1 1

2 1 1 1

5 6 6 5

3
7775

+q3

2
6664

2 1 1 0

1 1 0 1

1 0 1 1

0 1 1 0

3
7775 ;



Finally (r�s ; r
+
s ) = (�1:6711; 0:7683) can be calcu-

lated, which shows that the family A(q) is stable for all

q 2 (�1:6711; 0:7683), and (r�2 ; r
+
2 ) = (�1:6711; 0:0433),

meaning that kT (s; q)k22 < 1 for all q 2 (�1:6711; 0:0433).

These two intervals are furthermore the largest intervals

with these properties.

6 Conclusions

In this paper, methods for calculating the maximal pa-

rameter perturbation bounds under H2 performance con-

straints for a family of systems described by state space

models, with nonlinear dependence on real uncertain pa-

rameters, have been presented, as well as methods for

computing similar bounds for the corresponding stability

bounds. The results are not conservative as the informa-

tion of the system structure is used completely.

The domains for robust performance are, obviously,

subsets (usually strict) of the robust stability domains,

but the algorithms for computation of the robust perfor-

mance radii and for stability radii are similar in nature,

since they are based on the same matrix algebra results.
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