
Multiobjective control for multivariable systems with mixed-sensitivity
speci® cations

JAKOB STOUSTRUP² and HENRIK NIEMANN³

A series of multiobjective H ¥ design problems are considered in this paper. The
problems are formulated as a number of coupled H ¥ design problems. These H ¥
problems can be formulated as sensitivity problems, complementary sensitivity
problems or control sensitivity problems for every output (or input) in the system.
It turns out that these multiobjective H ¥ design problems, based on a number
of di� erent types of sensitivity problem, can be exactly decoupled into k H ¥
sensitivity problems for stable systems, where k is the number of outputs (for
unstable systems, independent stabilization is required). Further, it is shown how
similar techniques can be used to incorporate simultaneous speci® cations for
di� erent control objectives such as H 2, l1 etc., for the sensitivities. The approach
is illustrated by an experimental set-up for a steel mill test rig.

1. Introduction

The area of robust control has received tremendous attention in the control
literature recently. In particular, H ¥ theory has been in the focus since its break-
throughs during the 1980s.

In the main, H ¥ control is motivated by the following two applications. First, if
the modelling errors are assumed to be bounded in H ¥ norm by a known bound,
bounding a transfer function determined by the plant and the controller in H ¥ norm
guarantees robust stability. Second, formulating optimality conditions as frequency
domain bounds for a number of transfer functions, H ¥ theory can be applied as a
loop-shaping tool.

In a limited number of cases, robust stability su� ces, but in most applications it
is required to satisfy optimality speci® cations as well, and hence some kind of loop-
shaping techniques has to be employed.

In the main stream literature, it is suggested that H ¥ theory is used for such
purposes by stacking control objectives as, for example, in the so-called mixed-
sensitivity approach, where a design criterion of the form

WS( )́S( )́
WT ( )́T ( )́ ¥

< g (1)

is considered, where S( )́ and T ( )́ are the closed-loop sensitivity and complementary
sensitivity, and WS( )́ and WT ( )́ are appropriate weightings. The motivation for the
mixed-sensitivity approach is that a controller satisfying (1) also satis® es that each
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entry of the matrices W S( )́S( )́ and WT ( )́T ( )́ is bounded by g as well, which is
usually the original goal.

The problem, however, which we shall address in this paper, is that an approach
based on a criterion such as (1) can be rather conservative since all possible cross-
couplings between inputs and outputs are considered, which might not be motivated
from physics. In e� ect it might not be possible to meet the performance speci® cations
by this approach, although there might exist an admissible controller which bounds
su� ciently each individual sensitivity. For handling this design problem in a more
convenient way, we need to apply a multiobjective design approach. By applying a
multiobjective design method, it will be possible to remove or reduce the conserva-
tism due to the cross-coupling terms. Recently, some results in this direction have
been published by van Diggelen and Glover (1994) which addresses some of the
problems treated in this paper. In comparison, the approach taken below is more
simple minded and sometimes more restrictive, but the results are also more intuitive
and easier to customize to speci® c applications.

The area of multiobjective control has been an active research area for a number
of years. A good survey paper is that by Dorato (1991) describing the methods
derived before 1991. Since 1991 both new theoretical results as well as new powerful
numerical techniques have been developed. Some of the most interesting results can
be found in the papers by Nobuyama and Khargonekar (1995), Elia and Dahleh
(1994), Khargonekar and Rotea (1991), Sznaier (1994a, b), Khargonekar et al.
(1993).

Until now, many multiobjective design methods have dealt with state feedback
problems only. The following implementation is then based on a recovery design (see
for example Khargonekar et al. (1993)). In this case it is in general required that the
system is a minimum phase for obtaining a good recovery design (Saberi et al. 1993,
Niemann, et al. 1993). We shall not make such assumptions in this paper.

In this paper we shall address design problems, which are based on criteria for
individual entries in sensitivity functions, rather than on criteria which equalize all
directions. We shall also discuss how to impose constraints in di� erent norms on
di� erent sensitivities. The approach uses pure frequency domain algebra and is
somewhat related to that of Rotea and Prasanth (1994). One di� erence is that our
approach speci® cally uses the structure of sensitivity optimization problems. The
multiobjective design method suggested is based on a direct design of the dynamic
controllers without including a recovery step.

2. Multiobjective sensitivity control

In the following we shall study a multioutput sensitivity problem formulated as a
number of coupled H ¥ problems. The approach suggested can be applied to a huge
number of variations in the multioutput sensitivity problem, the complementarity
sensitivity problem and the control sensitivity problem, but ® rst we shall restrict
attention to these three problems.

Throughout the sequel we shall consider a ® nite-dimensional linear time-invar-
iant system with a state space realization of the form

Çx = Ax + Bu
y = Cx + Du

(2)
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and with transfer function G( )́. We shall assume the plant to be square, with k inputs
and outputs.

For such a system, the multiobjective sensitivity problem, the multiobjective
complementary sensitivity problem and the control sensitivity problem are depicted
in Fig. 1, Fig. 2 and Fig. 3 respectively.

The block diagrams in Figs 1± 3 can all be described by the relations

z
y =

Gzw Gzu

Gyw Gyu

w
u , u = Ky

with

w =

w1
w2

..

.

wk

, u =

u1
u2

..

.

uk

, z =

z1
z2

..

.

zk

, y =

y1

y2

..

.

yk

where

Gzw Gzu

Gyw Gyu
=

I G
I G

for Fig. 1

0 G
I G

for Fig. 2

0 I
I G

for Fig. 3

Writing the transfer function from w to z as a linear fractional transformation in
K we get
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Figure 1. Multiobjective sensitivity problem.



Tzw = :

t11 t12 ´´´ t1k

t21 t22 ´´´ t2k

..

. ..
. ..

.

tk1 tk2 ´´´ tkk

= Gzw + GzuK(I - GyuK)- 1Gyw

=

I + GK(I - GK)- 1 for Fig. 1

GK(I - GK)- 1 for Fig. 2

K(I - GK)- 1 for Fig. 3

where the functions tii, i = 1, . . . , k, are the output sensitivities (Fig. 1), com-
plementary sensitivities (Fig. 2) or control sensitivities (Fig. 3) respectively. The
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Figure 2. Multiobjective complementary sensitivity problem.

Figure 3. Multiobjective control sensitivity problem.



functions tij, i = 1, . . . , k, j = 1, . . . , k, i /= j, are cross-over terms which indicate
how much the ith disturbance in¯ uences the jth output. Loop-shaping just one of
the sensitivities tii by specifying (the inverse of) an upper bound for the modulus of tii
can be formulated as a standard H ¥ problem as follows.

Problem 1: The ith single-input single-output (SISO) problem for any of the
con® gurations in Fig. 1, Fig. 2 or Fig. 3 is said to be solvable if and only if there
exists a controller K which internally stabilizes the plant and such that

i W itii|¥ < 1

where

tii( )́ =
1 + gi( )́K( )́[I - G( )́K( )́]- 1ei for Fig. 1
gi( )́K( )́[I - G( )́K( )́]- 1ei for Fig. 2
eÂiK ( )́[I - G( )́K( )́]- 1ei for Fig. 3

ei is the (constant) vector given by

ei =

0
..
.

1
..
.

0

ith position

and gi(s) is the row of transfer functions from u to zi, or equivalently, if there exists an
internally stabilizing controller K for the system

Fig. 1 :

Çx =
A 0

BW ieÂiCi AW i

x +
0

BW i

w +
B

BW ieÂiD
u

z = DwieÂiC CW i x + DW iw + DW ieÂiDu

y = C 0( )x + eiw + Du

or respectively

Fig. 2 :

Çx =
A 0

BW ieÂiC AW i

x +
0
0

w +
B

BW ieÂiD
u

z = DW ieÂiC CW i x + 0w + DW ieÂiDu

y = C 0( )x + eiw + Du

or

Fig. 3 :

Çx =
A 0
0 AW i

x +
0
0

w +
B

BW ieÂi
u

z = 0 CW i x + 0w + DW ieÂiu

y = C 0( )x + eiw + Du

such that when applying the control law u = Ky, the resulting H ¥ norm w to z is less
than 1. Here, W i is assumed to have the following state space realization:
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Çx = AW i x + BW iui

yi = CW i x + DW iui

In the sequel, we shall give a number of decoupling results for the above multi-
objective H ¥ problems. First we shall give the results for a stable plant, which is
extremely simple.

Theorem 1: Consider the system (2). Assume that A is a stability matrix. Then,
the following two statements are equivalent.

(1) There exists an internally stabilizing controller K such that, for each tii,

i W itii i ¥ < 1

(2) For each tii there exists an internally stabilizing controller K such that

i W itii i ¥ < 1

Remark 1: The signi® cance of Theorem 1 is that just as much can be achieved
by a single controller which controls all the tii as if the controller just had to
control one of the tii. In fact, as is evident from the proof below, it is possible to
design such a multiobjective H ¥ controller, by designing an H ¥ controller for
each tii. u

Proof: Let the plant G be row partitioned as

G =

g1
g2

..

.

gk

Since G is stable, the YJBK parametrization of all stabilizing controllers (Youla et al.
1971) is simply given by

K = Q(I + GQ)- 1, Q Î R H ¥ , Q = K(I - GK)- 1 (3)
The transfer function from w to z becomes

Tzw =
I + GQ for Fig. 1
GQ for Fig. 2
Q for Fig. 3

=

1 + g1q1 g1q2 ´´´ g1qk

g2q1 1 + g2q2 ´´´ g2qk

..

. ..
. ..

.

gkq1 gkq2 ´´´ 1 + gkqk

for Fig. 1

g1q1 g1q2 ´´´ g1qk
g2q1 g2q2 ´´´ g2qk

..

. ..
. ..

.

gkq1 gkq2 ´´´ gkqk

for Fig. 2

q1 q2 ´´´ qk( ) for Fig. 3
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=

t11 t12 ´´´ t1k
t21 t22 ´´´ t2k

..

. ..
. . .

. ..
.

tk1 tk2 ´´´ tkk

where Q has the following column partitioning:

Q = (q1 q2 ´´´qk) (4)
Now, the crucial observation is that since

tii =
1 + giqi for Fig. 1
giqi for Fig. 2
eÂiqi for Fig. 3

(5)

each tii depend only on qi. Since the qi are free stable parameters, the optimization of
the tii can be done completely independently, where after K is determined by (3).
From this simple observation the claim becomes obvious.

Remark 2: An important observation, which can be made from the proof of
Theorem 1, is that sensitivities, complementary sensitivities and control
sensitivities can be mixed arbitrarily. Pairs of corresponding wi and zi can be
chosen for H ¥ speci® cations from each of the above con® gurations in such a way
that no pairs with the same numbering are chosen from any con® guration. u

Remark 3: For a stable plant, it is trivial that selecting K = 0 satis® es the
problems in Figs. 2 and 3. Hence, the corresponding optimization problems make
sense only in combinations with sensitivity speci® cations following Fig. 1. u

In the next section, we shall provide a more general result, which incorporates all
three types of speci® cation.

From the proof of Theorem 1 it is apparent that an H ¥ controller K which
satis® es any of the above multiobjective problems can be found by determining
the qi and then applying (3). Each of these k transfer matrices (columns) can be
found by solving a scalar standard H ¥ problem based on (5). For example, for a
sensitivity problem, each of the k associated standard problems based on (5) which in
transfer function form is

i W i(1 + giqi) i ¥ < 1

has the following standard state space formulations:

Çx =
A O
0 AW i

x +
0

BW i

w +
B
0

u

z = (eÂiC CW i )x + DW iw + eÂiDu
y = ( 0 CW i )x + DW iw + 0u

3. Multiobjective control with simultaneous speci® cations for every transfer
function

In the previous section, we were concerned with the problem of shaping just the
diagonal entries in the (complementary or control) sensitivities. However, in a series
of control problems, it is reasonable to include
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(1) speci® cations for sensitivities, complementary sensitivities, and control sensi-
tivities simultaneously and

(2) speci® cations for both diagonal and o� -diagonal terms.

In a disturbance rejection problem, for instance, considering the diagonal terms
only indicates that any of the disturbances is assumed to in¯ uence one output only
(in an open or closed loop). This is not very realistic in most cases, and hence we have
to specify the o� -diagonal terms as well, which can be interpreted as the in¯ uence on
one output from an output disturbance on another.

Moreover, if sensitivities are considered isolated, performance is achieved at the
cost of robustness.

The approach taken below will use a technique similar to mixed-sensitivity H ¥
designs, where the design criteria are stacked. In a similar way to the mixed-sensi-
tivity approach we can avoid conservatism only by selecting weight matrices in a
clever way. This conservatism, however, will be the only one introduced, in contrast
with most other approaches.

Loop shaping one of the columns of Tzw by specifying upper bounds for the
modulus of its entries can be formulated as a standard H ¥ problem as follows.

Problem 2: The j th single-input multiple-output (SIMO) problem for the con-
® guration in Fig. 1 is said to be solvable if and only if there exists a controller K
which internally stabilizes the plant and such that

W s
1js1j

..

.

W s
kjskj

W t
1jt1j

..

.

W t
kjtkj

W c
1jc1j

..

.

W
c

kjckj ¥

< 1, where

sij( )́ = eÂi(I + G( )́K( )́[I - G( )́K( )́]- 1)ej

tij( )́ = eÂiG( )́K( )́[I - G( )́K( )́]- 1ej

cij( )́ = eÂiK( )́[I - G( )́K( )́]- 1ej

and gi(s) is the row of transfer functions from u to yi. W s
ij( )́, W t

ij( )́, and W c
ij( )́ are the

weighting matrices for the ij th entry of the sensitivity (sij), the complementary sensi-
tivity (tij) and the control sensitivity (cij) respectively.

Remark 4: The three problems discussed in § 2 can be obtained as special cases
of Problem 2 by selecting the weights properly. For instance, by choosing W s

ii( )́
as weights for the sensitivities, W s

ij( )́ º 0, i /= j, and W t
ij( )́ º W c

ij( )́ º 0, the
sensitivity problem from §2 is re-obtained as a special case. u

Remark 5: Note that sij = tij, i /= j. Hence, there is some redundancy in the set-
up, which should be removed in implementations to save computational power. u

As a generalization of Theorem 1 the multivariable multiobjective problem will
be solved by solving a series of SIMO problems, as demonstrated by the following
result.
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Theorem 2: Consider the system (2). Assume that A is a stability matrix. Then,
the following two statements are equivalent.

(1) There exists an internally stabilizing controller K such that

W s
11s11

..

.

W s
k1sk1

W t
11t11

..

.

W t
k1tk1

W c
11c11

..

.

W c
k1ck1 ¥

< 1, . . . ,

W s
1js1j

..

.

W s
kjskj

W t
1jt1j

..

.

W t
kjtkj

W c
1jc1j

..

.

W c
kjckj ¥

< 1, . . . ,

W s
1ks1k

..

.

W s
kkskk

W t
1kt1k

..

.

W t
kktkk

W c
1kc1k

..

.

W c
kkckk ¥

< 1, (6)

in the closed-loop system simultaneously.

(2) Each of the m SIMO problems from Problem 2 is solvable independently.

Proof: Following the line of proof of Theorem 1, we utilize the fact that

I + GK(I - GK)- 1

GK(I - GK)- 1

K(I - GK)- 1
=

I
0
0

+
G
G
I

K(I - GK)- 1 =
I
0
0

+
G
G
I

Q

and hence

W s
ij( )́sij( )́ = W s

ij( )́ d ij + eÂiW
s
ij( )́G( )́qj( )́

Consequently, the huge composite stacked problem can be solved columnwise, thus
avoiding conservatism, and making weight selection more transparent. u

The main signi® cance of Theorem 2 is described in terms of the following cor-
ollary.

Corollary 3: L et K be given, satisfying (6). Then

i W s
ij( )́sij( )́ i ¥ < 1, i W t

ij( )́tij( )́ i ¥ < 1, i W c
ij( )́cij( )́ i ¥ < 1, " i, j

Remark 6: Corollary 3 shows that each transfer function is optimized entrywise.
This entrywise optimization does not introduce any conservatism, except that
originating from stacking which can be avoided by cleverly, possibly iteratively,
selecting the weights (such a scheme has been tested successfully in practice). u

Proof: The corollary is immediate from the theorem, upon noting that the H ¥
norm of a column of transfer functions being smaller than g implies that each of
its entries is smaller than g . u

The design is done by ® nding an appropriate qj for each SIMO problem, and
then combining them all by (3).
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4. Multiobjective control of general plants

It is possible to apply the multiobjective design method both to unstable plants
and to design problems which are not based on sensitivity functions. This will be
considered in the following.

4.1. Unstable plants
In general, the multiobjective control problem is much harder for an unstable

plant than for a stable plant. Provided, however, that one output is available for
stabilization only in the sense that no speci® cations are speci® c for that output, the
results from above can be applied directly for unstable plants as well. To exemplify
the procedure, let us consider a system described by

y1
y2

=
G1
G2

u (7)

where we apply the control law

u = (K1 K2) y1

y2

Now, we have the following straightforward result.

Lemma 4: Consider the system (7). Assume that K2 stabilizes the plant, that is
such that

~G = G1(I - K2G2)- 1

is stable. Moreover, assume that Q1 Î R H ¥ satis® es

i W 1( )́ + W 1( )́ ~G( )́Q1( )́ i ¥ < g

Then one controller, satisfying

i W 1( )́S1( )́11¥ < g

is given by

K = (Q1[I - G1(I - K2G2)- 1Q1]- 1 K2)

Proof: The lemma follows by elementary algebra, and by applying Theorem 1. u

Obviously, the principle from Lemma 4 can be extended to any number of out-
puts or inputs, applying the results regarding stable systems. Although all results
previously given in the paper applies in this manner, we shall not give the results
explicitly due to space limitations, since they are straightforward. It should be
pointed out, however, that there is some restriction in the fact that one of the outputs
is used for stabilization only, and it is not trivial to pose any speci® cations simulta-
neously for this output. In practice, it might not be reasonable to introduce an
additional sensor or actuator just for this purpose. Hence, the method suggested
in this paper applies mostly to stable plants, or to large-scale systems (such as power
plants or chemical plants) equipped with internal stablizing loops.
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4.2. Multiobjective control for non-sensitivity speci® cations
Let us consider a general four-block system (which is not assumed to be a weighted
mixed-sensitivity problem) given by

z
y =

Gzu Gzu

Gyw Gyu

w
u = G w

u , u = Ky (8)

It is still possible to apply the multiobjective design method to the above system
under some conditions. It turns out directly that we can use the YJBK parameter-
ization in the same way as done in the above section if the open-loop system is stable
and the inverse of Gyw (or Gzu) exists and is stable. We have then the following result.

Theorem 5: Consider the system (8). Assume that G is stable, the inverse of Gyw

exists and G- 1
yw Î R H ¥ . Then the following two statements are equivalent.

(1) There exists an internally stabilizing controller K such that, for each tii,

i W itii i ¥ < 1

(2) For each tii there exists an internally stabilizing controller K such that

i W itii i ¥ < 1

Where tii is the closed loop transfer function from wi to zi.

Remark 7: Theorem 5 is generalization of Theorem 1. u

Proof: The proof of Theorem 5 follows directly the proof on Theorem 1. Let the
Gzu be row partitioned as

Gzu =

gzu,1
gzu,2

..

.

gzu,k

Since the open loop is stable and the inverse of Gyw exists and is stable, the YJBK
parametrization of all stabilizing controllers (Youla et al. 1971) is simply given by

K = (I + QG- 1
ywGyu)- 1QG- 1

yw , Q Î R H ¥ , Q = K(I - GyuK)- 1Gyw (9)
The transfer function from w to z becomes

Tzw = Gzw + GzuQ

=

gzw,11 + gzu,1q1 gzw,12 + gzu,1q2 ´´´ gzw,1K + gzu,1qk

gzw,21 + gzu,2q1 gzw,22 + gzu,2q2 ´´´ gzw,2k + gzu,2qk

..

. ..
. ..

.

gzw,k1 + gzu,kq1 gzw,k2 + gzu,kq2 ´´´ gzw,kk + gzu,kqk

where Q has the following column partitioning

Q = (q1 q2 ´´´ qk)
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Now, the crucial observation is that since

tii = gzw,ii + gzu,iqi

each tii depend only on qi. Since the qi are free stable parameters, the optimization of
the tii can be done completely independently, whereafter K is determined by (9).
From this simple observation the claim becomes obvious.

4.3. Mixed-norm multiobjective control problems

In order to approach the requirements met in applications, considerable recent
research activity has been devoted to the issue of mixed problems, that is problems
where the speci® cations for di� erent transfer functions are posed in di� erent norms.

Generally speaking, there are no easy solutions to such problems. For each
combination of norms a dedicated research activity has to make specialized synthesis
algorithms, and such problems will typically be much harder than each of the `pure’
problems.

However, using the simple idea in this paper, arbitrary speci® cations can be
congregated. Moreover, the design methodologies are no more complex than for
the corresponding p̀ure’ problems. The only restriction is that all speci® cations
associated with one speci® c output² have to be posed in the same norm. That is
cross-over terms have to be evaluated in the same norm as the corresponding sensi-
tivity. Hence, for a diagonal sensitivity problem there are no restrictions at all.

A viable approach to a robust design for a servo problem could involve the
following steps.

Algorithm 1:

Step 1. Introduce an internal loop to stabilize the system.

Step 2. Set up w1 and z1 such that the corresponding transfer functions is the sensi-
tivity function associated with the servo error multiplied by a weighting. The
weighting has to re¯ ect the scheduled command signals for the system and
would typically have a low-pass character.

Step 3. Set up w2 and z2 such that the corresponding transfer function matches the
uncertainty model times a weighting function. For multiplicative uncertainty
models, the transfer function will be a complementary sensitivity and, for
additive uncertainties, it will be the control sensitivity. The weighting should
re¯ ect the model uncertainty and would typically possess a high-pass char-
acter.

Step 4. Transform the corresponding standard problem model into a model
matching problem.

Step 5. Apply standard H 2 optimization for the pair (w1, z1) (disregarding (w2, z2))
to obtain the controller q1.

236 J. Stoustrup and H. Niemann
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Step 6. Apply standard H ¥ optimization for the pair (w2, z2) (disregarding
(w1, z1)) to obtain the controller q2.

Step 7. Compute the ® nal controller using (4) and (3).

This algorithm is a prototype algorithm in the sense that is might be customized
in a vast number of directions.

(1) The H 2 and H ¥ norm optimizations might be substituted by any design
method that supports the standard problem framework. It might make per-
fect sense to formulate a servo problem in L 1 regime.

(2) Cross-over terms might be included whenever appropriate.
(3) Altogether di� erent speci® cations might be added.

5. Robust stability

One of the main reasons for using H ¥ -norm-based optimization is that robust
stability can be addressed. It is well known that òne-loop-at-a-time’ techniques
might fail to alert the designer about robust stability problems. The approach
presented above is somewhere in between full multivariable designs, and òne-
loop-at-a-time’ designs. Hence, care has to be taken with respect to robust stability.
Fortunately, most approaches to robust stability with respect to non-parametric
uncertainties generalize without any e� ort to the multiobjective setting presented
here.

Consider, for example, a class of systems Ĝ( )́ which is described by a multi-
plicative uncertainty:

Ĝ(s) = [I + ¢ (s)WT (s)]G(s) (10)
where G( )́ is the nominal plant, WT ( )́ is the frequency structure of the uncertainty
and D is a norm-bounded ( i ¢ i ¥ < 1) unknown transfer function.

Applying the small-gain theorem, robust stability of the closed-loop system
resulting from applying a controller K( )́ to Ĝ( )́ is equivalent to

i WT ( )́G( )́K( )́[I - G( )́K( )́]- 1 i ¥ < 1 (11)
Using the approach suggested above this can be translated into the optimization:

tW
1j

..

.

tW
kj ¥

< 1, where tW
ij ( )́ = k1 /2eÂiWT G( )́qj

which guarantees that (11) is ful® lled. The same comments as above apply: to obtain
a non-trivial controller (K /= 0), sensitivity requirements should be included. More-
over, the multivariable approach could be conservative compared with (11).

The question is, however, how realistic it is at all to have full multivariable
uncertainty descriptions such as (10). Although such uncertainty models are usually
assumed in the literature, it still remains to be explained how such uncertainty
descriptions can be obtained in practice. In applications, uncertainty descriptions
will indeed often be formulated for each loop.
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6. Controller orders

The main drawback of the methodology introduced in this paper, is that the
controller orders tend to get unreasonable high as the number of states and/or
inputs± outputs increases.

However, even for a system with just four states and three inputs± outputs, using
® rst-order weights, the overall controller order could be as large as 37; each qj would
generically be of order 4 + 7 = 11 (the order of the plane +1 weighting for the
sensitivity+3 weightings for the complementary sensitivities +3 weightings for the
control sensitivities). This would give a Q a order of 3 ´ 11 = 33 and, hence, K
would be of order 33 + 4 = 37.

Let us therefore stress at this point, that the proposed method is unrealistic without
model reduction.

In case studies using the technique, good results have been obtained by applying
optimal Hankel norm model reduction at each level instead of only reduction of the
controller. That is, ® rst each qj is model reduced, and then Q is formed from the
reduced qj and reduced. Finally, K is recovered from Q and model reduced as well.
The reasons for taking this route are mainly numerical.

Alternatively, using constrained optimization techniques, for example in an LMI
formulation, the solution can be found directly with the desired order. This has the
advantage that it is not necessary to re-evaluate the design objectives for possible
violations due to the model reduction steps.

7. Example

The method presented in this paper has been successfully applied to a laboratory
scale model of a hot-rolling steel mill. The laboratory model has two dc motor
actuators illustrating the speed and pressure actuators at the mill. The motors are
moving an elastic belt which rotate a light wheel mounted on a heavy jockey which is
suspended in a spring. The rotational speed of the wheel and its vertical position can
be measured. These variables (referred to below as s̀peed’ and t̀ension’) represent
the production speed and the tension of the steel slab respectively. The system is
extremely oscillatory because of the suspension and the ¯ exibility of the belt. It is
highly time varying owing to belt ageing and temperature dependence (and because
the motors warm up, but that is a less signi® cant factor).

The control objectives are to get rid of output disturbances using a single con-
troller that operates under all times variations.

An identi® cation procedure yielded the following state space model:

Çx = Ax + Bu
y = Cx
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where

A =

- 0 5́500 29 0́513 - 0 1́786 5 6́206 - 2 0́999 - 2 4́016 - 22 9́655

- 16 4́444 - 0 0́116 0 9́400 - 59 1́677 23 7́574 - 5 7́259 0 3́384
- 0 1́292 - 1 0́611 - 1 6́313 10 6́938 26 4́404 - 4 9́794 - 11 6́464

0 3́664 0 5́840 - 0 2́406 - 16 0́509 6 5́610 35 3́381 103 0́935

- 0 1́582 - 0 1́027 - 1 7́638 - 2 5́377 - 13 9́180 59 4́749 - 41 2́525
0 0́098 0 0́224 - 0 5́422 - 4 9́886 - 7 5́207 - 2 8́533 - 16 0́967
0 0́829 - 0 0́044 0 2́359 - 4 3́071 3 3́372 - 0 2́006 2 5́741

B =

2 1́741 - 2 4́536
2 5́215 - 2 6́740
1 4́914 1 6́399

- 0 6́920 1 7́869
1 9́558 0 7́342
0 5́524 0 6́408

- 0 4́062 0 2́454

C =
- 0 1́902 0 4́414 0 0́034 0 5́654 - 0 2́501 0 0́047 - 0 4́066

0 0́146 - 0 0́022 0 3́138 - 0 2́287 - 0 4́905 0 4́653 0 0́902

An uncertainty description was obtained by repeating the identi® cation experi-
ment under various operating conditions, that is with new and worn belts, and in
di� erent temperature environments. Comparing the models, a multiplicative uncer-
tainty model was constructed.

An experimental set-up introducing two output disturbances were designed with
a square wave disturbance for the tension and a sine wave (at a di� erent frequency)
as a disturbance for the speed. Several design methods were tested for this plant.

A few methods based on su� cient conditions for robust performance were tested.
In summary, these methods let to designs that were too conservative or they were
discarded because the weight selection was too complex.

A mixed-sensitivity design gave reasonable results, but diagonal weightings did
still make the optimization stop in an undesired way, and unfortunately there do not
exist systematic methods for choosing non-diagonal weightings.

It was therefore conjectured that multiobjective sensitivity synthesis could
improve on the design which turned out to be true in practice.

The approach taken was to specify

(1) a sensitivity for the tension that gave steady-state tracking and got rid of
some of the natural oscillations,

(2) a sensitivity for the tension that gave su� cient bandwidth and steady-state
tracking (this variable was not oscillatory),

(3) complementary sensitivities for these two variables based on the uncertainty
model and

(4) cross-over functions with the same weightings as the sensitivities.
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Figure 4 shows the result of the optimization. The solid curves are the closed loop
sensitivities and complementary sensitivities. The dotted curves are the inverses of
the weightings. The vertical lines mark the nominal value of the frequency of the
natural oscillations. The weighting for the tension sensitivity speci® es steady-state
performance and some damping of the natural frequency. This was done by sacri® -
cing performances at frequencies in between. Robustness was introduced by the
weightings of the complementary sensitivities, which are based on multiplicative
uncertainty descriptions. In fact, this approach does not theoretically guarantee
robust performance or even stability (see §5) but it worked in practice which was
more important. The cross-overs (now shown) were very small.

The controller was model reduced to tenth order using the optimal Hankel norm
approximation. This did not cause the performance to deteriorate signi® cantly (some
e� ect can be seen in the tension sensitivity plot). The controller was implemented
using a digital signal processor, and a series of data was recorded under varying
working conditions. A typical plot is shown in Fig. 5.

The performance was slightly better than the existing design, and it was far more
robust with respect to time variations. It can be seen that there are some oscillations
at the natural frequency (22 rads- 1) and some oscillations which are a little slower
owing to the trade-o� mentioned above. The steady-state tracking properties are
quite good. Finally, the cross-over e� ects, that is the in¯ uence of the square wave on
the speed and of the sine wave on the tension are almost negligible. This is a highly
desirable feature in hot strip steel rolling.
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The weighting selections shown were the ® rst guesses based on the design speci-
® cations, on the uncertainty model and on a reasonable knowledge of the plant. It
was possible to improve slightly on the design by iterating on the weights, but the
® rst design did su� ciently well.

8. Conclusions

A series of multiobjective H ¥ design problems have been considered in this
paper. It has been shown how it is possible to decouple exactly a number of H ¥
design problems based on weighted output sensitivity functions, complementary
sensitivity functions and control sensitivity functions.

Further, the derived design approach works equally well for continuous- or
discrete-time systems and has also been extended to handle sampled-data systems.
Finally, the multiobjective H ¥ design approach has been successfully applied for the
design of a miniature model of a hot-rolling steel mill. Stoustrup et al. (1995) applied
the design aproach for roll damping of a ship by rudder control.

As shown in §4.1, the derived design approach can also in some cases handle
unstable systems. In this case we need to use one or more outputs to stabilize the
system. As a consequence of this, the number of allowable H ¥ design requirements
is reduced.
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If only one requirement is formulated for each output, the suggested approach is
non-conservative. For the mixed-sensitivity cases, our approach is less conservative
than full multivariable designs.

Only sensitivity functions at the outputs have been considered in this paper.
However, by duality, all methods given can be used also for input sensitivities with-
out any modi® cations. In this connection, it should be noted, however, that unfor-
tunately it is not straightforward to combine sensitivity functions from both the
input and the output point in this multiobjective H ¥ approach and still obtain
decoupling.

The coupled H ¥ design problems need not be based on di� erent types of
weighted sensitivity function only. It is possible to make a minor generalization of
the above H ¥ aproach to handle non-sensitivity problems, for example to handle
explicitly actuator and sensor dynamics. This induces, however, certain rank and
minimum phase conditions on some of the transfer functions in the resulting four-
block problem.

We believe that our approach is feasible for combination with recent research
activities in automatic weight selection schemes, since the problem set-up makes the
in¯ uence of weights very intuitive and transparent.

Finally, the approach is straightforwardly extendable to meet mixed-norm spe-
ci® cations, such as H 2 /H ¥ , L 1 /H ¥ , etc. The only restriction is that all speci® ca-
tions associated with one speci® c output (or dually an input) has to be posed in the
same norm.
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