
Computation of the maximal robust ( 2 performance radius for
uncertain discrete time systems with nonlinear parametric uncertainties

KE-YOU ZHAO² and JAKOB STOUSTRUP³ §

In this paper we address the problems of robust stability and robust ( 2 perform-
ance for uncertain discrete time systems with nonlinear parametric uncertainties.
We consider two families of systems with parametric uncertainties described by
state-space models which o� er a fairly general representation of most uncertain
systems with one or two parameters (the approach can be extended to more para-
meters). For these two families we obtain explicit expressions for the Schur stability
radius and for the ( 2 robust performance radius in the case of uncertainties with a
single parameter. Moreover, we provide a line search algorithm for these two
problems in the case of two parameters. Both for the robust stability and the robust
performance problem, explicit necessary and su� cient conditions are derived.

1. Introduction

In the dawn of robust control theory, most attention was paid to systems with
unstructured uncertainty descriptions. It was soon realized, however, that in many
applications the real uncertainties are better captured by structured uncertainty
descriptions. This is de® nitely the case when the model applied is based on physical
insight of the plant, such that the uncertainties are basically just an imperfect
determination of physically meaningful parameters. But even in the case where the
nominal model and the uncertainty are obtained entirely by identi® cation methods,
this still results in parametric uncertainty descriptions. The reason for this is that
statistical methods will always have di� erent preferences for di� erent directions in
the s-plane, thus providing phase information. Uncertain phase information is only
representable by structured uncertainty models.

Moreover, robust control theory has had far more emphasis on the nominal
performance/robust stability paradigm, rather than the robust performance para-
digm, which of course is the problem of ultimate importance. This is not because the
signi® cance of robust performance problems have been overlooked, but simply
because the research has had little success in this ® eld so far. One reason is that
some of these problems are NP-hard.

Many papers have been devoted to the topic of robust stability bounds under
structured perturbations. Let us mention a few which also have comprehensive lists
of references: Ackermann and Barmish (1988), Barmish (1994), Zhou et al. (1992),
Hinrichsen and Pritchard (1986a, 1986b), Doyle et al. (1991).
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For the ( ¥ norm, robust performance bounds can be obtained by ¹ optimiza-
tion, see Packard and Doyle (1993) for a survey or Young et al. (1991) for an
exposition in the line of this paper. A convex optimization approach for robust
( ¥ analysis and synthesis for systems with parametric uncertainties is given by
Zhou et al. (1995).

For linear time-invariant systems, the ( 2 performance metric arises naturally in
a number of di� erent physically meaningful situations, see Doyle et al. (1991), and
Chen and Francis (1995). The ( 2 performance of a linear time-invariant system is
measured via the ( 2 norm of its transfer matrix. As long as this ( 2 norm is less than
a given upper bound, we can stop, and need not seek the minimal one due to
robustness consideration. Even if the ( 2 norm of a nominal (stable) system is less
than a given upper bound, it might not be less than this bound after su� ering
parameter perturbation.

This paper will consider the problem of ® nding the `maximal domain’ for per-
turbation parameters under stability and ( 2 norm constraints, and calculate the
maximal (nonlinear) perturbation interval or radius in perturbation parameter
space. The obtained results are not only su� cient, but also necessary. The paper
is di� erent from most of the published papers which deal with a ® xed parameter
domain and a� ne perturbations. Although the extension from a� ne to polynomial
perturbations is not surprising for experts, the authors ® nd that its importance is still
su� ciently signi® cant to justify independent treatment. For recent advances on
robust ( 2 performance analysis for uncertain control systems, see the papers of
Friedman et al. (1995), Mustafa (1995) and references therein. In this paper we
shall ® nd the maximal allowable perturbation, given a bound on the ( 2 norm. In
some papers, such as for example Stoorvogel (1993), the inverse problem has been
studied, i.e. to bound the maximal ( 2 performance given a bounded perturbation.

This paper deals with discrete time uncertain systems. The corresponding prob-
lem in continuous time has been addressed by Zhao et al. (1996). The stability results
are based on the paper of Zhao (1994).

Before we begin, we need to introduce some notation used throughout this paper.
Denote the real number set by . Let cs :

m ´ n ® mn be the column stacking
operator on a matrix, Ä :

n ´ n ´ m ´ m ® mn ´ mn the standard matrix Kronecker
product (see Brewer 1978), and let ¸k( )́ be the kth eigenvalue of a square matrix.

2. Problem formulation

Consider a linear time-invariant discrete-time system described by

G(z,q) = [ A(q)
C(q)

ï
ï
ï
ï

B(q)
O ] (1)

where A(q), B(q) and C(q) with dimensions n ´ n, n ´ m, p ´ m, respectively, are
continuous matrix functions of a perturbation parameter vector q =
[q1,q2, . . . ,qt]T Î l . A square constant matrix is called (Schur) stable if all of its
eigenvalues lie in {z : |z| < 1}. We say G(z,q) is (Schur) stable for a given q if A(q) is
stable, and the ( 2 norm is de® ned by

i G(z,q) i 2 8 { 1
2p j $ |z|= 1

Trace [G*(z,q)G(z,q)]dz
z } 1/2

(2)

where G*(z,q) 8 G Â (z
- 1,q) and ( )́ Â denotes transpose.
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Suppose for q = 0, the nominal system of (1) satis® es

AS1. A(0) is stable,
AS2. i G(z,0) i 2

2 < g ,
where g is a known positive constant which re¯ ects the tolerance of the system ( 2

performance (for instance, an acceptable output variance of (1) to a white noise
signal). Our goal is to ® nd t̀he maximal domain’ in l so that i G(z,q) i 2

2 < g for
every q in it. A prerequisite for this is that A(q) is stable for every q in this domain.
This problem will be solved in the two cases l = 1 and l = 2. The method could, in
principle, be extended for l > 2 but the computational costs would be quite con-
siderable.

2.1. Single parameter case
De® ne

r-
s 8 inf {r < 0 : A(q) is stable " q Î (r,0)}

r+
s 8 sup {r > 0 : A(q) is stable " q Î (0, r)}

r-
2 8 inf {r < 0 : A(q) is stable and i G(z,q) i 2

2 < g " q Î (r,0)}
r+

2 8 sup {r > 0 : A(q) is stable and i G(z,q) i 2
2 < g " q Î (0, r)}

Then (r-
s , r+

s ) is the maximal perturbation interval of q while keeping the stability
of A(q); and (r-

2 , r+
2 ) the maximal perturbation interval of q while keeping

i G(z,q) i 2
2 < g .

Problem 1: Suppose that system (1) satis® es AS1, AS2, and

AS3.

A(q) 8 A0 + qA1 + ´´´+ qm1 Am1

B(q) 8 B0 + qB1 + ´´´+ qm2 Bm2

C(q) 8 C0 + qC1 + ´´´+ qm3 Cm3

ìïï
íïïî

where all of Ak , Bk and Ck are given constant matrices.

(a) Find r-
s and r+

s .
(b) Find r-

2 and r+
2 .

Remark 1: Obviously, (r-
2 , r+

2 ) Ì (r-
s , r+

s ). u

2.2. Two-parameter case
Denote by U(r) and ¶ U(r) the circular disc {q = [q1,q2]Â :

ê ê ê ê ê ê ê ê ê ê ê ê ê ê êq2
1 + q2

2Ï < r} Ì 2

and its boundary circle, respectively. De® ne

rs 8 sup {r : A(q) is stable " q Î U(r)}
r2 8 sup {r : A(q) is stable and i G(z,q) i 2

2 < g " q Î U(r)}
Then U(rs) is the maximal perturbation circular disc for q while keeping the stability
of A(q); and U(r2) is the maximal perturbation circular disc for q while keeping
i G(z,q) i 2

2 < g .
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Problem 2: Suppose that system (1) satis® es AS1, AS2 and

AS4.

A(q) 8 A00 + q1A10 + q2A01 + q2
1A20 + q1q2A11 + q2

2A02 + ´´´

+ åi+ j= m1

qi
1q

j
2Ai, j

B(q) 8 B00 + q1B10 + q2B01 + q2
1B20 + q1q2B11 + q2

2B02 + ´´´

+ åi+ j= m2

qi
1q

j
2Bi, j

C(q) 8 C00 + q1C10 + q2C01 + q2
1C20 + q1q2C11 + q2

2C02 + ´´´

+ åi+ j= m3

qi
1q

j
2Ci, j

ìïïïïïïïïïïïïïïïïïï
íïïïïïïïïïïïïïïïïïïî

where Ai, j , Bi, j, and Ci,j are given constant matrices for all i, j.

(a) Find rs.
(b) Find r2.

Remark 2: Obviously, 0 < r2 £ rs. u

Remark 3: The polynomial perturbation sets described in Problems 1 and 2 are
very general in the sense that any nonlinear perturbation set which depends con-
tinuously on the parameters, de® ned on a compact set in parameter space, can be
approximated arbitrarily well by these types of uncertainties. The cost of a good
approximation is that the computational requirements will be extensive, since the
computational time involved with the solutions presented below, grows rapidly with
increasing polynomial order. u

The polynomial perturbation sets described here can be seen as generalizations of
the a� ne sets discussed by Barmish (1994).

3. Preliminaries

By doing simple operations on a matrix and its determinant (see Zhao 1994), we
can get the maximal perturbation bounds for the non-singularity of matrices.

Lemma 4: L et M(r) = M0 + rM1 + ´´´+ rmMm where all of Mk are n ´ n
constant matrices, and |M0| /= 0 (| ´ | denotes the determinant). De® ne

r- 8 sup {r < 0 : |M(r)| = 0} (3)
r+

8 inf {r > 0 : |M(r)| = 0} (4)
Then

r- =
1

¸-
min(M) (5)

r+ =
1

¸+
max(M) (6)
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where M is an mnth-order square matrix given by

where O and I are the nth-order zero matrix and identity matrix, respectively, and
¸-

min( )́ stands for the minimal value of the negative real eigenvalues (let ¸-
min( )́ = 0- if

there exist no negative real eigenvalues), and ¸
+
max( )́ the maximal value of the positive

real eigenvalues (let ¸
+
max( )́ = 0+ if no positive real eigenvalues), respectively.

The following lemma helps us to transform Problems 1(a) and 2(a) into that of
the maximal perturbation bounds for non-singularity of matrices.

Lemma 5: Suppose that

(i) Q is a single connected domain in l , and 0 Î Q,

(ii) A (0) is stable.

Then A(q) are stable for all q Î Q if and only if |A(q) Ä A(q) - I Ä I| /= 0 for all
q Î Q, where I is the nth-order identity matrix.

Proof: Recall the continuity of A(q) in q, that the eigenvalues of a matrix are
continuous functions of its entries, and that

¸k(A(q) Ä A(q)) = ¸i(A(q))¸j(A(q))
k = 1, . . . ,nn; i, j = 1, . . . ,n.

then the result is immediate. u

By using Lemma 5 we can show that

r-
s = sup {q < 0 : |A(q) Ä A(q) - I Ä I| = 0} (8)

r+
s = inf {q > 0 : |A(q) Ä A(q) - I Ä I| = 0} (9)
rs = inf {r : |A(q) Ä A(q) - I Ä I| = 0 for some q Î ¶ U(r)} (10)

Instead of (2) in the frequency domain, we use here the state-space approach to
compute

i G(z,q) i 2
2 = Trace {C Â (q)C(q)Q(q)}

where Q(q) = Q(q) Â satis® es

A(q)Q(q)A Â (q) - Q(q) + B(q)B(q) Â = 0

By using the column stacking operation we can give a more compact formula

i G(z,q) i 2
2 = - cs[C Â (q)C(q Â )]Â ´ (A(q) Ä A(q) - I Ä I)- 1 ´cs[B(q)B Â (q)] (11)

Going one step from (11), we get the following result which helps us to transform
Problems 1(b) and 2(b) into that of the maximal perturbation bounds for the non-
singularity of matrices.
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O - I O ´´´ O

O O - I ´´´ O

..

. ..
. ..

. ..
.

O O O ´´´ - I

M - 1
0 Mm M - 1

0 Mm- 1 M - 1
0 Mm- 2 ´´´ M - 1

0 M1

æ
ççççççè

ö÷÷÷÷÷÷ø
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Lemma 6: Suppose that

(i) Q is a single connected domain in l . and 0 Î Q,

(ii) A (q) are Schur-stable " q Î Q ,
(iii) i G(z,0) i 2

2 < g .

Then i G(z,q) i 2
2 < g " q Î Q if and only if |Mg (q)| /= 0 for all q Î Q, where

Mg (q) 8 (A(q) Ä A(q) - I Ä I) +
1
g

cs[B(q)B Â (q)]́ cs[(C Â (q)C(q)]Â (12)

Proof: i G(z,q) i 2
2 < g for all q Î Q

Û g + cs[C Â (q)C(q)]Â ´ (A(q) Ä A(q) - I Ä I)- 1 ´cs[B(q)B Â (q)]> 0 " q Î Q.

(from (11)
Û |g I + (A(q) Ä A(q) - I Ä I)- 1 ´cs[B(q)B Â (q)]́ cs[C Â (q)C(q)]Â | > 0 " q Î Q.

(use equality |g I + XY | = |g I + YX|)
Û |g (A(q) Ä A(q) - I Ä I)- 1 ´Mg (q)| > 0 " q Î Q (from (12)
Û |Mg (q)| /= 0 for all q Î Q (due to the continuity of A(q),B(q),C(q) to q,

and Lemma 5)
The remaining part of the proof is trivial and omitted. u

By using Lemma 6 we obtain the following formulae being suited for calcula-
tions.

r-
2 = sup {q Î (r-

s ,0) : |Mg (q)| = 0} (13)
r+

2 = inf {q Î (0, r+
s ) : |Mg (q)| = 0} (14)

r2 = inf {r : r < rs and |Mg (q)| = 0 for some q Î ¶ U(r)} (15)
In § 2 we presented two types of problems. One is the maximal perturbation bounds
for system stability; the other is the maximal perturbation bounds for system per-
formance. Lemmas 5 and 6 help us to transform these two into the maximal per-
turbation bounds for the non-singularity of matrices, so the computational schemes
become similar in nature for these two rather di� erent problems.

4. Main results

In this section we shall combine the preliminary results in order to provide
answers to Problem 1 and Problem 2.

4.1. Single parameter case
By using matrix multiplication and the expressions of A(q),B(q),C(q) in Prob-

lem 1, we then have

(A(q) Ä A(q) - I Ä I) = A0 + qA1 + ´´´+ q2m1 A2m1 (16)

cs[B(q)B Â (q)]= b0 + qb1 + ´´´+ q2m2b2m2 (17)

cs[C Â (q)C(q)]= c0 + qc1 + ´´´+ q2m3c2m3 (18)
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where

A0 = (A0 Ä A0 - I Ä I), . . . ,Ai = åj+ k= i
Aj Ä Ak, . . . ,A2m1 = Am1 Ä Am1

b0 = cs[B0B Â0], . . . ,bi = cs[ åj+ k= i
BjB Âk], . . . ,b2m2 = cs[Bm2 B Âm2]

c0 = cs[C Â0C0], . . . ,ci = cs[ åj+ k= i

C ÂjCk], . . . ,c2m3 = cs[C Âm3Cm3]

Substituting the above expressions for A(q),B(q),C(q) in (12), it can then be
rewritten as

Mg (q) = M0 g + qM1 g + ´´´+ qmMm g (19)
where m = max {2m1,2(m2 + m3)}, and

M0 g = (A0 Ä A0 - I Ä I) +
1
g

cs[B0B Â0]́ cs[C Â0C0]Â (20)

and all of the other Mk g depend on Ai , bj , and ck (the detailed expressions are
omitted here).

By recalling Lemma 4, and using (8), (9) and (16), we can then formulate
Theorem 7.

Theorem 7Ð Maximal perturbation bounds for Problem 1(a): Splitting A(q) Ä
A(q) - I Ä I as (16) gives us the coe� cient matrices Ak , k = 0, . . . ,2m1. De® ne the
following 2m1nth-order square matrix

where O, and I are the nth-order zero matrix and identity matrix, respectively. Then

r-
s =

1
¸-

min( ! ) (22)

r+
s =

1
¸+

max( ! ) (23)

where ¸-
min( )́ stands for the minimal value of the negative real eigenvalues (let

¸-
min( )́ = 0- if there exist no negative real eigenvalues), and ¸

+
max( )́ the maximal

value of the positive real eigenvalues (let ¸
+
max( )́ = 0+ if no positive real eigenvalues),

respectively.

From AS2, Lemma 6, and (20), it can be shown that |M0 g | /= 0. By recalling
Lemma 4, and using (13), (14) and (19), we can then formulate Theorem 8.

Theorem 8Ð Maximal perturbation bounds for Problem 1(b): Splitting Mg (q)
as (19) gives us the coe� cient matrices Mk g , k = 0, . . . ,m where
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O O O ´´´ - I

A- 1
0 Am A- 1

0 Am- 1 A- 1
0 Am- 2 ´´´ A- 1

0 A1

æ
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m = max {2m1,2(m2 + m3)}. De® ne the following 2mn-order square matrix

where O, and I are an n-order zero matrix and an identity matrix, respectively. Then

r-
2 = max {r-

s , 1
¸-

min( - g ) } (25)

r+
2 = min {r+

s , 1
¸+

max( - g ) } (26)

where ¸-
min( )́ stands for the minimal value of the negative real eigenvalues (let

¸-
min( )́ = 0- if there exist no negative real eigenvalues), and ¸

+
max( )́ the maximal

value of the positive real eigenvalues (let ¸
+
max( )́ = 0+ if no positive real eigenvalues),

respectively.

Remark 9: The algorithms corresponding to Theorems 7 and 8 do not need any
iteration. Ackermann and Barmish (1988) ® rst gave the maximal perturbation
bounds for Problem 1(a) in the simplest case (a� nely linear perturbation of a single
parameter). u

4.2. Two parameter case
In order to solve Problem 2, we need to introduce polar coordinates, namely,

q1 = r cos µ, q2 = r cos µ, thus

A(q) = A(r,µ) = A0 + rA1(µ) + ´´´+ rm1Am1(µ)
B(q) = B(r,µ) = B0 + rB1(µ) + ´´´+ rm2 Bm2 (µ)
C(q) = C(r,µ) = C0 + rC1(µ) + ´´´+ rm3 Cm3 (µ)

where
Ak(µ) 8 åi+ j= k

(cos µ)i(sin µ) jAij, k = 1, . . . ,m1

Bk(µ) 8 åi+ j= k

(cos µ)i(sin µ) jBij , k = 1, . . . ,m2

Ck(µ) 8 åi+ j= k

(cos µ)i(sin µ) jCij, k = 1, . . . ,m3

Obviously, for a ® xed µ, Problem 2 is fully transformed into Problem 1. But now we
need a grid for the interval [0,2p ), ® nally

rs = inf {r+
s (µ),µ Î [0,2p )}

r2 = inf {r+
2 (µ),µ Î [0,2p )}

The algorithms corresponding to Problems 2(a) and 2(b) are brie¯ y listed below.
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O - I O ´´´ O

O O - I ´´´ O
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. ..
.
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M- 1
0g Mm g M- 1

0 g M(m- 1) g M- 1
0 g M(m- 2) g ´´´ M- 1

0 g M1g

æ
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Algorithm 1Ð Maximal stability radius for Problem 2(a):

Step 1. Select a large natural number p, and let µj = 2j p /p, j = 0,1, . . . ,p - 1;

Step 2. Let Ak = Ak(µj), repeatedly recall Theorem 7 to get r+
sj , j = 0,1, . . . ,p - 1;

Step 3. Find rs = min {r+
sj , j = 0,1, . . . ,p - 1}, then output it.

Algorithm 2Ð Maximal stability radius for Problem 2(b):

Step 1. Select a large natural number p, and let µj = 2j p /p, j = 0,1, . . . ,p - 1;

Step 2. Let Ak = Ak(µj), Bk = Ck(µj) and Ak = Ck(µj), repeatedly recall Theorem 8
to get r+

2j , j = 0,1, . . . ,p - 1;

Step 3. Find r2 = min {r+
2j, j = 0,1, . . . ,p - 1}, then output it.

Remark 10: Solving Problem 2 involves a one-dimensional search in contrast to
Problem 1 which can be solved non-iteratively. u

5. Example

An example with a single perturbation parameter is cited below. Let

A(q) = [ 0´1
0

1
0´5] + q[ 0 1

0 0 ] + q2[ 0 0
1 0 ]

B(q) = [ 1 0
0 1 ] + q[ 1 0

1 2 ], C(q) = [1 1]
It is easy to show that

A0 = [ 0´1
0

1
0´5]

is Schur stable, and

A(q) Ä A(q) - I Ä I

=

- 0´9900 0´1000 0´1000 1´000

0 - 0´9500 0 0´5000

0 0 - 0´9500 0´5000

0 0 0 - 0´7500

é
êêêêêë

ùúúúúú
û

+ q

0 0´1000 0´1000 2´000

0 0 0 0´5000

0 0 0 0´5000

0 0 0 0

é
êêêêêë

ùúúúúú
û

+ q2

0 0 0 1´0000

0´1000 0 1´0000 0

0´1000 1´0000 0 0

0 0´5000 0´5000 0

é
êêêêêë

ùúúúúú
û

+ q3

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

é
êêêêêë

ùúúúúú
û

+ q4

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

é
êêêêêë

ùúúúúú
û

after calculating ! and all its eigenvalues, we get (r-
s , r+

s ) = (- 1´6711,0´7683). In
this example we can show

G(z,0) = [ 1
z - 0´1

z + 0´9
(z - 0´1)(z - 0´5) ], and i G(z,0) i 2

2 < 2´0162
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Now we select the upper bound of ( 2 performance as g = 2´1.

cs[B(q)B Â (q)]=

1
0
0
1

é
êêêë

ùúúú
û

+ q

2
1
1
4

é
êêë

ùúú
û

+ q2

1
1
1
5

é
êêë

ùúú
û

and cs[C Â (q)C(q)]Â = [1 1 1 1], furthermore

Mg (q) = (A(q) Ä A(q) - I Ä I) +
1
g

cs[B(q)B Â (q)]´cs[(C Â (q)C(q)]Â

=

- 0´5138 0´5762 0´5762 1´4762

0 - 0´9500 0 0´5000

0 0 - 0´9500 0´5000

0´4762 0´4762 0´4762 - 0´2738

é
êêêêêë

ùúúúúú
û

+ q

0´9624 1´0524 1´0524 2´9524

0´4762 0´4762 0´4762 0´9762

0´4762 0´4762 0´4762 0´9762

1´9048 1´9048 1´9048 1´9048

é
êêêêêë

ùúúúúú
û

+ q2

0´4762 0´4762 0´4762 1´4762

0´5762 0´4762 1´4762 0´4762

0´5762 1´4762 0´4762 0´4762

2´3810 2´8810 2´8810 2´3810

é
êêêêêë

ùúúúúú
û

+ q3

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

é
êêêêêë

ùúúúúú
û

+ q4

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

é
êêêêêë

ùúúúúú
û

After calculating - g and all its eigenvalues, ® nally we get (r-
2 , r+

2 ) =
(- 1´6711,0´0433). u

6. Conclusions

In this paper we have investigated stability robustness and ( 2 performance
robustness of discrete time systems with nonlinear parametric uncertainties.

We restricted ourselves to the class of polynomial uncertainty descriptions, since
this class is dense in the set of continuous matrix valued functions de® ned on
compact sets of parameters equipped with the topology of pointwise convergence.

For this class we obtained explicit formulae both for the stability robustness
perturbation radius and for the ( 2 performance robustness perturbation radius in
the case of a single parameter.

In the two parameter cases, we described line search algorithms as the natural
extensions of the explicit formulae for the one parameter cases. More parameters
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could easily be included in the framework, but the computational cost involved
would be quite considerable.

Further research could address ( ¥ performance robustness, and possibly mixed
( 2 / ( ¥ problems under structured perturbations.
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