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Abstract. A design method is presented which integrates control action and fault de-
tection and isolation. Control systems operating under potentially faulty conditions
are considered. The problem of designing a single unit which handles both the re-
quired control action, as well as identifying faults occuring in actuators and sensors is
discussed. This unit is able to: (1) follow references and reject disturbances robustly,
(2) control the system such that undetected failures do not have disastrous effects,
(3) reduce the number of false alarms, and (4) identify which faults have occured.
The method uses a type of separation principle which makes the design process very
transparent, and a frequency domain H∞ formulation which makes weight selection
more straightforward. As a consequence of the separation between control and diag-
nosis, we shall prove that the controller needs not be detuned in order to improve the
diagnosis capabilities, in contrast to common beliefs.
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1. INTRODUCTION

In the control of industrial systems, it is rarely that
a control system functions continuously throughout
the scheduled life cycle of the plant and controller
hardware. Due to wear of mechanical and/or electri-
cal components both actuators and sensors can fail
in more or less critical ways. For safety critical pro-
cesses it is of paramount importance to detect when
failures are likely to happen, and to identify as fast
as possible which failures have taken place.

To meet such industrial needs, a number of schemes
for Fault Detection and Isolation (FDI) have been
put forward in the literature on automatic control.
Most of the papers appearing in journals and in con-
ference proceedings have dealt with the design of fil-
ters which monitor a process, and generate alarms
when faults may have occured. In most cases, the fil-
ters are model based devices which act independently
of the computer implemented digital controllers. In
this paper, however, the advantages of combining the
control algorithm and the FDI filter in a single mod-
ule will be discussed, and a relatively simple method-
ology to design such combined modules will be de-
scribed. It will be argued that a combined module
will be beneficial in terms of implementation and
reliability, but also that the quality of control and
the quality of detection will not improve by the inte-
grated design, compared to individual designs of the
two components. We show this result in wide general-
ity. A special case using an algebraic Riccati equation
approach was presented in (Tyler and Morari, 1994).

A useful survey on early work on FDI can be found
in (Frank, 1990) and in (Patton et al., 1989). Many of

these techniques are observer based, such as e.g. (Magni
and Mouyon, 1991). These methods have since been
refined and extended. A more recent reference in this
line of research is (Frank and Ding, 1994). The origi-
nal idea of utilizing the information already available
in the ’observer’ part of a controller for diagnostic
purposes was given in (Nett et al., 1988).

Early papers on FDI suffered from problems due to
modeling uncertainties. In some cases false alarms
were likely, due to imperfect modeling. This moti-
vated incorporation of robustness issues into the FDI
design algorithm. Specific robustness considerations
to FDI problems were discussed in (Patton and Chen,
1991; Mangoubi et al., 1995; Qiu and Gertler, 1993;
Bokor and Keviczky, 1994; Wang and Wu, 1993). All
these methods use frequency domain techniques in
contrast to (Ajbar and Kantor, 1993) which uses ℓ∞
techniques.

An interesting application of FDI techniques is pre-
sented in (Blanke et al., 1995; Jørgensen et al., 1995;
Grainger et al., 1995; Garcia et al., 1995), suggesting
a diesel engine actuator as an FDI benchmark.

2. PROBLEM FORMULATION

Figure 1 illustrates a control problem in the standard
system configuration (see e.g. (Zhou et al., 1996) for
an introduction to the standard configuration para-
digm). Here, wd can be thought of as a collection
of undesired signals (disturbances) entering the sys-
tem G(s) or as setpoints. The signals yc are the mea-
surements used by the controllerK(s) generating the



control signals uc in order to make the outputs to be
controlled zc sufficiently small.
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Fig. 1. Control system in standard H∞ configuration

The system in Figure 1 can be described in either
the state space formulation:(

ẋ
zc
yc

)
=

(
A B1 B2

C1 D11 D12

C2 D21 D22

)(
x
wd

uc

)
or, alternatively, in transfer matrix function form:(

zc
yc

)
= G(s)

(
wd

uc

)

=

(
G11(s) G12(s)
G21(s) G22(s)

)(
wd

uc

)
(1)

=

(
C1(sI −A)−1B1 +D11 C1(sI −A)−1B2 +D12

C2(sI −A)−1B1 +D21 C2(sI −A)−1B2 +D22

)(
wd

uc

)
For the standard problem shown in Figure 1, a con-
troller K(s) making the H∞ norm of the transfer
function from wd to zc smaller than 1 can, if it ex-
ists, be found by standard H∞ optimization tools.

Usually, the model G(s) will contain the plant model
itself, but it can also contain models of disturbances,
measurement noises, time variations, nonlinearities,
and unmodelled dynamics. Hence, making the H∞
norm from wd to zc small ensures a number of per-
formance and robustness properties.

The everyday operation of such a feedback system
depends, needless to say, on reliable actuators and
sensors. However, in most industrial environments
both actuators and sensors can fail. One way to model
this is depicted in Figure 2. Here, the measurements
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Fig. 2. Control system with actuator and sensor
faults

used by the controller are y = yc + fs rather than yc
and the controls acting on the plant are uc+fa rather
than uc. For example yc + fs ≡ 0 or uc + fa ≡ 0 can
represent completely defective sensors or actuators,
respectively.

For safety critical processes in particular, faulty sit-
uations must be identified, and action taken. Two
main paths of action can be taken: either the control
design algorithm can be modified to tolerate minor
errors, or using an estimator the faulty signal can be
identified and action can be taken by the operator
or by a supervisory system. In most applications the
latter will be preferable.

A method will now be described, which allows for ei-
ther or both approaches to be incorporated in a sin-
gle design step which also comprises the controller
design. This is achieved using a single module which
generates both the control action and the fault esti-
mates.

To succesfully identify individual faults, it is of para-
mount importance to have good fault models. One
way to describe the fault models is to introduce fre-
quency weightings on the fault signals:

fa = Wa(s)wa and fs = Ws(s)ws

where wa and ws are signals that are anticipated to
have flat power spectra. These are fictitious signals
with the sole purpose of generating the frequency
coloured signals fa and fs.

The module to be designed should, in addition to the
control signal uc, also generate a signal containing
estimates of potential faults:

uf =

(
f̂a
f̂s

)
This situation is depicted in Figure 3.
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Fig. 3. Control system with faults and diagnostics

The final step is to define a fault estimation error zf
as:

zf =

(
fa
fs

)
− uf

Using these signals a new augmented standard prob-
lem can be established as shown in Figure 4.
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Fig. 4. Standard model for integrated control and
FDI

Defining:



ξ =

(
x
xa

xs

)
, w =

(
wd

wa

ws

)
, u =

(
uc

uf

)
, (2)

z =

(
zc
zf

)
, y = yc + fs

the following standard problem is obtained in state
space form:

ξ̇ = Ãξ + B̃1w + B̃2u
z = C̃1ξ + D̃11w + D̃12u
y = C̃2ξ + D̃21w + D̃22u

(3)

or in transfer matrix function form:(
z
y

)
= G̃(s)

(
w
u

)
=

(
G̃11(s) G̃12(s)
G̃21(s) G̃22(s)

)(
w
u

)
(the explicit formulae are given below.)

Using H∞ optimization, a generalized controller u =
K̃(s)y for the diagram shown in Figure 5 can now be
computed, which will then be able to generate both
control signals and failure estimates.
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Fig. 5. H∞ standard problem for optimization

In the next sections, the solution to the standard
problem depicted in Figure 5 will be given, and the
interpretation of that solution will be discussed.

We shall give explicit formulae for constraints given
in the H∞ norm. However, we would like to stress at
this point, that the main observation which is a kind
of separation principle, would hold for any criteria
of the form:

∥zc∥ < 1 , ∥zf∥ < 1

subject to bounded sets of disturbances and fault
signals.

3. MAIN RESULTS

Using the partition (1), the following expressions for
the standard problem (3), depicted in Figures 4 and 5,
can be derived.(

z
y

)
=

(
zc
zf
y

)
= G̃(s)

(
w
u

)

=

(
G̃11(s) G̃12(s)

G̃21(s) G̃22(s)

)(
w
u

)

=


G11(s)G12(s)Wa(s) 0 G12(s) 0

0

(
Wa(s)

0

) (
0

Ws(s)

)
0 −I

G21(s)G22(s)Wa(s) Ws(s) G22(s) 0



wd

wa

ws

uc

uf



Introducing the control law u = K̃(s)y the following
closed loop formula can be obtained:(

zc
zf

)
= Tzw(s)

(
wd

wa

ws

)
where

Tzw = G̃11 + G̃12K̃
(
I − G̃22K̃

)−1

G̃21

=

G11 G12Wa 0

0

(
Wa

0

) (
0
Ws

)+

(
G12 0
0 −I

)
K̃
(
I − (G22 0) K̃

)−1

(G21 G22Wa Ws )

Often G(s) will be stable due to inner loops which
are included in the H∞ standard model. The fol-
lowing analysis can be carried out for unstable stan-
dard models as well, but for simplicity G(s) will be
assumed stable below. In that case, the YJBK pa-
rameterization (Youla et al., 1971) of all stabilizing
controllers can be obtained simply by making the
substitution

Q = K̃
(
I − G̃22K̃

)−1

, K̃ = Q
(
I + G̃22Q

)−1

Partitioning the control sensitivity function Q(s) as

Q(s) =

(
Q1(s)
Q2(s)

)
the following expression is obtained

Tzw(s) =

(
T 1
zw(s)

T 2
zw(s)

)
, where

T 1
zw(s) =

(G11 +G12Q1G21 G12 (I +Q1G22)Wa G12Q1Ws )

T 2
zw(s) =(
−Q2G21

(
Wa

0

)
−Q2G22Wa

(
0
Ws

)
−Q2Ws

)
Now, the crucial observation in this expression is that
each of the T i

zw(s) depends on only one of the Qi’s,
i ∈ {1, 2}. This has the following two consequences:

(1) Making the closed loop transfer function associ-
ated with the control objectives small and mak-
ing the closed loop transfer function associated
with the FDI objectives small can be achieved
independently

(2) Optimizing independently eliminates some of the
conservatism usually introduced in H∞ opti-
mization

This possibility for separation shall explicitly be ex-
ploited in the design procedure below. A separation
principle similar in spirit to this is described in (?).

Without loss of generality, it can be assumed that
all weightings have been chosen in order to normal-
ize the H∞ standard problem (3). Then since the up-
per row partition of Tzw(s) depends only upon Q1(s)
and the lower row partition depends upon Q2(s), the
∥Tzw∥∞ can be optimized by individually optimizing
the different block terms. Hence, after separating the



optimizations for zc and zf , we are faced with the
following H∞ optimization constraints:∥∥T 1

zw(s)
∥∥
∞ < 1 (4)

and ∥∥T 2
zw(s)

∥∥
∞ < 1 (5)

The H∞ problems corresponding to (4) and (5) are
both model matching problems, which are simpler
special cases of the general 4-block H∞ problem, and
can be solved as Nehari problems.

The standard problem formulation corresponding to (4)
is:

(
zc
yQ1

)(
G11 G12Wa 0 G12

G21 G22Wa Ws 0

) wd

wa

ws

uQ1

 (6)

where uQ1 is the output of the Q1(s) partition and
yQ1 is the input to the Q1(s) subsystem.

For (5) the associated standard problem is:

(
zf
yQ2

)
=

 0

(
Wa

0

)(
0
Ws

)
−I

G21G22Wa Ws 0


 wd

wa

ws

uQ2

(7)

where uQ2 is the output of the Q2(s) partition and
yQ2 is the input to the Q2(s) subsystem.

Given Q1 and Q2, the solution to the standard prob-
lem (3):

K̃(s) =

(
K1(s)
K2(s)

)
where K1(s) and K2(s) are the feedback control part
and the FDI part, respectively, can be computed as:

K1 = Q1 (I +G22Q1)
−1 (8)

and

K2 = Q2 (I +G22Q1)
−1

= Q2

(
I −G22Q1 (I +G22Q1)

−1
)

= Q2 (I −G22K1)

(9)

Remark 1. It is important to note that the expres-
sion (8) for K1 does not depend on Q2 but only on
Q1 which is found by an optimization which does
also not depend on Q2. This means that in this for-
mulation of the problem, the control action does not
directly depend on the fault filtering dynamics. Still,
the regulating controller can be detuned compared
to a non-faulty setup, since the control design algo-
rithm regards the faults as disturbances and noise
as can be seen from (6). In cases, where this is not
desirable, some attention must be paid to the weight-
ing selection scheme to avoid detuning. Alternatively,
the optimization problem (4) can be completely re-
formulated by virtue of the separation principle de-
scribed above. The expression (9) for K2 depends
on Q1. This is obvious, since the fault detection and

isolation filter has to use the ’observer’ part of the
controller to identify the faults.

The final step in devising the combined control and
FDI device is to solve the two model matching prob-
lems (6) and (7). Using polynomial H∞ theory (see
(Kwakernaak, 1993)) the following results are ob-
tained.

Lemma 1. Consider the following J-spectral factor-
ization:

Π1 =

(
I 0
0 −G∼

12

)(
Ψ1

11 Ψ1
12

Ψ1
21 Ψ1

22

)−1(
I 0
0 −G12

)
=Z1J1Z1

where

Ψ1
11 = −G21G

∼
21 −G22WaW

∼
a G∼

22 −WsW
∼
s

Ψ1
12 = −G21G

∼
11 −G21WaW

∼
a G∼

12

Ψ1
21 = −G11G

∼
21 −G12WaW

∼
a G∼

21

Ψ1
22 = I −G11G

∼
11 −G12WaW

∼
a G∼

12

Z1(s) is a square matrix which is invertible as an
element of RH∞, and J1 is a constant matrix of the
form

J1 =

(
I 0
0 −I

)
with a suitable number of 1’s and −1’s. J1 is called
the signature matrix of Π1.

The model matching problem (6) has a solution if
and only if the following the following controller is
stabilizing:

Qc
1 = ( 0 I )Z−1

1

(
I
0

)(
( I 0 )Z−1

1

(
I
0

))−1

(10)

Moreover, in that case, all solutions are given by:

Q1 = Y1X
−1
1 (11)

where (
X1

Y1

)
= Z−1

1

(
A1

B1

)
and A1 and B1 are (free) stable rational matrices,
detA1 having all its roots in the open left half com-
plex plane, satifying:

A∼
1 A1 ≥ B∼

1 B1

Similarly, for (7):

Lemma 2. Consider the following J-spectral factor-
ization:

Π2 =

(
Ψ2

11 Ψ2
12

Ψ2
21 Ψ2

22

)−1

= Z2J2Z2

where

Ψ2
11 = −G21G

∼
21 −G22WaW

∼
a G∼

22 −WsW
∼
s

Ψ2
11 = (−G22WaW

∼
a −WsW

∼
s )

Ψ2
11 =

(
−WaW

∼
a G∼

22
−WsW

∼
s

)
Ψ2

11 =

(
I −WaW

∼
a 0

0 I −WsW
∼
s

)



Z2(s) is a square matrix which is invertible as an
element of RH∞, and J2 is the signature matrix of
Π2.

The model matching problem (7) has a solution if
and only if the following controller is stabilizing:

Qc
2 = ( 0 I )Z−1

2

(
I
0

)(
( I 0 )Z−1

2

(
I
0

))−1

(12)

Moreover, in that case, all solutions are given by:

Q2 = Y2X
−1
2 (13)

where (
X2

Y2

)
= Z−1

2

(
A2

B2

)
and A2 and B2 are (free) stable rational matrices,
detA2 having all its roots in the open left half com-
plex plane, satifying:

A∼
2 A2 ≥ B∼

2 B2

Employing the separation principle described above,
and combining Lemmas 1 and 2, the main result can
be stated.

Theorem 3. Consider the setup depicted in Figure 3
where K̃(s) is a combined controller and FDI mod-
ule.

The following two statements are equivalent:

(1) There exists a transfer matrix K̃(s) making the
transfer function from disturbances to controlled
outputs smaller than 1, and making the transfer
function from actuator and sensor faults to the
fault estimation error smaller than 1

(2) The controller Qc
1 given by (10) stabilizes the

standard problem given by (6) and, likewise, the
controller Qc

2 given by (12) stabilizes the stan-
dard problem given by (7)

Moreover, when these conditions are satisfied, a pos-

sible choice of K̃(s) =

(
K1

K2

)
is given by (8) and (9)

where Q1(s) and Q2(s) are given by (11) and (13),
respectively.

4. DISCUSSION

Solving the H∞ problem depicted in Figure 5 implies
making six transfer functions small due to the defi-
nitions (2) of w and z. These six transfer functions
are:

Tzcwd
: Transfer function from external disturbances

to inferred outputs
Tzcwa : Transfer function from actuator faults to in-
ferred outputs

Tzcws : Transfer function from sensor faults to in-
ferred outputs

Tzfwd
: Transfer function from external disturbances

to fault estimation error
Tzfwa : Transfer function from actuator faults to fault
estimation error

Tzfws : Transfer function from sensor faults to fault
estimation error

The essential instrument for creating a well function-
ing module for control action and fault detection and
isolation is to apply an optimization algorithm which
makes these transfer functions small, and trades off
the individual functions by careful weight selection.

Making each of the six transfer functions small has
its own (important) interpretation.

(1) making ∥Tzcwd
∥∞ small implies good disturbance

rejection and robustness, i.e. the original control
objectives are achieved

(2) making ∥Tzcwa∥∞ and ∥Tzcws∥∞ small implies
that undetected failures do not cause disastrous
effects

(3) making
∥∥Tzfwd

∥∥
∞ small implies that disturbances

are not readily interpreted as faults, i.e. the risk
of false alarms is reduced

(4) making
∥∥Tzfwa

∥∥
∞ and

∥∥Tzfws

∥∥
∞ small implies

that uf becomes a good estimate of potential
actuator and sensor faults

From the results in this paper, it is clear that objec-
tive 1 has to be traded off against objective 2, and
that objective 3 has to be traded off against objec-
tive 4, but also that the design process does not in-
volve a trade-off between the two pairs of objectives,
once the standard model (1) has been specified.

In order not to complicate the explanation in this
paper the control weights related to control perfor-
mance and control robustness have not been explic-
itly included, but they are of course present in terms
of the original standard problem formulation depicted
in Figure 1. Needless to say, the choice of the internal
weightings of the original system, are very significant
to the overall performance of the combined control
and FDI module.

First of all, in order for the optimization in Theo-
rem 3 to give a useful result, it is of great impor-
tance to choose the weightings associated with the
original standard problem, the weightings associated
with actuator failures and the weightings associated
with sensor failures, such that all these weightings
are separated in frequency.

Choosing large weights for the disturbance models
means that the design algorithm is encouraging dis-
turbance rejection, control robustness.

Choosing large weights for the actuator and sensor
failure models means that the design algorithm is
putting emphasis on the quality of the failure esti-
mates, making sure that very few faults are unde-
tected.

As mentioned in Remark 1, the faults are considered
to be disturbances in the control subproblem (6) and,
dually, the disturbances are implicitly represented in
the detection subproblem (7) in terms of the stan-
dard problem parameters. There is no principal lim-
itation in the design method suggested in this paper
which forbid two different standard problems with
different internal weightings to be applied in the con-
trol design subproblem (6) and the FDI design sub-
problem (7). However, it will complicate the design



process and must be motivated well by the specific
application.

5. CONCLUSIONS

In this paper an algorithm has been provided for de-
signing a single module which comprises both feed-
back control action and fault diagnosis and isolation.

The design method is very flexible. Manipulating
weights, the following four objectives can be designed
for explicitly:

• following references and rejecting disturbances
robustly

• controlling the system such that undetected fail-
ures do not have disastrous effects

• reducing the number of false alarms
• identifying which faults have occured

The algorithm was based on a type of separation
principle which facilitates transparency in the design
process with respect to the fundamental trade-offs
related to diagnosing and controlling a system.

Not only the processes of designing a filter and a con-
troller, but also the design criteria have been sepa-
rated. This shows that the controller does not need
to be detuned in order to implement a good fault de-
tection mechanism. Moreover, this statement holds
for optimization with respect to any choice of (norm
based) design criteria, formulated as one criterion for
the controller and another for the filter.
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