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Abstract. The integrated design of control and fault detection is studied. The result
of the analysis is that it is possible to separate the design of the controller and the
filter for fault detection in the case where the nominal model can be assumed to
be fairly accurate. In the uncertain case, however, the design of the filter and the
controller can not be separated when an optimal design is desired. For systems with
significant uncertainties, there turns out to be a fundamental trade-off between the
performance in the control loop and the performance in the filter
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1. INTRODUCTION

The integration of controller and fault detection filter
design has not received much attention in the literature
dealing with fault detection and isolation (FDI). The
design of both nominal and robust filters for FDI has
in general been considered as a separate design from
design of feedback controllers. In a lot of cases, this is
also in correspondence with practice, because the FDI
filters are designed for existing control systems. It is
therefore quite relevant to consider the FDI design case
as a separate design problem as it has been in a lot
of papers, see e.g. (Frank, 1990), (Patton et al., 1989),
(Patton and Chen, 1991), (Frank, 1996), and (Mangoubi
et al., 1995) to mention a few.

On the other hand, there are also cases where it is possi-
ble to implement an integrated design of both the feed-
back controller and the fault detection filter. The ques-
tion is then: Is it optimal to make two separate designs
of the feedback controller and the FDI filter? This ques-
tion has not been answered unambiguously. However,
there has been some indication of an answer in a few
papers. A four parameter controller setup has been con-
sidered in (Nett et al., 1988), (Jacobson and Nett, 1991)
in connection with control and FDI. The design setup
applied by Nett et al. (Nett et al., 1988) resulted in
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an integrated design of the controller and the FDI fil-
ter. The L1 design approach has been applied in (Ajbar
and Kantor, 1993) for an integrated controller and FDI
filter design for a system with model uncertainty. The
question about separation has not been considered in
this paper. Some indication of when separation is pos-
sible has been given in (Tyler and Morari, 1994). In
this paper the four parameter controller structure from
(Nett et al., 1988) has been applied. An H2 design of
an integrated controller and FDI filter has been consid-
ered in the nominal case. It turns out that the design
of the feedback controller is separated from the three
other controllers in the H2 case. Further, a design ex-
ample indicate that this is not the case when the system
include model uncertainties. Recently, the nominal case
has been completely analyzed in (Stoustrup and Grim-
ble, 1996). It has been shown that there is a complete
separation between the design of feedback controllers
and FDI filters in the nominal case in a rather wide
generality.

Following the line from (Stoustrup and Grimble, 1996),
the uncertain case will be analyzed in the following.

2. DESIGN SETUP

The design setup which will be applied in this paper is
illustrated in Figure 1. The setup uses the so-called stan-



dard problem philosophy, see e.g. (Zhou et al., 1995).
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Fig. 1. Control system in standard configuration

A state space description of G(s) can be formulated by:

G(s) =

 A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

 (1)

or given as transfer functions(
z
y

)
=

(
Gzw(s) Gzu(s)
Gyw(s) Gyu(s)

)(
w
u

)
(2)

The model G(s) contains both the nominal model and
weight matrices for the disturbance and performance
specifications. In a standard design, a controller K(s)
is designed such that the closed loop is internally stable
and a suitable norm of the closed loop transfer func-
tion from w to z is minimized or made smaller than a
prespecified level.

Instead of using a standard one parameter controller as
shown in Figure 1, a two parameter controller described
by: (

u
a

)
=

(
K1

K2

)
y

will be used in the following in connection with fault
detection. The additional output signal a from the con-
troller is a diagnostic signal. This signal will in the fol-
lowing be applied to derive an estimate of faults in the
controlled system.

The fault cases that need to be taken care of is e.g. fault
in the sensors and/or actuators as illustrated in Figure
2, where fa is an actuator fault and fs is a sensor fault.

Here, the measurement used by the controller are y =
yc + fs rather than yc and the control signals to the
system are uc + fa instead of uc.

However, also internal faults can appear in the system
G(s) which we want to take care of. The setup in Figure
2 does not take care of internal faults in the system.
To obtain a more general fault description, instead of
specifying the faults as faults on actuators or on sensors,
they will be described as faults affecting the generalized
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Fig. 2. Control system setup with actuator and sensor
faults and diagnostic signal

system directly. Denoting the generalized fault signal be
f , the open loop transfer function is given by:(

z
y

)
=

(
Gzw Gzf Gzu

Gyw Gyf Gyu

)w
f
u

 (3)

The special case with actuator and sensor faults can be
described in the general form (3) by using:

f =

(
fa
fs

)
Gzf =

(
Gzu 0

)
Gyf =

(
0 I

)
For obtaining a good estimation of the individual faults,
fault models are included in the generalized system as
frequency weightings on the faults signals:

f = Wf (s)v

where v is a signal that is anticipated to have a flat power
spectrum. The generalized setup is shown in Figure 3.
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Fig. 3. Generalized setup for control and fault detection

Now we just need to formulate the design setup in Figure
3 as a standard design problem as illustrated in Figure
1. For doing this, let us define an additional output r as
the fault estimation error:

r = f − a (4)

This is the standard way of formulating a filter design
problem in the standard problem setup, see (Zhou et
al., 1995). The generalized system Gncf (s) is then given
by:



 z
r
y

 = Gncf (s)

w
v
u

 (5)

with

Gncf (s) =

Gzw GzfWf Gzu 0
0 Wf 0 −I

Gyw GyfWf Gyu 0



3. NOMINAL DESIGN OF FILTERS

Using the system setup in (5) and apply a two parameter
controller u = K(s)y we get the following closed-loop
transfer function (

z
r

)
= Tncf (s)

(
w
v

)
(6)

with

Tncf (s) =

(
Gzw GzfWf

0 Wf

)
+(

Gzu 0
0 −I

)
K(s)(I −

(
Gyu 0

)
K(s))−1

(
Gyw GyfWf

)
For simplicity, assume that G(s) is open loop stable (the
unstable case can be dealt with as well in this method-
ology, but is computationally harder). Then the Youla
parameterization of all stabilizing controllers can be ob-
tained simply by making the substitution:

Q(s) = K(s)(I −
(
Gyu 0

)
K(s))−1

K(s) = Q(s)(I +
(
Gyu 0

)
Q(s))−1 (7)

where Q(s) is a stable proper transfer function. Further,
let Q(s) be partitioned as:

Q(s) =

(
Q1(s)
Q2(s)

)
(8)

Then we get the following equation for the closed loop
transfer function Tncf :

Tncf (s) =(
Gzw +GzuQ1Gyw GzfWf +GzuQ1GyfWf

−Q2Gyw Wf −Q2GyfWf

)
(9)

Note that Q1 only appear in the first row of Tncf and Q2

only in the second row of Tncf . A separation between the
design of Q1 and Q2 has then been obtained by using a
Youla parameterization. Calculating K(s) directly from
(7) result in the following equation:

K(s) =

(
Q1(s)(I +GyuQ1(s))

−1

Q2(s)(I +GyuQ1(s))
−1

)
=

(
Q1(s)(I +GyuQ1(s))

−1

Q2(s)(I −GyuK1(s))

) (10)

The result indicate that also the original controller struc-
ture is separated in a design of the feedback controller
K1(s) and a design of the fault detection filter K2(s).
K2(s) depend of K1(s). A complete analysis can be
found in (Stoustrup and Grimble, 1996).

4. ROBUST DESIGN OF FILTERS

In the two previous sections, we have looked at the inter-
dependence of controller and filter design in the nominal
case. It turned out that there exist a separation between
controller design and filter design. In this section, the ro-
bustness aspect will be considered. Let us consider the
setup from Figure 3, and include a model uncertainty.
This setup is illustrated in Figure 4.
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Fig. 4. Generalized setup for robust control and fault
detection

It is assumed that ∆ is scaled such that ∥∆∥ ≤ 1 ∀ω.
Further, ∆ can be structured or unstructured. The trans-
fer function from w to z define the performance for
the closed-loop control system and the transfer func-
tion from v to r define the performance for the fault
detection filter.

The generalized system Grcf (s) in Figure 4 is given by:
e
z
r
y

 = Grcf (s)


d
w
v
u


where

Grcf (s) =


Ged Gew GefWf Geu 0
Gzd Gzw GzfWf Gzu 0
0 0 Wf 0 −I

Gyd Gyw GyfWf Gyu 0

 (11)

In comparison to the system used in Section 3, the intro-
duction of the uncertainty block ∆ changes the possible
design concepts considerably, as it will be demonstrated
below.



Consider Figure 5, where the ∆p and ∆f blocks repre-
sent performance specifications for the closed-loop trans-
fer function and performance for the fault detection sig-
nal. Introduction of such fictitious perturbation blocks
is a standard trick in µ synthesis to obtain robust per-
formance, see e.g. (Zhou et al., 1995). It is assumed that
weight matrices on the performance specifications in
Figure 5 are included in the generalized system Grcf (s).

∆f

∆p

K(s)

Grcf (s)

∆

�
�
�
�

-

-

-

-r

z

e

v

w

d

y u

Fig. 5. Generalized setup for robust control and fault de-
tection with performance specifications represented
by fictitious perturbation blocks

Applying the same technique as in the previous two sec-
tion by using a parameterization of the controllers, we
get the following closed loop transfer function Trcf =
Fl(Grcf (s), Q(s)) with:

Trcf =

Ged +GeuQ1Gyd Gew +GeuQ1Gyw

Gzd +GzuQ1Gyd Gzw +GzuQ1Gyw

−Q2Gyd −Q2Gyw

GefWf +GeuQ1GyfWf

GzfWf +GzuQ1GyfWf

Wf −Q2GyfWf

 (12)

At first glance, it seems there is again a separation be-
tween the two parameters in Q(s). Q1(s) appear only in
the first two rows and Q2 appear only in the last row
of Trcf . However, due to the fact that the feedback loop
with ∆, ∆p, and ∆f , is considered directly in the de-
sign process, there is no separation in this case due to
the model uncertainties. This can be seen quite easily
by considering a separate design of a robust feedback
controller Q1 and a robust fault detection filter Q2 - see
below.

First, let us consider the design of a robust stabilizing
controller followed by a design of a nominal filter. The
feedback controller design problem with respect to ro-
bust stability is represented by the following closed loop
transfer function:

Trsc(s) = Ged +GeuQ1Gyd (13)

The design problem is a standard H∞ design problem
when ∆ is unstructured. Otherwise it is a µ design prob-
lem. The following design of a nominal filter is repre-
sented by the following closed loop transfer function:

Tnpf (s) =
(
−Q2Gyw Wf −Q2GyfWf

)
(14)

Here, there is again separation between the two designs
because Q1 appear only in (13) and Q2 only in (14).

The next design case consist of a design for a feedback
controller with respect to robust performance followed
by a design of a nominal filter. The design problem for
the feedback controller is represented by the following
closed loop transfer function:

Trpc =

(
Ged +GeuQ1Gyd Gew +GeuQ1Gyw

Gzd +GzuQ1Gyd Gzw +GzuQ1Gyw

)
(15)

This design problem is a µ design problem due to the
structure in the perturbations, see Figure 6. As expected,
only the feedback parameter Q1 appear here.
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Fig. 6. Generalized setup for robust control with perfor-
mance specifications

The design of the nominal filter is still given by (14).
Also in this case, there is a separation between the two
designs.

In the last two design cases, the filter is designed with re-
spect to robust performance. In the first case, the design



of a feedback controller is represented by (13), i.e. de-
signed with respect to robust stability. The design prob-
lem for a filter with respect to the model uncertainty is
represented by the following transfer function:

Trpf =

(
Ged +GeuQ1Gyd Gew +GeuQ1Gyw

−Q2Gyd −Q2Gyw

GefWf +GeuQ1GyfWf

Wf −Q2GyfWf

) (16)

The filter design problem is also a µ design problem due
to the structure in the (partly fictitious) perturbations,
see Figure 7.
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Fig. 7. Generalized setup for the design of a robust fault
detection filter

From (16) we can see directly that the two designs are
not separated any more. Both controllers appear in the
design problem in (16). Another way to see that the
two designs are coupled, is to consider the closed loop
transfer function given by:

Trf (s) = Fu(Trpf ,∆)
= Wf −Q2GyfWf −Q2Gyd∆

×(I − (Ged +GeuQ1Gyd)∆)−1

×(GefWf +GeuQ1GyfWf )

It is clear from the above equation that in general the
design of Q2 depends on Q1. Generically, it will never
be possible to separate the design of the two controllers
due to the feedback with the uncertainty block ∆.

The last design case consist of a design of a feedback con-
troller with respect to robust performance represented
by (15) followed by the above filter design from (16).
Also in this case there is no separation between the two
designs.

4.1 Summary of Optimal Design Techniques

Depending on whether robustness is considered impor-
tant in the design of the control loop and/or of the filter
or not, six classes of design methodologies can be iden-
tified. These classes are characterized in Table 1.

Remark 1. The entry for robust performance of the fil-
ter subject to a nominal design of the controller, pre-
sumes that the control loop will actually be stable, since
the filter obviously can not stabilize an unstable control
loop. Moreover, in this case there does not exist any op-
timization method, which directly allows to handle the
coupling and gives the controller and filter in one design
step. The suggested method is a reasonable suboptimal
approach.

Remark 2. TheH∞ optimizations for filter designs listed
in Table 1 is based on an assumption that ∆f is un-
structured. More realistically, ∆f will have a block di-
agonal structure, corresponding to individual faults. It
is straightforward to incorporate this into the design.

As a main observation regarding the case with consider-
able uncertainties, there are fundamental trade-offs in-
volved with the design of the control loop and the fault
detection filter. In particular the following four transfer
functions are significant:

(1) making ∥Tzw∥∞ small implies good disturbance re-
jection and robustness, i.e. the original control ob-
jectives are achieved

(2) making ∥Tzv∥∞ small implies that undetected faults
do not cause disastrous effects

(3) making ∥Trw∥∞ small implies that disturbances are
not readily interpreted as faults, i.e. the risk of false
alarms is reduced

(4) making ∥Trv∥∞ small implies that the alarm signal
a becomes a good estimate of potential faults

In the uncertain case, each of these four transfer func-
tions have to be traded off against one another. This is
obtained by selecting weighting matrices appropriately.

5. CONCLUSION

The integration of feedback controller and fault detec-
tion filter design has been considered for systems with
and without model uncertainties. It turns out that the
design of the feedback controller and the fault detection
filter can be separated in the nominal case. In the un-
certain case, however, optimal functionality can not be
obtained by separate designs of a robust controller and
a robust filter.



Nominal performance of filter Robust performance of filter

Nominal
performance of
controller

(1) Separate designs
(2) H∞ optimizations - see Remark 2
(3) Eqn. (9) (optimize each row independently)

(1) Coupled design - see Remark 1
(2) H∞ (controller) and µ (filter) optimizations
(3) Eqn. (9) (H∞ opt. of first row) and Eqn. (16)

(Find Q2 by µ opt.)

Robust stability

of controller

(1) Separate designs

(2) H∞ optimizations - see Remark 2
(3) Eqn. (13) and Eqn. (14)

(1) Coupled design

(2) µ optimization
(3) Eqn. (16)

Robust
performance of
controller

(1) Separate designs

(2) µ (controller) and H∞ (filter) optimizations -
see Remark 2

(3) Eqn. (15) (µ opt.) and Eqn. (14) (H∞ opt.)

(1) Coupled design

(2) µ optimization
(3) Eqn. (12)

Table 1. The six possible design classes. For each class, Item (1) tells whether the design of
controller and filter separates or not, Item (2) specifies the method of optimization required,

and Item (3) specifies the relevant equations to be used for the optimization.

In spite of the separation in the nominal case, it can still
sometimes be a good idea to do an integrated design of
both the feedback controller and the fault detection fil-
ter, because it is possible e.g. to use the same observer
for both the feedback controller and the filter. This has
been done in (Kilsgaard et al., 1996), where a 4th or-
der SIMO system has been considered. An H∞ design
based on LMI has been carried out. The result was an
integrated feedback controller and fault detection filter
of order 1. The four parameter case has been considered
in (Stoustrup et al., 1997).

In the uncertain case, it is of paramount importance to
trade off carefully: control performance, effects of unde-
tected faults, risk of false alarms, and quality of fault de-
tection. In most cases, this requires µ synthesis methods
or other methods that allow for structured uncertainties.
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