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Abstract 

Microvibrations at frequencies between 1 and 1000 
Hz generated by on-board equipment can propagate 
through a satellite’s structure and hence significantly 
reduce the performance of sensitive payloads. This pa- 
per describes a Lagrange-Rayleigh-Ritz method for de- 
veloping models suitable for the design of active control 
schemes. Here Loop Transfer Recovery based controller 
design methods are employed with this modeling strat- 

egy. 

1 Introduction 

Recent years have seen a dramatic increase in the 
stability requirements placed on payload instruments, 
with consequent increases in the level of vibration sup- 

pression demanded from the spacecraft structure. As a 
result, low amplitude vibrations at frequencies between 
1 Hz and 1000 Hz, generally termed microvibrations, 
once neglected due to the low levels of disturbances 
induced on-board satellites, are now of critical impor- 
tance and are the subject of much research effort aimed 
at developing efficient techniques for their control, eg 
[l]. In effect, such vibrations are produced by the func- 
tioning of on-board equipment such as reaction wheels, 
gyroscopes, thrusters, electric motors etc which prop- 
agate through the satellite structure towards sensitive 
equipment (receivers) thereby jeopardizing their cor- 
rect functioning. 

Vibration suppression requirements are particularly de- 
manding for micro-gravity experiments and accurately 
targeted optical instruments. Included in the latter 
class are mirror pointing systems, such as those found 
on space telescopes where small mechanical distur- 
bances produce jitter which can result in severe blur- 
ring of the images collected by these systems. Also in 
this class are interferometers where the optical path 
difference must be controlled to nanometer accuracy. 
In other equipment, such as laser communications sys- 
tems, vibration induced oscillations of the beam causes 
problems at the receiving station. 

In practice, the reduction of the vibration level on- 

board satellites is attempted by action at the source(s), 
receiver(s), and along the vibration path(s). At the 
source(s), this action consists of attempting to min- 
imize the amplitude of the vibration(s) by, for ex- 
ample, placing equipment on appropriate mountings. 
The same approach is commonly attempted at the re- 
ceiver(s) but with the basic objective of sensitivity re- 
duction. Finally, along the vibration path(s), modifica- 
tions of structural elements or relocation of equipment 
is attempted with the aim of reducing the mechanical 
couplings between sources and receivers. 

All of the approaches described above are based on so- 
called passive damping technology and, for routine ap- 
plications, an appropriate combination of them is often 
capable of producing the desired levels of dynamic dis- 
turbance rejection. The use of active control techniques 
in such cases would only be as a last resort to achieve 
desired performance. In the case of microvibrations, 
however, only active control can be expected to pro- 
vide the required levels of suppression. 

To investigate the use of active control to suppress mi- 
crovibrations, computationally feasible models which 
retain the core features of the underlying dynamics are 
clearly required. The most obvious approach to the 
development of such models is to use finite element 
methods (FEM) due to the accuracy available with a 
sufficiently fine mesh. The only difficulty with this ap- 
proach is the computational intensity of the models in 
terms of their subsequent use for control systems de- 
sign and evaluation (eg closed loop simulation studies). 
They can, however, be used, as here, to verify that the 
modeling strategy employed produces ‘realistic’ models 
on which to base controller design and evaluation. 

Alternatives to FEM, can be classified as elastic 
wave methods, variational methods, and mechanical 
impedance based methods respectively. A detailed 
study of the advantages and disadvantages of these 
methods can be found in [2]. Based on this study, a 
Lagrange-Rayleigh-Ritz (LRR) method is used to de- 
velop the mathematical models used as a basis for the 
controller design studies reported in this paper. 
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A key feature of the LRR approach is that the resulting 
models can be immediately written in state space form 
for robust controller design and evaluation. Here the 
use of this modeling procedure to design Loop Transfer 
Recovery (LTR) based controllers is illustrated. 

2 System Description and Modeling 

Equipment on-board satellites is often mounted on 
lightweight panels where microvibrations have to be 
suppressed to achieve the desired level of performance. 
Here we restrict attention to one such mass loaded 
panel - an acceptable compromise between problem 
complexity and the need to gain useful insights into 
the benefits (and limitations) of active control schemes 
in this general area. A schematic diagram of the ar- 
rangement considered is shown in Figure 1, where the 
equipment mounted on the panel is modeled as lumped 
masses and the disturbances as point forces. 

The sensors and actuators employed in this work are 
twin patches of piezoelectric material bounded onto op- 
posite faces of the panel. The bending vibrations of the 
plate produce stretching and shrinking of the patches 
depending on whether they are on the top or the bot- 
tom of it (Figure 2a). Due to the piezoelectric effect, 
these deformations induce an electric field perpendicu- 
lar to the plate which is detected by the electrodes of 
the patches. The outer electrodes of the patches are 
electrically connected together and the plate, which 
is grounded, is used as the other electrode for both 
patches of the pair. The same configuration is used for 

the actuator, but in this case the electric field is applied 
externally to produce contraction or expansion of the 
patch, which then induces a curvature of the plate. 

A key point is that the effectiveness of the piezoelectric 
elements, both as actuators and sensors, is significantly 
reduced if the wavelength of the deformations is smaller 
than the patch. The essential reason for this reduced 
effectiveness is that the signal produced in this case is 
partially or completely (as in Figure 2b) cancelled by 
the opposing field generated by the other part of the 
patch as it is deformed in the opposite direction. This 
limiting factor is especially important when attempt- 
ing to control high frequency vibrations which have, 

of course, very short wavelengths. One possible means 
of increasing the effectiveness of the patches in these 
situations would be to increase the patch dimension, 
but care is needed since this would also diminish the 
control authority at low frequencies. 

The LRR based procedure used to model this system 
(Figure 1) is based on Lagrange’s equations of motion 

which in the general case take the form 

Here T and U are the kinetic and potential energies of 
the system, and qi and Qi are the ith generalized co- 
ordinate and force respectively. For the particular case 
of Figure 1, the kinetic and potential energies (elastic 
and electric) can be expressed as 

where Tpl, Tl, and Tpz denote the kinetic energies of 
the plate, lumped masses, and piezoelectric patches re- 
spectively, U,l is the elastic energy stored in the plate, 
U pZ,,ast is the elastic energy stored in the piezoelectric 

patches, 4%lastelect represents the potential energy due 
to the voltage driven piezoelectric effect, and Up,e,ect is 
the electric energy stored due to the dielectric charac- 
teristics of the piezoelectric material. 

The displacement field (out-of-plane displacement W) 
is described by a superposition of shape functions S,,, 
(consisting of the first Nm.Nn modes of the bare panel) 
multiplied by the time dependent modal co-ordinates 

4 m,71, i.e. 

Nm Nn 

w(z,y,t) = c c ~m,n(~,Y)&z,n(~) = ST@ (3) 
m=l n=l 

where the Nm.Nn x 1 column vectors s and Cp con- 
tain the shape functions and modal co-ordinates re- 
spectively. 

The external excitation consists of Nf point forces Fj 
acting on the plate at arbitrary locations. Hence the 
generalized forces are of the form 

Qi=EF,*crQ=,Sff 
j=. ‘84 

(4) 

where f is the Nf x 1 column vector of forces and Sf is 
a compatibly dimensioned matrix whose columns are 
given by the model shape vector s evaluated at the 
corresponding force locations. 

It is now necessary to compute each of the terms in 
(2), starting with the kinetic energies. Each of these 
terms can be calculated using standard formulas [2]. 
Their final forms in terms of the corresponding inertia 
matrices are given by 

The potential energy of the system is stored as the elas- 
tic energy of the plate and the elastic/electric energy 



of the piezoelectric patches. In the case of the plate, 
use of a standard formula [2] gives 

where Kpl is the plate stiffness matrix. Also, by as- 
suming a linear strain pattern across the piezoelectric 
patches, the same procedure for the plate can be used 
to write 

u Pz.l,,t = ;~T~pzehd @ (7) 

where is the stiffness matrix which is fully populated 
and can be computed by using a standard formula as 
detailed in [2]. 

The additional stress which arises in the ith piezoelec- 
tric patch when an electric field ei(t) = wT(t)pi (where 
21 is the column vector containing the Np patch volt- 
ages, and the column vector pi has zero entries except 
for & (inverse of the patch thickness) in the ith posi- 

tion is’applied across the material can be expressed as 
(EpZ Young’s modulus, v Poisson’s ratio) 

Here d,, and d,, are the piezoelectric constants of the 
material, which is assumed to have pole direction z per- 
pendicular to the plate. This additional stress, multi- 
plied by the assumed strain, defines Uprelastelect which 
can be calculated by substituting (8) into the expres- 
sion 

U =; T 
Pz,l,St,l,Ct 

sss 
g,lect c dx dy dz (9) 

PG 

where pzi denotes the volume of the ith patch. 

By assuming d,, = d,, = d, it is possible to write the 
elastoelectric energy stored in the Np patches as 

U Pz,lCZSteleCt = ~T~Pzelastelact @ (10) 

where KP&kdelect can be computed as explained in [2]. 
Also the electrical energy stored in the piezoelectric 
material can be expressed as 

u -f PZelect - SJS eddxdydz (11) 
PZi 

where e is the electric field and d is the electric dis- 
placement (charge/area). For each patch, the electric 
displacement is 

di = epz; pT v (12) 

where cpr; is the dielectric constant of the piezoelectric 
material which forms the ith patch. Hence an equiva- 
lent expression for the stored electric energy is 

1 

~/-IS ~pz; pip: dx dy dz (13) 
i=l PZi 

where the elements of the matrix Kpzelect are the ca- 
pacitances of the piezoelectric patches. 

At this stage, all of the energy terms are available 
as functions of the generalized co-ordinates + and v. 
Hence it is a straightforward task to apply Lagrange’s 

equations of motion (1). This is again detailed in [2] 
and hence only the final result is given here. 

The most general case arises when some of the patches 
act as actuators and others as sensors. In which case 
it is necessary to partition the matrix KpZelastelect to 
separate out actuator and sensor contributions. To 
do this, let v, and V, be the sub-vectors of the volt- 
ages at the actuators and sensors respectively, and 
K PZae,aste,ect and KpZSelaatelect the corresponding par- 
titions of Kptelastelect . Then by use of (1) we have 

M$ + C,i + (&as + Kp,,)+ = -K;a_e,ect v, + s?f 

(14) 
where all inertia elements are included in the matrix 
M and all stiffness elements in the matrix Kelas. Also 

K pzs = -KPTZSe,aste,ectK~~e,ectKPZSelostelect (15) 

represents the contribution to the stiffness from the 
piezoelectric energy stored in the patches acting as sen- 

sors, where KPZS,,ect is the sub-matrix of Kpz,,ect corre- 

sponding to the sensors. The presence of the term C,& 
also means that damping has been introduced into the 
overall system. 

As an essential step before accepting a model derived 
by this procedure as a realistic basis for controller de- 

sign/evaluation studies, appropriate model validation 
studies must be undertaken. This aspect has been 
reported in [2] where the basic approach is to com- 
pare the results produced by this procedure for a range 
of structural and input/output configurations against 
those produced using standard FE models constructed 
(in this work) using the commercially available software 
ANSYS. 

In the FE model, only the elastic characteristics of the 
patches were directly modeled with the piezoelectric 
effects simulated by extrapolating in two dimensions 
the mono-dimensional theory discussed in [2]. Three 
different classes of tests were performed, the first of 
which compared the the output displacement produced 

by a corresponding input voltage(eg 1 volt) at a patch 
acting as an actuator. In the FE model for this test, the 
applied voltage was replaced by a line moment along 
the patch edges. 

The second set of tests, the displacement response of 
the plate (with a lumped mass added) to point forces 
was examined. In the third class of tests, the outputs 
(i.e. voltages) at the sensor in response to point forces 
was compared. During these tests, the voltages at the 



sensor were evaluated from the curvature of the plate 
at the edges of the patches. 

By way of examples, Figure 3 shows a typical response 
from the first test and Figure 4 a typical response from 
the second test. In depth analysis all of the results 
obtained confirms that the modeling technique used 
here is a viable alternative to other approaches with 
the added advantage of being a suitable basis for active 
control studies. The next section proceeds to use this 
approach to design and evaluate LTR controllers. 

3 Control System Design and Evaluation 

The model of (14) can easily be written in state space 
form as follows 

i = Ax+B,u+Bff 

US = c,x 
wout = c,x W-3 

where z = [a~, 6~1 T and, in particular, 

(17) 
Here w,,t is the output displacement and s,,t is the 
vector of mode shapes evaluated at the output location. 
Using this state space description, it is possible to begin 
in depth investigations of the potential (or otherwise) 
of active control schemes in this general area. In this 
paper the control objective considered is to minimize 
the displacement at a specified point on the panel in 
the presence of point force disturbances acting at other 
location(s) on the panel. The control strategy is based 
on LTR. 

The LTR design methodology followed [3] is the defi- 
nition of a target feedback loop (TFL) which is then 
recovered through an asymptotic design. In particular, 
we follow the well known two step design procedure for 
recovery at the input of a square plant and its dual for 
recovery at the plant output. The actual designs were 
undertaken in MATLAB and Figure 5 shows the re- 
sulting system for recovery at the plant output, where 
L denotes the Kalman filter gain matrix defined by ap- 
propriate selection of the covariance matrices W and 
V. The design is then completed by solving a stan- 
dard L&R problem with state and control weighting 
matrices Q and R respectively and is only guaranteed 
to work for minimum phase plants. 

If the plant has non-minimum phase zeros then the re- 
covery procedure may still work provided these zeros lie 
beyond the desired operating bandwidth. The applica- 
tion here is characterized by non-colocated sensors and 
actuators and hence the resulting plant transfer func- 

tion (or transfer function matrix) could well be non- 
minimum phase. Below we report one case in detail 
which shows that LTR design is still possible to some 
extent in this general area. 

The example used here is a particular case of Figure 1 

(for the parameters see [2]) where the disturbance is a 
harmonic point force of 1N amplitude acting perpendic- 
ular to the panel and the first 36 modes were taken as 
Ritz functions to model the displacement field. As ex- 
pected, this system is non-minimum phase and hence, 
at best, only a limited degree of LTR is possible. It- 
erating through the design procedure showed that this 
was indeed the case for weighting matrices of the form 

W = BfBfT, V = I, Q = C,‘Cw + qI, R = I (18) 

and varying the scalar q upwards from zero to approx- 
imately 10e2. 

Extensive simulation studies were carried out using the 
weighting matrices structure just outlined and Figure 6 
gives a representative set of results from these studies. 
This shows the displacement response at the center of 
the plate without (continuous line) and with (dashed 
line) control. As a very ‘basic robustness’ test, the 
model used in controller design used the first 4 Ritz 
functions and the simulation results shown are for the 
same controller applied to a model constructed using 
the first 6 Ritz functions. It is clear that a good level of 
vibration reduction has been introduced into the sys- 
tem. 

4 Conclusions 

This paper has outlined a modeling procedure which 
can be used to directly construct state space models on 
which to base active control design studies for the sup- 
pression of microvibrations. Here the use of this proce- 
dure has been demonstrated by its use to design LTR 
based controllers. At best, this work has only demon- 
strated the potential of this modeling strategy, and ac- 
tive feedback control schemes in this general area and 
clearly much work remains to be done, both on LTR 
and other robust controller design methodologies. 
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Fig. 1. Model layout. 
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Fig. 2. Patch section view during deformation 
a) deformation wavelength longer then patch 
b) deformation wavelength equal or shorter then 
patch 

Fig. 3. Test case 1, frequency response to point 
force input 
Solid line - Lagrange model 
Dashed line - FEM 

Fig. 4. Test case 2, frequency response to 
actuator voltage input 
Solid line - Lagrange model 
Dashed line - FEM 
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Fig. 5. Block diagram of the actively controlled 
system. 
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Fig. 6. Frequency response to point force 
Solid line - Uncontrolled system 
Dashed line - Controlled system 
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