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Abstract 

A behavioral approach to the design of gain- 
scheduled controllers is presented. Plant models 
are considered to be black-box models obtained 
at finitely many operating points, and it is as- 
sumed that no analytical nor empirical relations 
are known between physical parameters and the 
plant models. In this situation, it is suggested to 
interpolate in intermediate operating points, sim- 
ply by interpolating in signal space in the behav- 
ioral formalism. Two controller architectures are 
suggested that lead to global stability for systems 
that remain close to the interpolated values. 

1 Introduction 

Many industrial plants have dynamics and gains 
that depend strongly upon one or more param- 
eters characterizing the operating point. Several 
examples of fundamentally different nature can 
be given. Airborne objects such as airplanes and 
missiles have maneuvering dynamics that depend 
strongly upon the speedlaero-dynamic pressure. 
Similarly, sea-going objects such as ships and sub- 
marines have maneuvering dynamics that depend 
upon the speedlhydro-dynamic pressure. Process 
control systems such as power plants, are examples 
of a fundamentally different nature. The dynami- 
cal properties of process control systems - such as 
time constants and time delays - are often inversely 
proportional to the production rate [.&W89]. In 
power plants, time constants and gains varies with 
the load. 
Several papers have emerged that deal with anal- 
ysis of gain-scheduled controllers [SB92], [SA90], 
[SA92], [LR95], [Ruggl]. See also [Sha88]. 
Shamma and Athans ([SA90], [SA92]) seek to give 
rigorous mathematical justifications of well-known 
heuristic rules-of-thumb such as the scheduling 
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variable should capture the plants non-linearities 
and the scheduling variable should vary slowly. 
In [ShaSS] Shamma suggested a method for com- 
puting an upper bound for the allowed rate of 
change of the scheduling parameter. In [SB92] this 
method was adopted in the development of two 
candidate procedures for the computation of gain- 
scheduling controllers with guaranteed closed-loop 
stability. However, no numerical examples were in- 
cluded. In [Mor971 the practicability of the method 
in [Sha88] for solving a power plant boiler con- 
trol problem was examined by numerical evalu- 
ation. For this problem it was found to be ex- 
tremely conservative. The same observation was 
made in [Sha88], where the control object was an 
F-8 research aircraft. Remedies were suggested but 
these were found to be inadequate for the particu- 
lar problem. 
The simplest approach for gain-scheduling is to in- 
terpolate linearly between the parameters of the 
fixed controllers. This approach was suggested in 
[SB92] using LQG controllers. Simulation studies 
in [Mor971 however showed, that simple linear in- 
terpolation between the parameters may lead to 
unrealistic trajectories of the closed-loop eigenval- 
ues . 
In the approach suggested in [Pac94] and [AG95] 
the primary task is to obtain/construct a plant 
model that can be written as an LFT between some 
fixed plant interconnection matrix and the schedul- 
ing variables. For this linear parameter-varying 
(LPV) plant model, a single LPV controller for 
the complete range of operating conditions is com- 
puted in one shot by solving systems of coupled 
LMIs. A problem with this approach is, that it 
may be very difficult to obtain an appropriate can- 
didate for the interconnection matrix mentioned 
above. Also, if the synthesis algorithm fails, no 
indication is given of where the bottlenecks are. 

2 Problem Formulation 

In the simplest case with only two different linear 
controllers gain-scheduling is often achieved by a 
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PdS) 

In the diagram, P,(s) is the physical system pa- 
rameterized by a, Ko(s) and Kl( s )  are the multi- 
variable controllers designed for a = 0 and a = 1, 
resp. (i.e. for Po(s) and Pl(s), resp.), and a1 is a 
gain-scheduling block. It is easily seen that the di- 
agram implements aKo(s) + (1 - a)K1 (s) which is 
a simple linear interpolation of the two controllers 
designed for the two extreme operating points. 
This procedure works well in many applications, 
but it has some pitfalls as well, the most significant 
being that the procedure requires both controllers 
to be stable. This is obvious since the control sig- 
nal from an unstable controller Kl(s) will always 
diverge when a is small and vice versa. 
Basically due to this limitation, the industrial use 
of unstable controllers has been limited. This is 
unfortunate, considering that 

The 

tion. 
loop 

- W S )  c (1 - a)1-@ 

for some plants, no stable controller will 
achieve optimality (in a mixed sensitivity 
sense) 

for some plants, no stable controller will ro- 
bustly stabilize the system 

for some plants, no stable controller will sta- 
bilize even the nominal system 

- Kl(s) c 

requirement of the controllers to be open- 
stable is usually known as strong stabiliza- 
Recently, it has been shown that the order of 

a1 ’ 

a strongly stabilizing X, controller can become 
unbounded as poles and zeros approach [SSSS]. 
Some bounds on performance for strongly stabi- 
lizing controllers can be found from [OMKSl]. 
In this paper we will suggest a general architecture 
for gain-scheduling between compensators, which 
are not required to be stable, although stability is 

guaranteed throughout the gain-scheduling proce- 
dure] assuming that gain-scheduling is performed 
sufficiently dense in the operation region. 
The main idea of the paper is to introduce gain- 
scheduling procedures based on models obtained 
under several operating conditions without rely- 
ing on any specific parameterization or realization. 
This is motivated by applications where the models 
contain no natural parameter for gain-scheduling, 
for example if models are obtained in a number of 
operating points using black-box system identifi- 
cation techniques. 
It is obvious that different state space realizations 
yield different gain-scheduling systems, if the inter- 
mediate models are simply interpolated between 
state-space parameters. 
In such cases, see e.g. [Mor97], for instance interpo- 
lating between controllable canonical forms might 
fail even to stabilize the system at intermediate 
points, even if the controllers stabilize the identi- 
fied models at the experimental operating points. 
This does of course not mean that there might not 
be some realization for which state space param- 
eter interpolation achieves good results. However, 
it is not at all clear given two black-box models, 
which state space realizations would make best 
sense for either one, if they were to be interpo- 
lated. 
Therefore, we shall take an approach which di- 
rectly interpolates in the space of measured sig- 
nals. This relates to the literature on behavioral 
systems theory, see e.g. [Wi191]. Indeed, let m lin- 
earizations of a system under m different operating 
conditions be modeled by m triples: 

Ci = (T,W, ai) , i = 0,.  . . ,m - 1 

where T c R is the time-axis, W the signal space, 
and Bi, i = 0,. . . , m - 1 subsets of WT called the 
behavior of the system Ci, i = 0, .  . . , m - 1. The 
behavior consists of those trajectories 20 : T + 
W which satisfy the laws of the system Ci. 
From a behavioral point of view, there is only one 
natural way to interpolate between several operat- 
ing conditions, if no analytic relation is known be- 
tween parameters describing the operating condi- 
tions and the individual behaviors, namely to con- 
sider linear interpolations between the behaviors 
themselves: 

7 l L - 1  n r - 1  

E,=(T,W,B,),  .tj,=c(Yi.tji, ( Y i 2 0 ,  c(Yi=1 

(1) 
i=O i = O  

The convex combination of behaviors should be 
understood in a pointwise sense: 
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m-1 m-1 c aiBi = { 5 aiwi(.) : wi E Bi, i = 0,. . . , m - 1 

It is straightforward to show that for any imposed 
input/output structure on a set of variables in 

a behavioral description w(.) = (;[I{) , the fre- 

quency domain description corresponding to (1) 
becomes: 

i=O 

m-1 

Pa = aiPi (2) 
i=O 

where e(-), i = 0, .  . . , m-1 is the transfer function 
associated with each of the m operating points. 
Whereas the 'real' system structure always remain 
unknown based on the information assumed avail- 
able, the gain-scheduled controllers should at least 
stabilize some intermediate system structure. In 
the sequel of the paper, we shall restrict o w  atten- 
tion to systems of the form (2). 
For completeness, it should be stated that however 
intuitive the representation (1) might seem, there 
are significant properties possessed by some real 
systems that are not readily captured by this rep- 
resentation. As an example could be mentioned a 
highly parameter dependent resonance frequency. 

3 Main Results 

The following results can easily be generalized to 
hold for an arbitrary number of systems and con- 
trollers, but for simplicity, we shall state them in 
the case of two systems only. In this case (2) spe- 
cializes to: 

Pa(s) = (1 - a)Po(s) + "Pl(S) ,  a E (0,l)  

We shall introduce two different architectures. The 
first architecture is the most general, but it has 
a large complexity in the number of initial plant 
models. The second architecture is simpler and has 
a lower complexity in the number of initial plants. 

3.1 A general architecture for gain- 
scheduling 
Our first result shows that by introducing the two 
known plant models internally in the controller, it 
is possible to obtain internal stability for all inter- 
polated values of the two original systems. 

Theorem 1 Assume that Pi(s), i = 0 , l  are two 
(open loop) internally stable systems, and Ki(s) ,  
i = 0 , l  are two (possibly unstable) controllers, 
such that Ki(s) stabilize Pi(s), i = 0,1, and the 

closed loop systems are well-posed. 
following class of systems 

Consider the 

Pa(s) = (1 - (Y)Po(s) + (YPl(S), (Y E (0,l) 

and define 
Ma(s)  = 

(1 - n)I nI 
( l - ( l - n ) ' ) P o ( s ) - n ( l - n ) P , ( s )  - n ( l - n ) P o ( s ) - n P ~ ( s )  
-(1 - .)'Po(s) - n(1 - a)P1(s) -a(l - n)Po(s) + (1 - a') P,(s) 

Then the following controller 

= m M a ( s ) ,  a)) (3) 

is  internally stabilizing for  any Pa(s), a E (0,l). 
Moreover, Ka(s )  can be written: 

= Qa(s) (1 +Pa(s)Qa(~))- '  (4) 

with: 

Qa(s) = (1 - Q ) Q o ( ~ )  + a Q l ( ~ )  7 

Q,(s) = K~(s) ( I  - Pi(s)Ki(~))- '  , i = 0 , l  

A possible implementation for K,(s) is shown 
in Figure 2. 

PI- 
3 

Figure 2: General gain-scheduling structure for un- 
stable controllers 
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Proof. The equivalence between (3) and (4) fol- 
lows from trivial algebra (Schur inversion etc.). 
Since P,(s) = (1 - a)Po(s) + aPl(s)  is open loop 
stable for any value of a, the set of all stabi- 
lizing controllers is parametrized by (see [Kuc75, 
YJB791) 

K = Q(s)  (I + Pds)Q(s))-'  

where Q E R X w ,  and the feedback loop is well- 
posed. Since (4) is already in this form, with &, E 
RXm by stability and well-posedness of Q ~ ( s ) ,  i = 
1,2, due to the assumptions on Ki(s), i = 1,2, 
stability and well-posedness is immediate. 

0 

3.2 An average controller structure 
In the above, we have assumed that controllers 
Ki, i = 0 , l  have been prespecified for the original 
models Pi, i = 0 , l .  If this is not the case, in some 
cases, there might still be a simple way to compute 
a controller that works for all Pa, 0 < a < 1, even 
if Po, PI or both are unstable. 
One possible controller that works for a certain 
class of systems, is depicted in Figure 3, and is 

Theorem 2 Assume that K L ( s )  is a con- 
troller that internally stabilizes the system 
$ (Po(s) +PI(.)). Then the controZZer 

where 

internally stabilizes P, for 0 < a < 1. 

In fact Theorem 2 could be extended beyond the 
open interval, if any unstable pole/zero cancella- 
tions at a = 0 or a = 1 would be admissible (oth- 
erwise the plant would not be stabilizable for these 
values at all). 
Comparing Theorem 1 to Theorem 2, at first 
glance it seems likely that there would exist a 
choice of K L  in Theorem 2 that would recover The- 
orem 1 as a special case. This, however, is not the 
case, since it is easy to verify that K L  would have 
to depend on a. Hence, the two results are funda- 
mentally different in nature. 

2 

2 

Figure 3: Gain-Scheduling structure based on con- 
troller for average plant 

based on the simple observation that 

Po(s) + Pl-,(S) = 2 5  = Po + Pl 

Hence, if K L  is a controller that stabilizes PL , then 
! ~ K L  stabilizes P,(s) + Pl-,(s) for all values of a. 
But this in turn implies that by adding  PI-.^ as 
a feed-forward term, the resulting controller stabi- 
lizes all Pa (s) . More precisely, we have: 

2 

4 A Simulation Example 

The results given above establish conditions for 
stability of gain-scheduling controllers with the 
given architectures. If the gain-scheduling is based 

Figure 4: Performance of gain-scheduled controller 
at the endpoints and at three intermediate 
operating points 
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on systems which are close it is also expected that 
the resulting performance will be close to what has 
been obtained for the individual systems. This will 
be illustrated using two second order systems. The 
systems have a 2 x 2 structure with one disturbance 
input, one control input, one performance output 
and one measured output. Controllers minimizing 
the 'fl, norm of the transfer function from dis- 
turbance to performance output for the individual 
systems have been designed. The systems have 
been chosen as (random) stable systems that hap- 
pen to have unstable 'fl, controllers. The results 
in Figure 4 show that the gain-scheduling con- 
troller has performance similar to the individual 
systems. 

5 Conclusions 

The problem of designing gain-scheduled con- 
trollers has been addressed for systems based on 
models for finitely many operating points, and 
with no inter-model behavior a priori given. 
The authors believe this problem to be of signifi- 
cant industrial relevance, since gain-scheduling is 
often used for complex processes where modeling 
by first principles is unlikely to succeed or imprac- 
tical. 
The results given in this paper fulfills a first re- 
quirement: at least some intermediate class of sys- 
tems to the known models are guaranteed to be 
stabilized. 
A case study of the methods suggested in this pa- 
per is reported in [Han98], where they have been 
applied to a power plant control system. 
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